Revisiting Extremal Graphs Having No Stable Cutsets

Johannes Rauch Dieter Rautenbach

Submitted: Nov 30, 2024; Accepted: Sep 12, 2025; Published: Nov 3, 2025 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Confirming a conjecture posed by Caro, it was shown by Chen and Yu that every graph G with n vertices and at most 2n-4 edges has a stable cutset, which is a stable set of vertices whose removal disconnects the graph. Le and Pfender showed that all graphs with n vertices and 2n-3 edges without stable cutset arise from recursively gluing together triangles and triangular prisms along an edge or triangle. Le and Pfender's proof contains a gap, which we fill in the present article.

Mathematics Subject Classifications: 05C40, 05C69

1 Introduction

We consider only finite, simple, and undirected graphs and refer to [9] for further notational details. A *stable cutset* in a graph G is a stable set S of vertices of G for which G-S is disconnected. By an elegant inductive argument, Chen and Yu [3] showed the following result confirming a conjecture by Caro.

Theorem 1 (Chen and Yu [3]). If G is a graph with n vertices and at most 2n-4 edges, then G contains a stable cutset.

Le and Pfender [9] gave an elegant structural characterization of the graphs G of order n with 2n-3 edges that do not contain a stable cutset, cf. Theorem 4 below. Our present goal is to fill a gap in the original proof given by Le and Pfender for Theorem 4. Stable cutsets were considered in a number of publications concerning structural refinements, algorithmic complexity, tractable cases, fixed parameter tractability, and their relation to perfect graphs [1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13].

Institute of Optimization and Operations Research, Ulm University, Ulm, Germany (johannes.rauch@uni-ulm.de, dieter.rautenbach@uni-ulm.de).

2 Graphs G with 2n(G) - 3 edges and no stable cutset

We recall definitions and results from [9], formulate the main result Theorem 4, and provide a proof, in which we also explain the gap in the original proof.

If G and H are two graphs and $G \cap H$ is isomorphic to K_2 or K_3 , then $G \cup H$ is said to arise from G and H by an *edge identification* or a *triangle identification*, respectively. Le and Pfender [9] define the class \mathcal{G}_{sc} of graphs recursively as follows:

- $K_3, \overline{C_6} \in \mathcal{G}_{sc}$.
- If $G, H \in \mathcal{G}_{sc}$ and $G \cap H$ is isomorphic to K_2 or K_3 , then $G \cup H \in \mathcal{G}_{sc}$.

They already observe that H may be restricted to $\{K_3, \overline{C_6}\}$ without changing \mathcal{G}_{sc} .

For a positive integer k, let [k] denote the set of positive integers at most k.

A generating sequence for a graph G is a sequence (G_1, \ldots, G_k) for some positive integer k such that

- for every $i \in [k]$, the graph G_i is isomorphic to K_3 or $\overline{C_6}$,
- for every $i \in [k-1]$, the graph $G_{\leq i} \cap G_{i+1}$ is isomorphic to K_2 or K_3 , where $G_{\leq i} = G_1 \cup \ldots \cup G_i$, and
- $\bullet \ G = G_{\leqslant k}.$

A simple inductive argument using the recursive definition of \mathcal{G}_{sc} implies that every graph with a generating sequence belongs to \mathcal{G}_{sc} . Le and Pfender's mentioned observation is that every graph in \mathcal{G}_{sc} has a generating sequence. We need the following strengthening of this statement.

Lemma 2. Every graph G in \mathcal{G}_{sc} has a generating sequence (G_1, \ldots, G_k) . Furthermore, for every $i \in [k]$, the graph G has a generating sequence (H_1, \ldots, H_k) with $H_1 = G_i$.

Proof. The proof is by induction on the order of G using the original recursive definition of \mathcal{G}_{sc} . If G is isomorphic to K_3 or $\overline{C_6}$, then $(G_1) = (G)$ is a generating sequence for G, and the second statement is trivially true.

Now, let $G = G^{(1)} \cup G^{(2)}$ be such that $G^{(1)}, G^{(2)} \in \mathcal{G}_{sc}$ are proper subgraphs of G and $G^{(1)} \cap G^{(2)}$ is isomorphic to K_2 or K_3 , that is, the two graphs $G^{(1)}$ and $G^{(2)}$ share exactly two or three vertices that form a clique in both graphs. By induction, the graph $G^{(1)}$ has a generating sequence $\left(G_1^{(1)}, \ldots, G_k^{(1)}\right)$ and the graph $G^{(2)}$ has a generating sequence $\left(G_1^{(2)}, \ldots, G_\ell^{(2)}\right)$. Let $i \in [\ell]$ be such that the edge or triangle $G^{(1)} \cap G^{(2)}$ is a subgraph of $G_i^{(2)}$; the existence of such an index i follows immediately from the definition of \mathcal{G}_{sc} . By the second statement, the graph $G^{(2)}$ has a generating sequence $\left(H_1^{(2)}, \ldots, H_\ell^{(2)}\right)$ with $H_1^{(2)} = G_i^{(2)}$. Now, the sequence $\left(G_1^{(1)}, \ldots, G_k^{(1)}, H_1^{(2)}, \ldots, H_\ell^{(2)}\right)$ is a generating sequence $\left(G_1, \ldots, G_{k+\ell}\right)$ for G.

For the second statement, it remains to show that, for every $j \in [k + \ell]$, the graph G has a generating sequence starting with G_j . If $j \in [k]$, then, by the second statement, the graph $G^{(1)}$ has a generating sequence $\left(H_1^{(1)}, \ldots, H_k^{(1)}\right)$ with $H_1^{(1)} = G_j^{(1)} = G_j$, and the sequence $\left(H_1^{(1)}, \ldots, H_k^{(1)}, H_1^{(2)}, \ldots, H_\ell^{(2)}\right)$ is a generating sequence for G starting with G_j . Now, let $j \in [k + \ell] \setminus [k]$. By the second statement, the graph $G^{(2)}$ has a generating sequence $\left(I_1^{(2)}, \ldots, I_\ell^{(2)}\right)$ with $I_1^{(2)} = H_{j-k}^{(2)} = G_j$. Similarly as above, there is some $i \in [\ell]$ such that the edge or triangle $G^{(1)} \cap G^{(2)}$ is a subgraph of $G_i^{(1)}$. By the second statement, the graph $G^{(1)}$ has a generating sequence $\left(H_1^{(1)}, \ldots, H_k^{(1)}\right)$ with $H_1^{(1)} = G_i^{(1)}$. Now, the sequence $\left(I_1^{(2)}, \ldots, I_\ell^{(2)}, H_1^{(1)}, \ldots, H_k^{(1)}\right)$ is a generating sequence for G starting with G_j . This completes the proof.

The definition of \mathcal{G}_{sc} easily implies that the only possible induced cycles of graphs in this class are C_3 and C_4 . Readers acquainted with the notion of a tree decomposition might like to think about the graphs in \mathcal{G}_{sc} in terms of this notion. In fact, the definition easily implies that a graph G belongs to \mathcal{G}_{sc} if and only if it has a tree decomposition where each bag induces K_3 or $\overline{C_6}$ and the intersection of two adjacent bags is either empty or induces a K_2 or a K_3 .

From the main result of Chen and Yu [3], Le and Pfender [9] deduce the following.

Corollary 3 (Le and Pfender, Corollary 3 in [9]). Let G be a graph of order n with at most 2n-4 edges and let x be a vertex of G. Unless x is the unique cut vertex in G, the graph G has a stable cutset not containing x.

The following is the main result from [9].

Theorem 4 (Le and Pfender, Theorem 5 in [9]). If G is a graph of order n with at most 2n-3 edges, then G has a stable cutset or belongs to \mathcal{G}_{sc} .

Proof. For a proof by contradiction as in [9], we assume that G is a counterexample of minimum order n. The following properties of G are deduced in [9], where we use the same numbering of the claims as in [9]:

Claim 6. G has exactly 2n-3 edges.

Claim 7. Every vertex of G lies in a triangle.

Claim 8. G contains no K_2 -cutset or K_3 -cutset.

Claim 9. G is 3-connected.

Claim 10. G contains no 3-edge matching cut, which is an edge cut with three edges that is also a matching.

Claim 11. G contains no K_4^- .

Claim 12. For every two non-adjacent vertices x and y, we have $|N_G(x) \cap N_G(y)| \leq 2$.

Claim 13. G contains no P_3 -cutset.

The gap in the argument lies in the proof of the following claim.

Claim 14. In every triangle, at least two vertices belong to other triangles as well.

Proof of Claim 14. For a proof by contradiction, we assume that xy_0z_0 is a triangle in G and that y_0 and z_0 lie in no other triangles in G. Since $(N_G(y_0) \cup N_G(z_0)) \setminus \{y_0, z_0\}$ is not a stable cutset, there are neighbors y_1 of y_0 and z_1 of z_0 such that y_1 and z_1 are adjacent. By Claim 12, the vertices y_1 and z_0 are the only common neighbors of y_0 and z_1 . Let the graph G' arise from G by identifying the vertices y_0 and z_1 to form the vertex v. The order of G' is n-1 and its size is 2(n-1)-3. Since every stable cutset in G' is also a stable cutset in G, it follows that G' has no stable cutset. Now, the choice of G implies that $G' \in \mathcal{G}_{sc}$.

Explanation of the gap:

At this point, Le and Pfender correctly show that G' does not contain a 3-edge matching cut. From that they incorrectly deduce that G' can be built by starting with a triangle and recursively gluing on triangles along an edge, that is, that G' is a so-called 2-tree. Clearly, edge or triangle identifications with copies of \overline{C}_6 during the construction of G' create 3-edge matching cuts in intermediate graphs. Nevertheless, subsequent further identifications in the construction of G' can eliminate these cuts.

By Lemma 2, the graph G' has a generating sequence $S = (G'_1, \ldots, G'_\ell)$ such that G'_1 contains the triangle xvz_0 . Possibly by inserting the triangle xvz_0 within S before G'_1 , we may assume that G'_1 equals the triangle xvz_0 . If G'_{i+1} is isomorphic to $\overline{C_6}$ and $G'_{\leqslant i} \cap G'_{i+1}$ is isomorphic to K_2 , then we may assume that edge ab common to $G'_{\leqslant i}$ and G'_{i+1} belongs to the 3-edge matching cut of G'_{i+1} ; otherwise, the edge ab belongs to a triangle abc in G'_{i+1} with $c \notin V(G'_{\leqslant i})$, and we can replace G'_{i+1} within the generating sequence S by abc, G'_{i+1} , that is, we consider the alternative generating sequence $(G'_1, \ldots, G'_i, abc, G'_{i+1}, \ldots, G'_\ell)$, where we first form an edge identification along ab with the triangle abc and then a triangle identification along abc with G'_{i+1} . Subject to these restrictions, we assume that the generating sequence S is chosen in such a way that the smallest index k with $y_1 \in V(G'_k)$ is as small as possible.

By Claim 8, the vertex v is involved in every edge or triangle identification within \mathcal{S} , more precisely, the vertex v belongs to each graph G'_i within \mathcal{S} .

Claim 14a. The graph $G'_{\leq k}$ does not have a stable set X_k with the following properties:

- X_k contains y_1 and z_0 .
- X_k does not contain v.

• If a cycle C in $G'_{\leq k} - X_k$ contains v, then, in the graph G, the two neighbors of v on C are adjacent to z_1 and non-adjacent to y_0 .

Proof of Claim 14a. For a proof by contradiction, we assume the existence of such a set X_k . By an inductive argument along the generating sequence starting at $G'_{\leq k}$, which is the first graph containing the two vertices z_0 and y_1 , we show that X_k can be extended to sets $X_k \subseteq X_{k+1} \subseteq \ldots \subseteq X_\ell$ such that, for every $i \in [\ell] \setminus [k-1]$, the set X_i has analogous properties, that is,

- X_i is a stable set in $G'_{\leq i}$.
- X_i contains y_1 and z_0 .
- X_i does not contain v.
- If a cycle C in $G'_{\leq i} X_i$ contains v, then, in the graph G, the two neighbors of v on C are adjacent to z_1 and non-adjacent to y_0 .

For i = k, the statement is our assumption.

Now, let i > k. If G'_i is a triangle vab, where v and b belong to $G'_{\leq i-1}$, then

$$X_i = \begin{cases} X_{i-1}, & \text{if } b \in X_{i-1} \text{ and} \\ X_{i-1} \cup \{a\}, & \text{otherwise} \end{cases}$$

has the desired properties. If G'_i is isomorphic to $\overline{C_6}$ with the two triangles uvw and abc and the 3-edge matching cut $\{au, bv, cw\}$, where v and b belong to $G'_{\leq i-1}$, then

$$X_i = \begin{cases} X_{i-1} \cup \{w\}, & \text{if } b \in X_{i-1} \text{ and} \\ X_{i-1} \cup \{a, w\}, & \text{otherwise} \end{cases}$$

has the desired properties. Finally, if G'_i is isomorphic to $\overline{C_6}$ with the two triangles uvw and abc and the 3-edge matching cut $\{au, bv, cw\}$, where u, v, and w belong to $G'_{\leq i-1}$, then $X_i = X_{i-1} \cup \{b\}$ has the desired properties. Note that in the final case, if X_{i-1} contains neither u nor w, then, in the graph G, these two vertices are adjacent to z_1 and non-adjacent to y_0 . This completes the inductive argument.

Now, the set X_{ℓ} is also a stable set in the graph G containing y_1 and z_0 and not containing y_0 and z_1 . Suppose, for a contradiction, that y_0 and z_1 lie in the same component of $G - X_{\ell}$. Since the two common neighbors of y_0 and z_1 belong to X_{ℓ} , a path in $G - X_{\ell}$ between y_0 and z_1 has length at least three, and the vertex v lies on a cycle C in $G' - X_{\ell}$ such that, in the graph G, one of the two neighbors of v on C is adjacent to y_0 and the other one of the two neighbors of v on C is adjacent to z_1 , which is a contradiction. Hence, the set X_{ℓ} is a stable cutset in G, which is a contradiction and completes the proof of the subclaim.

If the vertex z_0 is involved in any edge identification within \mathcal{S} , then the edge must be vz_0 and, in the graph G, the set $\{y_0, z_0, z_1\}$ is a P_3 -cutset, contradicting Claim 13. Hence, the vertex z_0 is not involved in any edge identification within \mathcal{S} .

Our next goal is to construct an induced path $P: y_1y_2 \dots y_{p-1}y_p$ in $G'_{\leq k} - v$ starting in the neighbor y_1 of v, ending in $(y_{p-1}, y_p) = (x, z_0)$, and containing all neighbors of v in G'_k . We construct this path inductively following the generating sequence backwards from G'_k down to G'_1 starting in y_1 . Our construction will ensure that, for every induced cycle vabc of length 4 in $G'_{\leq k}$, the path P either contains abc as a subpath or there are two further vertices b' and b'' such that P contains ab'b''c as a subpath.

Suppose that, for some $i \in [k] \setminus \{1\}$, we have already constructed an induced path $y_1 \dots y_j$ starting in y_1 such that

- the set $\{y_1, \ldots, y_{j-1}\}$ is a subset of $V(G'_{\leq k}) \setminus V(G'_{\leq i})$,
- the set $\{y_1, \ldots, y_{j-1}\}$ contains all neighbors of v in $G'_{\leq k}$ that do not belong to $G'_{\leq i}$,
- y_j is a neighbor of v,
- y_j is the only vertex of $y_1 \dots y_j$ that belongs to G'_i , and
- $y_j \notin G'_{\leq i-1}$.

Initially, this holds for i=k and j=1, and the inductive construction is such that these properties are maintained. If G'_i is a triangle vab, where v and b belong to $G'_{\leq i-1}$ and $y_j=a$, then the choice of the generating sequence \mathcal{S} implies that the vertex b belongs to G'_{i-1} but not to $G'_{\leq i-2}$, where $G'_{\leq 0}$ is the empty graph. Now, setting $y_{j+1}=b$ has the desired properties (for i replaced by i-1). If G'_i is isomorphic to $\overline{C_6}$ with the two triangles uvw and abc and the 3-edge matching cut $\{au, bv, cw\}$, where v and b belong to $G'_{\leq i-1}$ and $y_j=u$, then the choice of the generating sequence \mathcal{S} implies that the vertex b belongs to G'_{i-1} but not to $G'_{\leq i-2}$. Now, setting $y_{j+1}=w$, $y_{j+2}=c$, and $y_{j+3}=b$ has the desired properties (for i replaced by i-1). See Figure 1 for an illustration.

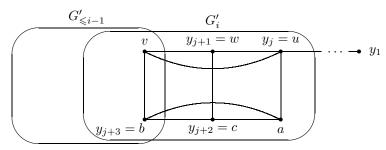


Figure 1: Definition of P for an edge identification with $\overline{C_6}$.

Finally, if G'_i is isomorphic to $\overline{C_6}$ with the two triangles uvw and abc and the 3-edge matching cut $\{au, bv, cw\}$, where u, v, and w belong to $G'_{\leq i-1}$ and $y_j = b$, then the choice of the generating sequence \mathcal{S} implies that at least one of the two vertices u and w, say u,

belongs to G'_{i-1} but not to $G'_{\leq i-2}$. Now, setting $y_{j+1} = a$ and $y_{j+2} = u$ has the desired properties (for i replaced by i-1). See Figure 2 for an illustration.

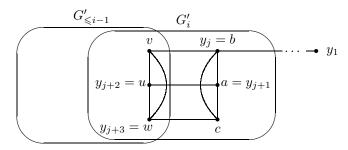


Figure 2: Definition of P for a triangle identification with \overline{C}_6 .

Note that in this final case, the next step of the construction of P ensures $y_{j+3} = w$. If i = 1, then, since z_0 is not involved in any edge identification, we may assume that $y_j = x$. Now, setting $\ell = j + 1$ and $y_{\ell} = z_0$ yields P as desired. This completes the construction of P.

Claim 14b. p is even.

Proof of Claim 14b. Suppose, for a contradiction, that p is odd. Let X_k be the set $\{y_1, y_3, y_5, \ldots, y_p\}$. By the construction of P, the set X_k is stable, contains y_1 and $y_p = z_0$, and does not contain v. In order to obtain a contradiction to Claim 14a, we show that no cycle in $G'_{\leq k} - X_k$ contains v, that is, the last condition on X_k in Claim 14a is void. In fact, suppose that C is a cycle in $G'_{\leq k} - X_k$ that contains v. Let C' be an induced cycle that contains v with $V(C') \subseteq V(C)$. Recall that the only induced cycles in graphs from \mathcal{G}_{sc} are triangles and induced C_4 s. Since P is induced and contains all neighbors of v, the set X_k intersects every triangle in $G'_{\leq k}$ that contains v. Hence, the cycle C' is an induced C_4 , say vabc. If P contains abc as a subpath, then X_k contains a or b, and, hence, intersects V(C'). Hence, there are two further vertices b' and b'' such that P contains ab'b''c as a subpath. By construction, the set X_k contains a or c, that is, also in this case the set X_k intersects V(C'). Altogether, assuming the existence of a cycle in $G'_{\leq k} - X_k$ that contains v leads to a contradiction, and the set X_k contradicts Claim 14a. Hence, it follows that p is even.

Claim 14c. Each G'_i in the generating sequence $S' = (G'_1, \ldots, G'_k)$ is isomorphic to K_3 .

Proof of Claim 14c. First, suppose that the generating sequence $S' = (G'_1, \ldots, G'_k)$ of $G'_{\leq k}$ involves an edge identification with $\overline{C_6}$. Let $i \in [k]$ be the largest index such that G'_i is isomorphic to $\overline{C_6}$ and $G'_{\leq i-1} \cap G'_i$ is the edge vb. Let j be the smallest index with $y_j \in V(G'_i)$. See Figure 1 for an illustration. If j is odd, then let $X_k = \{y_1, y_3, \ldots, y_j\} \cup \{y_{j+3}, y_{j+5}, \ldots, y_p\}$, and if j is even, then let $X_k = \{y_1, y_3, \ldots, y_{j+1}\} \cup \{a\} \cup \{y_{j+4}, y_{j+6}, \ldots, y_p\}$. Again, the set X_k is stable, contains y_1 and $y_p = z_0$, and does not contain v. As before we establish a contradiction to Claim 14a by showing that no cycle in $G'_{\leq k} - X_k$ contains v. Clearly, the set X_k intersects every triangle in $G'_{\leq k}$ that

contains v. The two induced C_4 s in $G'_{\leq k}$ that contain v and are contained in G'_i intersects X_k by construction. As before it follows that the remaining induced C_4 s in $G'_{\leq k}$ that contain v and are not contained in G'_i all intersect X_k . Altogether, the set X_k intersects every triangle and induced C_4 in $G'_{\leq k}$ that contains v, which implies that no cycle in $G'_{\leq k} - X_k$ contains v. It follows that the set X_k contradicts Claim 14a. Hence, the generating sequence S' involves no edge identification with $\overline{C_6}$.

Next, suppose that the generating sequence $S' = (G'_1, \ldots, G'_k)$ of $G'_{\leq k}$ involves a triangle identification with $\overline{C_6}$. Let $i \in [k]$ be the largest index such that G'_i is isomorphic to $\overline{C_6}$ and $G'_{\leq i-1} \cap G'_i$ is the triangle uvw. Let j be the smallest index with $y_j \in V(G'_i)$. See Figure 2 for an illustration. Recall that $y_{j+3} = w$ in this case. If j is odd, then let $X_k = \{y_1, y_3, \ldots, y_j\} \cup \{y_{j+3}, y_{j+5}, \ldots, y_p\}$, and if j is even, then let $X_k = \{y_1, y_3, \ldots, y_{j-1}\} \cup \{c\} \cup \{y_{j+2}, y_{j+4}, \ldots, y_p\}$. Again, the set X_k is stable, contains y_1 and $y_p = z_0$, does not contain v, and intersects every triangle as well as every induced C_4 in $G'_{\leq k}$ that contains v, contradicting Claim 14a as before. Hence, the generating sequence S' involves no triangle identification with $\overline{C_6}$.

Claim 14c implies that $G'_{\leq k}$ arises from the path P by adding v as a universal vertex. Claim 14c implies that k = p - 1 is odd.

Claim 14d. In G the vertex y_0 is adjacent to each vertex in $\{y_1, y_3, \dots, y_{p-1}\}$.

Proof of Claim 14d. Suppose, for a contradiction, that y_0 is not adjacent to y_j for some odd index j in [p]. Since y_0 is adjacent to y_1 and $y_{p-1} = x$, this implies $p \ge 6$. Choosing j as the smallest odd index such that y_0 is not adjacent to y_j , we obtain that the vertices in $\{y_1, y_3, \ldots, y_{j-2}\}$ are all adjacent to y_0 . Since xy_0z_0 is the only triangle in G that contains y_0 , the vertex y_{j-1} is adjacent to z_1 and non-adjacent to y_0 . Let $X_k = \{y_1, y_3, \ldots, y_{j-2}\} \cup \{y_{j+1}, y_{j+3}, \ldots, y_p\}$. In view of the structure of $G'_{\le k}$, the only cycle C in $G'_{\le k} - X_k$ that contains v is the triangle $vy_{j-1}y_j$, which satisfies the last condition on X_k from Claim 14a. Hence, the set X_k contradicts Claim 14a, which completes the proof.

Since xy_0z_0 is the only triangle in G that contains y_0 , Claim 14d implies that z_1 is adjacent to each vertex in $\{y_2, y_4, \ldots, y_p\}$.

Claim 14e. p = 4.

Proof of Claim 14e. Suppose, for a contradiction, that $p \ge 6$. Let the graph G'' arise from G by identifying the vertices $z_0 = y_p$ and y_1 to form a vertex v''. Similarly, as for G', it follows that $G'' \in \mathcal{G}_{sc}$. Nevertheless, the graph G'' contains an induced cycle $v''y_0y_{p-3}y_{p-2}z_1v''$ of length 5, contradicting $G'' \in \mathcal{G}_{sc}$.

At this point, the subgraph of G induced by $\{x, y_0, z_0, y_1, z_1, y_2\} = \{y_0, z_1\} \cup V(P)$ is isomorphic to $\overline{C_6}$ with the two triangles being xy_0z_0 and $y_1y_2z_1$. Let G''' arise from G by identifying the vertices of $P: y_1y_2xz_0$ to form a vertex v'''. The order of G''' is n-3 and its size is at most (2n-3)-7=2(n-3)-4. If v''' is not the only cut vertex in G''', then, by Corollary 3, the graph G''' has a stable cutset not containing v''', which is also a stable cutset in G. Hence, it follows that v''' is the only cut vertex in G'''. Since v is involved

in every edge or triangle identification within S, it follows that all vertices added by the identifications with $G'_{k+1}, \ldots, G'_{\ell}$ belong to the same component of G''' - v''' as y_0 or z_1 . This implies that G''' - v''' has exactly two components, one component C_0 containing y_0 and the other component C_1 containing z_1 . Furthermore, for every $i \in [\ell] \setminus [k]$, all vertices in $V(G'_i) \setminus V(G'_{\leqslant i-1})$ belong to either C_0 or C_1 . Since G is not isomorphic to $\overline{C_6}$, it follows that $\ell > k$. In the graph $G'_{\leqslant k+1}$, the set $X = V(G'_{\leqslant k}) \cap V(G'_{k+1})$ is a K_2 -cutset or a K_3 -cutset. If $V(G'_{k+1}) \setminus V(G'_{\leqslant k})$ lies in C_0 , then let $X' = (X \setminus \{v\}) \cup \{y_0\}$, and if $V(G'_{k+1}) \setminus V(G'_{\leqslant k})$ lies in C_1 , then let $X' = (X \setminus \{v\}) \cup \{z_1\}$. In the subgraph of G induced by $\{x, y_0, z_0, y_1, z_1, y_2\} \cup (V(G'_{k+1}) \setminus \{v\})$, the set X' is a stable cutset of order 2 or a K_2 -cutset or a K_3 -cutset or a K_3 -cutset. Furthermore, since, for every $i \in [\ell] \setminus [k]$, all vertices in $V(G'_i) \setminus V(G'_{\leqslant i-1})$ belong to either C_0 or C_1 , the set X' is still a cutset in G, which contradicts the choice of G, Claim 8, and Claim 13.

This final contradiction completes the proof of Claim 14.

At this point the entire proof can be finished exactly as in [9].

Acknowledgements

We thank Van Bang Le (Universität Rostock) and Florian Pfender (University of Colorado Denver) for excellent discussions concerning Theorem 4 and its proof. Since their result is just too beautiful to be false, we are quite happy having closed the gap.

This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number 545935699.

References

- [1] A. Brandstädt, F.F. Dragan, V.B. Le, and T. Szymczak. On stable cutsets in graphs. *Discrete Appl. Math.*, 105:39–50, 2000.
- [2] G. Chen, R.J. Faudree, and M.S. Jacobson. Fragile graphs with small independent cuts. *J. Graph Theory*, 41:327–341, 2002.
- [3] G. Chen and X. Yu. A note on fragile graphs. Discrete Math., 249:41–43, 2002.
- [4] V. Chvátal. Recognizing decomposable graphs. J. Graph Theory, 8:51–53, 1984.
- [5] D.G. Corneil and J. Fonlupt. Stable set bonding in perfect graphs and parity graphs. J. Combinatorial Theory, Ser. B, 59:1–14, 1993.
- [6] S. Klein and C.M.H. de Figueiredo, The NP-completeness of multi-partite cutset testing. *Congr. Numer.*, 119:217–222, 1996.
- [7] V.B. Le, R. Mosca, and H. Müller. On stable cutsets in claw-free graphs and planar graphs. J. Discrete Algorithms, 6:256–276, 2008.
- [8] S. Kratsch and V.B. Le. On polynomial kernelization for Stable Cutset. *Lecture Notes in Comput. Sci.*, 14760:358–373, 2025.
- [9] V.B. Le and F. Pfender. Extremal graphs having no stable cutsets. *Electron. J. Combin.*, 20:#P35, 7 pp, 2013.

- [10] V.B. Le and B. Randerath. On stable cutsets in line graphs. *Theoret. Comput. Sci.*, 301:463–475, 2003.
- [11] D. Marx, B. O'Sullivan, and I. Razgon. Finding small separators in linear time via treewidth reduction. *ACM Trans. Algorithms*, 9:Art. 30, 35 pp, 2013.
- [12] J. Rauch, D. Rautenbach, and U.S. Souza. Exact and parameterized algorithms for the independent cutset problem. *Lecture Notes in Comput. Sci.*, 14292:378–391, 2023.
- [13] A. Tucker. Coloring graphs with stable cutsets. *J. Combinatorial Theory, Ser. B*, 34:258–267, 1983.