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Abstract

In this paper, we prove that the path ideals of both paths and cycles have
minimal cellular resolutions. Specifically, these minimal free resolutions coincide
with the Barile-Macchia resolutions for paths, and their generalized counterparts
for cycles. Furthermore, we identify edge ideals of cycles as a class of ideals that
lack a minimal Barile-Macchia resolution, yet have a minimal generalized Barile-
Macchia resolution.

Mathematics Subject Classifications: 05E40, 13D02

1 Introduction

It has been a powerful approach to associate a combinatorial object with an algebraic
one and study its algebraic properties via combinatorics [13, 14, 17, 18, 19]. In the
spirit of this approach, the algebraic objects of interest in this paper are path ideals,
while the combinatorial counterparts are graphs. Specifically, our focus is on studying
the path ideals of graphs and their minimal free resolutions by leveraging the underlying
structure of the graphs. Central to this work is the use of (generalized) Barile-Macchia
resolutions from [10]. Such resolutions fall under the umbrella of Morse resolutions, a class
of cellular resolutions first introduced by Batzies and Welker in [6], and they generalize
the minimal free resolution constructed in [5] for edge ideals of forests. These resolutions
are obtained using homogeneous acyclic matchings, a concept from discrete Morse theory.
In addition to the Barile-Macchia resolution, other examples of Morse resolutions have
been introduced in the literature. One recent example is the pruned resolutions from [3].

Path ideals, first introduced by Conca and De Negri in [12], have been studied for
their algebraic properties [1, 2, 4, 8, 9]. Path ideals can be seen as a generalization of edge
ideals, which have been of significant interest in recent years. Let G = (V, E) be a finite,
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simple graph with the vertex set V' = {xy,...,2,}. Associating the vertices of G with
the variables in the polynomial ring R = k[zy, ..., x,], where k is any field, the edge ideal
of G is then generated by monomials of the form z;x; for every {x;,z;} € E. In essence,
edge ideals arise from monomials corresponding to edges in G, which are inherently paths
of length 1. Extending this idea, ideals generated by monomials corresponding to paths
of a specified length in G are called the path ideals of G.

In this paper, our goal is to construct minimal resolutions for path ideals of paths
and cycles. While there is literature discussing and providing explicit formulas for the
(graded) Betti numbers of these ideals [2, 15], no construction has yet been provided for
their minimal resolution. We achieve this by working with (generalized) Barile-Macchia
resolutions from [10], thereby expanding the class of ideals for which these resolutions are
minimal.

Our two main results are:

1. We establish that path ideals of paths have the bridge-friendly property (Theo-
rem 19). This property ensures the minimality of Barile-Macchia resolutions as
described in [10]. Thus, we determine that the path ideals of paths admit a minimal
Barile-Macchia resolution. From this, we derive formulas for their projective dimen-
sion and graded Betti numbers, recovering results from [2] and [8] (Corollary 28,
Theorem 29).

2. We shift our focus to path ideals of cycles. In this context, Barile-Macchia resolu-
tions are not always minimal. One instance is the edge ideal of a 9-cycle, I5(Cy),
which, as indicated in [10], does not have any minimal Barile-Macchia resolution.
Nonetheless, we prove that path ideals of cycles have a minimal generalized Barile-
Macchia resolution (Theorem 46).

Our results on minimal cellular resolutions of path ideals for paths and cycles generalize
the findings from [3], where it is shown that edge ideals of paths and cycles have minimal
pruned resolutions.

Both Barile-Macchia and generalized Barile-Macchia resolutions are induced by homo-
geneous acyclic matchings, called Barile-Macchia and generalized Barile-Macchia match-
ings, respectively. At the heart of the Barile-Macchia matching construction is the com-
parison of least common multiples of subsets of the minimal generating set G(I) of a
monomial ideal I, with respect to a total order on G(I). An algorithm for producing
Barile-Macchia matchings was introduced by the first two authors in [10]. In addition,
MorseResolutions Macaulay2 package dedicated to Barile-Macchia resolutions were in-
troduced by the first two authors and O’Keefe in [11]. While the generalized version
adopts the same foundational principle, it extends to multiple total orders on G(I) as
discussed in Section 4. For further details, refer to [10].

An important concept in relating homogeneous acyclic matchings and free resolutions
is critical cells: These are subsets of G(I) that remain untouched by a homogeneous acyclic
matching of I. In [6], it was shown that these cells are in one-to-one correspondence with
the ranks of free modules from (generalized) Barile-Macchia resolutions. Thus, in this
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paper, we focus on characterizing critical cells of path ideals using bridges, gaps and true
gaps — simple yet powerful concepts rooted in the graph’s structure as introduced in [10].
We use these notions to produce minimal free resolutions of path ideals of paths and
cycles.

A key observation concerning the critical cells of path ideals of paths is that two
distinct critical cells have different least common multiples. This observation proves
useful in constructing a critical cell of maximum size, which in turn allows us to deduce a
formula for the projective dimension of path ideals of paths. Additionally, this insight is
helpful in identifying all critical cells of path ideals of cycles. Such cells consists of critical
cells of path ideals of induced paths as well as critical cells whose least common multiple
has the largest multidegree — for a cycle on n vertices, it would be x; - - - x,,. Consequently,
in the paper’s final section, our study primarily focuses on identifying the critical cells of
the latter type for cycles.

The structure of this paper is as follows. In Section 2, we revisit essential concepts
and results relevant to Morse resolutions, as well as Barile-Macchia matchings and reso-
lutions. In Section 3, we explore path ideals of paths. We start this section by delving
into the characterizations of bridges, gaps, and true gaps specific to paths. With these
characterizations in hand, we obtain the bridge-friendliness and affirm the minimality of
the associated Barile-Macchia resolution. This paves the way for us to introduce formulas
for the projective dimension and to provide a recursive formula for graded Betti numbers.
Lastly, in Section 4, we turn our attention to path ideals of cycles, offering both a review
of and insights into the application of generalized Barile-Macchia resolutions. After char-
acterizing the bridges, gaps, and true gaps, we verify the minimality of their generalized
Barile-Macchia resolutions by drawing upon our earlier findings on path ideals.

2 Preliminaries

2.1 Morse resolutions

Let I be a monomial ideal in the polynomial ring R = k[zy,...,zx] with a minimal
generating set denoted by G(I) = {my, ..., m,}. We associate to I the Taylor simplex X.
The vertices of X correspond to the generators of I, whereas its cells are labeled by the
least common multiple of the labels of their incident vertices. We also associate a directed
graph Gx = (V, E) with this structure, where V' denotes the cells of X, or equivalently,
the subsets of G(I). The edge set E consists of directed edges of the form (¢, c’) where
o' C o and |0'| = |o] — 1. For any subset A of E, we define G4 as the directed graph
having vertex set V' and edge set

E(G%) = (E\ A U{(c",0) | (0,0) € A}.

Essentially, G4 is derived from Gy by reversing the direction of edges belonging to A.
Central to our discussion on a Morse resolution of [ is the notion of homogeneous
acyclic matchings from discrete Morse theory, a concept we revisit below.
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Definition 1. A subset A C F is called a homogeneous acyclic matching of I if the
following conditions hold:

1. (matching) Each cell appears in, at most, one edge of A.
2. (acyclicity) The graph G% does not contain a directed cycle.
3. (homogeneity) For any edge (0,0’) in A, we have lem(o) = lem(o”).

A cell o that does not appear in any edge of A is called an A-critical cell of I. In contexts
where there is no ambiguity, we simply refer to it as critical.

Recall that X is a Z"-graded complex that induces a free resolution F where F, is
the free R-module with a basis indexed by all cells of cardinality . The differentials
0,: F. — F,_1, are defined as

o) = X lo: ol
e

where [0 : ¢'] denotes the coefficient of ¢’ in the boundary of ¢ and is either 1 or —1. The
complex F is called the Taylor resolution of R/I.

Morse resolutions are refinements of the Taylor resolution. Each homogeneous acyclic
matching yields a Morse resolution, and these resolutions may coincide. To precisely define
the differentials of a Morse resolution, we need to introduce some additional terminology.

Given a directed edge (o,0") € E(G4), set

m(o, o) = {—[0’ co| if (0',0) € A,

[0 :0']  otherwise.
A gradient path P from oy to oy is a directed path
P:ioy 09— =0y

in G4. Similarly, set m(P) = m(oy,02) - m(oa,03) - - -m(oy_1, 0¢).
We are now ready to recall Morse resolutions of monomial ideals.

Theorem 2. [6, Proposition 2.2, Proposition 3.1, Lemma 7.7] Let A be a homogeneous
acyclic matching of I. Then A induces a cellular resolution F,, where:

o (Fa), is the free R-module with a basis indexed by all critical cells of cardinality r.
o The differentials 0% : (Fa), — (Fa)r_1 are defined by:
lem(o)
A\ _ :
0 (o) = Z [0 : 0’ Z Z m(P)lcm(a”)U”'

o'Co, o' is critical, P is a gradient path from o’ to o’
lo’|=r—1 lo"|=r—1

The resulting (cellular) free resolution F 4 is called the Morse resolution of R/I associated
to A. Furthermore, F 4 is minimal if for any two A-critical cells o and o’ with |o'| = |o|—1,
we have lem(o) # lem(o”).
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2.2 Barile-Macchia matchings and Barile-Macchia resolutions.

In this subsection, we recall Barile-Macchia matchings and resolutions. To ensure that
this paper is self-contained and accessible, we present relevant definitions and results from
[10] that are instrumental to our discussions.

Given Theorem 2, the key to producing a Morse resolution of R/I is finding a ho-
mogeneous acyclic matching of I. However, systematically crafting such a matching for
any monomial ideal is a challenging task. A recent development in this direction is the
Barile-Macchia algorithm, as presented in [10, Theorem 2.8], which produces a homoge-
neous acyclic matching. In the context of [10], a matching arising from this algorithm is
called a Barile-Macchia matching, and the resulting resolution is called a Barile-Macchia
resolution.

Below, we recall some of the terminology useful for discussing Barile-Macchia resolu-
tions. Throughout this section, we fix a total order (>-;) on G(I). For simplicity, we write
S\ s (resp, S Us) instead of S\ {s} (resp, S U {s}) where S is a set and s € S (resp,
s ¢ S). Additionally, throughout our discussion, we use the terms “subsets of G(I)” and
“cells of I” interchangeably. By cells of I, we refer to cells of the corresponding Taylor
simplex X. Lastly, when we express a cell ¢ as 0 = {my,,...,m;, }, we assume that
My =1 My 777~ =1 My, .

Definition 3. Let o be a subset of G(I). A monomial m is called a bridge of o if m € o
and removing m from ¢ does not change the lem, i.e., lem(o \ m) = lem(o). If o has a
bridge, the notation sb(c) denotes the smallest bridge of o with respect to (>=7). We set
sb(o) = 0 if o has no bridges.

To fully understand the terms and context we discuss, in Algorithm 1 we recall the
Barile-Macchia algorithm as outlined in [10, Algorithm 2.9].

Algorithm 1 Barile-Macchia Algorithm
Input: A total order (>-;) on G(I).
Output: Set of directed edges A in Gx.
A0
Q2 «+ {all subsets of G(I) with cardinality at least 3}
while Q # () do
Pick o € Q with maximal cardinality
Remove {o,0 \ sb(o)} from 2
if sb(c) # () then
Add edge (0,0 \ sb(o)) to A
for all distinct edges (o, 7) and (¢’,7') in A with 7 =7’ do
if sb(¢’) > sb(c) then
Remove (o/,7') from A
else

Remove (o, 7) from A
return A

ol
N 22

(S48
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The Barile-Macchia Algorithm systematically constructs a matching in Gx based on
the concept of bridges within subsets on G(I) and a fixed total order (>;) of G(I). As
it was shown in [10, Theorem 2.11], this process always produces a homogeneous acyclic
matching.

Definition 4. Given a Barile-Macchia matching A of I:

1. For any edge (o, 7) in the final A from Algorithm 1, the cell o is called type-2 while
the cell 7 is called type-1.

2. During the execution of Algorithm 1, if a directed edge (o, 7) is added to A, the
cell o is called potentially-type-2. It is important to note that this edge may not
persist in the final A produced by Algorithm 1.

Remark 5. 1If a subset of G(I) has a bridge, then it is either type-1 or potentially-type-2.

In earlier discussions, we emphasized the one-to-one correspondence between the ranks
of the free R-modules in a Barile-Macchia resolution of R/I and the A-critical cells of 1.
Here, A represents the Barile-Macchia matching of I with respect to (>;). Thus, delving
into the nature of A-critical cells, along with the remaining cells, is crucial for a deeper
comprehension of the Barile-Macchia resolution of R/I. It is important to point out that
critical cells of I consists of those cells either left out of A during the Barile-Macchia
Algorithm or added initially but later excluded in the final refinement of the algorithm.
We name these critical cells as follows:

Definition 6. Let o be a subset of G(I). If o is never added to A in any of the steps
throughout Algorithm 1, it is called absolutely critical. If ¢ is potentially-type-2 but
not type-2 (initially added to A but removed in the final A produced by Algorithm 1),
we call it fortunately critical.

The following concepts from [10] are useful in characterizing critical and non-critical
cells of I.

Definition 7. [10, Definition 2.19] Let m, m’ € G(I) and o be a subset of G(I).

1. We say that m dominates m' if and only if m =; m/.
2. The monomial m is called a gap of ¢ if m ¢ o, and lem(c Um) = lem(o).

3. The monomial m is called a true gap of o if it is a gap of ¢ and if ¢ Um has no
new bridges dominated by m. The last condition is equivalent to the following: if
m/ is a bridge of 0 Um such that m >; m/, then m’ is a bridge of o.

In [10], the first two authors characterized type-1, potentially-type-2, and type-2
cells in terms of bridges and true gaps. We focus primarily on the characterization of
potentially-type-2 cells as this is the type of cell that we encounter in our proofs. Recall
that, if o is potentially-type-2, then it follows from the definition of potentially-type-2
that o has at least one bridge.
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Theorem 8. [10, Theorem 2.24 (b)] A cell o is potentially-type-2 if and only if min, (o)
s a bridge where

rriin(a) = rr;in{ bridges of o, true gaps of o}.
I I

In this case, we have min, (o) = sb(o).

Based on the characterizations of type-1 and potentially-type-2 cells from [10], we
have the following characterization of absolutely critical cells which is also the statement
of [10, Corollary 2.28]:

Corollary 9. A cell is absolutely critical if and only if it has no bridges and no true gaps.

In [10], the first two authors introduced a pivotal class of ideals called “bridge-friendly”
for analyzing the minimality of Barile-Macchia resolutions. As established in [10, Theorem
2.29], bridge-friendliness is a sufficient condition for an ideal to have a minimal Barile-
Macchia resolution. We revisit the definition of this class of ideals using the concept of
absolutely critical cells.

Definition 10. [10, Definition 2.27] A monomial ideal I is called bridge-friendly if,
for some total order =; on G(I), every potentially-type-2 cell is of type-2 with respect to
(>7). Equivalently, all A-critical cells of I are absolutely critical. Here, A represents the
Barile-Macchia matching of I with respect to (>;).

Theorem 11. [10, Theorem 2.29] If I is bridge-friendly, then R/I has a minimal Barile-
Macchia resolution.

In the next chapter, we study class of ideals that are bridge-friendly.

3 Minimal free resolutions of path ideals of paths

In this section, our primary goal is to investigate the bridge-friendliness and, consequently,
the minimal Barile-Macchia resolutions of path ideals of paths.

Fix two integers p and n. Consider a path L on the vertices {z1,...,Zp4p-1}. Let
R = Kk[zy,...,zx] with N = n+ p — 1. The p-path ideal of L, denoted as I,(Ly), is
generated by monomials in R corresponding to paths on p vertices along L. Explicitly,
we have:

IP(LN) = (z129 - "Tpy, LT3 Tppl, " "5 TpTpgl - 'xn+p—1)-

Remark 12. Path ideals can be viewed as an extension of edge ideals of graphs. Specifi-
cally, the 2-path ideal of a graph coincides with its edge ideal.

The set of minimal generators of the p-path ideal of L is {my,ma,...,m,} and we
denote this set by G. So,
g = {ml,mg,...,mn}

where m; 1= x;x;41 - - Ti4p—1 for each 1 < i < n. Fix a total order () on G such that
My > Mo >+ > My,
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Throughout the rest of this chapter, our focus is on the monomial ideal I,(Ly). In
particular, we examine its Barile-Macchia matching and resolution with respect to the
aforementioned total order. For ease of readability, we introduce the following notation,
which is consistently employed throughout the paper.

Definition 13. Fix a variable z; where 1 <7 < N. Let M, denote the set of all monomials
in G that are divisible by x; where

M; ={m;: max{l,i—p+1} <j < min{i,n}}.

This means

{ml,...,mi} 1f2<p,
M =S {mi_py1,...,mi_1,mi}  if p<i<n,
{mi,erl, R ,mn} if i > n.

For a monomial m € R, we denote its support by supp(m). Recall that this is the set
of all variables dividing m. For instance, we have supp(m;) = {z;, ..., T;yp-1} for m; € G.

We begin our analysis with the following lemma, which serves as a foundational tool
for the classification of bridges, gaps, and true gaps of a cell.

Lemma 14. Let o be a cell of I,(Ly) such that m; ¢ o for some m; € G. Assume that
lem(o) is divisible by m;. Then there exist monomials m; € o N M; and my, € 0 N M1
with 1 < j <1<k <n such that k — 75 < p.

Proof. First note that 1 < i < n since lem(o) is divisible by m; but m; ¢ o. Consider the
set of all monomials in G that are divisible by one of the variables in supp(m;). This set
can be expressed as the union M; U M;,,_; where

Mi = {mq’ s 7mi} and Mi+p—1 = {mi, c. ,mg}

with ¢ = max{1,7 —p+ 1} and ¢{ = min{i + p — 1,n} as in Definition 13. Then, for any
ms € M; and m; € M;4,_1, we have s <14 <t < i+ p— 1. Lastly, note that if m, € M,,
then mgy, ¢ M, which implies that i < s+ p.

Since m; divides lem(o) but m; ¢ o, there exist monomials m; € o N M; and m,; €
oNM;,—1 with s <@ <t. Let j be the largest index of a monomial in cNM; and & be the
smallest index of a monomial in o N M; 4, 1. In other words, pick the monomials m; and
my, in o that are closer to m; from either direction. Observe that m; divides lem(m;, my).
Otherwise, there exists my; € 0 N M; with j < s or my € 0 N M;4,1 with ¢t < k which
contradicts to either maximality of j or minimality of k.

Lastly, we show k —j < p. If k —j > p, then z;,, does not divide lem(m;, my).
However, x4, divides m; since ¢ +1 < j+p < k < i+p—1 from the first paragraph. This
leads to a contradiction as m; divides lem(m;, my). Thus, we must have k — j < p. O

In the following result, we provide a characterization of bridges and gaps of a cell. It
is important to note that neither m; nor m,, can be a gap or a bridge of any cell.
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Proposition 15. Let o be a cell of I,(Ly). For a monomial m; € G with 1 <1i < n, the
following statements hold:

1. the monomial m; is a bridge of o if and only if m; € o and there exist monomials
m; € o N M; and my € 0 N\ M4,y such that j <i <k <n and k —j < p.

2. the monomial m; is a gap of o if and only if m; ¢ o and there exist monomials
m; € o N M; and my, € 0 N\ M;yp—1 such that j <i <k <n andk —j < p.

Proof. 1f m; is a bridge of o, then application of Lemma 14 to o \ m; results with the
desired conditions. For the other direction, if the conditions are met, then m; divides
lem(my, my). Since lem(mj, my,) divides lem(o), the monomial m; must be a bridge of o.
Characterization of gaps in part (2) follows similarly. ]

Remark 16. When m; is a bridge or a gap of a cell o, there can be several (m;, my) pairs
of m; where m; and m; are as in the statement of Proposition 15. However, there is
only one (m;, my) pair if m; and my, are chosen to be the closest to m; as in the proof of
Lemma 14.

Next, we present a characterization of true gaps in terms of these (m;, my) pairs. In
particular, we show that m; = my for any two pairs (m;,my) and (m;,my) of a true
gap as in Proposition 15. So, there is a unique such my, for true gaps.

Proposition 17. Let o be a cell of I,(Ly). Consider a monomial m; € G for 1 <i<n
such that m; does not dominate any bridges of o. Then m; is a true gap of o if and only
if the following statements hold:

(a) The monomial m; is a gap of o.
(b) There is only one monomial in o N M;ip1.

(¢) If i+ p <mn, then miy, ¢ 0.

Proof. Recall the assumption that m; does not dominate any bridges of ¢. In addition,
recall the following result from [10, Proposition 2.21] which will be useful in the proof:
m; is a true gap of o that does not dominate any bridges of ¢ if and only if m; is a gap
of o and sb(oc Um;) =m,.

For the forward direction, suppose m; is a true gap of o. It then follows from [10,
Proposition 2.21] that sb(c Um;) = m;.

(a) By the definition of a true gap, m; is a gap of o.

(b) It follows from part (a) and Proposition 15 (2) that there exists a monomial my €
o N My, for i < k. If there exists another monomial m, € o N M;;, 1, then
1 < k,t < 14 p— 1 where the last inequality is due to Definition 13. We may
assume k < t (otherwise, switch & and ¢ in the following arguments). This means
supp(my) C supp(m;) U supp(m;) which is equivalent to my divides lem(m;, my).
Since lem(m;, m;) divides lem(o Um;), the monomial my, is a bridge of o Um; where
m; > my. This contradicts sb(c Um;) = m;. So, we have o N M4, = {my}.
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(c) Suppose ¢ +p < n. Let my be the monomial from part (b). If m;y, € o, then
supp(my) C supp(m;) U supp(m;4,) since i < k < i+ p. This implies that my, is
a bridge of o U m; where m; = my, a contradiction as sb(c U m;) = m;. Hence,
Mitp & 0.

For the other direction, assume (a), (b), and (c) hold. For contradiction, suppose that
m; is not a true gap of o. Let m; := sb(o Um,;). Then, by [10, Proposition 2.21], we
have m; = m; which implies that i < ¢ and m; € o. Although m; is a bridge of o U m;,
notice that m; cannot be a bridge of o since m; does not dominate any bridges of ¢ by
the initial assumption.

Since my is a bridge of ¢ Um,;, by Proposition 15 (1), there are monomials m;,, my, €
o Um; such that 5, < t < k, < n and k; — j; < p. Since my; is not a bridge of o,
either j; = ¢ or k; = i. Given ¢ < t, it follows that j; = i. Consequently, we have
i <t <k < i+ p which implies that m; € o N M;4,_;. Since my, € o, it follows from (b)
that my, ¢ o N M;4,—1, meaning that k; > i + p. This means k;, = i + p < n, which in
turn implies my, = m;4, € o, contradicting (c). Therefore, m; must indeed be a true gap
of 0. m

Example 18. Consider the 3-path ideal of an 8-path,
I = (212973, DoT374, T3T4T5, T4T5T6, TsTeT7, TeT7Tg)-

Consider the subset 0 = {my, m4, mg}. It has no bridges, and its gaps are ms, ms, and
ms. Using Proposition 17, we identify which among these gaps are true gaps.

e The monomial ms is a true gap of o. This is confirmed by: (a) the observation that
ms ¢ o and my,my € o, with the difference in their indices satisfying 4 — 1 < 3;
(b) within the set My = {my, mg, m4}, only my4 belongs to o; and (c¢) the monomial
Maot3 = M3 1S not in o.

e The monomial mj3 is not a true gap of o. This is due to the failure of part (c) of
Proposition 17 (3), given that mg € o.

e The monomial ms is a true gap of o based on: (a) ms ¢ o and both m4 and mg
are in o, satisfying 6 — 4 < 3; (b) from the set M; = {ms, mg}, only mg is in o.
Furthermore, (c) is not applicable since 8 > 6, and thus, ms,3 = mg does not exist.

In what follows, we show that path ideals of paths are bridge-friendly.

Theorem 19. The path ideal 1,(Ly) is bridge-friendly, and its Barile-Macchia resolution
15 minimal.

Proof. 1t suffices to show that I,(Ly) is bridge-friendly by Theorem 11. Recall from [10,
Lemma 2.33] that I,(Ly) is bridge-friendly if and only if, for any potentially-type-2 cell
o (should it exist), there is no monomial m € G such that m is a true gap of o \ sb(o)
and sb(o) > m.
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If I,(Ln) has no potentially-type-2 cells, then, by definition of bridge-friendly, there
is nothing to prove. So, we may assume I,(Ly) has a potentially-type-2 cell, say 0. By
definition, sb(o) exists. Since sb(o) # m, as m, cannot be a bridge of o, there exists a
monomial m; € G satisfying sb(o) > m;. It is possible to have m; = m,,.

Our goal is to show that m; cannot be a true gap of ¢ \ sb(c). We prove this by
contradiction. If m; is a true gap of o\ sb(o), we verify in the next paragraph that m; is a
true gap of 0. Then, since sb(¢) > m;, o has a bridge dominating a true gap, contradicting
Theorem 8 (b) as o is potentially-type-2. Thus, no such m; exists. Therefore, the path
ideal I,(Ly) is bridge-friendly.

To complete the proof, suppose m; is a true gap of o \ sb(c). Since sb(c) > m;, the
monomial m; does not dominate any bridges of ¢. Thus, we can apply Proposition 17 to
o \ sb(o) and conclude that

(a) m; is a gap of o;
(b) there is only one monomial my, in o N M;4,_; since sb(o) = m; > my;

(c) if i +p < n, then m;y, ¢ 0\ sb(o) <= myy, ¢ o since m;y, # sb(c). This is
because m; > m;, = sb(c) contradicts to sb(c) = m;.

Hence, m; is a true gap of ¢ by Proposition 17. O

In the subsequent discussion, our goal is to demonstrate that for every multidegree
m, i.e., a monomial in R, there exists at most one critical cell o such that lem(o) = m.
Establishing the uniqueness of this critical cell for each multidegree allows us to compute
both the projective dimension and Betti numbers of the path ideal via its Barile-Macchia
resolution. To pave the way for this claim, we first introduce several auxiliary lemmas.

Recall from Corollary 9 that the critical cells of I,(Ly) have no bridges and no true
gaps, a consequence of being bridge-friendly.

Lemma 20. Let o be a critical cell of I,(Ly). Let a,b € N such thatp <a <b—p—1
and
M=M,U--- Mb—p—l = {ma—p—i—la Ma—pt2,--- amb—p—l}-

Assume that 0 N M = {m,_,41}. Then the following statements hold:
1. oN {ma,2p+1, e ,ma,p,l} = (Z)
2. lem(o) is divisible by x,_, if and only if o contains m,_,,.

Proof. (1) Suppose 0 N{ma—2p+1, ..., Ma—p-1} # 0. Under this assumption, we show that
Me—p is either a bridge or a true gap of o which leads to a contradiction by Corollary 9
since o is a critical cell of a bridge-friendly ideal.

Since we assumed (1) fails, there exists a monomial m; in o N {ma_2p11, ..., Ma—p_1}
Notice that m; € o N M,_, and mg_p41 € 0 N M,_; where j < a—p <a—p+ 1 with
(a—p+1)—j < p. Bysettingi =a—pand k =a—p+ 1, it follows from Proposition 15
that the monomial m,_,, is either a bridge or a gap of o.
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If m,—p is a bridge of o, we are done. Now, assume m,_, is a gap of . Since o is
a critical cell, it has no bridges which means m,_, does not dominate any bridges of o.
This allows us to use Proposition 17 to conclude that m,_, is a true gap of o, completing
the proof of (1). The following is a verification of Proposition 17 (a)-(c):

(a) mq—p is a gap of o by our assumption.

(b) Observe that M,_1 \ {ma—p} C M where M,y = {mq_p, Ma—pt1, ..., Ma_1}. Since
Ma—p ¢ 0 and o N M = {mq_p11}, we have 0 N M,_1 = {me—p+1}-

(c) Since a < n, we need to show m, ¢ o. This follows from m, € M and o N M =

{ma—p-i-l}-

(2) It is immediate that m,_, € o implies z,_, divides lcm(c). On the other hand, if
lem(o) is divisible by x,_,, then o N M,_, # 0. This means o N M,_, = {m,_,} by part
(1). Thus, we have m,_, € 0. O

Lemma 21. For a critical cell o of I,(Ly), let b € N U {oo} such that {i : w; |
lem(o) and i < b—p—1} # (0. Define by as:

by ;== max{i: x; | lem(o) and i <b—p—1}.

Assume o N {mp—opi1,--.,Mp—p-1} =0 when b € N. Then cNM = {my,_p11} and by > p
where

M = Mb1 U Mb1+1 y---u Mb—p—l = {mbl_p+1, My, —p+2,--- ,mb_p_l}.

Proof. We analyze the two possible cases for b separately.

Case 1: b = oo. In this case, we have M = My, U My, 1 U --- M,. By the definition
of by, it is clear that by is finite. Given this, lem(o) is not divisible by zj, for any integer
k > by + 1. Thus, o N (M \ {mp,_p+1}) = 0. Moreover, as z;, divides lem(o), we have
o N M, # 0 which guarantees that o N M = {my,_p41} and by > p.

Case 2: b € N. It follows from the definition that by < b—p—1. If by <b—p—1,
then lem(o) is divisible by x, but it is not divisible by any of the variables among
{Zpy41, -+ Tp—p—1}. This means o N M, # 0 but o N (M \ My,) = 0. Thus, c N M =
{mp,_p+1} and by > p.

If by = b— p — 1, then the assumption o N {Mmp_2ps1,...,Mp—p_1} = @ becomes o N
(Mp, \ {mp,—ps1}) = 0 where M = M,,. Since xy, divides lem(o), we have o N M, # 0.
Hence, my, —p41 is the only monomial in o M M. O]

Building upon the preceding lemmas, we introduce a sequence of results that are key
to understanding the monomials m € G that are in a given critical subset 0. We first
introduce a new terminology and a few immediate observations that will be used in the
next few results.
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Definition 22. For a critical cell o of I,,(Ly), define a sequence (bg, by, bs, . ..), called the
o-sequence, by setting by = oo and, for j > 1,

bj :=max{i: z;|lem(c) and ¢ < by —p — 1}.
If no such z; exists, set b; = —oo.

Example 23. Consider the 3-path ideal of an 8-path where n =6 and p = 3:
I = ($1$2$3, L2X3L4, L3XAL5, L4L5L6, L5LeLT, $6$7$8)-

and the cell o = {my, ma,m5,mg}. One can use Proposition 15 and Proposition 17
to show o is a critical cell of I. Computation of the o-sequence (by,bs,...) relies on
lem(o) = xy29 - - - x5. By the set-up, we have by = oo and

by = max{i: x; |lem(o)} =8
by =max{i: x; | lem(o) and i < by —4 =4} =4
Since {i: z; |lem(o) and i < by — 4 = 0} = (), we have by = —oc.

As the above example indicates, each o-sequence is finite. We discuss this more in
detail in the following observation.

Observation 24. Let o be a critical cell of I,(Ly).

(a) Observe that the o-sequence (by,b1,ba,...) is finite. To see this, first note that by
is the largest index of a variable in the support of lem(o). Next, notice that the
sequence (bo, by, be, .. .) strictly decreases after by since b; < bj_y —p—1 for j > 2.
Since supp(lem(o)) is finite, the o-sequence eventually reaches —oo after finitely
many steps, i.e., there exists an £ > 1 for which

{i: z; |lem(o) and i < by —p—1} #0,
{i: z; |lem(o) and i < by —p— 1} = 0.
This means by is finite and by, = —00.

From now on, we write the o-sequence as a finite sequence (by, by, . .., by) where each b; € N
18 MON-Zero.

(b) Since b; < bj_1 —p—1 for each 1 < j < {, we have

(E_j)p+(£_j+1)gbj<"'<b1<n—|—p—1,

Now, we can determine which monomials in G are part of a critical cell o, using the
o-sequence as our key tool.
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Proposition 25. Let o be a critical cell of I,(Ly) with its o-sequence (bg, b, ..., be). Let

My, p, ., i= My, UMy, 1 U---UMy, |y

= {mbj—p+17 My;—p+2; - - - ambjfl—p—l}-
Then, we have o N My, = {my,_py1} when 1 < j < €. Moreover, my, ¢ o for
k g bg —p— 1.
Proof. We use induction on j where 1 < 57 < ¢. The base case 7 = 1 is covered in
Lemma 21.

For a fixed j < ¢, suppose the statement holds for each k € {1,...,j}, that is,
o N My, p,_, = {mp,—ps1}. Since 0 N My, 5, = {my,_p41} by the induction hypothesis

and p < b; < bj_1 —p— 1, we can apply Lemma 20 to obtain
o m {mbj—Qp-‘r].a A 7mbj—p—l} = @

The quality above and the fact that {i : z; | lem(o) and i < b; —p — 1} # 0 allow us to
utilize Lemma 21. Then, we conclude that o N My, 5, = {"%,,, —pt+1}, as desired.

For the final part, note that lem(e) is not divisible by any variable z;, with k < by—p—1.
This implies that o N M}, = @) for any such k. Hence, my, ¢ o for k < by —p — 1. m

Proposition 26. If lem(o) = lem(o’) for two critical cells o and o' of I,(Ly), then
o=o0o.

Proof. Let o and o’ be two critical cells of I,(Ly) where (by, by, ..., bs) is the o-sequence
and (bp, by, ..., b)) be the o’-sequence. Recall that the value of each b; and b are de-
termined solely by the least common multiples. Since lem(o) = lem(o’), we must have
(bo, by, ..., be) = (b, b, ..., b))

Next, notice that G can be written as the disjoint union of the following three sets:

G={my,...,mp,_,} U ( U Mbj,bjl) L ( U{mbjp}) ~

J=1

It follows from Proposition 25 that none of the monomials in the first set are contained
in o or o’. Moreover, the only monomials in the second set that appear in both ¢ and o’
are those of the form my, .y for each 1 < j < £. For the last set, we apply Lemma 20
(2) and conclude that my,_, is contained in the critical cell 7 if and only if x;,_, divides
lem(7), where 7 € {0,0'} for 1 < j < £. Therefore, 0 = o’. O

From the preceding proposition, we deduce that the least common multiples of distinct
critical cells of I,(Ly) are different. This particularly implies the following information
on its multi-graded Betti numbers.

Corollary 27. For any monomial m and any integer v, we have

1 if there is a critical subset of size © with lcm = m,

ﬁz‘,m(R/Ip(LN)) = {

0 otherwise.
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From the characterization of critical cells in Proposition 25 and the insights from the
proof of Proposition 26, we can deduce the projective dimension of I,(Ly4p_1).

Corollary 28. Let n be expressed as n = (p+ 1)q + s where 0 < s < p. The projective
dimension of R/I,(Lyyp-1) is given by:

2q if s =0,
pdim(R/I,(Lns+p-1)) = 2+ 1 if s =1,
2q +2 otherwise.

Proof. Among every collection of p + 1 consecutive monomials, at most two can be in a
critical cell by Proposition 25. Namely, among the monomials my, p,, My, —pi1, ..., My, for
1 < j < {, we can have at most my, ,, mp,p11 € 0. This allows us to construct cells of
maximal cardinality as follows:

e when s =0, set o1 = {my,, Mpi1,..., My_p_2, Mpy_p_1, My_1, My, } wWhere |oq| = 2g,

e when s =1, set o9 = {m1, Mp41, Mpi2, .., Mp—p—2, Mp_p_1, Mp_1, My } Where |og| =
2q +1,

e when 2 < s < p, set 03 = {Ms_1, Mg, Mg, Mpisity -y Mp—p—2, Mp—p—1, M1, My }

where |o3] = 2q + 2.

One can verify that each of these cells 01,05 and o3 are absolutely critical as neither
of them have bridges or true gaps by Proposition 15 and Proposition 17. Consequently,
we can derive the maximal cardinality of a critical cell for each case, thus obtaining the
projective dimension. O

A formula for the projective dimension of the path ideal of a path was also given in [2].
The formula from [2] matches ours. However, while we express the projective dimension
based on the number of minimal generators of the p-path ideal, [2] does so using the
length of the path.

We also recover the recursive formula for graded Betti numbers from [8]. This for-
mula was utilized in [2] to provide explicit calculations for the projective dimension and
regularity of path ideals of paths and cycles.

Theorem 29. For all indices r,d, we have

Br,d (R/Ip<Ln)) = /Br,d(R/[p(Ln—l)) + Er—Ld—p (R/Ip<Ln*(p+1)))
+ Bra,a-pr1) (R Tp(Ln—pr1))) -

Proof. By Corollary 27, 5, 4(R/I,(Ly)) counts the critical cells of cardinality r and degree
d. To derive our desired expression, it suffices to partition the set of critical subsets of car-
dinality r and degree d in an appropriate way. Recall that G(I,(Ly,)) = {m1,...,my_pi1}
and neither m; nor m,,_,; can be a bridge or a true gap of any cell of I,(L,). Consider
a cell o of I,(L,). The following three scenarios for o complete the proof:
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Case 1: Suppose my,_,+1 ¢ o. In this case, o is a cell of both I,(L,) and I,(L,_1).
Our goal is to show the following: ¢ is a critical cell of I,(L,,) if and only if it is a critical
cell of I,(Ly_1).

Notice that any critical cell of 1,(L,,) is automatically a critical cell of I,(L,_1). Con-
versely, any critical cell of I,(L,_1) must also be a critical cell of I,(L,), since m,_p,41
cannot be a true gap—indeed, it cannot be a gap at all. This completes the proof.

Case 2: Suppose my,,_,4+1 € 0 but m,_, ¢ 0. Our goal is to show the following: o is
a critical cell of I,,(L,) if and only if o\{m,_,41} is a critical cell of I,(L,_(y+1)). Recall
that G(1p,(Ln—(p+1))) = {m1,...,my_2p} and neither m; nor m,,_,, can be a bridge or true
gap of any cell of I,,(L,—(p+1))-

Suppose o is a critical cell of I,(L,). Let 7 = o\{m,_p11}. We first show that 7 is a
cell of Ip(Lyn—(p+1)), i.e. there exists no m; € o for n —2p < j <n — p. If there is at least
one such m; € o, then m,_, is a true gap of ¢ by Proposition 17 as we explain in the
following steps: (a) m;,my_pi1 € 0 and (n —p+1) —j < p; (b) o N My_1 = {mp_pi1};
(c) n >n —p+ 1. Since o is critical, it cannot have a true gap. Thus, m; ¢ o.

Next, we show that 7 is critical. Note that 7 has no bridges; otherwise, o would have a
bridge, which is impossible since ¢ is critical. If 7 has a true gap, say m;, then m; cannot
dominate any bridges of 7 since it has none. Then, we apply Proposition 17 to m; and 7
and conclude that m; is a true gap of o, a contradiction. Thus, 7 is indeed critical. We
verify Proposition 17 (a)-(c) for m; and o below:

(a) there exists m; € TN M; C o N M; and my, € TN M;y,—1 C 0 N M;1,; such that
j<i<k<n-—2pand k—j < p. So, Proposition 17 (a) holds for m; and o.

(b) TN Mty = {mg} = 0N M, since k <i+p—1<n—p—1 This means
Proposition 17 (b) holds for m; and o.

(c) Since i < n—2p, we have i+p < n—p+1. We need m;, ¢ o to verify Proposition 17
(c) for m; and o. It suffices to show m;, ¢ 7 since i+p < n—p+1. If i+p < n—2p,
then m;;, ¢ 7 Proposition 17 (c) since m; is a true gap of 7. If i +p > n — 2p, then
Miyp & T since 7 is a cell of I,(Ly,—(p11y). S0, Mgy ¢ T.

Now, suppose 7 is a critical cell of I,,(Ly,—(p+1)). Let § := 7U{m,_,41} and observe that
d is a cell of I,(L,). Note that § has no bridges. If it has a bridge m;, then m; # m,_,+1
and m; € 7. Since (n —p+1) —j > p+ 1 for each m; € 7 as 1 < j < n — 2p, m; must
be a bridge of 7, contradiction. If § has a true gap, say m;, then m; does not dominate
any bridges of §. So, we can apply Proposition 17 to m; and § to conclude that m; is a
true gap of 7 which leads to a contradiction. Thus, 9 is critical. We verify Proposition 17
(a)-(c) for m; and 7 below:

(a) there exists m; € 7N M; and my, € 6 N M;4,—1 such that j <i <k <i+p—1and
k —j < p. Notice that my € 7 because if k =n—p-+1, then (n—p+1)—j > p+1.
So, i < k < n — 2p which means m; € 7 and Proposition 17 (a) holds for m; and 7.

(b) 6N M;yp—1 = {my} =7N M;4,—1 by part (b). So, Proposition 17 (b) holds for m;,
and 7.
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(c) fi+p<n—2p<n—p+1, then m;y, ¢ 0 implies that m;;, ¢ 7. This means
Proposition 17 (c) holds for m; and 7.

Case 3: Suppose both m,,_,.1 and m,,_, are in . Our goal is to show the following: o
is a critical cell of I,,(L,) if and only if o\ {m,—pt1, Ms—p} is a critical cell of I,,(L,—(p11)).

Its proof is almost identical to the proof of Case 2 and we only highlight the differences
for the reader. If o is a critical cell of I,(Ly,), let 7 := o\{mn_pi1}. As in Case 2, 7 is
a cell of I,(L,_(p+1)); otherwise, m,_, is a bridge of of o by Proposition 15, which is not
possible. The rest follows similarly as in this part of Case 2 and this completes the proof
that 7 is a critical cell of I,,(L,—(p11)).

Let 7 be a critical cell of I(L,—(p+1)). Then ¢ := 7 U {my_p, my_pi1} is a cell of
I,(L,). We prove it is also a critical cell following the steps in the proof of Case 2. The
only difference is in part (a) where we need to consider the possibility of my = m,,_,. We
recommend the reader to follow along part (a) of Case 2 to keep track of indexes that are
referenced here. First notice that j <i <n —2p+1since k #n —p+ 1. If m =m,,_,,
then Kk — 7 > p as j < n— 2p. Since kK — j < p by Proposition 17 (a), we must have
k —j = p, indicating that j = n —2p and ? = n —2p+ 1. Then m;y, = my_p+1 € 6 which
contradicts Proposition 17 (c) as we assumed m; is a true gap of §. Thus, my # m,_,
which means my € 7. The rest of the proofs follows similarly to that of Case 2. O

Barile-Macchia resolutions are cellular, i.e., they are supported on CW complexes. We
first remark that the dimension of the CW complex that supports the minimal resolution
of a monomial ideal equals its projective dimension. In general, the minimal resolution
of any monomial ideal of projective dimension 1 is supported on a tree [16, Theorem 1].
In fact, in the cases where the path ideals of paths have projective dimension 1, their
minimal resolutions are supported on paths, which can be shown using the techniques
that will be employed in the next example. In what follows, we provide an example where
the path ideal of a path has projective dimension 2.

Example 30. Consider the path ideal I = I,(La,+1) under the total order
My >= Mg > <+ > Mpyro.

For any subset 0 = {m,,,...,m;, }, each element of o (except m;, and m;,) is a bridge
of o due to Proposition 15 (1). Consequently, m;, , emerges as the smallest bridge of
o. Therefore, the Barile-Macchia matching of I with respect to (>), denoted by A, is
achieved by removing the penultimate element at every iteration. Note that there is only
one cell (of cardinality of at least 3) with no bridges: {mi, my;1,mp+2}. This results in
the following list of all critical cells of I:

®7 {ml}7 ey {mp+2}7
{mh m2}, {m2, ma}, sy {mp—i-la mp+2}, {mp+27 m1}7

{mb Mp41, mp+2}~
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Given two distinct critical cells, o and o, their least common multiples are different
by Proposition 26. This uniqueness ensures that the Barile-Macchia resolution of I is
minimal by Theorem 2.

By discrete Morse theory, there exists a cellular complex that supports this minimal
free resolution, and it has (p + 2) many 0-cells, (p + 2) many 1-cells, and one 2-cell. One
obvious object that fits this description is the following (p + 2)-gon:

{mi Hma, maH{mo}

{ma, mp+2} {ma, ms}

{ms}

{mIH—Q} {ml, Mpt1, mp+2}

{ma, ma}

{ms Hma, ms{ma}

Denote this (p + 2)-gon by A. It follows from [7, Lemma 2.2] that A supports a free
resolution of R/I if, for each monomial m, the subcomplex A[m] := {o € A : lem(o) | m}
is either empty or contractible. Notice that any subcomplex A[m] is either empty, a line
segment, or the (p + 2)-gon itself for each squarefree monomial m. Since the last two
objects are both contractable, A supports a free resolution of R/I.

4 Minimal free resolutions of path ideals of cycles

In this section, we turn our attention to path ideals of cycles, demonstrating that these
ideals have minimal cellular resolutions. While in the preceding section we derived this
outcome for path ideals of paths through identifying a minimal Barile-Macchia resolution
of R/I with respect to a specific total order on G(I), this approach falls short for path
ideals of cycles. For instance, when we consider the edge ideal of a 9-cycle, it has no
minimal Barile-Macchia resolutions as pointed out in [10, Remark 4.23].

In our investigation of path ideals of cycles, we transition our focus towards the gener-
alized Barile-Macchia resolutions. These are Morse resolutions and can be considered as
an extension of the Barile-Macchia resolutions, introduced in [10]. The crux of these reso-
lutions lies in utilizing a collection of total orders on G(I), instead of one. For the reader’s
convenience, we restate the construction of generalized Barile-Macchia resolutions from
[10] along with a theorem stating that they induce cellular free resolutions. First, recall
that G'x denotes the directed graph obtained from the Taylor complex of I.

Theorem 31. [10, Theorem 5.19] For a monomial u € R, let G, be the induced subgraph
of Gx on the vertices o C G(I) where lem(o) = u. Consider a total order (>-,) on G(I)
for each monomial u € R.
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Let A be the union of all A,, where A, is the collection of directed edges obtained
by applying the Barile-Macchia Algorithm to G, with respect to (>~,) for each monomial
u € R. Then, A is a homogeneous acyclic matching of I. The Morse resolution induced by
A is called the generalized Barile-Macchia resolution of R/1 with respect to (>y)ucr-

Consider a cycle C,, on n vertices {x1,...,2,}. Let R = Kk[xy,...,x,]. The p-path
ideal of C),, denoted as I,(C,,), is generated by monomials in R corresponding to paths
on p vertices along C),, where

I

p(Cn) = (l‘l"'l'p,...,l‘n---xp_l)'

Let m; = ;- - xi4p—1 for each 1 < ¢ < n and consider the indices modulo n. For the
remainder of this section, we denote the minimal generating set of I,(C,,) by G where

G=(my,...,my).

We restrict our attention to 2 < p < n and begin our discussion with an observation on
the construction of the set A, as outlined in Theorem 31, leveraging our previous findings
on path ideals of paths.

Observation 32. Let A be a homogeneous acyclic matching constructed in accordance
with Theorem 31 for the ideal I,(C,,). To obtain a generalized Barile-Macchia resolution
of R/1,(C,), it is necessary to determine its A-critical cells.

1. The following is immediate from the definition of A:
{A-critical cells} = U {A,-critical cells}.

u: monomial in R

2. Assuming u # - - - T, remember that each vertex of Gx is a cell of I,(C,,), namely,
a subset of G. For an induced subgraph G, of Gx, its vertex set V(G,) is empty or
every vertexr of G, is a subset of G(J) where J is the path ideal of some path. When
V(G.) is non-empty, Proposition 26 assures the ezistence of a total order (>=) on
G(J) that allows for precisely one A-critical cell.

In light of the above observation, our attention is on the A,-critical cells where u =
Xy - -z, to derive a minimal generalized Barile-Macchia resolution of R/1,(Cy,).

For the remainder of this section, let w = z1 - - x,. In addition, let A, and G, be as
in Theorem 31 and adopt the following total order () for w:

My > Mo >« > My,

Our primary objective is to demonstrate that all A,-critical cells have the same car-
dinality. Consequently, the resulting generalized Barile-Macchia resolution is minimal by
Theorem 2 and Observation 32.

As a preliminary step, we examine the structure of o € V(G,,). Recall that lem(o) = u
for each vertex o in GG,. For the remainder of this section, we express o based on the
total order (>). In other words, when o = {m;,,...,m;,} we have m;, > --- > m;
equivalently, 47 < --- < 4.
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Proposition 33. Let 0 = {my,,...,m;,} be a vertex of G,. Then the distance between
consecutive elements of o is at most p.

Proof. Suppose that either i;,1—i; > p forsome j € {1,...,t—1} or i3 +n—i; > p. In the
first case, we have M, = Ty, Tijppo1 and my, ., = Ty Ti;, 4p-1 Where 111 > i +p.
This implies that x;,, does not divide lem(o) = u = 1 - - - 2, which is not possible. The
other case follows similarly by arguing x;, 1, does not divide u, leading to contradiction. [

Unlike paths in the previous section, every critical cell contains m,, for cycles.
Lemma 34. The monomial m,, is contained in each A,-critical cell.

Proof. Let o be an A,-critical cell. If m, ¢ o, then m, is a gap of o since lem(o) =
lem(o U my,). Indeed, any m ¢ o is a gap due to same reasoning. Notice that this
means m,, is a bridge of ¢ Um,, and we have sb(c Um,) = m, since m,, is the smallest
monomial among those in G with respect to (>). It follows from Theorem 8 that o Um,,
is a potentially-type-2 cell. In fact, this cell is type-2 since there is no cell 7 such that
7\ sb(7) = o with m,, > sb(7). Then, the directed edge (¢ U m,, o) is contained in A,
which means o cannot be a critical cell, a contradiction. Thus, m,, € o. O

Definition 35. Similar to Definition 13 for paths, define M; to be the collection of all
monomials in G that are divisible by x; for each 1 < i < n. Note that |M;| = p for each
value of 7 and

M — {{mip+17'~'7mi} if @

(4
{m(n+i)_p+1,...,mn,ml,...,mi} if 1

In the subsequent discussion, we analyze the vertices of G, and describe their bridges,
gaps, and true gaps. Analogous to the path case, we can classify the bridges in a similar
manner. The proof is omitted since it directly follows from Lemma 14, keeping in mind
that indices are now considered modulo n. First, we consider gaps as their classification
is immediate.

Proposition 36. Let 0 € V(G,). A monomial m; is a gap of o if and only if m; ¢ o.

Proof. Since lem(o) = x4 - - - x,,, adding m; to o does not change the least common mul-
tiple for any m; ¢ 0. So, any m; that is not contained in o is a gap. m

Proposition 37. Let 0 € V(G,). Then the monomial m; is a bridge of o if and only
if m; € o and there exist monomials m; and my, in o \ m; for 1 < j < k < n such that
the distance between these two monomials along m; is at most p, i.e., k —j < p when
j<i<kand(j+n)—k<puwhenj<k<i<j+n.

Proof. If m; is a bridge of o, one can apply the steps in the proof of Lemma 14 to o \ m;
(while keeping in mind that indices are now modulo n) and obtain consecutive monomials
m; and my, in o \ m; where either j <i <k or k < j <i <k +n (as shown in Figure 1).
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Figure 1: Only possible orderings of i, j, k along C,,: j <i < k (left) and j < k <i < j+n
(right).

Since o \ m; is still a vertex of GG, distance between consecutive elements of o \ m; is at
most p by Proposition 33. For the other direction, if the conditions are met, o \ m; is still
a vertex of G, and m; divides lem(m;, my). Since lem(m;, my) divides lem(o \ m;), the
monomial m; is a bridge of o. ]

Remark 38. When we use Proposition 37 in the rest of the paper, in order to make clear
which monomials serve as mj, m;, my, we might refer to them as a triple (m;, m;,my)
where m; is the bridge in this triple. It is possible to have j <1< kork < j<i<k+n
for this triple. Here, m; is closer to m,, from the left and my is closer to m,, from the
right.

We now turn our attention to characterizing the true gaps for vertices in Gz, that are
A,-critical.

Proposition 39. Let 0 € V(G,) be an A,-critical cell and let m; € G. Assume m; does
not dominate any bridge of . Then m; s a true gap of o if and only if the following
statements hold:

(a) m; ¢ o.
(b) If there exists a monomial my, € o N M;p_1, then cNM;y,—1 = {my} and m;y, ¢ o.
(c) If1<i<p—1andonN{my,...,mi_1} =0, then c N M; = {m,} and m,1;—, ¢ 0.

Proof. Suppose m; does not dominate any bridges of . Recall from Lemma 34 that
m, € o as o is an A,-critical cell. Lastly, as in the proof of Proposition 17, it is useful to
recall [10, Proposition 2.21]: m; is a true gap of o that does not dominate any bridges of
o if and only if m; is a gap of o and sb(c Um;) = m,.

For the forward direction, assume m; is a true gap of 0. So, sb(c Um;) = m; from the
previous paragraph. First, it is immediate that m; is a gap of ¢ which means m; ¢ o by
Proposition 36. So, (a) holds. For (b), if there are two monomials my, m; € 0 N M;4p,_1,
then we can reorder the vertices of C), so that i« < k,t <7+ p — 1. As in the proof of
Proposition 17 (b), we can assume k < t and conclude that m; is a bridge of o Um,; where
m; > my, which contradicts to sb(o Um;) = m;. For the second part of (b), notice that,
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if m;, € o, there exists m; € o where i < j < i+ p by Proposition 33 (by reordering
vertices, if needed). This means m; is a bridge of ¢ Um; with m; > m;, a contradiction
since sb(o Um,;) = m;. Thus, m;y, ¢ o.

Now, to verify (c), assume that 1 <i <p—1and oN{my,...,m;_1} = 0. Given that
m, € M; for the stated range of i, we have m,, € N M,. If there exists another monomial
my € o N M; with ¢t ¢ {1,...,i}, the monomial m,, would emerge as a bridge for o U m;
by Proposition 37 for the triple (m;, m,,m;) since (n + i) —p+ 1 < t. This implies that
sb(oc Um;) = m,, a contradiction. Hence, 0 N M; = {m,,}. For the last segment of (c),
if we assume m,,4;_, € o, it results with m,, as a bridge of o U m; by Proposition 37 for
the triple (my,1i—p, My, m;). This would imply that sb(c Um;) = m,, which is, yet again,
contradictory to sb(o Um;) = m;, thereby confirming that m,;_, ¢ o.

For the reverse direction, assume (a), (b), and (c) hold. We argue by contradiction
and assume that m; is not a true gap of o. Then there exists a monomial m; € ¢ that is a
bridge of o Um,; but is not a bridge of o, with m; > m,. Furthermore, by Proposition 37,
there exist monomials m;, and my, in (¢ \ m;) Um; such that k; — j, < p when j, <t < k
or (j; +n) — k; < p otherwise.

Note that either j; = i or k; = ¢ since m; is not a bridge of 0. As in the proof
Proposition 37, we may assume that m;, and my, are consecutive monomials in (o\m;)Um;,
that are closest to m,. If 5, <t < k;, we must have j, = ¢ since m; > m,;. The reasoning
for this case mirrors the corresponding portion of Proposition 17, eventually leading to a
contradiction.

For the remaining case (2), we have:

Ji<k <t<ji+n<k+p<n+p (%)

Since ¢ < t, either k; = ¢ or j, = i. If k, = 4, then m;, € o. It follows from (%) that
my € 0 N M;y,_1. Then by (b) and the fact that m;, = m;,1, € 0, we have jy +n=1i+p
which means my, 4, = m;1, € o, a contradiction to (b).

For the final case, we can assume j; = ¢ and we have my, € o in this case. Next,
we verify that conditions of (c) are satisfied. Notice that o N {mq,...,m;_1} = 0 since
ji and k; are chosen to be the closest monomials to m; in (o \ m;) Um;. In addition,
i < p as a consequence of i +n < k; +p < n+ p from (x). Then (c) holds, namely,
o N M; = {m,} where M; = {munii)—p+1,--.,Mn, Mm1,...,m;}. Notice that m, € o N M;
since (1 +n) —p < ky <t < n. Thus, m; = m, and my, = Mmy,4;—p € 0, a contradiction to
(c). Therefore, m; is indeed a true gap of o. O

Having addressed the true gaps of A,-critical cells in the preceding proposition, our
focus now shifts to the distinct classes of critical cells introduced in Definition 6: the
absolutely critical and the fortunately critical cells. As noted in Corollary 9, the absolutely
critical cells are uniquely characterized by the lack of both bridges and true gaps. On
the other hand, the fortunately critical cells stand out. Their first element serves as their
smallest bridge while still having no true gaps.

Lemma 40. Let 0 € V(G,) be an A,-critical cell. If o is fortunately critical, then:
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1. The smallest bridge of o satisfies sb(a) > m,.
2. Ifo ={my,...,my}, then sb(c) =m,;.

Furthermore, no monomial from the set {my,, mpyi1,...,m,} serves as a bridge or a true
gap of o (irrespective of whether o is fortunately or absolutely critical).

Proof. Let o be a vertex in GG, that is fortunately critical. Then o is potentially-type-2
and, by definition, there exists another vertex ¢’ such that o\sb(c) = o'\ sb(¢’) and
sb(o) = sb(d’).

Since o is potentially-type-2, every true gap of ¢ dominates sb(c) by Theorem 8. So,
sb(¢’) cannot be a true gap of o as sb(c) > sb(c’). Then there exists a monomial m; € o
for which sb(c Usb(c”)) = m;, with sb(¢’) > m; while m; is not a bridge of . Note as
well that m; € ¢’ and it is not a bridge of ¢’. Before proceeding further, we first state our
goal: to show that m; = m,,.

By Proposition 37, there exist monomials m; and my, in o Usb(¢’) with 1 < j <k <n
and i ¢ {j,k} such that

(a) k—j<pwhenj<i<k, or
(b) (j+n)—k<pwhenj<k<i<j+n.

Note that ¢ and ¢’ overlap at every element except sb(o) and sb(¢’). In other words,

o\ {sb(o),sb(c")} = o’ \ {sb(c),sb(c")}.

Inevitably, we have {sb(c),sb(¢’)} = {m;,my}. Otherwise, m; is a bridge of o and ¢,
which is not possible.

Notice that j < i < k is not possible since sb(o) > sb(c’) > m;. So, we must have
j <k <i<j+nasin (b)above. Consequently, m; = sb(o) and m;, = sb(c’). Since
my, € o Usb(d’), we conclude that m,, is a bridge of ¢ U sb(¢’) from Proposition 37 by
using the triple (my, my, m;4,) and (b). This means m; = m,,.

1. The proof of sb(c) > m,, follows from the following simple observation: the inequal-
ity j+n <k+p<n+pfrom (b) implies that j < p. Moreover, it is not possible
to have j = p, as this would imply k = n, leading to sb(o’) = m,,, which is a con-
tradiction. Thus, we conclude that j < p, which is equivalent to m; = sb(o) > m,,.

2. Let 0 = {my,,...,my, } where i; < --- < ;. Our goal is to demonstrate sb(c) = m;,,
i,e. 43 = j. On the contrary, suppose there is a monomial mg in ¢ such that
ms > sb(c) = m;. Then, the monomial m,, is a bridge of ¢’ from Proposition 37 by
using the triple (mg, m,,, ms.,) where each monomial is in ¢’ and (s+n) —k < p by
(b) above. This posits a contradiction since sb(c’) = my, = m,,. Thus, sb(c) = m;,.

For the final part of the statement, consider a vertex ¢ in G,,. If ¢ is absolutely critical,
it lacks both bridges and true gaps, by Corollary 9, thereby satisfying the given statement.
When ¢ is fortunately critical, the statement remains valid due to sb(¢) > m,, and the
fact that each true gap of o dominates sb(c) by Theorem 8. O
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Our primary objective is to comprehensively identify every element within an A,-
critical cell. We begin our identification with a series of observations and initiate the
process by pinpointing specific values of j for which m; € o.

Lemma 41. Let 0 = {my,,...,m;,} be an A,-critical cell where iy < --- <i;. Then
(a) iy = n, and m, is not a bridge for o.
(b) iy—1y =n —k for some 1 <k < p.
(c) 2 <m—p.
(d) i1 =p—k+ 1 where k is given as in (b).

We need to make assumptions on the possible values of t. For instance, to consider
(b), we require t > 2; for (c), we need ¢ > 3, and so on. However, since these assumptions
are clear from the context, we omit them.

Proof. Assume that o = {m,,,...,m;,} is an A,-critical cell.

(a) We begin by noting that m;, = m, as per Lemma 34. If o is absolutely critical,
then it has no bridges by Corollary 9. On the other hand, for a fortunately critical
o, Lemma 40 forces that sb(o) = m;,. Given that m;, > m,, it is evident that m,,
is not a bridge for o.

(b) Recall from Proposition 33 that i; —i;_y < p. Then, i;_1 = n—k for some 1 < k < p.

(c) For the sake of contradiction, suppose m,,_; € o for 1 < k < j < p. Then, m,,_ is
a bridge for o from Proposition 37 by using the triple (m,,_;, m,_x, m,). However,
this contradicts the nature of o, as it is either absolutely critical (hence having no
bridges) or fortunately critical (where sb(o) = m;,). So, i;_2 < n — p.

(d) Our initial step is to derive p — k + 1 < i; < p. The upper bound i; < p is a direct
consequence of Proposition 33 since (i1 +n)—i; < p. To establish the lower bound, if
there exists an m; € o for ¢+ < p—k, then m,, is a bridge of ¢ from Proposition 37 by
using the triple (my,—k, My, Myqp—k). This assertion, however, yields a contradiction
by (a). Thus, p — k+ 1 < iy < p.

If £ = 1, then it is immediate that i; = p, satisfying the statement of (d). For
2 < k < p, it remains to show i; < p—k+1. A significant insight here is that m,, .1
cannot be a true gap of o. This is immediate when o is absolutely critical as it has no
true gaps. Suppose o is fortunately critical. Then sb(c) = m;, by Lemma 40 (2) and
every true gap of o dominates sb(o) by Theorem 8 as o is potentially-type-2. Since
sb(o) = my, > My_g > My_g11, then m,_ 1 cannot be a true gap of o. This means
o Umy,_ry1 has a bridge m; € o such that m,_j,.1 > m;. Since the only monomial
in o that is dominated by m,,_;.1 is m,, we have m; = m,,. Using Proposition 37
for the triple (m,_g11, My, Myyq, ), we conclude that iy <p—k+ 1. O
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To identify other elements of o, we examine them in relation to the possible values of
k. Here, n — k is the penultimate element of ¢ when 1 < k& < p. The next two lemmas
address the £ = 1 case and the 2 < k < p case separately due to nuanced variations in
their proofs. Together, these lemmas give a complete overview of all A,-critical cells in
Proposition 44.

Lemma 42. Let 0 = {m;,,...,m;} be an A,-critical cell with i,y =n — 1. Then, the
distance between consecutive elements of o alternates between 1 and p. Specifically,

0= {mp7 ooy Mp—(p+1); Mn—(p+1), Mn—1, mn}
Moreover, we have p=mn orn—1 (mod p+ 1).

Proof. First note that ¢; = p by Lemma 41. Then, ¢ is an absolutely critical cell by
Lemma 40.

The main idea of the proof revolves around retracing our steps from #; 1, pinpointing
the preceding indices of elements in ¢ until we arrive at 7; = p. A recurring and instru-
mental point from Proposition 33 is: i; — 1,1 < p for m;;,_,, m;; € 0. We reference this
result as (%) throughout the proof.

Recall from Lemma 41 (c) that i,y < n—1—p, indicating i;,_1—i;_2 > pasi;_1 =n—1.
This bound coupled with () yields to 4,1 —i;_o = p. So, the first step of our analysis is
complete. If 7;_o = 71, we are done; otherwise, we move on to 7;_3.

Next, we show that ¢;_—;_3 = 1 which is equivalent to obtaining m,,_,_» € o. For the
sake of contradiction, suppose m,_, o ¢ 0. Since o is absolutely critical, m,,_,_ cannot
be a true gap of ¢. This means ¢ Um,,_,_» has a bridge m; € o such that m,_,_» > my
and m, is not a bridge of . Then, by Proposition 37, there exists m, € ¢ such that the
distance between m, and m,,_,_» along my is at most p. Given that m,_, o > my, we
have one of the following scenarios by Proposition 37:

I.s—(n—p—2)<pwhenl<n—-p—2<b<s<n,or
2.s+n—(n—p—2)<pwhenl<s<n—-p—2<b<n

The latter case is not possible because it implies that s < —2. Thus, (1) holds. In this
case, we have my, = m,,_; and mgs = m,, since my, ms; € 0. Then, (1) results with p+2 < p,
a contradiction. Thus, we conclude that m,,_, > € 0. So, 4,3 =n —p —2. If §,_3 = 1,
our task is complete; otherwise, our focus shifts to 7;_4.

Towards showing i;_3 — i;_4 = p, recall that i,_3 —i;_4 < p by (%), or equivalently,
ir—qa 2n—2(p+1). If my_sp41) ¢ 0, then m;,_, is a bridge of o by Proposition 37 since
i4_o — 1y_4 < p. This leads to a contradiction because o is absolutely critical. Hence,
irg =n—2(p+1). If 4,_4 = iy, our investigation is complete; otherwise, we continue in
the same fashion for i;_s.

Subsequent distances between consecutive elements of o can be concluded by employ-
ing similar arguments in an alternating way until we reach ¢; = p. This results in the
congruence p =n or n — 1 (mod p + 1), concluding the proof. O]
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Lemma 43. Let 0 = {my,,...,m;,} be an A,-critical cell with i, 1 = n — k for some
2 < k < p. Then, the distance between consecutive elements of o alternates between k
and (p+ 1) — k. Specifically,

0= {mpkarla sy M k—(p+1) Mn—(p4+-1) Mn—k; mn}
Moreover, we have p—k+1=mn orn—k (mod p+1).

Proof. The idea behind this proof is similar to that of Lemma 42. Recall that i; o <
n—p—1and i =p—k+1by Lemma 41 (c¢) and (d). So, our first goal is to verify
iyo=n—p—1.

Assume, for the sake of contradiction, that m,,_,_1 ¢ 0. We then observe that m,,_, 1
cannot be a true gap of ¢. This is evident if ¢ is absolutely critical because it lacks true
gaps. If o is fortunately critical, then sb(c) = m,, as stated in Lemma 40 and any true
gap of o dominates sb(o) = m;, by Theorem 8. If m,,_,_ is a true gap of o, then we must
have o = {m,,_x, m,} and it cannot have any bridges, a contradiction. So, m,,_,_1 cannot
be a true gap of ¢. This means o Um,,_,_; has a bridge m; € o such that m,_,_; > my
and m, is not a bridge of 0. Using Proposition 37, there exists a monomial ms € o such
that the distance between mg and m,,_,_1 along my is at most p. In other words, given
that m,,_,_1 > my, we have

I.s—(n—p—1)<pwhenl<n—-1-p<b<s<nor
2.s+n—(n—p—1)<pwhenl<s<n—-1—-p<b<n

The latter is not possible since it implies s < —1. Thus, (1) holds. Since my,, ms € o, we
have my = m,_j and mg = m,,. Using these in (1) results with p+ 1 < p, a contradiction.
Hence, i, 9o =n — 1 —p. If i;_5 = iy, our investigation concludes. Suppose i;_o # 1.

The next step is to show i;_3 =n —k — (p + 1). We first claim that m;, , cannot be
a bridge of o. If it is a bridge of o, then sb(¢) = m;, by Lemma 40 because o must be
fortunately critical. This means i1 = 7;_o, a contradiction to our assumption. Since m;, ,
cannot be a bridge of o, we have i;_3 < n —k — (p + 1) by Proposition 37. So, it suffices
to show my,_j_(p+1) € 0.

For the sake of contradiction, suppose my,_k—(p+1) ¢ 0. If my_p_(p11) is a true gap of o,
then o is potentially-type-2 and m,_x_(p+1) >~ sb(c) = m;, by Theorem 8 and Lemma 40.
This can happen only when #; = i;_5, a contradiction. Thus, m,_;_(,41) is not a true
gap of 0. This means o U my,_j_(p4+1) has a bridge m; € o such that m,_,_pi1) = my
and m, is not a bridge of . Then, by Proposition 37, there exists m, € ¢ such that the
distance between m,,_j_(,11) and m, along my, is at most p. In other words, given that
Mp—k—(p+1) = My, We have

I.s—(n—k—(p+1)<pwhenl<n—k—(p+1)<b<s<nor

2. s4n—(n—k—(p+1)<pwhenl<s<n—-k—(p+1)<b<n
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One can verify that (2) cannot happen. Then, by (1), the monomial my is either m,,_j or
m, since mg € 0. Using either value of s in (1) results with p + 1 < p, a contradiction.
Therefore, 443 =n —k — (p+1). If 4,3 = iy, the process terminates here. If i;_3 # iy,
one can repeat the above arguments for the next steps until reaching iy = p — k+ 1. This
results in the congruence p — k+1=n or n — k (mod p + 1), concluding the proof. [

Below, we describe all A,-critical cells. This proposition serves as the centerpiece of
this chapter’s main result.

Proposition 44. Let n = (p+ 1)q + r where 0 < r < p. Then, we have:

1. Forr =0, the only A,-critical cells are the cells o;, where
oi={m;|j=¢ (modp+1)}
for each 1 <i < p. Moreover, each o; is absolutely critical.
2. Forr # 0, the only Ay-critical cell is
To={m;|j=>r,j=r2r (modp+1)}
Moreover, the cell 1, is absolutely critical if and only if 2r > p.

Proof. Let 0 = {m;,,..., m;,} be an A,-critical cell with ¢ > 2. To identify all A,-critical
cells, we first address the immediate case where n = p + 1. It is evident that ¢ > 3
is not possible, as this would lead to sb(c) = m,, a contradiction by Lemma 41 (a).
Consequently, o must be of the form o; = {m;,m,} for all 1 <i < p. A straightforward
check confirms that every such o; is absolutely critical. Having settled this case, we
proceed under the assumption n > p + 1.

Recall from Lemma 42 and Lemma 43 that the distance between consecutive elements
of o alternates between k and (p + 1) — k. Specifically, for 1 < k < p, we have

0= {mp7k+17 ces M k—(p+1) Mn—(p4-1) Mn—k mn}

where p—k+1=mnorn—k (mod p+1). It is important to clarify that the distance
between the first and last elements of ¢ is not considered.

Observe that the conditions p—k+1=n (mod p+1) andn—k =0 (mod p+1) are
equivalently expressed asn =p+1—k (mod p+1) and n =0 (mod p+ 1), respectively.
Consequently, the cell o can be expressed as follows:

— {{m(p+1k)+i(p+1)am(i+1)(l’+1) :

0<i<qg—1} if r =0,
{mrsigpe1), Margiprny @ 0<i<q

—1yu{m,} ifr#0,
where the former corresponds to 0,41 for 1 < & < p and the latter corresponds to 7, in
the statement of the proposition. One can verify that each o, is absolutely critical

by noticing that they have no bridges and no true gaps for 1 < k£ < p. Furthermore, one
can verify that 7, is absolutely critical if and only if 2r > p. m
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The conclusions drawn below directly arise from the descriptions of A,-critical cells
given in Proposition 44.

Corollary 45. Let 0 € V(G,) be a critical cells of G. Then
o] 2q ifn=0 (mod (p+1)),
ol =
2q+1  otherwise.
In particular, all A,-critical cells have the same cardinality.

We now present the main theorem of this section, which follows immediately from the
preceding corollary, and the description of the differentials of the corresponding general-
ized Barile-Macchia resolution in Theorem 2.

Theorem 46. A generalized Barile-Macchia resolution of I,(C.,) is minimal.

We conclude this section with a brief discussion. In [10], the first two authors intro-
duced and examined Barile-Macchia resolutions, which are cellular and independent of
char(k). Though effective for many classes of ideals, this method does not always pro-
duce a minimal free resolution. Specifically, the edge ideal of a 9-cycle, I5(Cy), cannot be
minimally resolved by a Barile-Macchia resolution, as highlighted in [10].

Corollary 47. Edge ideals of cycles have cellular minimal free resolutions.

Echoing the approach of the preceding section, we conclude with an example presenting
a CW complex that supports minimal free resolutions of the path ideals of cycles, where
the projective dimension is equal to 2.

Example 48. Consider the cycle C,, where n = (p+ 1) +r for 1 < r < p. We can list all
critical cells of I,(C,,) using Proposition 44 as follows:

Q)u {ml}a ceey {mp+2}7 {mh mg}, {m27 m3}7 sy {mn—h mn}7 {mn7 m1}7 {m’!‘7 may, mn}

The following n-gon, denoted by A, is in correspondence with the critical cells of I,(C,,):

{mi} {mi,ma}  {ma}

{m1,m,} {ma, ms}
{mn} {mmm?hmn} {m3}
{ma, ma}

O
{ms}  {ma,ms}  {ma}

As in Example 30, all restricted subcomplexes of A are either empty, a line segment,
or the n-gon itself, which are all acyclic. Thus, A support the minimal free resolution of
R/1,(C,) by [7, Lemma 2.2].
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