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Abstract

In 1986, Oliver Pretzel studied the set of orientations of a connected finite graph
G and showed that any two such orientations having the same flow-difference around
all closed loops can be obtained from one another by a succession of local moves
of a simple type. Here I show that the set of orientations of G having the same
flow-differences around all closed loops can be given the structure of a distributive
lattice. When the graph is drawn on the plane, a dual version of the construc-
tion puts a distributive lattice structure on the set of orientations of G having the
same indegrees at all vertices. In both settings, adjacent lattice-elements are re-
lated by simple local moves. This construction unifies earlier, similar constructions
in combinatorics and statistical mechanics. It also gives rise to an interesting lat-
tice structure on spanning trees. This article is an updated version of a preprint
originally distributed in 1993.

Mathematics Subject Classifications: 05C88, 05C89

1 Statement of results.

This paper extends Thurston’s definition of height functions, originally limited to domino
and lozenge tilings [74], in a number of different directions. These extensions can be
treated in a unified fashion by using a framework introduced by Oliver Pretzel [60] a
decade earlier.

The main result (Theorem 1) asserts that the set of orientations of a graph having the
same flow-differences around all closed loops can be given the structure of a distributive
lattice. A full statement is given later in this section, and a proof is given in Section 2.

In the case where the graph is drawn on the plane, we can take the dual of the
construction, obtaining a result in which the circulation around a loop is replaced by
the net outdegree at a vertex (the discrete analogue of the duality between curl and
divergence). A full statement is given later in this section, and a proof is given in Section
3.
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A still more specialized result gives a lattice structure on the set of spanning trees
of a finite connected graph drawn on the sphere. A full statement is given later in this
section, and a proof is given in Section 4.

Finally, Section 5 provides some historical context. In the decades in between the
original issuance of this article in preprint form and its publication, many developments
arose building on these ideas, some of which were rediscovered by other researchers who
were unaware of my preprint. I, in turn, had been unaware of related work that preceded
my own.

I now proceed to introduce terminology and conventions that will enable me to state
the three main theorems.

All graphs are assumed to be finite and connected. Multiple edges are allowed, but
self-loops are not permitted. Let G be a graph with vertex-set V and edge-set E. An
orientation of the edge e is a triple (e, v, w) where v and w are the endpoints of e;
if 󰂓e = (e, v, w), then we say 󰂓e points from v to w, and we define the reversal of 󰂓e as

−󰂓e = (e, w, v). Let 󰂓E be the set of directed edges of G, i.e., the set containing all 2|E|
orientations of edges of G. Writing E = {e1, e2, . . .}, we define an orientation R of G as

a set of directed edges {󰂓e1,󰂓e2, . . .} ⊂ 󰂓E where each 󰂓ei is an orientation of the edge ei.
When the graph G is planar, we can either fix an embedding on the sphere with a

marked face f ∗ or fix an embedding in the plane (where the unbounded face corresponds
to f ∗). Some arguments are easier to see on the sphere (some do not even require at-
tending to f ∗) and others are easier to see in the plane, so I will freely (but not, I hope,
capriciously) pass between the two sorts of pictures. I will say that G is “drawn on the
plane” (equivalently, “is a plane graph”) or “drawn on the sphere” to indicate which
viewpoint I think is helpful, but in both cases it should be understood that there are no
crossing edges (except at the end of Section 4).

A directed path in G with initial vertex v0 and terminal vertex vn is a sequence of
directed edges (e1, v0, v1), (e2, v1, v2), . . . , (en, vn−1, vn). The sequence of edges e1, e2, . . . , en
that is associated with a directed path is called simply a path. A path with no repeated
vertices is simple. A directed path whose initial vertex and terminal vertex coincide is
a directed cycle; the edges associated with it form a cycle. A cycle is simple if its
only repeated vertex is the initial/terminal vertex. We say a directed edge is a forward
edge (relative to the orientation R) if it belongs to R, and a backward edge if it does
not; a path composed entirely of forward edges is a forward path. Given vertices v, w
of G, we say that w is accessible from v (relative to R) if R contains a forward path
from v to w. Mutual accessibility is an equivalence relation; we call its equivalence classes
accessibility classes. If all equivalence classes are of size 1, we say that R is acyclic.
In most cases of interest, R is acyclic, but we will treat the general case.

Let R be an orientation of G. An accessibility class A will be called maximal if all
directed edges in R between A and its complement Ac point towards A, and minimal if
they all point toward Ac. If A is maximal, the process of reversing the orientations of all
the directed edges between A and Ac (thereby making A minimal rather than maximal)
is called pushing down A (see [60, 61]). Figure 1 gives two examples of pushing down
that are inverse to one another. In the first example, we push down a single vertex v1; in
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Figure 1: Two examples of pushing down.

the second, we push down a non-trivial accessibility class that is the complement of {v1},
namely {v2, v3, v4}. Pretzel calls the former sort of move “pushing down” and the latter
sort of move “PDCE”, but I prefer to use the suggestive term “pushing down” for both.
Vertices in the accessibility class that is about to be pushed down are circled. The idea
of pushing down a maximal vertex appears to be due to Mosesian (see the three articles
cited in the bibliographies of [60] and [62]).

If C is a directed cycle in G, define the circulation of R around C (Pretzel calls this
the flow-difference around the cycle) as the integer |C+

R | − |C−
R |, where C+

R is the set
of forward edges of C and C−

R is the set of backward edges of C. Define the circulation
of R as the function c = cR that associates to each directed cycle C the circulation
c(C) of R around C; say also that R is a c-orientation. (One can see circulation as a
discrete analogue of the scalar curl of a two-dimensional vector field, much as the number
of outward-pointing edges at a vertex minus the number of inward-pointing edges at
the vertex can be seen as a discrete analogue of divergence.) Note that the problem
of determining whether some orientation R is a c-orientation reduces to the problem of
evaluating the circulation of R around all cycles C belonging to a cycle-basis. If R is a
c-orientation, then |C+

R | + |C−
R | = |C| and |C+

R | − |C−
R | = c(C), so |C+

R | = 1
2
(|C| + c(C))

and |C−
R | = 1

2
(|C|− c(C)). We say that a circulation c is feasible if there exists at least

one c-orientation of G.
It is easy to check that pushing down does not affect the circulation of an orientation
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of G. Indeed, let R be an orientation with a maximal accessibility class A, and let C
be any directed cycle in G. Since C must contain equal numbers of directed edges going
from A to Ac and going from Ac to A, reversing the orientations of all the directed edges
joining A and Ac has no effect on the circulation of R around C.

I now state the main result of this article (proved in Section 2).

Theorem 1. Let R be the (non-empty) set of orientations of a finite connected graph G
that have a fixed circulation c, and let A∗ be an accessibility class of G. If we say that
one c-orientation R covers another c-orientation S exactly when S is obtained from R by
pushing down at a maximal accessibility class other than A∗, then the covering relation
makes R into a distributive lattice.

Figure 2 gives an example of such a distributive lattice R in the case where G is a
cycle of length 4, R is the set of orientations of G in which the circulation around the
cycle is zero, and A∗ = {v4} (the “root”). The figure shows the Hasse diagram of the
lattice. Each edge (shown as a dotted line) corresponds to a pushing down move; for
instance, the orientation shown at the top of the figure turns into the orientation shown
just below it if the sink at v1 is pushed down. This example is discussed in greater detail
later (Example 18).

The proof of Theorem 1 will introduce height-functions (inspired by and generaliz-
ing the height-function introduced by Thurston [74]) to aid the analysis. Using height-
functions, I will prove that if R and S are c-orientations of G, then S can be obtained
from R by performing at most N(N − 1)/2 pushing-down operations, where N is the
number of vertices of G. This result strengthens the theorem of Pretzel [60], who showed
that a finite number of pushing-down operations suffices. The bound N(N − 1)/2 is best
possible; see Propositions 22 and 23.

Now suppose G is a connected bipartite graph drawn on the sphere and d is a function
from the vertex-set of G to the non-negative integers. A d-factor of G is a subgraph of
G in which each vertex v has degree d(v). For example, if d(v) = 1 for all vertices v,
then a d-factor of G is just a 1-factor, or (perfect) matching, of G. This being the most
important case, I will use the letter M (for matching) to denote a d-factor. We formally
regard M as a set of edges; thus M c denotes the set of edges of G not in M .

Note that the edges of G divide the sphere into simply-connected regions, or faces,
with an even number of sides, if we agree to double-count edges that are internal to a
face, as in Figure 3. We will pick some particular face f ∗ that will play a special role in
what follows. In depicting G in the plane (on the page), we will have the unbounded,
external face correspond to f ∗. We will give each face a preferred orientation, which is
counterclockwise (on the sphere); note that when one draws the graph on the plane, the
preferred orientation of the outer face f ∗ appears to be clockwise.

Assume that every edge of G belongs to some d-factors but not to others. Note that
if this is not true, the d-factors of G are in 1-to-1 correspondence with the d′-factors of
some subgraph G′, where every edge of G′ belongs to some d′-factors but not to others.
Thus, we are not losing any generality in making the assumption.
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Figure 2: Orientations of a rooted 4-cycle.

the electronic journal of combinatorics 32(4) (2025), #P4.26 5



Figure 3: A six-sided face.

Color the vertices of G alternately black and white. An elementary cycle in G
is a simple cycle that encircles a single face. An alternating cycle in G relative to a
d-factor M is an elementary cycle in G in which the edges alternately belong to M and
M c. Call the cycle positive if the edges in the cycle, when directed from black vertices
to white vertices, circle the face in a counterclockwise direction, and negative if they
circle in a clockwise direction. (A cycle need not be positive or negative.) A face twist
is the operation of removing from a d-factor some edges that form an alternating cycle
around a face and inserting the complementary edges. More specifically, twisting down
is the operation that converts a positive alternating cycle into a negative alternating cycle
around the same face, and twisting up is its inverse. Note that twisting converts a
d-factor into another d-factor. Figure 4 shows the three 1-factors of a particular graph,
in which the faces having positive or negative alternating cycles are marked + or −,
respectively; an arrow from a 1-factor M to a 1-factor N expresses the fact that N can
be obtained from M by twisting down a positive alternating cycle.

The following consequence of Theorem 1, proved in Section 3, gives us a lattice struc-
ture for the set of d-factors of G.

Theorem 2. Let M be the (non-empty) set of d-factors of a finite graph G drawn on
the sphere. If we say that one d-factor M covers another d-factor N exactly when N
is obtained from M by twisting down at a face other than f ∗, then the covering relation
makes M into a distributive lattice.

Lastly, let G be a connected graph drawn on the sphere with a special face f ∗. Let v∗

be a vertex of G on the boundary of the face f ∗. A spanning tree of G is a collection
T of edges of G such that, for any two vertices v, w of G, there is a unique simple path
between v and w using edges of T .

Let v be a vertex of G and e an edge containing v. If we imagine an ant that travels in
a small clockwise circle centered at v, we see that after it crosses e, it remains in some face
f of G before crossing the next edge e′ of G. We say that e′ is the clockwise successor
of e at v. Fix v, e, f, e′ as described, and suppose e ∕= e′. If T is a spanning tree of G, we
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Figure 4: Twisting down a 1-factor.

will say that the angle eve′ is positively pivotal if the following conditions are satisfied:

(1) e ∈ T and e′ ∕∈ T ;

(2) the symmetric difference T ′ = T△{e, e′} is a spanning tree of G;

(3) the simple path from v to v∗ in T contains e;

(4) the simple path from v to v∗ in T ′ contains e′; and

(5) the (unique) simple cycle in T ∪ T ′ separates f from f ∗.

When eve′ is positively pivotal, the operation T 󰀁→ T ′ is called swinging down at v
through the angle eve′. Note that condition (5) necessitates f ∕= f ∗. (We may define the
notions “negatively pivotal” and “swinging up” in an analogous way.)

Figure 5 shows an example of a swinging-down move. The special vertex v∗ is marked
with a large black dot; the swinging-down move takes place at the lower-left angle of the
four-sided face.

The following consequence of Theorem 1, proved in Section 4, gives us a lattice struc-
ture for the set of spanning trees of G.

Theorem 3. Let T be the set of spanning trees of a finite connected graph G drawn on
the sphere, with f ∗ a face of G and v∗ a vertex of G incident with f ∗. If we say that one
tree T ∈ T covers another tree T ′ ∈ T exactly when T ′ is obtained from T by swinging
down, then the covering relation makes T into a distributive lattice.

the electronic journal of combinatorics 32(4) (2025), #P4.26 7



Figure 5: A swinging-down move.

2 Orientations of graphs.

For the reader’s convenience, I restate Theorem 1.

Theorem 1: Let R be the (non-empty) set of orientations of a finite connected graph G
that have a fixed circulation c, and let A∗ be an accessibility class of G. If we say that
one c-orientation R covers another c-orientation S exactly when S is obtained from R by
pushing down at a maximal accessibility class other than A∗, then the covering relation
makes R into a poset that is a distributive lattice.

I will prove this theorem in a slightly roundabout way. Specifically, I will use height-
functions to define a lattice structure on R, and then verify that the covering relation for
this ordering is the relation given by pushing down.

Note that two vertices v, w of G are mutually accessible (relative to an orientation R)
if and only if there exists a directed cycle of length n containing v and w around which
the circulation is n. If S is another c-orientation of the graph, then the circulation of S
around this cycle must also be n, implying that the cycle is a forward cycle and that v
and w are mutually accessible relative to S. It follows that any two c-orientations of G
induce the same partition of the vertex-set V into accessibility classes. In particular, we
can talk about the partition of V induced by the circulation c, and we can describe c as
being acyclic (or not).

Given a feasible circulation c of G, let us describe a directed edge 󰂓e as being forced
if it belongs to every c-orientation of G, and forbidden if it belongs to no c-orientation
of G. Clearly 󰂓e is forced if and only if −󰂓e is forbidden.

Proposition 4. Let c be a feasible circulation on G. A directed edge 󰂓e is forced or
forbidden if and only if its endpoints are in the same accessibility class.
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Proof. Suppose 󰂓e = (e, v, w) has endpoints v, w that are in the same accessibility class.
Let R be some c-orientation of G. If R contains 󰂓e, then, since R contains a path from w
to v, R contains a forward cycle that includes the directed edge 󰂓e; all the edges in this
cycle, including 󰂓e, must be forced. Similarly, if R contains −󰂓e, then −󰂓e must be forced,
i.e., 󰂓e must be forbidden.

For the other direction, suppose 󰂓e has endpoints that are in different accessibility
classes. Let G′ be the graph obtained from G by contracting all edges whose endpoints
lie in the same accessibility class, let N ′ be the number of vertices of G′, and let R0 be an
orientation of G′ obtained by taking a c-orientation of G and contracting all the directed
edges whose endpoints lie in the same accessibility class. Note that R0 is acyclic. We will
iteratively construct orientations R1, R2, . . . of G

′, where each orientation Ri is obtained
from the preceding orientation Ri−1 by pushing down at a vertex. Imagine the vertex
set of G′ as being divided at each stage into two classes, called “red” and “blue,” with
the red class initially empty. We will always be pushing down at a blue vertex of G′

and re-coloring it red. More specifically, at the ith stage (i 󰃍 1) we proceed as follows:
Pick an arbitrary blue vertex and proceed from there, following edges of Ri−1. Note
that it is impossible to go from a blue vertex to a red vertex, since the directed edges of
Ri−1 that connect red and blue vertices always point away from the red (pushed-down)
vertices. Hence the path will only visit blue vertices. Since Ri−1 was obtained from R0 by
repeatedly pushing down, and since R0 was acyclic, Ri−1 is acyclic as well; hence the blue
path must eventually get stuck at some blue vertex. This vertex will be maximum, so that
it is possible to push it down, obtaining a new orientation Ri. Repeating this operation
N ′ times, we eventually reach the orientation RN ′ = R0. In the process of going from R0

to RN ′ , every vertex of G′ has gotten pushed down; hence every directed edge of G′ has
gotten reversed twice. In particular, we see that every edge of G′ can occur with both
orientations. Uncontracting the vertices of G′ to bring ourselves back to G, we see that
every edge of G that joins different accessibility classes occurs with both orientations in
R.

Before defining a partial ordering on R (which will depend critically on our choice of
A∗), we need two extra ingredients: one is a choice of a particular vertex v∗ in A∗ and the
other is a real-valued function on the set of directed edges of G that has certain properties.
To motivate these properties, note that every c-orientation R of G is associated with an
indicator function FR : 󰂓E → R, where

FR(󰂓e) =

󰀝
+1 if 󰂓e ∈ R,
0 if 󰂓e ∕∈ R (i.e., −󰂓e ∈ R).

This function F = FR has three notable properties: 0 󰃑 F (󰂓e) 󰃑 1 for all 󰂓e ∈ 󰂓E;

F (󰂓e) + F (−󰂓e) = 1 for all 󰂓e ∈ 󰂓E; and
󰁓

󰂓e∈C F (󰂓e) = 1
2
(|C|+ c(C)) for every directed cycle

C in G. (Actually the second property is a special case of the third.)
We would like a particular function F that satisfies these three properties and some

extra conditions as well: F (󰂓e) should be 1 when 󰂓e is forced, 0 when 󰂓e is forbidden, and
strictly between 0 and 1 when 󰂓e is neither forced nor forbidden. A simple way to find
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such an F is to average the FR’s over all the (finitely many) c-orientations R. That is,
we may let F (󰂓e) be the probability that a c-orientation chosen uniformly at random from
R contains 󰂓e. In applications to specific graphs G and circulations c, there is typically a
more natural function F that satisfies our extra property, but for the purposes of proving
general theorems this choice of F suffices. In any case, neither the choice of the vertex
v∗ ∈ A∗ nor the choice of the function F affects the partial ordering of R.

Definition 5. The height-function HR of a c-orientation R is the unique real-valued
function H on V such that

(i) H(v∗) = 0 and
(ii) for 󰂓e = (e, v, w), H(w)−H(v) equals 1−F (󰂓e) if 󰂓e ∈ R and equals −F (󰂓e) otherwise.

Proposition 6. The preceding definition is consistent and uniquely specifies HR. More-
over, every H : V → R that satisfies (i) and (ii) is equal to HR for some R ∈ R.

Proof. Since G is connected, we can find a directed path 󰂓e1,󰂓e2, . . . ,󰂓en from v∗ to any other
vertex v of G. Then (i) and (ii) imply that HR(w) = k−F (󰂓e1)−F (󰂓e2)−· · ·−F (󰂓en), where
k is the number of i (1 󰃑 i 󰃑 n) such that 󰂓ei ∈ R. Hence the function HR is uniquely
specified; we need to check that the definition is self-consistent. Letting C = 󰂓e1,󰂓e2, . . . ,󰂓en
be a directed cycle in G we find that (ii) gives us

󰁓n
i=1(H(vi)−H(vi−1)) = k−

󰁓n
i=1 F (󰂓ei),

where 󰂓ek = (ek, vk−1, vk) and where k is the number of i with 󰂓ei ∈ R; we must check that
this vanishes (since v0 = vn). But k equals the number of forward edges in the directed
cycle C, which is also equal to

󰁓n
i=1 F (󰂓ei). This proves the first sentence of Proposition

6.
To construct an orientation of G from a function H satisfying (i) and (ii), let R be the

set consisting of all forced directed edges together with all directed edges 󰂓e = (e, v, w) for
which H(w) > H(v). R is an orientation of G; it is easily seen that if H = HR′ for some
orientation R′, we must have R′ = R.

Note that the condition (ii) in Definition 5 can be written as HR(w) − HR(v) =
FR(󰂓e)− F (󰂓e), where FR is the indicator function of R.

Proposition 7. For all v, w adjacent in G, HR(v) = HR(w) if and only if v and w belong
to the same accessibility class relative to c.

Proof. Let e be an edge with endpoints v and w. If v and w are mutually accessible, then
the directed edge 󰂓e = (e, v, w) is either forced or forbidden so that FR(󰂓e) = F (󰂓e) and
HR(w) = HR(v). If v and w are not mutually accessible, 󰂓e is neither forced nor forbidden,
so that either HR(w)−HR(v) = 1− F (󰂓e) > 0 or HR(w)−HR(v) = −F (󰂓e) < 0.

Proposition 8. For all R,R′ ∈ R and for all v ∈ V , HR(v)−HR′(v) is an integer.

Proof. It trivially holds for v = v∗ (by stipulation (i) in the definition of HR), and since
the two alternatives on the right hand side of (ii) differ by 1, it holds by induction for all
v.

Definition 9. For each v ∈ V let m(v) = minR∈R HR(v).
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Proposition 10. Suppose v and w are adjacent vertices in different accessibility classes
of G, with m(v) < m(w). Then for R ∈ R, the only possible values for the pair
(HR(v), HR(w)) are of the form (m(v) + i,m(w) + j) with j = i or j = i− 1.

Proof. Note that the assumption m(v) < m(w) entails no loss of generality, since m(v) ∕=
m(w) whenever v and w are in different accessibility classes (Proposition 7). I claim that
m(w) lies strictly between m(v) and m(v)+1. Indeed, our hypothesis m(v) < m(w) gives
us one bound. To prove the other, let R be an orientation for which HR(v) = m(v). Then
HR(w) is either m(v)−F (󰂓e) or m(v)+1−F (󰂓e), where 󰂓e is the directed edge from v to w.
Since 󰂓e is neither forced nor forbidden,m(v)−F (󰂓e) < m(v) andm(v)+1−F (󰂓e) < m(v)+1.
Since HR(w) 󰃍 m(w) > m(v), we cannot have HR(w) = m(v) − F (󰂓e); hence HR(w) =
m(v)+1−F (󰂓e). Therefore in fact we have m(w) = HR(w) = m(v)+1−F (󰂓e) < m(v)+1.

Now let R be any orientation of G. By Proposition 8, HR(v) = m(v)+ i and HR(w) =
m(w) + j for some i, j. We must either have HR(w)−HR(v) = 1− F (󰂓e) = m(w)−m(v)
or HR(w) − HR(v) = −F (󰂓e) = m(w) −m(v) − 1. In the first case, j = i; in the second
case, j = i− 1.

Proposition 11. If H1 and H2 satisfy (i) and (ii), then so do their meet H1∧H2 and
their join H1∨H2, where

(H1∧H2)(v) = min(H1(v), H2(v)),

(H1∨H2)(v) = max(H1(v), H2(v)).

Proof. It is clear that (i) is satisfied in each case. To prove (ii), note that if v and w are
mutually accessible, then the possible values for (HR(v), HR(w)) as R varies in R are

(r, r), (r + 1, r + 1), (r + 2, r + 2), . . .

where r = m(v), whereas if v and w are not mutually accessible, then the possible values
for (HR(v), HR(w)) are

(r, s), (r + 1, s), (r + 1, s+ 1), (r + 2, s+ 1), . . .

where r = m(v) and s = m(v) (Proposition 10). Since in either situation the allowed
pairs are linearly ordered componentwise, any ordered pair of numbers that is of the form
(H1(v), H1(w))∨(H2(v), H2(w)) or (H1(v), H1(w))∧(H2(v), H2(w)) is also a pair on the
list, and hence satisfies (ii).

Definition 12. If R and S are c-orientations, say R ≽ S if and only if HR(v) 󰃍 HS(v)
for all v ∈ V .

Clearly, (R,∧,∨,≽) is a distributive lattice. We define ≻, ≼ and ≺ in terms of ≽ in
the usual way. Note that R ≽ S if and only if for every vertex v of G, and for every path
in the graph from v∗ to v, the number of forward edges along the path is at least as great
for R as for S.

We must now show that R covers S in the partial order (R,≽) if and only if S is
obtained from R by a single application of pushing-down.
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Proposition 13. Let R be a c-orientation, and let A be an accessibility class of G (relative
to c). Then A is maximal under R (that is, all directed edges between A and Ac point
towards A) if and only if A is a “mesa” for the height-function HR; that is, HR is constant
on A, and has strictly smaller value for every vertex in Ac adjacent to a vertex in A.

Proof. By Proposition 7 we know that HR is constant on accessibility classes; say HR(v) =
α for all v ∈ A. For each w ∕∈ A adjacent to A, we have either HR(w) < α or HR(w) > α,
according to whether the edge(s) connecting w to A point towards A or away from A.
(Note that it is impossible for there to be edges joining w to A with both orientations,
since that would force w ∈ A.) Thus A is maximal if and only if HR(w) > α for all w ∕∈ A
adjacent to A.

Proposition 14. If A is a maximal accessibility class in R, and S is obtained from R by
pushing down A, then HS(v) equals HR(v)− 1 if v ∈ A and equals HR(v) otherwise.

Proof. Easy.

Proposition 15. Let R, S be c-orientations with R ∕≼ S, so that HR(v) > HS(v) for some
v, and let d = max{HR(w)−HS(w) : w ∈ V } > 0. Let D = {w ∈ V : HR(w)−HS(w) =
d}, which by Proposition 7 is a union of accessibility classes, and let Â be an accessibility
class in D for which HR(Â) is as great as possible. Then Â is maximal in R. Moreover,
if R ≻ S, then the orientation R′ that results from R by pushing down Â satisfies R′ ≽ S.

Proof. Since HR(v)−HS(v) = 0 for all v ∈ A∗, D is disjoint from A∗. Let w be a vertex
in Âc adjacent to Â. If w ∈ D, then HR(Â) > HR(w), since HR is maximized within D
on the set Â (HR(w) = HR(Â) is impossible since w ∕∈ Â). On the other hand, if w does
not belong to D, so that HR(w) − HS(w) < d, then HR(w) − HS(w) = d − 1, and our
earlier observation about the possible values of the pair (H(v), H(w)) (for H any height-
function) gives us HR(Â) > HR(w) 󰃍 HS(w) > HS(Â). In either case, HR(Â) > HR(w),
and since this holds for all w adjacent to Â, all the arrows between Â and its complement
point towards Â, implying that Â is maximal in R. To prove the second claim, note that
the inequality HR(Â) > HS(Â) implies HR(Â) 󰃍 HS(Â) + 1. Hence HR′(w) = HR(w) 󰃍
HS(w) for all w ∕∈ Â and HR′(Â) = HR(Â)− 1 󰃍 HS(Â).

Proposition 16. R covers S if and only if S is obtainable from R by a single pushing-
down operation on an accessibility class A disjoint from A∗.

Proof. The backward direction follows immediately from Proposition 14, since heights at
a fixed vertex v can only vary by integers as R varies and since HR must be constant
on accessibility classes. In the forward direction, suppose R covers S in (R,≽). By
Proposition 15, there exists R′ ≽ S obtained from R by pushing down. Since R ≻ R′, we
must have R′ = S.

This interpretation of pushing down gives us the following result:

Proposition 17. There is a unique c-orientation of G which has no maximum away from
A∗.
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Proof. Any c-orientation of G with no maximum away from A∗ is a c-orientation that is
minimal in R, and vice versa. Since R is a lattice, the orientation is unique. Note that
the orientation must necessarily have a maximum at A∗, since its height-function must
achieve its maximum someplace.

Call this orientation R0̂. Similarly, we define R1̂ as the unique c-orientation of G which
has no minimum away from A∗; R1̂ is the maximum element of R.

We can now prove Theorem 1.

Proof. Summarizing our results, we find that (R,∧,∨,≽) is a distributive lattice in which
an element R covers an element S if and only if S is obtained by pushing down R at
a maximal accessibility class other than A∗, with minimum element R0̂ and maximum
element R1̂. This completes the proof of Theorem 1.

We now turn to examples.

Example 18. Let G be a cycle of length n, and let R be the set of orientations of G in
which exactly k of the edges of G are directed counterclockwise. Here we put F (󰂓e) = k

n

for every counterclockwise edge and n−k
n

for every clockwise edge. (See Figure 2 for the
case n = 4, k = 2.) In general, R is isomorphic to the finite Young lattice L(k, n − k).
To see this, number the edges of G from 1 to n in clockwise order (beginning and ending
with v∗), and create a lattice path from (k, 0) to (0, n−k) whose ith edge goes upward or
leftward according to whether the ith edge of P runs clockwise or counterclockwise. The
set of grid squares in the first quadrant to the left of and below the lattice path is a Young
diagram, and pushing down amounts to removing a square. Thus, the c-orientations of G
correspond to number-partitions having at most k parts, each of size at most n− k. (For
a general treatment of number-partitions, see [2].)

Example 19. Let G be a path composed of n horizontal edges, labeled e1, e2, . . . , en from
left to right, with v∗ the rightmost vertex. Since G has no cycles, we let R be the set of
all orientations of G. For any orientation R of G, let I(R) ⊆ {1, 2, . . . , n} be the set of i
(1 󰃑 i 󰃑 n) such that ei is oriented from right to left in R. Then R covers S if and only
if I(S) is obtained from I(R) by reducing one of its elements by 1 (with the stipulation
that this reduction is only permitted if the reduced value was not already in R, and with
the special arrangement that the number 1 is “reduced” by being simply deleted). Thus
R is isomorphic to the inclusion-ordering on number-partitions with distinct parts of size
at most n. (More generally, if G is any tree with n edges and v∗ is any vertex of G, R
will be a poset with 2n elements.)

For our next example, we need to broaden the context of our construction somewhat.
Let ∂G denote any non-empty connected subgraph of G, to be called the boundary of
G. Let ∂V denote the set of vertices of ∂G; assume v∗ ∈ ∂V . If we let R be the set
of all c-orientations of G that have prescribed orientations on all the edges of ∂G, then
the proof of the preceding propositions can be adapted to show that every orientation in
R can be obtained from every other by means of pushing-down operations in which the
accessibility classes of G that get pushed down are disjoint from ∂V .
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Figure 6: Alternating sign matrices.

Example 20. Let G be the square grid with (n + 1)2 vertices (n 󰃍 1), let ∂G be the
boundary of G in the usual sense (a subgraph with 4n vertices and 4n edges), let c be
the circulation that assigns circulation zero to every cycle, and let R be the set of c-
orientations of G in which all edges on the top/bottom/left/right side of the boundary
point rightward/leftward/ downward/upward. One such R ∈ R is shown in Figure 6(a)
for n = 3.

If we take F (󰂓e) = 1
2
for all 󰂓e, with v∗ the vertex at the upper left, we get the height-

function HR shown in Figure 6(b). Finally, if for each grid-square in G we record the
signed sum −h1 + h2 + h3 − h4 where h1, h2, h3, h4 are the heights HR of the upper left,
upper right, lower left, and lower right corners of the grid-square, respectively, we get an
n-by-n array of +1’s, −1’s, and 0’s, as shown in Figure 6(c). This array has the property
that in each row and column, the nonzero entries alternate in sign, beginning and ending
with +1. Such a matrix is called an alternating-sign matrix (defined by Mills, Robbins,
and Rumsey [51]; for a very readable overview, see [68]). It is not hard to show that every
n-by-n alternating-sign matrix corresponds to a unique orientation of G in R (see Elkies
et al. [17] for details). Our lattice structure on R is a natural partial ordering of the set
of alternating-sign matrices, and indeed has been used numerous times in the literature.
One indication of its naturalness is the observation that if we restrict this ordering to
those alternating-sign matrices in which no −1’s occur (the permutation matrices), then
we obtain the weak Bruhat order on permutations. Conversely, our ordering of alternating
sign matrices can be construed in order-theoretic terms as the MacNeille completion of
the weak Bruhat order; see [11].

For the rest of this section, we will assume that c is acyclic, and that choosing an
orientation for the edges in ∂G does not force any of the orientations of the other edges.

Since (R,≽) is a distributive lattice, it can be viewed as the lattice of order-ideals
of a poset P , ordered by inclusion. P can be abstractly described as the poset of join-
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irreducibles of R under the inherited partial ordering, but here is a more concrete picture
of P . For each vertex v ∕∈ ∂V , let m(v) = minR HR(v), M(v) = maxR HR(v), and D(v) =
M(v) − m(v) 󰃍 1, so that the allowed values of HR(v) are m(v),m(v) + 1, . . . ,m(v) +
D(v) = M(v). To each v ∕∈ ∂V and each 1 󰃑 i 󰃑 D(v), there corresponds an element of
P , which we can denote by (v, i); every element of P is of this form. (v, i) covers (w, j)
in P when v and w are adjacent in G and 0 < (m(v) + i)− (m(w) + j) < 1.

A different geometric picture of (R,≽) arises from looking at the c-orientation poly-
tope associated with the circulation c. As discussed earlier, each orientation R of G can
be associated with an indicator function FR. We can view the set of real-valued functions
from 󰂓E to R as a Euclidean space and consider the functions FR as points in that space.
We define the c-orientation polytope as the convex hull of these points. Note that it actu-
ally lies in the subspace ofR

󰂓E consisting of those F that satisfy
󰁓

󰂓e∈C F (󰂓e) = 1
2
(|C|+c(C))

for all directed cycles C.

Proposition 21. If S is obtained from R by pushing down a vertex v, then there is an
edge of the c-orientation polytope between R and S.

Proof. First note that every FR is a vector containing |E| 0’s and |E| 1’s; hence none
is a convex combination of the others and each is on the boundary of the c-orientation
polytope. To see that there is an edge from FR to FS, consider the (affine) subspace

consisting of all F ∈ R
󰂓E that agree with FR and FS on all directed edges common to

R and S, and intersect it with the subspace of F ’s satisfying the identity
󰁓

󰂓e∈C F (󰂓e) =
1
2
(|C|+ c(C)). We get a line and nothing more, since the values of F on all directed edges

not involving v are fixed on the first subspace and the differences F (󰂓ei)− F (󰂓ej) are fixed
on the intersection with the second subspace (where 󰂓ei and 󰂓ej are any two directed edges
with initial vertex v).

Proposition 22. There exists an affine function Φ on R
󰂓E such that Φ(FR) is the rank

of R in the poset (R,≽).

Proof. We seek a function of the form

Φ(F ) =
󰁛

󰂓e∈ 󰂓E

a󰂓eF (󰂓e) + a0

for coefficients a󰂓e and a constant term a0. It suffices to find a󰂓e’s so that every pushing-
down operation decreases

󰁓
󰂓e a󰂓eF (󰂓e) by 1. That is, if v ∕= v∗ is a vertex of G and 󰂓E(v) is

the set of directed edges of G with initial vertex v, then we want

󰁛

󰂓e∈ 󰂓E(v)

a−󰂓e =

󰀳

󰁃
󰁛

󰂓e∈ 󰂓E(v)

a󰂓e

󰀴

󰁄+ 1 .

Write this as 󰁛

󰂓e∈ 󰂓E(v)

(a−󰂓e − a󰂓e) = 1 .
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To see if there are any degeneracies in this system of equations, consider all linear com-
binations of the form

󰁛

v∈V

󰀳

󰁃bv
󰁛

󰂓e∈ 󰂓E(v)

(a−󰂓e − a󰂓e)

󰀴

󰁄

with bv∗ required to be zero. To see when this expression vanishes identically (that is, to
see when the net coefficient of each a󰂓e is zero), rewrite the expression as

󰁛

󰂓e=(e,v,w)∈ 󰂓E

(bw − bv)a󰂓e .

This vanishes identically only when bw = bv for all v, w adjacent in G; since G is connected,
this means that bv = bv∗ = 0 for all v. Hence our inhomogeneous system of equations
contains no inconsistencies and has at least one solution.

One curious feature of Theorem 1 is that it gives us N different ways to view R as a
distributive lattice, where N is the number of vertices of G. Let us write Rv for the partial
ordering on the c-orientations of G defined using v as the special vertex. If we let Pv be
the poset of join-irreducibles of Rv, then we obtain commuting bijections J(Pv) → J(Pw)
for all v, w, where J(P ) denotes the lattice of order ideals of P . These are non-trivial
bijections, in that the underlying Pv’s can be non-isomorphic.

Abstractly, what is going on is best understood in the context of the infinite distribu-
tive lattice R̂ consisting of all functions H : V → R for which H(v∗) ∈ Z and H(w)−H(v)

equals either 1− F (󰂓e) or −F (󰂓e) for all directed edges 󰂓e = (e, v, w) ∈ 󰂓E. Note that v∗ no
longer plays a truly special role; the structure of this lattice is independent of our choice
of v∗. For instance, in the case where G is a path with two edges, the infinite lattice is
as shown in Figure 7(a); its join-irreducibles are ordered in the fashion shown in Figure
7(b). The lattice admits a translational symmetry, which corresponds to adding 1 to
every height. When we pass from R to some Rv, we are in a sense modding out by this
translation symmetry. Here is the relevant general fact:

Proposition 23. Let L̂ be an infinite distributive lattice with a free action of Z, such that
there are finitely many orbits under the action, each of which is a doubly-infinite chain.
Let P̂ be the poset of join-irreducibles of L̂, which carries an induced action of Z under
which there are finitely many orbits, each of which is a doubly-infinite chain. Define an
interval of the lattice as a set of the form [a, b] = {x : a ≼ x ≼ b}. If I is any finite
interval in L̂ whose translates partition L̂, then I is a finite distributive lattice and there
is a bijection between I and the set of orbits of L under Z.

Proof. Easy.

Call such an interval I a finite quotient of the infinite lattice L̂. Then, returning to
our original context (c-orientations of graphs), we see that the different Pv’s associated
with different vertices v all arise as the poset of join-irreducibles of different finite quotients
of R̂. For instance, in Figure 7(a), the intervals {a, b, c, d}, {b, d, e, g}, and {c, d, e, f} are
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Figure 7: An infinite lattice and its join-irreducibles.
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all quotients of the lattice L̂. The first is isomorphic to the lattice of order-ideals of a
two-element anti-chain; the second and third are isomorphic to the lattice of order-ideals
of a three-element chain.

It would be interesting to know when two abstract posets P1, P2 can arise from two
finite quotients of the same L̂. For instance, if P is the product of a two-element chain
with itself, can the construction of Proposition 23 be used to give a bijection between
J(P ) and J(P ′), where P ′ is some poset not isomorphic to P?

As promised earlier, I will now apply the theory of height-functions to the question of
bounding the number of pushing-down operations required to get from one c-orientation
to another.

Proposition 24. It is possible to get from any c-orientation of a graph G to any other
in at most N(N − 1)/2 push-down operations, where N = |V |.
Proof. Let R, S be two c-orientations of G. Take a vertex v∗ at random, and calculate
the height-functions HR and HS in the ordering Rv∗ . Let v′ be the vertex v of G for
which HR(v) − HS(v) is as small (or as negative) as possible. If we now switch over to
using v′ as our special vertex rather than v∗, we are effectively sliding the two height-
functions in the vertical direction until they touch (at v′) but do not cross. In the partial
ordering Rv′ , we have R ≽ S. Hence, by repeated application of Proposition 15, one sees
that it is possible to convert R into S in

󰁓
v |HR(v)−HS(v)| steps, each of which brings

H(v) closer to HS(v) for one vertex v while leaving the rest of the height-function alone.
Therefore the number of moves required is at most

󰁓
|HR1̂

(v)−HR0̂
(v)| =

󰁓
D(v), where

D(v) = maxH H(v) − minH H(v) as before. Let k = maxv D(v). Note that for v and w
adjacent, D(v) and D(w) differ by at most 1, and that D(v′) = 0. Hence there must
exist vi ∈ V with D(vi) = i for i = 1, 2, . . . , k. D(v) 󰃑 k for all v ∕∈ {v′, v1, v2, . . . , vk}, so󰁓

D(v) 󰃑 1+2+· · ·+(k−1)+k+k+· · ·+k = k(k−1)/2+k(N−k) = k(2N−1−k)/2 󰃑
N(N − 1)/2.

In the other direction, we can show that the bound N(N − 1)/2 is best-possible:

Proposition 25. For every N , there exists a graph G on N vertices and orientations R
and S with the same circulation around all directed cycles, such that S cannot be obtained
from R in fewer than N(N − 1)/2 push-down operations.

Proof. Take G as in Example 19. Let R and S be the orientations of G in which all
edges are directed leftward (away from v∗) or rightward (towards v∗), respectively. A
pushing-down operation can be understood as the operation of sliding a left-pointing
edge toward the left until it “slides off the edge”, or introducing a new left-pointing edge
at v∗. In order to convert R into S, all the left-pointing edges must be slid off of G, so
1 + 2 + · · ·+ (N − 1) = N(N − 1)/2 operations are needed.

3 Matchings of Bipartite Graphs

Suppose G is a connected bipartite plane graph with vertex-set V and d is a function from
V to the non-negative integers such that G has at least one d-factor. Assume that every
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Figure 8: The standard orientation of the dual.

edge of G belongs to some d-factors but not to others. Fix an alternating coloring of the
vertices of G (black and white). I will use duality for plane graphs to apply the results of
the preceding section and get a family of partial orderings on the d-factors of G.

For the reader’s convenience, I restate Theorem 2.

Theorem 2: Let M be the (non-empty) set of d-factors of a finite graph G drawn on
the sphere. If we say that one d-factor M covers another d-factor N exactly when N
is obtained from M by twisting down at a face other than f ∗, then the covering relation
makes M into a distributive lattice.

Proof. Let G⊥ be the dual of G with vertex f ∗⊥ associated with face f ∗. The 2-coloring
of the vertices of G gives rise to a 2-coloring of the faces of G⊥. Define the standard
orientation of G⊥ as the one in which all edges are directed so as to encircle white faces
of G⊥ in the counterclockwise direction and black faces of G⊥ in the clockwise direction.
(See Figure 8.)

Given a d-factor M , we define an orientation RM of G⊥ by giving an edge of G⊥

its non-standard orientation if the associated edge of G belongs to M and giving the
edge its standard orientation otherwise. If C is an elementary cycle of G⊥ that circles
a white vertex of G in the counterclockwise sense, then the circulation of RM around
C is deg v − d(v); if C is an elementary cycle of G⊥ that circles a black vertex of G
in the counterclockwise sense, then the circulation of RM around C is −(deg v − d(v));
and if C is any other cycle of G⊥, the circulation of RM around C is derivable as a
combination of circulations around black and white vertices of G. Thus every RM has the
same circulation, which we denote by c. In the other direction, it is easy to check that
every c-orientation R of G⊥ singles out the d(v) edges at each vertex v of G that have their
non-standard orientation and thereby specifies a d-factor M of G. This gives a bijection
between R and M. Moreover, positive/negative alternating cycles in M correspond to
maximal/minimal vertices in R, respectively, twisting down a face in M corresponds to
pushing down a vertex in R, and excluding the cycle bounding f ∗ corresponds to excluding
the vertex f ∗⊥. Thus, Theorem 1, applied to G⊥, yields Theorem 2, applied to G.
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Figure 9: Lozenge tilings and matchings.

Note that under the bijection between M and R, one gets a height-function defined on
the faces of G. Since this height-function must take on its maximum and minimum values
somewhere, we see that every d-factor of G must have at least one positive alternating
cycle and at least one negative alternating cycle.

We can describe the lattice structure of M without reference to the dual graph. For
each face f ∕= f ∗ of G, choose a sequence of faces f ∗ = f0, f1, . . . , fn = f such that
every pair of consecutive faces fi−1, fi share an edge ei and such that, as one moves from
fi to fi+1, the black vertex of ei is on the left. Define the height of the face f relative
to a d-factor M as the number of ei’s that belong to M . (As an alternative, one can use
face-paths from f to f ∗ in which it is not required that the black vertex of a shared edge
be on the left, but then the height of f must be defined as the number of even ei’s in
M minus the number of odd ei’s in M , where an ei is called even or odd according to
whether the black vertex is on the left or right.) In any case, this height-function is the
same as the one we introduced for orientations of G⊥, modulo some renormalization at
each face of G. In particular, the lattice structure on M given by Theorem 2 is the one
induced by the lattice structure on the set of these height-functions.

Example 26. Consider a hexagon that has all internal angles equal to 120 degrees, with
sides having integer lengths a, b, c, a, b, c, respectively. We can imagine it as being divided
into 2ab+ 2ac+ 2bc equilateral triangles of side 1, half of them pointing upward and half
of them pointing downward. Define a lozenge as a rhombus of side 1 having angles of 60
and 120 degrees. A tiling of the hexagon by lozenges corresponds to a pairing between the
upward-pointing and downward-pointing triangles in which paired triangles must have an
edge in common. That is to say, a tiling corresponds to a matching of a certain bipartite
graph G with 2ab+2ac+2bc vertices. (See Figure 9.) Note that an alternating cycle of G
corresponds to a unit hexagon in the tiling composed of three lozenges, and that twisting
such a cycle corresponds to rotating the hexagon by 180 degrees.

If we color vertices black or white according to whether the associated triangle points
upward or downward and we let f ∗ be the external face of G, then we obtain a partial
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ordering on the set of matchings of G, which corresponds to a partial ordering on the set
of tilings of the hexagon. (Figure 10 shows the case a = 1, b = 2, c = 2.)

This is a thinly disguised version of the three-dimensional Young lattice L(a, b, c). To
see the connection, imagine a collection of unit cubes nestling in the first octant of space,
so that in each of the three “nestling directions” x → −∞, y → −∞, and z → −∞,
a cube must be supported by either a wall (one of the three coordinate planes) or by
another cube. Viewing this collection from a point (N,N,N) with N suitably large,
the visible faces of the cubes, together with the squares on the walls, form a tiling of
the plane by lozenges (ignoring the scale-factor of

󰁳
2/3). If we restrict to collections

of cubes that fit inside an a-by-b-by-c box, then we may restrict the tiling of the plane
to a tiling of the hexagon with sides a, b, c, a, b, c without losing any information. The
operation of twisting down an alternating cycle corresponds to pushing down a piece of
visible surface, or equivalently, to removing a cube from the collection. These collections
of cubes correspond to plane partitions in an a-by-b rectangle in which all parts are of
size c of less, or equivalently, order-ideals in the poset defined as the product of chains of
cardinalities a, b, and c.

The ordering discussed in Example 26 was first described by Thurston [74]. The
trick of turning three-dimensional Young diagrams into matchings of a graph was put to
excellent use by Kuperberg [39], who used it in order to enumerate a hitherto intractable
symmetry class of plane partitions.

Example 27. Consider a plane region composed of unit squares that can be tiled by
dominoes (1-by-2 and 2-by-1 rectangles). A basic move that turns one domino tiling
into another is the operation that takes a single 2-by-2 block formed by two dominoes and
rotates it by 90 degrees. Theorem 2 implies that if the plane region under consideration
is simply connected, then it is possible to get from any domino tiling of the region to any
other by means of such moves. In the case where the region being tiled is a special sort of
shape called an Aztec diamond, the partial ordering on the set of tilings has an especially
nice structure; [17] gives details.

A concrete way of describing the height-function for domino tilings as a function from
the vertex-set to the reals is to impose a checkerboard coloring on the squares and to
imagine an ant walking from vertex to vertex along edges belonging to tile-boundaries;
the height increases by 1/4 when the ant has a black square on its left and decreases by
1/4 when it has a white square on its left. (This convention is related to that of [17] by
a scale-factor of 1/4 and is related to the convention of [74] by a scale-factor of −1/4.)
This picture for domino tilings, like the analogous picture for lozenge tilings, seems to
have first been developed by Thurston. Thurston’s paper and the paper by Conway and
Lagarias that inspired it [16] deal only with the case in which the graph G underlying a
set of tilings is very regular – more precisely, the case in which it is the intersection of the
(planar) Cayley graph of a group with a simply-connected region in the plane. A good
deal of the motivation for the theorems in this paper was the belief that a more general
formulation was possible and appropriate.
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Figure 10: Partial ordering of lozenge tilings.
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Figure 11: Contour lines for matchings.

In the case of 1-factors of a graph G, a very handy way of working with the lattice M
is to superimpose each matching M with the fixed matching M0̂, orienting the edges of
M from black to white and the edges of M0̂ from white to black. In this way, one obtains
a spanning set of cycles, where cycles of length 2 correspond to edges that are common
to M and M0̂. Let us omit the cycles of length 2. One can then read this picture as a
relief-map in which the altitude changes by +1 or −1 as one crosses over a contour line
according to whether the contour-line is directed toward the right or toward the left. See
Figure 11, in which v∗ is the center vertex on the top row and M0̂ is the matching on the
bottom of the figure.

So far, we have been operating under the assumption that every edge of G belongs to
some d-factors of G but not to others. We now indicate why this assumption is necessary.

Example 28. Consider the graph G shown in Figure 12, devised by William Jockusch.
This graph has twenty edges, but only twelve of them can participate in a matching of G;
the other eight have been shown as dashed edges. The dark edges form three squares, and
every matching of G is obtained by taking a matching of each square separately. Thus,
there are four matchings of G in which the square of intermediate size is matched one
way and four matchings in which it is matched the other way. It is easily seen that the
first four matchings are inaccessible from the other four by means of face twists. If we
represent matchings of G by c-orientations of the dual graph G⊥, we see that the dashed
edges correspond to two forced 4-cycles in G⊥, separating the square of intermediate size
from both the larger and the smaller squares. Theorem 1 is applicable, but we must
push down an entire cycle, not just one vertex of a cycle. Such a move corresponds to
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Figure 12: Jockusch’s example.

performing twist moves on two squares simultaneously. Equivalently, we could remove the
dashed lines, obtaining a graph on the sphere with two simply-connected (4-sided) faces
and two non-simply-connected (8-sided) faces; if we extend the notion of face-twists to
handle non-simply-connected faces in the natural way, we obtain the same partial ordering
on the set of matchings.

Now suppose G is a connected bipartite graph on the torus. Assume that every face
of G is a subset of a contractible patch of the torus. Since the surface is orientable, we
may define twisting up and twisting down as before. It is no longer the case that all
d-factors of G are obtainable from one another by twisting moves. To see why, recall
that in the proof of Theorem 2, we showed that the orientation R derived from a d-factor
M has fixed circulation around each elementary cycle C. From this we concluded that
the circulation around every cycle C was determined. However, that conclusion follows
only if every cycle bounds. This holds in the plane or on the sphere, but not on the
torus. To specify the circulation around every cycle on the torus, we must specify two
additional parameters, corresponding to the circulation around non-bounding cycles that
generate the homology of the torus. We say that these two additional parameters s and
t constitute the cohomology of the d-factor, and we represent it in the plane by the
point (s, t). (This representation has some geometrical dependence on one’s choice of two
grid-paths that generate the homology of the torus, but the properties of cohomology that
we will illuminate via the two-dimensional picture are easily shown to be independent of
these choices.) See [70] for related earlier work on the cohomology of domino tilings.

Example 29. Let G⊥ be a 4-by-4 grid on a torus (shown as a grid on a 4-by-4 square
whose opposite edges are to be identified in pairs). If we examine the domino tiling
shown in the left panel of Figure 13, and try to use the “ant-walk” scheme discussed in
the paragraph following Example 27, we get a globally-consistent height-function. (The
values along two of the four edges are shown.) However, if we try to apply the ant-walk
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Figure 13: Two non-cohomologous domino tilings.

Figure 14: Phase diagram for domino tilings of the 4-by-4 torus.

scheme to the tiling shown in the right panel of Figure 13, we find that the results we get
are globally inconsistent; as we travel all the way around the torus from bottom to top, the
“height” changes by 1. These two tilings have cohomology (0, 0) and (0, 1), respectively.
Figure 14 shows the thirteen different cohomologies that can arise from a domino tiling
of the 4-by-4 torus.

Proposition 30. If two d-factors of a torus graph G have different cohomologies, then
neither one can be obtained from the other by any form of local operation that affects only
the edges lying in some contractible patch on the torus.

Proof. Consider two d-factors M and N obtained from one another by such a local oper-
ation. Since the patch is contractible, we can find paths that generate the homology of
the torus but that avoid the patch. Since M and N agree outside of the patch, and since
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Figure 15: Extremal cohomology.

the behavior of the edges outside of the patch suffices to determine cohomology, we see
that M and N must have the same cohomology.

The inverse of Proposition 30 is almost true; that is, when two d-factors have the
same cohomology, it is usually possible to get from one to the other, not just using local
operations of some unspecified type but more specifically using face twists. However,
there are some exceptions. For example, Figure 15 shows two domino tilings of the 4-by-4
torus that have the same cohomology but are not obtainable from one another via face
twists or any other sort of local move.

Define the phase diagram of a bipartite torus graph G (relative to some degree-
specification d) as the set of ordered pairs arising as cohomologies of d-factors of G, or as
the representation of this set in the plane. (In the example just considered, where G and
its dual G⊥ are both isomorphic to the 4-by-4 torus graph, the phase diagram is given by
Figure 14.) We call a cohomology class of d-factors extremal if it is on the boundary of
the convex hull of the achievable cohomologies in the phase diagram. The tilings shown
in Figure 15 have the same, extremal cohomology.

Proposition 31. Let M be a d-factor of the graph G. If there exists a non-contractible
forward cycle in the associated orientation RM of G⊥, then M has extremal cohomology.

Proof. If RM has a non-contractible forward cycle C of length m, then RM has circulation
m around C, and no orientation of G⊥ can have circulation > m around C as its length
is only m. Since the circulation around C is an affine function of the cohomology, we see
that the cohomology of RM lies on a support line for the set of achievable cohomologies,
and hence is extremal.

Proposition 32. Any d-factor M of the graph G having non-extremal cohomology can
be obtained via face twists from any other d-factor having the same cohomology.
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Proof. Assume M has non-extremal cohomology. Theorem 1 implies that any two c-
orientations of G⊥ can be obtained from one another by pushing down accessibility classes,
where c is the circulation of RM . But Proposition 31 tells us that c is acyclic, so that
accessibility classes are just vertices. Since pushing down a vertex corresponds to twisting
down a face, we are done.

This theory can be extended to graphs on orientable surfaces of higher genus g, by
way of 2g-dimensional phase diagrams, whose dimensions correspond to the 2g homology
classes.

4 Spanning Trees

For the reader’s convenience, I restate Theorem 3.

Theorem 3: Let T be the set of spanning trees of a finite connected graph G drawn on
the sphere, with f ∗ a face of G and v∗ a vertex of G incident with f ∗. If we say that one
tree T ∈ T covers another tree T ′ ∈ T exactly when T ′ is obtained from T by swinging
down, then the covering relation makes T into a distributive lattice.

Before proving Theorem 3, let us reformulate it so that the elements of our poset are
not spanning trees of G but certain pairs consisting of a spanning arborescence of G and a
spanning arborescence of its dual graph. Given a spanning tree T of G, there is a unique
way to orient each edge so that it points through the tree towards the vertex v∗. This
oriented graph 󰂓A is a spanning arborescence rooted at v∗; that is, for every vertex v
there is a unique forward path from v to v∗ in 󰂓A. In the other direction, we see that
if 󰂓A is a spanning arborescence rooted at v∗, the undirected edges associated with the
directed edges of 󰂓A constitute a spanning tree T . Thus the spanning trees of G are in 1-1
correspondence with the spanning arborescences of G rooted at v∗.

Let G⊥ be the dual of G, so that each edge e of G is associated with an edge e⊥ of
G⊥. Given a spanning tree T of G, the set of dual edges {e⊥ : e ∕∈ T} is a spanning tree

of G⊥, called the dual of T . We let T⊥ denote the dual tree, and 󰂓A⊥ denote the unique
orientation of T⊥ that makes it a spanning arborescence rooted at f ∗⊥ (the vertex of G⊥

dual to the face f ∗ of G). Thus the map T 󰀁→ ( 󰂓A, 󰂓A⊥) gives a bijection between spanning

trees of G and ordered pairs consisting of a spanning arborescence 󰂓A of G rooted at v∗ and
a spanning arborescence 󰂓A⊥ of G⊥ rooted at f ∗⊥ such that the spanning trees underlying
󰂓A and 󰂓A⊥ are dual to one another.

Using the pair ( 󰂓A, 󰂓A⊥), we may reformulate our original definition of swinging down.
Suppose that v is a vertex of G and e, e′ are edges of G such that e′ is the clockwise
successor of e at v. Let 󰂓e and 󰂓e ′ be the respective orientations of e and e′ away from v,
and let 󰂓e⊥ and 󰂓e ′⊥ be the respective dual edges oriented so as to point away from f⊥,
where f is the face of G that contains angle eve′. (See Figure 16.) Let T be a spanning

tree of G, with ( 󰂓A, 󰂓A⊥) the associated pair of arborescences.

Proposition 33. Under the foregoing assumptions, the angle eve′ is positively pivotal if
and only if the following conditions are satisfied:
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Figure 16: Pivoting dual arborescences.

(1′) 󰂓e ∈ 󰂓A and 󰂓e ′ ∕∈ 󰂓A;

(2′) the symmetric difference 󰂓A′ = 󰂓A△{󰂓e,󰂓e ′} is a spanning arborescence of G rooted at
v∗; and

(3′) the symmetric difference ( 󰂓A⊥)′ = 󰂓A⊥△{󰂓e⊥,󰂓e ′⊥} is the spanning arborescence of G⊥

rooted at f ∗⊥ that is dual to 󰂓A′.

Proof. Referring back to the definition of “positively pivotal” given in Section 1, we see
that (1) is encoded by (1′); (2) is encoded by (2′); (3) and (4) are encoded by our definition

of 󰂓A and 󰂓A′ as spanning arborescences with specified roots; and (5) is encoded by (3′).

Proposition 34. Under the same assumptions as prevailed in Proposition 33, the angle
eve′ is positively pivotal if and only if 󰂓e ∈ 󰂓A, 󰂓e ′ ∕∈ 󰂓A, 󰂓e⊥ ∈ 󰂓A⊥, 󰂓e ′⊥ ∕∈ 󰂓A⊥.

Proof. Easy.

Using this picture of swinging down we can now prove that swinging down at a single
vertex cannot be repeated indefinitely.

Proposition 35. If T is a spanning tree of G, it is impossible to swing down an edge n
times in succession around a vertex v, where n = deg v.

Proof. Let C⊥ be the simple cycle in G⊥ that encircles the vertex v. The spanning
arborescence 󰂓A⊥ of G⊥ associated with T contains n− 1 directed edges of C⊥. Each time
we swing down, we replace a clockwise edge of C⊥ by a counterclockwise edge, so we can
do it at most n− 1 times.

(Of course, it may become possible to swing down many more times around the vertex v
if we intersperse these swinging-down moves with swinging-down moves at other vertices.)

We can now prove Theorem 3.
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Figure 17: The Hasse diagram graph.

Proof. The main idea is a generalization of a trick due to Temperley [72] and discussed
by Lovász [46] (problem 4.30, pages 34, 104, 243–244); subsequently, Burton and Peman-
tle [12] generalized Temperley’s idea and applied it to infinite graphs drawn in the plane.
Let H(G) be the Hasse diagram of the face-poset of G, viewed as a graph. Concretely,
H(G) is a graph with a node v corresponding to each vertex v of G, a node e correspond-
ing to each edge e of G, and a node f corresponding to each face f of G, with an edge
joining two nodes in H(G) if the corresponding elements in G are either an edge and one
of its endpoints or an edge and one of the faces it bounds. For instance, if G is the graph
shown in Figure 17(a), H(G) is the graph shown in Figure 17(b). We can view H(G) as
the result of jointly embedding G and G⊥ on the sphere. Let H = H(v∗, f ∗) be the graph
obtained from H(G) by deleting the nodes v∗ and f ∗ (along with all incident edges in
H(G)). Euler’s formula |V | − |E| + |F | = 2 implies that |V | + |F | − 2 = |E|, so that H
is a balanced bipartite graph. I will give a bijection between the spanning trees of G and
the matchings of the bipartite plane graph H.

Every spanning tree T of G (together with the associated pair ( 󰂓A, 󰂓A⊥)) determines a
matching M of H as in Figure 18. Specifically, for each vertex v of G, pair v with the
unique e such that v is incident with e and e is pointing away from v in 󰂓A, and pair f
with the unique e such that e is incident with f and e⊥ is pointing away from f in 󰂓A⊥.

To verify that this gives a matching M of H, it suffices to show that no edge-node e is
paired twice. But this could only happen if we had e ∈ T and e⊥ ∈ T⊥, contradicting the
definition of T⊥. From the matching M we can easily recover T as T̃M , defined as the set
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Figure 18: From spanning trees to matchings.

of edges e such that e is paired with a vertex-node in H under the matching M . Hence
the mapping that turns T into M is injective.

To show that the mapping is surjective as well, let M be a matching of H, with T̃M as
above. We must show that T̃ is a spanning tree. Since T̃ spans G and has |V |− 1 edges,
it suffices to prove that T̃ is acyclic.

Suppose T̃ contains a cycle C, say of length n. C divides the sphere into two (open)
parts, or hemispheres, one of which contains both v∗ and f ∗ and the other of which
contains neither. I claim that each hemisphere contains an odd number of nodes of
H(G) and hence an odd number of nodes of H as well. For, suppose we modify G by
replacing either of the two hemispheres by a single face. By Euler’s formula, the quantity
|V | + |E| + |F | (the number of “elements” of G) in the resulting graph must be even.
Since there are an even number of elements of G on the cycle C (n vertices and n edges)
and an odd number in the modified hemisphere (1 face), the unmodified hemisphere must
have an odd number of elements of G as well.

Since the edges of C disconnect H into parts lying in the two hemispheres, M must
match each hemisphere within itself. But this is impossible, since each hemisphere has
been shown to contain an odd number of nodes of H. Hence no such cycle C can exist.

This completes the validation of the bijection between spanning trees of G and match-
ings of H. Since H is a connected bipartite graph drawn on the plane, we can apply
Theorem 2. It is easily checked that modifying a spanning tree T of G by swinging down
a directed edge at v through angle eve′ corresponds to modifying the associated matching
M by performing a twist on the face of H with nodes v, e, f , and e′, where f is the face
belonging to angle eve′.

Note that Theorem 3 gives us as many as 2|E| distinct orderings of the set of spanning
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Figure 19: A Hamiltonian weakly outerplanar graph. The two diagonal edges cross but
do not intersect.

trees of G (since that is the number of ways in which we can choose a vertex v∗ and an
adjacent face f ∗).

It is possible to bypass the invocation of Theorem 2 and give a direct description of a
height-function for spanning trees of a graph G. Such a height-function is a mapping from
the angles of G to the real numbers, where an angle of G is specified by a vertex and an
adjacent face. Every time we swing down an edge of spanning tree through a particular
angle, we decrease the height associated with that angle by 1.

One especially nice class of graphs G to which Theorem 3 applies (suggested by Curtis
Greene [27]) is a class of graphs I call Hamiltonian outerplanar graphs. These are graphs
that are outerplanar in the sense that they are drawn in the plane, in such a way that all
the vertices are adjacent to the unbounded face f ∗; additionally they are Hamiltonian in
that there is a Hamiltonian path bordering the unbounded face. In a speculative vein, we
might also consider what I call Hamiltonian weakly outerplanar graphs, in which edges of
G are allowed to cross inside the Hamiltonian circuit. More specifically, two edges of G
that have no endpoints in common are permitted to cross at a single point that is distinct
from all the vertices of G and lies on no other edge of G, but two edges of G that share an
endpoint cannot have extra crossings. See Figure 19. Although Theorem 3 says nothing
about this situation, it appears (see the example presented at the end of this section) that
the conclusion of the theorem might apply under weaker hypotheses.

The crossing-free case has many nice features. The first is that condition (5) in the
definition of a swinging-down move follows from the first four: for, the simple cycle in
question will be a convex polygon that contains the face f but not the face f ∗. A second
feature is that we can say exactly what the minimum and maximum elements of the
lattice are: if we number the edges of the Hamiltonian cycle as e1, e2, . . . , en in clockwise
order, where e1 and en have v∗ in common, then the minimum element is the tree (a path,
actually) consisting of all the edges in the cycle except en and the maximum element is
the tree consisting of all the edges in the cycle except e1. A third feature is that for
every vertex v, the face f ∗ blocks one from swinging down an edge all the way around v,
even if (unlike the situation of Proposition 35) one intersperses swinging-down moves at
v with swinging-moves elsewhere. That is, a given angle of a face of G can be used for
swinging-down only once.

These properties give us a concrete interpretation of the join-irreducibles of the lattice
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Figure 20: The join-irreducibles for a Hamiltonian outerplanar graph.

T as angles of G, as shown in Figure 20. In the right panel of Figure 20, the empty circles
represent the angles of G at vertices other than v∗, and constitute a set P ; the arrows
between the empty circles give a covering relation that makes P a poset isomorphic to the
poset of join-irreducibles of T . The prescription for drawing the arrows is as follows: First
draw the dual of G, with the special vertex f ∗⊥ corresponding to the unbounded region
f ∗. Erase all edges of this dual graph that contain the vertex f ∗⊥ except for the edge dual
to the edge of G that joins v∗ with its counterclockwise neighbor. This modified dual is
a tree; make it into an arborescence 󰂓A rooted at f ∗⊥, as in the left panel of Figure 20.
Now, at each vertex v of G other than v∗, connect the circles (representing angles of G)
by clockwise arrows, except that there must be no arrow going through the unbounded
region f ∗. Lastly, at the boundary of each face f of G other than f ∗, connect the circles
by clockwise arrows, except that there must be no arrow on the edge of f that is dual to
the directed edge of 󰂓A that points away from f⊥.

Notice that the idea of swinging down an edge is perfectly well-defined even when the
outer-Hamiltonian graph G has crossings, since one still has a cyclic orientation for the
edges that emanate from a vertex. In this context there does not appear to be a dual
graph, so the version of “positively pivotal” that I have in mind retains conditions (1’)
and (2’) from Proposition 33 but drops condition (3’). For instance, let G be the complete
graph Kn, drawn in the plane with crossings (Figure 19 shows the case n = 4), let v∗ be
some vertex of G, and let f ∗ be the external n-sided face. Then one can define a partial
ordering T on the set of spanning trees of G, along the lines of the statement of Theorem
3. In 1990, Michelle Thompson proved [73] that the rank generating function of T is
(1 + q + q2 + . . . + qn−1)n−2, which is a strengthening of Cayley’s formula nn−2 for the
number of spanning trees of a complete graph [46].
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5 Earlier and later related work

The four preceding sections (with minor stylistic differences) appeared in a preprint re-
leased in 1993 that was posted on the arXiv in 1995 but not published until now. In the
past three decades a great deal of work has been done in this area, much of which builds
on that preprint. In this section I attempt a brief, mostly chronological, and necessarily
incomplete survey of that work. First, however, I will acknowledge work that I was un-
aware of back in 1993 but which anticipated the height-function construction in various
ways.

Note: I will make no attempt to distinguish between the date a result was proved,
the date a paper proving the result was released, and the date the paper was published,
so even when I associate a result with a particular year, the year should be taken only
as a rough approximation. In no way should my attempt at an overview be construed as
any assertion that one researcher or group of researchers proved a result before another,
except where I explicitly mention influence.

In 1977, Henk van Beijeren [4] gave a height-function representation for the square ice
model. Under a natural bijection between square-ice states and alternating-sign matrices
(see for instance [63]), van Beijeren’s representation is equivalent to the height-function
for alternating-sign matrices presented earlier in the current paper. In physicist terms,
van Beijeren gave a “solid-on-solid” (SOS) interpretation of the two-dimensional model;
finding such interpretations was an important tactic of researchers in statistical mechanics
(see for instance [3]). To see how pervasive the technique of introducing height functions
had become in statistical physics of lattice models, see for instance [52] and [53] and the
references contained therein.

In 1982, Henke Blöte and Henke Hilhorst [7] came up with an SOS interpretation
for dimers in a hexagonal lattice, equivalent to the one presented in this article. This
interpretation was reinvented in 1984 by Veit Elser [18], who used the connection between
hexagonal-lattice dimer-configurations and plane partitions to draw conclusions about how
bulk entropy can be sensitive to the shape of the boundary of a region. This boundary-
dependence phenomenon was noticed independently a decade later by Horst Sachs and
Holger Zernitz [69], and an analogous observation for the square grid had been made by
Grensing, Carlsen, and Zapp [28] as early as 1980; however, those two papers did not
discuss SOS interpretations or anything resembling height-functions.

In 1983, knot-theorist Louis Kauffman [31], in constructing his state-sum model for the
Alexander-Conway polynomial, devised a partial ordering related to knot diagrams and
showed in his Clock Theorem (Theorem 2.5) that the partial order gave rise to a lattice.
Kauffman’s analysis shows that this lattice is in fact distributive, though this fact was not
stated explicitly until the 1986 article of Patrick Gilmer and Richard Litherland [25]. As
Moshe Cohen and Mina Teicher [15] would later explain, Kauffman’s lattice is a special
case of the distributive lattice on perfect matchings of a graph; Figure 3 of their article
shows how Kauffman’s clock move relates to the twist move for matchings. The work of
Gilmer and Litherland was later extended by Hine and Kálmán [30]. See also recent work
by Le and Mathews [42].
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In 1986, Oliver Pretzel wrote the two articles [60, 61] discussed earlier. It is worth
stressing that his results do not require that the graph under consideration be planar. His
construction depends on a choice of a sink, accounting for the fact that my construction,
in a dual setting, depends on a choice of a face.

In 1990, pioneering articles by John Conway and Jeffrey Lagarias [16] and William
Thurston [74] were published (the latter having been influenced by a preprint of the
former); Thurston gave detailed descriptions of height-functions for both domino tilings
and rhombus tilings, and used height functions to devise a linear-time algorithm to test
a region for tileability and, if a tiling exists, produce one. In the meantime, Leonid
Levitov [44] came up with a height-function for the dimer model on a square grid that is
equivalent to Thurston’s height-function for domino tilings by way of the natural duality
between dimers and dominoes.

The work of Conway, Lagarias, and Thurston [16, 74] inspired me to seek regions in
the square grid whose boundary height-functions vis-a-vis domino tilings would resemble
those of regular hexagons vis-a-vis lozenge tilings, and thus led me to come up with Aztec
diamonds. As it turned out, these regions had already been studied in the aforementioned
work of Grensing, Carlsen, and Zapp [28], who stated (in different words) that the number
of domino tilings of the Aztec diamond of order n is 2n(n+1)/2, but the authors of [17], who
presented four proofs of the formula, did not learn of the work of Grensing et al. until later.
In any case, the niceness of the formulas counting domino tilings of Aztec diamonds and
lozenge tilings of hexagons convinced me that a more general understanding of height-
functions for dimer models for plane graphs was worth developing, and motivated the
1993 preprint.

In 1992, Claire and Richard Kenyon [32] used a notion of height based on the (usually
nonabelian) groups of Conway and Lagarias; they defined height as the distance from an
element of the group to the identity element in the Cayley graph. They used this kind
of height both to construct algorithms for determining tileability and to prove that in a
number of tiling contexts, certain simple local moves, applied in sequence, suffice to turn
any tiling into any other.

In 1993, working independently of the aforementioned mathematicians, physicists,
and chemists, the computer scientists Samir Khuller, Joseph Naor, and Philip Klein [33]
described a distributive lattice structure on the set of integer circulations in a planar
graph. Their potential functions correspond to my height functions, but their work is
more general in that they go beyond the setting of α-orientations.

In 1994, in yet another independent line of work, Patrice Ossona de Mendez [55],
showed that the set of indegree-constrained orientations has a distributive lattice struc-
ture. Subsequent work by Enno Brehm [10] extended this result to 3-orientations.

In 1995, Nicolau Saldanha, Carlos Tomei, Mario Casarin Jr., and Domingos Ro-
mualdo [70], drawing upon the work of Conway and Lagarias [16] and Thurston [74],
came up with a generalization of height functions they called height sections that can
be used when the region being tiled is not simply connected; in such cases the local
change in height (defined in the most natural manner) can have non-zero sum along a
non-contractible cycle, making it impossible to define a single-valued height function.
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One important application of putting a lattice structure on a large set of combina-
torial objects is sampling. In its full generality, the problem of sampling uniformly at
random from a large set is intractable; at the same time, approximately uniform random
samples can often be generated via Markov chain methods. In 1995 Propp and Wil-
son [64] introduced the method of “coupling from the past” (CFTP), one specific form
of which (monotone CFTP) could eliminate “burn-in time” as a source of discrepancy
between the target distribution and the sampling distribution. The method was applied
not just to ice and dimer models but also to the random cluster model of Fortuin and
Kasteleyn and thence to the Ising model. For an exploration of the method in the setting
of α-orientations of plane graphs, see [20]. Imposing (or discovering) a distributive lattice
structure on a large set isn’t useful only for random sampling; it can also expedite other
sorts of operations on the set [29].

In 1996, unaware of my (unpublished) work, Thomas Chaboud [14] used height func-
tions (which he dubbed altitude functions) to extend Thurston’s algorithm to determine
whether a given regular bipartite planar graph has a perfect matching, and if so, construct
one.

In 1998, Éric Rémila [65] used height functions on Cayley graphs to extend Thurston’s
method to tilings in the triangular grid in which the tiles are “leaning bars” and equilateral
triangles.

In 2001, Joakim Linde, Cristopher Moore, and Mats Nordahl [45] defined height func-
tions for higher-dimensional analogues of rhombus tilings and used coupling-from-the-past
to explore the behavior of random tilings.

In 2002, Matthieu Latapy and Clémence Magnien [41] proved a kind of converse to my
Theorem 1: just as the constrained orientations of a finite graph can always be modeled
as elements of a finite distributive lattice, every finite distributive lattice can be modeled
as the set of constrained orientations of a finite graph.

Also in 2002, Scott Sheffield [71] devised a multidimensional height function for ribbon
tilings and used them to prove that all n-ribbon tilings of a simply-connected polyomino
can be obtained from each other by a sequence of mutations of the simplest kind (“2-flips”
that replace two ribbon tiles by two other ribbon tiles), as had been conjectured by Igor
Pak [56].

In that same year, Cristopher Moore, Ivan Rapaport and Éric Rémila [54] defined a
height function and proved a local connectivity property for certain sets of Wang tiles
(colored square tiles with color-based adjacency constraints).

In 2003, Oliver Pretzel, in response to my preprint, published his own proof [62] of
my Theorem 1, along with a discussion of how the lattice changes when the chosen sink
varies. In that same year Peter Che Bor Lam and Heping Zhang published a paper [40]
whose main content was Theorem 2, which they had discovered independently and proved
in a different way.

Also in 2003, Igor Pak published a survey article [57] in which he articulated, among
other things, a proposed general framework for height functions.

In 2004, Éric Rémila [66] provided his own proof (along lines similar to mine) in the
special case of domino tilings and made a more detailed study of the join-irreducibles of

the electronic journal of combinatorics 32(4) (2025), #P4.26 35



the lattice, relating them to the geometry of the region being tiled.
Also in 2004, Stefan Felsner [19], drawing upon and unifying earlier work, re-proved

the result of Ossona de Mendez [55] on α-orientations of a graph G, mentioning that if G is
planar then the lattice of α-orientations of G is isomorphic to the lattice of α⊥-orientations
of the dual graph as defined in my preprint. He then applied his main theorem to Eulerian
orientations, spanning trees, and Schnyder woods of 3-connected plane graphs. This line
of research was extended by Olivier Bernardi and Éric Fusy [5] in 2011; they showed
that the set of Schnyder decompositions of a fixed d-angulation of girth d has a natural
distributive lattice structure. The 2018 article of Gonçalves et al. [26] mentioned below
is also relevant. The most recent and most general presentation is the 2025 article of
Bernardi, Fusy, and Liang [6].

In 2005, Éric Rémila presented a fully fleshed-out extension [67] of the 1992 article
of Kenyon and Kenyon [32]; working with the Cayley graph of a free product of cyclic
groups, he gave an algorithm for tiling a region using two rectangles of arbitrary size. (A
preliminary version of this work had appeared in 2002 as a research report coauthored
by Bodini and Rémila [9], though only Rémila appears as author in the 2005 journal
publication.)

In 2007, Knauer [35] unified the work of Felsner and Propp and extended the framework
to the context of oriented matroids, though if the oriented matroid is not regular there
is not much that can be said. In that same year he published another article [36] that
generalized the result of Latapy and Magnien [41].

In the following year, Knauer teamed up with Felsner to write two papers. In the
first paper [21], the authors brought height functions into the broader realm of upper
locally distributive lattices, and more importantly, they unified Knauer’s previous work
with the earlier work of Khuller et al. [33] through their very general notion of ∆-bonds;
∆-bonds model planar circular flows, planar α-orientations, c-orientations, Schnyder de-
compositions of a fixed d-angulation of girth d, etc. In the second paper [22], the authors
further extended their ideas to the context of polytopes. This work is explained in a more
leisurely fashion in [37]. c-polytopes fall into the family of distributive polytopes (or D-
polytopes), where one says that a polytope is distributive if the coordinatewise max and
min of two points in the polytope also lie in the polytope, so that the vertex set becomes
a distributive lattice. Furthermore the polytope perspective gives a geometric way to
understand the different finite quotients that can arise from an infinite distributive lattice
by varying the choice of root vertex or root face; specifically, it corresponds to intersecting
an unbounded polyhedron with different subspaces.

In 2008, Olivier Bodini, Thomas Fernique, and Éric Rémila [8] applied height functions
to tilings of infinite regions.

In 2014 Pedro Milet and Nicolau Saldanha [48, 49, 50] extended earlier work of Sal-
danha et al. [70] on domino tilings in two dimensions into three dimensions. Now there
are two natural elementary moves (flips and trits) that might be used to convert one tiling
into another, and two topological invariants (flux and twist) that are conserved by moves;
flux comes from the first homology group and is analogous to the discrete divergence
mentioned earlier, whereas twist is a discrete analogue of the notion of helicity arising in
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fluid mechanics and topological hydrodynamics. (See also Milet’s thesis [47].)
The 2016 article of Pak, Sheffer, and Tassy [58] presented an algorithm for determining

when a simply-connected region can or cannot be tiled by dominoes. Like Thurston before
them, the authors used height functions in an essential way, but with clever ideas they
were able to improve the asymptotic run-time complexity to something essentially optimal;
their procedure (ignoring log factors) runs in time proportional to the perimeter of the
region rather than the area. Their procedure works for other sorts of tiling problems as
well, such as lozenge tilings, but they present the method in the case of dominoes for
simplicity of description and ease of analysis. The first paragraph of section 5.3 of [58]
is worthy of note for its sketch of the history of height functions; it discusses such nice
articles as Korn and Pak’s 2004 article on T-tetromino tilings [38].

The 2018 article of Daniel Gonçalves, Kolja Knauer, and Benjamin Lévěque [26] ex-
tended earlier work on Schnyder woods and at the same time extended to surfaces of
higher genus. Their homological approach echoed the earlier work of Saldanha et al. [70],
although Gonçalves et al. were apparently unaware of that paper. Their Theorem 4.7
follows from my work, but they give a new proof. A more leisurely discussion can be
found in Lévěque’s habilitation thesis [43].

The 2019 article of Oswin Aichholzer, Jean Cardinal, Tony Huynh, Kolja Knauer,
Torsten Mütze, Raphael Steiner, and Birgit Vogtenhuber [1] study the problem of finding
the number of flips required to convert one α-orientation into another. Quite surprisingly,
this problem is shown to be intractable, in the sense that even determining whether two
specified α-orientations are connected by no more than two flip-moves is NP complete.
See also the followup 2023 article by Cardinal and Steiner [13]. In contrast, the 1995
article of Saldanha et al. [70] had shown that for domino tilings, the flip distance between
two tilings is essentially the L1-distance between their height-functions.

In 2021, Juliana Freire, Caroline Klivans, Pedro Milet, and Nicolau Saldanha [24],
building on earlier work of the third and fourth authors on three-dimensional domino
tilings, introduced a new move on tilings (refinement), and proved that (up to refinement)
two tilings are connected by flips and trits if and only if they have the same flux, and
that (up to refinement) two tilings are connected by flips alone if and only if they have
the same flux and twist. Klivans and Saldanha [34] went on to study analogous notions
in higher dimensions.
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