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Abstract

Let D be a digraph. Its acyclic number @(D) is the maximum order of an
acyclic induced subdigraph and its dichromatic number ¥(D) is the least integer
k such that V(D) can be partitioned into k subsets inducing acyclic subdigraphs.
We study d@(n) and #(n) which are the minimum of @(D) and the maximum of
X(D), respectively, over all oriented triangle-free graphs of order n. For every
e > 0 and n large enough, we show (1/\/§ —¢e)vVnlnn < d(n) < 19.3y/nlnn and
19.3y/n/Inn < t(n) < (V2 +¢)y/n/Inn. We also construct an oriented triangle-free
graph on 25 vertices with dichromatic number 3, and show that every oriented
triangle-free graph of order at most 17 has dichromatic number at most 2.

Mathematics Subject Classifications: 05C20, 05C15, 05D10, 05C35

1 Introduction

The Ramsey number R(s,t) is the least n such that every graph of order n contains either
a clique of size s or an independent set of size t. The inverse Ramsey number Q(s,n),
is the minimum independence number of a graph of order n with no clique of size s. In
other words, R(s,t) = n if and only if Q(s,n) = t. In particular, R(3,t) is the minimum n
such that a(G) >t for every triangle-free graph of order n, and Q(3,n) the minimum of
a(@G) over all triangle-free graphs of order n. Ajtai, Komlds, and Szemerédi [1] proved that
R(3,t) = O(t*/Int) and Q(3,n) = Q(v/nlnn). This was further tighten by Shearer [25],
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Fiz Pontiveros, Griffiths, and Morris [12], and Bohman and Keevash [7]:

1 2 2

<Z — 0(1)) i < R(3,t) < (1+ 0(1))E

1
<E—0(1)>annn < Q(B3,n) < (V2+40(1))Vnlnn

In 1967, Erdés [9] asked for the greatest chromatic number ¢(n) of a triangle-free graph
of order n. Iteratively pulling out the largest independent set and using Ajtai-Komlods-
Szemerédi bound on Q(3,-), Erdds and Hajnal [11] proved t(n) = O(y/n/lnn). Since
then, several papers [11, 25, 16, 12, 7, 8] improved the lower and upper bounds on t(n).
The best upper bound so far has been established by Davies and Illingworth [8]:

tn) < (2+0(1) /1 (1)

The best lower bound was obtained by Bohman and Keevash [7] by analysing the triangle-

free process. | 1 _
0> (5 o) /i @)

So there is a factor of 2v/2 between these upper and lower bounds on #(n).

The aim of this paper is to investigate similar questions for oriented triangle-free graphs,
that are oriented graphs with no triangle in their underlying graph.

A set of vertices is acyclic in a digraph if it induces an acyclic subdigraph. The acyclic
number of a digraph D, denoted by @(D), is the maximum size of an acyclic set in D,
that is the order of the largest acyclic induced subdigraph of D. It can be seen as a

generalization of the independence number of an undirected graph. Indeed, denoting by G
the bidirected graph associated to G (which is the digraph obtained from G by replacing
each edge by two arcs in opposite direction between its end-vertices), we trivially have

a(G) = a@(@).
In 1964, Erdés and Moser [10] asked for a directed Ramsey-type problem.

Problem 1 (Erdés and Moser, 1964). What is the least integer TT(k) such that every
oriented graph on TT(k) vertices has acyclic number at least k7
What is @(n) = min{@(D) : D is an oriented graph of order n}?

By definition, TT(k) = mina~!(k). Note that TT (k) is the least integer n such that
every tournament of order n contains a transitive subtournament on k vertices. Erdos and
Moser [10] proved

ok=D/2 — TT(k) < 21 (3)
logon+1 < d(n) < 2logyn+2 (4)
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Since this seminal paper, only little progress has been made on the above problem. Using
the Local Lemma, Nagy [19] slightly improved on the lower bound on T'T'(k) by showing
that, for every C < 1, TT(k) > C - 2%*D/2 when k is large enough. TT(k) has been
determined for small values of k. Clearly TT(1) = 1, TT(2) = 2, TT(3) = 4 (because
of the directed 3-cycle) and TT(4) = 8 (because of the Paley tournament on 7 vertices).
Reid and Parker [23] showed TT(5) = 14 and TT(6) = 28. Sanchez-Flores [24] proved
TT(7) = 54. This result implies TT(k) < 54 x 2¥~7 for all k > 7.

A k-dicolouring of a digraph D is a function ¢ : V(D) — [k] such that D[¢~'(:)] is
acyclic for every i € [k]. We say that D is k-dicolourable if it admits a k-dicolouring. The
dichromatic number X(D) of a digraph D is the least integer k such that D is k-dicolourable.
A digraph is k-dichromatic if X(D) = k.

Analogously to Erdés’ question, Neumann-Lara [20] asked for the greatest dichromatic
number X(n) of an oriented graph of order n.

Problem 2 (Neumann-Lara, 1994). What is
X(n) == max {\(D) : D is an oriented graph of order n}?

Observe first that, given an n-vertex graph D with (D) = x(n), one may add arcs to
D until it forms a tournament; this does not reduce the value of (D). So x(n) is attained
by a tournament, i.e.

X(n) = max {}(D) : D is a tournament of order n} .

Moreover, for every oriented graph D of order n, ¥(D) > ﬁ and a dicolouring of D may
be obtained by iterately pulling out the largest acyclic set. Hence, using the above bounds
on @(n), one easily gets

LT ¥m) < (1+o(1))

- < 5
2logyn +1 (5)

log, n
So there is a factor of 2 between these upper and lower bounds on x(n). However, for small
values of n, \(n) is precisely known. The smallest 2-dichromatic tournament is the directed
3-cycle. For every prime integer n of the form 4k + 3, the Paley tournament of order n is
the tournament P,, whose vertex set is {0,...,n — 1} and containing the arc ij if and only
if i — 7 is a square modulo n. Neumann-Lara [20] proved that the smallest 3-dichromatic
tournament has order 7 and that there exist four such tournaments, including P;. He also
proved that the smallest 4-dichromatic tournament has order 11, is unique and is P;;. The
Paley tournament Pjg is 4-dicolourable but Neumann-Lara [21] showed a 5-dichromatic
tournament on 19 vertices. Recently, Bellitto et al. [3] proved that it is actually a smallest
one: there is no 5-dichromatic oriented graph of order less than 19. Hence

1, if1<n<2,
2, if3<n<6,

X(n) =< 3, if7<n <10,
4, if 11 <n <18,
5, if n=19.
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Similar questions may be asked for subclasses of oriented graphs, and in particular
for H-free oriented graphs for a given oriented graph H. (A digraph is H-free if it does
not contain H as a (not necessarily induced) subdigraph. In an unpublished work [14],
Harutyunyan and McDiarmid proposed the following conjecture.

Conjecture 3 (Harutyunyan and McDiarmid). For every oriented graph H, there is € > 0
such that every H-free oriented graph D of order n satisfies @(D) > n® and ¥(D) < n'™¢.

This conjecture is open even when H is the directed cycle of length 3. In fact, it
is a strengthening of the following conjecture, which is equivalent to the celebrated
Erdés-Hajnal conjecture.

Conjecture 4 (Alon, Pachs, Solymosi, 2001 [2]). For every tournament H, there exists
€ > 0 such that every H-free tournament 7 of order n satisfies a(7T") > n°.

This conjecture is known to hold for a few types of tournaments H [4, 5], but is still
wide open in general.

Our results

In this paper, we study the acyclic and dichromatic numbers of oriented triangle-free
graphs.
More precisely, we give some bounds on

(i) d(n), the minimum of @(D) over all oriented triangle-free graphs of order n, and

—

(ii) £(n), the maximum dichromatic number of an oriented triangle-free graph of order n.

By definition, d(n) > Q(3,n), and so d(n) > (\% — o(l)) vnlnn. In Subsection 3.1,

considering a well-chosen orientation of G(n,p) with p = ¢o/+/n, we prove that d(n) <
19.3y/n1nn for n sufficiently large. Hence we have, for every £ > 0 and n large enough,

(% - 5> Vinlnn < d(n) < 19.3v/nnn. (6)

We believe that a similar analysis can be performed on the n-vertex triangle-free
process Ga (see [6]), to prove that an orientation of G A has acyclic number O (\/nln n)

We thus conjecture:
Conjecture 5. d(n) = O(vnlnn).

The above upper bound on @(n) immediately yields £(n) > %. Moreover, t(n) <

t(n) and so £(n) < (2+0(1)) /2. In Subsection 3.2, we improve this bound by a factor
of v/2. We thus have, for every ¢ > 0 and n large enough,

v < in) < <\/§+o(1)> o (7)

19.3Inn Inn

Conjecture 5 implies the following.
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Conjecture 6. t(n) = © (V%)

Determining #(n) is equivalent to determining 7i(k) the minimum order of a k-
dichromatic oriented triangle-free graph, because m(k) = minz '(k). In Section 4, we
present a deterministic way of building small oriented triangle-free graphs with dichromatic
number at least k£ from an undirected triangle-free graph with chromatic number at least
k. We then use this construction to build a 3-dichromatic oriented triangle-free graph on
25 vertices. Then we prove that all oriented triangle-free graphs on at most 17 vertices are
2-dicolourable. Hence

18 <m(3) <25 (8)

Using our construction, we also obtain that 7i(4) < 209.

In order to prove the upper bound on @(5) given in (6), we first show in Lemma 10,
that every graph G of order n, admits an orientation such that each of its acyclic sets is
d-sparse with d :== 2log,n + 1 in G. A set of vertices X C V(G) is d-sparse in G if the
average degree of G[X] is at most d. This lemma also yields interesting bounds between
the (list) chromatic number of graph G and X(G), the maximum dichromatic number over
all orientations of GG. In Theorems 11 and 12, we prove that, for every graph G of order
n, one has

2X(G) (1 + [logyn]), and (9)
6X(G) (1 + [logy n]). (10)

We note that (9) is best possible up to the multiplicative factor of 2. Indeed, when
G = K, is a complete graph, one has x(G) = n while (5) yields that ¥(G) < (1—|—o(1))10g7;n.
Moreover, any improvement over that multiplicative factor 2 would yield a non-trivial
improvement over (3). The same holds a fortiori for (10), which is tight up to the
multiplicative factor on an even larger class of graphs. For instance, when G' = K, ,, is a

balanced complete bipartite graph, one has ¥(G) = 2 while x¢(G) = (1/2 4 o(1)) log, n.

2 Preliminary results

2.1 Probabilistic tools

Lemma 7 (c.f. [15]). Let X be a random variable distributed according to the binomial
distribution B(n,p), for some integer n and some p € (0,1). For every x € (0,1), we let
11—z

A (z) = xln% +(1—2)n . Then, for every integer k < n, one has

P[X < k] e VM),

Lemma 8 (Chernoff’s bound). Let X be a sum of i.i.d. (0,1)-valued variables. Then, for
every ¢ € (0,1),

=0 E[X]
PX <(1-90)E[X]] < (m)

ot
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Lemma 9 (Lovasz Local Lemma). Let {E;}icin) be a set of random (bad) events, with
dependence graph I (i.e. each event E; is mutually independent from every random event
that is not in its neighbourhood in ). If there exist yy,...,y, > 0 such that P[E;] < 1/y;,

and moreover
ny > Y yP[E],
EjGNF(Ei)

for every i € [n], then P [/\Z.GM E} > 0.

2.2 A useful orientation

The following lemma is the main tool used to prove the lower bound in (7). Given a graph
G, we recall that a set X C V(G) is d-sparse if the average degree of G[X] is at most d.

Lemma 10. Let G be a graph of order n, and fix d == 2log,n + 1. Then there exists an
orientation G of G such that every acyclic set of vertices in G is d- sparse in G.

Proof. Let G be a uniformly random orientation of GG. Let X be any subset of vertices of
G inducing a subgraph of average degree at least d := 2log,n + 1. We denote s = | X];
there are at least ds/2 edges in G[X]. For each acyclic orientation of G[X], there is an
ordering (z1,...,xz,) of X that z;x; is an arc if and only if z;z; € E(G) and 7 < j. Hence
the number of acylic orientations of G[X] is at most the number of orderings of X, so at
most s!. Since there are exactly 21Z(GXDI > 2ds/2 grientations of G[X], we have

s!
2ds/2

P [X is acyclic in G}

On the other hand, there are (Z) possible choices for a subset X of s vertices, so the
probability that there exists an acyclic induced subdigraph of G of density more than d is

at most
" /n\ s! - n o\s " /1\°
> (g Gm) <X () <t
s=1 s=1

We conclude that there exists an orientation G of G such that every acyclic set of G is
d-sparse, as desired. O

Lemma 10 has interesting consequences when we seek for a lower bound on the
dichromatic number of a graph G in terms of its chromatic parameters.

Theorem 11. For every graph G of order n, one has
X(G) < 2X(G) (1 + [logyn]).

Proof. Let G be the orientation of G given by Lemma 10. Then every acyclic subdigraph
of G is |d|-degenerate, and hence has a proper (|d] + 1)-colouring, where d = 2log, n + 1.
Let ¢ be a dicolouring of G with ¥(G) < X(G) colours. We can find a proper colouring of
G by colouring independently each colour class of ¢ using at most [d| + 1 (new) colours.
Hence

X(G) < X(G)([d] +1) = 2¢(G) (1 + [logy n]) - B
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For a given graph G, we let x,(G) be the list-chromatic number of G (sometimes
called the choosability of G). We recall that this is the minimum integer &k such that, for
every k-list-assignment L: V(G) — (i), there exists a proper L-colouring of GG, that is
a proper colouring ¢: V(G) — N that satisfies ¢(v) € L(v) for every vertex v € V(G).
A greedy algorithm shows that, for every integer d > 0, every d-degenerate graph G is
(d + 1)-list-colourable, i.e. x,(G) < d+ 1.

Theorem 12. For every graph G of order n, one has
xe(G) < 6X(G) (1 + [logyn]) .

Proof. As in the proof of Theorem 11, there exists an orientation G of G such that each
acyclic subdigraph of G is |d]-degenerate, and hence (|d] + 1)-list-colourable, where
d = 2log,n + 1. We write ko = |d| +1 > d. Let ¢ = X(G) < X(G), and let ¢ be a
g-dicolouring of G.

Let k = 3gko < 6X(G)(1 + [logyn|), and let L: V(G) — (}) be any k-list-assignment
of G. We let X := J,cy ) L(v) be the set of colours covered by L. For every colour
x € X, we assign a label o(x) chosen uniformly at random from [g]. For every vertex
v € V(G), we let L,(v) == {x € L(v) : o(x) = ¢(v)} be the list of colours in L(v) that
have been assigned ¢(v) as their label. Then the size of L,(v) is the sum of k independent
Bernoulli variables of parameter 1/¢q. By Lemma 8, we have

e—2/3 \ */a
P[|LO—(U>| < ko] < (W) < e—O.Qko < 6_0'9(1 < ]_/TL

We conclude with a union-bound that with non-zero probability we have |L,(v)| > ko for
every vertex v € V(G). Each colour class of ¢ is therefore L,-colourable, and since by
construction the colours in L, are disjoint between different colour classes of ¢, we conclude
that G is L,-colourable. We finish the proof by noting that any proper L,-colouring is
also in particular a proper L-colouring. O]

3 Bounds on d@(n) and (n)

In this section, we establish the bounds in (6) and (7).

3.1 Upper bound on a(n)

Theorem 13. If n is sufficiently large, then there exists an oriented triangle-free graph G
of order n such that d(G) < 19.3y/nlnn. So d(n) < 19.3y/nlnn.

Proof. Let ¢y > 0 be a fixed constant, whose specific value will be determined later in the
proof. Let G be a graph drawn from G(n,p), with p = ¢o/+/n.

By Lemma 10, there exists an orientation G of G such that every set that induces an
acyclic subdigraph of G is d-sparse, for d .= 2log, n+ 1. To finish the proof, we show that,
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with non-zero probability, G has no triangle and there is no d-sparse set of size k := ¢; % +1
in G, for suitable values of ¢y, ¢; (given at the end of the proof).

Let X C V(G) be a subset of k vertices of G. The number of edges in G[X] follows
the binomial distribution B((g), p), and we note that X is d-sparse if and only if G[X]
has at most dk/2 edges. For « € (0,1), we recall that A*(z) =2In? + (1 —z)In %. By
Lemma 7, we have

k d
2

P[X is d-sparse| < ()2 (%)

_(k=1? (% In é+(1‘§) (ln(l—p/C1)—1n(1_p)))

e
22
At (p (1) (_2 2
<o ar (End+(-8) (-E+rou))
c2d2 —1-1 2
< 6_21,,72(%?4'0(172)) _ 6—61(01—1—11101)‘;74-0@2).

For every set T' € (VgG)), we let A7 be the random event that G[T] is a triangle. We have
P[Ar] = p3. For every set X € (V(,CG)), we let Bx be the random event that X is d-sparse.

By the above, we have P[Byx| < e c(ca—1-lne)d®/2p+0(d%) - e A = {AT T e (V(gc))},
B = {BX X € (V(kG))} and £ = AU B. We wish to apply Lemma 9 in order to show

that, with non-zero probability, no random event in £ occurs. The rest of the proof is
similar to that in [26]. Let I" be the dependence graph of £. Two events in £ are adjacent
in I if and only if they concern sets that intersect on at least 2 vertices (since otherwise
they depend on disjoint sets of edges). For every X,V € {A, B}, we let Nxy be the
maximum number of nodes of ) adjacent to a given node of X in I' . We have

Nag, Nps < |B| = (Z) < <%>k;

Ny =3(n—3)<3n;

[k K\ (k=172 1 [cidn\®
Npa = <2) (n—k)+ (3> < —5 =3 ( o ) for n large enough.

For Lemma 9 to apply, there remains to find y, z > 0 such that, for every T € (V(3G))
and X € (V(kG)),

PlA7] <1/y, P[Bx]<1/z;
Iny > yP[A7]| Naa + 2P [Bx] Nag ; (11)
Inz > yP[Ar| Nga + 2P [Bx] Nps.

Let y = 1 + ¢ for some € > 0 small enough, and let z = e2®/20 for some 0 < ¢y <
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c1(c;1 — 1 —1Ine¢y). With these values, we have

d2
2P [Bs] (Z) < exp (2—p(c2 —c(g—1—=1Ine¢))+ k:ln% + O(d2)>

< exp (g—p(CQ —ci(ep—1—=1Inep)) + ;i—p(l + 0(1)))

N if ci(c; —1—1Inecy) > 1+ cy;
n—oo
PP [ crdn\’ ot 1
WP [Ar] Nua < (14+0) 2 (22) = (1+0)%harym
0

d2
<(1+ 6)(0001)22— <Inz—¢ ifcg > (1+¢)(coer)? and n is large enough.
p

It is straightforward that (11) holds whenever the two conditions on ¢, ¢1, ¢ above hold,
and n is large enough. In order to minimise the value of k, we may fix ¢y = 0.513, ¢; = 3.43,
and ¢y, = 3.1.

We conclude that

., 2log,n+1 2¢
adlG) < k= Clcfj—\/ﬁ = (Co 11;2 + 0(1)) Vvnlnn < 19.3v/nlnn,
assuming that n is large enough. O]

3.2 Upper bound on #(n)
The goal of this section is to prove the upper bound of (7), see Theorem 18.

Let D be a digraph. The neighbourhood of a vertex v in D, denoted by Np(v) is the
neighborhood of v in the underlying graph of D, and degj,(v) = |[Np(v)|. Given a total
order < on V(D), we denote D[<] the subdigraph induced by the arcs (v,u) € A(D) such
that u < v. We may disregard the orientation of the edges in D[<], in which case this is
usually called the backedge graph associated with D and <. It is straightforward that every
independent set I of D[<] induces an acyclic digraph D[I]. A well-known consequence is
that (D) < x(D]<]). To the best of our knowledge, the possible tightness of that bound
has never been discussed in the literature. We prove that there always exists < such that

X(D) = x(D[=]).
Theorem 14. For every digraph D, one has
X(D) = min {X(DH]) : < is a total order on V(D)}.

Proof. We have already shown that (D) < x(D[<]) for every total order < on V(D).
Let us prove the other direction. Let k := x(D), and let ¢ be a k-dicolouring of D. Let
(4, ..., Cy be the colour classes of ¢. For every i € [k], D[C;] is acyclic, and so induces
a partial order on C;. Let <; be a total order of C; that extends this partial order. For
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every u,v € V(D), we let u < v = (¢(u) < ¢(v)) V (v <4 w). It is straightforward that
each C; is an independent set in D[<], and so ¢ is a proper k-colouring of D[<]. This
proves that x(D[<]) < X(D), as desired. O

Theorem 14 reduces the problem of finding a minimum dicolouring of a digraph D to
finding a total order < on V(D) that minimises x(D[<]). Hence, any order < that makes
D[<] sparse in a sense that lets us bound its chromatic number efficiently is of interest.
In the following, we prove that we can halve the maximum degree of a digraph with a
well-chosen order.

Lemma 15. Let D be a digraph of mazimum total degree A. Then there exists a total
order < on V(D) such that degp(v) < |degp(v)/2] for every vertex v € V(D).

Proof. Let < be an order that minimises the number of edges in D[<]. Let us prove that
=< has the desired property. For the sake of contradiction, assume that there is a vertex
v such that degp_;(v) > |degp(v)/2]. Let pred(v) be the set of neighbours u of v in D
such that u < v, and let succ(v) = Np(v) \ pred(v). Then v is adjacent in D[<] with more
than half the vertices in either succ(v) or pred(v), say in succ(v) without loss of generality.
Then, letting <’ be the order obtained from < after making v the largest element, we infer
that D[<'] has strictly fewer edges than D[<], a contradiction. O

Given a class of graphs ¢, let x(¥4) == max{x(G) : G € 4} and Y(¥¢) = max {X(G) :
G € 4}. For every integer d, we let Yancy = {G € 4 : A(G) < d} be the class of graphs
of maximum degree at most d in 4. Theorem 14 applied together with Lemma 15 yields
the following result as a corollary.

Corollary 16. For every hereditary class of graphs &, and every integer d, one has
X(@n<a) < X(Da<ias))-

If we apply Corollary 16 to the class of triangle-free graphs, and use the bound given
by the Johansson-Molloy theorem [18], we obtain the following.

Theorem 17. For every triangle-free graph G of maximum degree A, one has

as A\ — 00.

X(G) < (14 o) 3%

We are now ready to prove the main result of this section.

Theorem 18. For every triangle-free graph G of order n, one has

X(G) < (Lt o(D)/ £ asn — oo,

Proof. The following proof is similar in many aspects to that of [8, Theorem 1]. Let
0 < e < 1/2, and let d(n) := v2nlnn for all n > 2. By Theorem 17, there exists ny
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such that, for every triangle-free digraph D of maximum degree at most d(n), one has
X(D) < (1+¢)y/2n/Innif n > n,.

Let ng == max{et ,n} > ¢, and let f(z) == no + (1 +¢)y/2z/Inz for all z > 1.
Let us prove by induction on n that, for every triangle-free graph G of order n, one has
$(G) < f(n).

If n < ng, then n < f(n) and the result holds trivially by assigning a distinct colour
to every vertex. We may now assume that n > ng, which implies that ﬁ < 1L+e If
A(G) < d(n), this is a direct consequence of Theorem 17 as explained above. So may
assume that A(G) > d(n). The neighbourhood of a vertex of maximum degree yields an
independent set [ of size at least d(n). Given a fixed orientation D of G, any dicolouring
of D\ I may be extended to D with an extra colour that we assign to the vertices in I.
By the induction hypothesis, this shows that

X(G) < fln—d(n)) + 1.

So the result holds if we can show that f(n) — f(n —d(n)) > 1. The second derivative of
f is negative on the interval [6,4+00), so f is concave on that interval. Since n — d(n) >
no — d(ng) > 6, this implies that

Inn—1 /lnn

f(n) = f(n—d(n)) =dn)f'(n) =v2nlnn- (1 +e¢) o Vo (1+¢) <1 _ ﬁ)

€
> 1 1 - - 17
( +E)( 1—|—€)
as desired. O

4 A deterministic approach

4.1 Linear forests

A directed linear forest is a forest formed by a disjoint union of directed paths. Given

—

a directed graph D, we denote by /(D) the maximum number of arcs of a directed
linear forest of D. For every (undirected) graph G, we define ¢(G) = min {/(G) :
G is an orientation of G}.

—

Lemma 19. For every graph G of order n, {(G) =n — a(G).

Proof. Let G be an orientation of G. Every directed linear forest of G may trivially be
extended into a spanning directed linear forest with the same number of arcs, by adding all
uncovered vertices as isolated trees of order 1. Hence E(GU is also the maximum number of
arcs of a spanning directed linear forest of G. Now, for a spanning directed linear forest F,
the number of arcs of F' plus the number of paths of F' equals n. By the Gallai-Milgram
Theorem [13], G can be covered with at most a(@G) directed paths, which together form a

—

directed linear forest of size at least n — a(G). Hence ¢(G) = n — o(G).
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To show the other direction, let I be a maximum independent set of G, and let D be
an orientation of G where each vertex x € I has in-degree 0. Let F' be any directed linear
forest of D; each vertex x € I belongs to a distinct directed path in F'. So F' contains at
least a(G) distinct paths, hence it has size at most n — a(G). O

4.2 The construction

Let D be a digraph. The n-backward-blowup D" of D is the digraph defined by

(D) = {(v,i):veV(D),i€ n]};
AD™™) = F(D™™)UB(D"™), with
(D) = {(u,i) = (v,i) :u—v € A(D),i € [n]}, and
B(D™) = {(v,i) =» (u,j):u—veAD),ie€[n],jen], andi#j}
F(D*™) is the set of forward arcs of D™ and B(D*™") is the set of backward arcs of

D", For v € V(D), {(v,i) : i € [n]} is the pack of v. Two vertices in a same pack are
called twins.

Uy e o U1
U2 @ ® U2
U3 @ e Us
Uy @ ® Uy

Lemma 20. Let k be a positive integer, and let G be a graph such that x(G) > k. Then,
for every orientation G of G, the (kl(G) + 1)-backward-blowup of G is not k-dicolourable.

- =

Proof. Let G be an orientation of G and D be the (kf(G) 4 1)-backward-blowup of G, and
let ¢ be any k-colouring of the vertices of D. Let us assume for the sake of contradiction
that ¢ induces no monochromatic directed cycle.

The forward arcs of D form kf(é) + 1 pairwise disjoint copies of G. Since X(G) > k,
there is at least one monochromatic arc in each of these copies; let us pick one for each

- =

copy arbitrarily and obtain a matching M of k¢(G) + 1 monochromatic forward arcs. By
the Pigeonhole Principle, we can find a set NV of [(C_i) + 1 arcs of M with the same colour.

If two arcs of N lie between the same pair of packs (say u — v and v’ — v' where
(u,u) and (v, ") are pairs of twins), they induce a monochromatic directed 4-cycle (namely
u— v —u — v — u), a contradiction.

If N contains two arcs © — v and w — v' where v and v’ are twins, then v — v —
w — v" — wu is a monochromatic directed 4-cycle in D, a contradiction. Similarly, if N
contains two arcs v — u and v — w where v and v are twins, then v - u — v — w — v

is a monochromatic directed 4-cycle in D, a contradiction.
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Henceforth, the graph F' induced by N after contracting each pack into a single vertex
has maximum in- and out-degree 1. If F' contains a directed cycle, then there are p arcs of
N that may be labelled uy — uy, up — ug, ..., up—1 — Uy, up — uj so that u;, uj are twins
for every ¢ € [p|]. We infer that uy — u, — ... = us — u; is a monochromatic directed
cycle in D, a contradiction. We conclude that F' is a directed linear forest. Since F' is
Compo§e§ only of forward arcs, we infer that F' is a subdigraph of G. So F can contain at

most ¢(G) edges, a contradiction.
This finishes the proof that ¢ induces a monochromatic cycle in D. O

In the above proof, we note that if G is an acyclic orientation of GG, then the monochro-
matic cycle constructed is always of length 4, and alternates between forward and backward
arcs.

By combining Lemma 19 and Lemma 20, we have the following result as a corollary.

Corollary 21. Let k be a positive integer, and let G be an n-vertex graph such that
X(G) > k. Then there exists an orientation G of G such that the (k(n — a(G)) + 1)-

backward-blowup ofC_j s not k-dicolourable.

As a consequence, the 19-backward-blowup of some orientation of the Grétzsch graph
My, is not 3-dicolourable. This yields a 4-dichromatic triangle-free graph on 209 vertices.

—

We note that min {ﬁ(G) : G is a triangle-free graph and x(G) > 3} = 6, so the Grotzsch
graph is best possible when we apply Corollary 21 with k£ = 3. This holds because, given
a triangle-free graph G such that x(G) > 3, and any independent set I of G, one has
X(G\ I) > 2. If we assume for the sake of contradiction that |V(G \ I)| <5, then G\
is isomorphic to C5. Therefore, for every vertex x € I, the neighbourhood of x is an
independent set of C's, so it has size at most 2. We conclude that G is 2-degenerate, which
contradicts the fact that x(G) > 3.

Proposition 22. There exists a 4-dichromatic 209-vertex triangle-free graph.

We note that because of a result by Mohar and Wu [17, Lemma 3.2], Corollary 21 does
not provide smallest-known k-dichromatic triangle-free graphs when £ > 5.

Lemma 23 (Mohar, Wu, 2016). Let k be a positive interger, and let G be a graph such
that x(G) > k. Let m be an integer that satisfies 2+ 2Inm < [m/k]. Then there is an
orientation of the m-blowup of G that is not k-dicolourable.

Namely, if we want to apply Corollary 21 to the r-backward-blowup of an orientation
of Ms5 (the Mycielskian of the Grotzsch graph), we need r = 49. In contrast, Lemma 23
implies that there exists an orientation of the 37-blowup of M5 that is not 4-dicolourable.

4.3 Getting a better bound in the case k = 2

We note that Lemma 20 is tight when applied to any acyclic orientation of C5 with
k = 2. In particular, for the two of them that contain no directed path of length 4,
the 7-backward-blowup is not 2-dicolourable, and this is best possible as illustrated in

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.27 13



Figure 1. However, it turns out that Lemma 20 is no longer tight if we apply it to the
directed 5-cycle, and this is the orientation of C5 that yields the minimum size of the
backward-blowup that makes it not 2-dicolourable.

Y
AN

Figure 1: A 2-dicoloration of the 6-backward-blowup of the two orientations of Cj that
contain no directed path of length 4.

In Proposition 24, we show that the 5-backward-blowup of C_>’5 is not 2—dico_l>oura,ble,
while Lemma 20 only tells us that this holds for the 9-backward-blowup of C5. More
generally, it is possible to repeat the arguments used in the proof of Proposition 24 in
order to show that the /-backward-blowup of a is not 2-dicolourable, for every odd /.

Proposition 24. Dy; = 6_’)5“5 15 a 3-dicritical oriented triangle-free graph on 25 vertices

Proof. Set

V(Das) = {u;; :i € [5],j € [5]}, and
A(Das) == {ujjuir1y =i € [5],5 € 5,5 € [5],5 # 5’} U{wiprjuij i € [5], 5 € [5]},

reading the indices modulo 5. The packs are U; = {u;;|j € [5]} for ¢ € [5]. Two vertices
are called matched if the arc between them is forward. Let us emphasize two types of
directed cycles in Days.

e matched cycle: directed 4-cycle induced by two pairs of matched vertices (for example
the red arcs on Figure 2 left), formally, u; ; — w1 — Wiy — wiy1j — w;; for
some i € [5] and two different indices j, j" € [5].

e backward cycle: directed 5-cycle with five backward arcs (for example the yellow
arcs on Figure 2 left), formally, uy j, — usj — waj, — Usj; — U2j, —> Uy, for
some Ji, ..., Js € [5] such that j; # j;4q for all i € [5].

Assume that there is a 2-dicolouring ¢ of Dos.
First assume that there is a monochromatic pack. Without loss of generality, all
vertices of U; are red. Since there is no monochromatic matched cycle, both U, and Uy
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Figure 2: The digraph Dys. Left (only the forward arcs are represented): in green a pair
of matched vertices, and in orange a pack. Right: the three main types of directed cycles.

have at most one red vertex and so at least 4 blue vertices, and thus Us and U, have each
at least least three red vertices.

If both U, and Us have one red vertex, us j, and us j,, then one can choose j; € [5]\ {j2, J5},
Js € 5]\ {J2} and js € [5] \ {Js,Js} so that uyj,, usj,, and uy, are red. Then u;;, —
Us js — Uaj, — Uz jy, — Uz j, — U j, 1s a monochromatic backward cycle, a contradiction.
(See Figure 3 left.)

Henceforth, one of Us, Us, say Us, has no red vertex and so five blue vertices. Since there
is no blue matched cycle between U, and Us, at least four vertices of Us are red. But then,
since there are at least three red vertices in Uy, there is a red matched cycle between Us
and Uy, a contradiction. Henceforth, we may assume that there is no monochromatic pack.

Figure 3: Left: a red backward cycle, when U; has five red vertices and U, and Us at least
one. Right: The case with a pack with a 4-1 colour partition.

Assume that there is a pack, say U;, with four vertices of the same colour, say red.
Since there is no red matched cycles, each of U;, Us has at least three blue vertices. Since
there is no blue matched cycles, each of Us, U, has at least two red vertices. Since no pack
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is monochromatic, there is a red vertex us ;, in U and a red vertex us j, in Us. There exists
J1 € [5]\ {Jja, J5} such that u, ;, is red. There are no two distinct indices js € [5]\ {j2} and
Ja € [5]\ {Js} such that us j, and wuy ;, are red for otherwise there would be a red backward
cycle. Then, necessarily, the two red vertices in Us are us j,, us j; and the two red vertices
in Uy are ugj,,us ;. But then those vertices induce a monochromatic matched cycle, a
contradiction.

Henceforth, each pack has two or three vertices in each colour. Without loss of
generality, U; has three red vertices. Let ug j, be is a red vertex in U,. Since there are
at least two red vertices in each U;, for i = 3 to 5, we can find j; # j;—1 such that wu,
is red. Since U has three red vertices, there is j; ¢ {j2, js} such that v, j, is red. Then
Ul j, = Usjs — Uaj, — Usj, — Uz j, — Ui j, is a backward cycle, a contradiction.

This proves that Do is not 2-dicolourable.

Figure 4 depicts a 2-dicolouring of Dy5 minus any vertex, Dys minus a forward arc,
and Dys; minus a backward arc. Since all forward (resp. backward) arcs are equivalent,
that is there is an automorphism of the graph mapping any forward (resp. backward) arc
to any other forward (resp. backward) arc, this shows that Das is 3-dicritical. O

/,/
P
/”
v
P
.
.
/,,
\
® ¢

Figure 4: 2-dicolouring of Dys minus a vertex (left), Dos minus a forward arc (dotted blue)
(center), Dys minus a backward arc (dotted red) (right).

4.4 Lower bound on the number of vertices of oriented triangle-free graphs
with dichromatic number 3

Lemma 25. Let D be a oriented triangle-free graph. If V(D) can be partitioned into three
sets, X, Y and Z such that:

(i) D[X] has no directed cycle,
(i) Y is an independent set
(iii) there is no edge between X and Z

(iv) there is a 2-dicolouring of Z such that ¢='(1) is either empty, a single vertex or two
adjacent vertices,
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then D is 2-dicolourable.

Proof. Consider the 2-dicolouring ¢ of Z given by (iv) and extend it by colouring the
vertices of Y with colour 1 and the vertices of X with colour 2. There is no monochromatic
cycle in Z nor in X, and none can intersect X as its neighbourhood is included in Y, and
therefore has a different colour. So if there were a monochromatic cycle, it would intersect
both Y and Z, thus have colour 1. Y is pendent so the cycle contains two vertices of Z,
but as D is triangle-free, no vertex can be adjacent to both colour 1 vertices in Z, so there
cannot be any monochromatic cycle. O]

Lemma 26. For every triangle-free digraph D on at most 7 vertices, there exists a subset
X C V(D) which consists of one vertex or two adjacent vertices such that D\ X is acyclic.

Proof. Let D be a triangle-free digraph on at most 7 vertices of underlying graph G. We
may assume that (D) > 1 and 67(D) > 1 (and so §(G) > 2), since a vertex of in- or
out-degree 0 is contained in no directed cycle.

e If (G is bipartite, by the minimum degree condition on G, either G is isomorphic to
K5, or G is a subgraph of K3 4.

In the first case, removing any of the two vertices of degree 5 in G yields an acyclic
graph.

In the second case, let (X,Y") be the bipartition of G, with |X| < 3 and |Y| < 4. If
there is a vertex x € X with d~(z) =1 or d*(z) = 1, let u, be the neighbour of x
through that unique ingoing or outgoing arc. Let 2’ € X be another neighbour of u,
in G. Then D\ {u,, 2’} is acyclic, since there remains at most one vertex in X of in-
and out-degree at least 1. We can now assume that dg(z) = 4 for every z € X, i.e.
G is isomorphic to K3 4. For every vertex y € Y, dg(y) = 3, so either df(y) =1 or
dp(y) = 1. Let u, be the neighbour of y through that unique ingoing or outgoing
arc. By the Pigeonhole Principle, there exists x € X such that * = u, = u,/ for two
distinct vertices y,y’ € Y. Let ¢y € Y \ {y,y'}. Then D\ {x,y"} is acyclic, since
there remains at most one vertex in Y of in- and out-degree at least 1.

e If G is not bipartite, then it contains an odd cycle, which is either a C5 or a C.

First, assume that G contains a (5 and no C;. Let X be a set of vertices of G
that induces a C5, and Y = V(G) \ X. We have |Y| < 2. The C5 does not have
any chord as it would form a triangle, so every other cycle of G intersects Y. If YV
induces an independent set, then every vertex y € Y has exactly two neighbours in
X by the minimum degree condition on G. If there is a vertex x of X adjacent to all
vertices of Y, then D\ {z} is acyclic. Otherwise, Y = {y1, 92}, and there exist two
consecutive vertices x; and x5 on the C5 such that x; € Ng(y;) and x2 € Ng(y2)-
Then D\ {z1, x5} is acyclic. If Y = {y;,y2} induces an arc, then we cannot have two
consecutive vertices x1, xs on the Cy such that 7y € Ng(y1) and 25 € Ng(y2), since
this would yield a C7. This implies that y; and y, have each exactly one neighbour
in X, respectively x; and x5. Then D\ {z1,y,} is acyclic.
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Assume now that G contains a C';. Since G is triangle-free, it is a subgraph of the
graph depicted in Figure 5 (when forgetting about the orientation). If the removal
of {us,ug}, of {ug,uo}, and of {ug,u;} leaves a directed cycle, then this forces the
partial orientation depicted in Figure 5, or the reverse orientation. So removing {us}
leaves an acyclic digraph.

]

Uy us

Us U9

Ug Uy

Uo
Figure 5: The case where GG contains a Cy

This lemma can be improved as follows.

Lemma 27. Let D be a oriented triangle-free graph on 8 vertices, then one of the following
statements holds :

(i) There is an arc uv € E(D) such that D — {u,v} is acyclic.

(i1) D is an orientation of either two disjoint 4-cycles, or the cube, or the cube with
two diagonals, or Ky 4, or K44 minus an edge, or the subgraph of Ky 4 with degree
sequence (2,2,4,4),(3,3,3,3).

This result has been obtained by enumerating all oriented triangle-free graphs on
8 vertices and filtering out those that do not satisfy Property (i) in Lemma 27. More
precisely, there are 83 triangle-free graphs on 8 vertices with minimal degree at least 2 (one
can generate them using nauty). Removing those that can be made acyclic by removing a
pair of adjacent vertices, only 30 remain. Finally, by generating all possible orientations of
these 30 graphs, one can check that those that do not satisfy (i) satisfy (ii) (there are 998
such digraphs).

We note here that we were able to prove Lemma 27 by hand in the case where D is
not a subgraph of K, 4. The method is similar to the proof of Lemma 26 but the proof is
long and not particularly enlightening, so we choose not to include it here.

Proposition 28 (Picasarri-Arrieta [22]). If A(D) < 6, then D is 2-dicolourable.

Corollary 29. Fvery digraph on at most 14 vertices is 2-dicolourable.
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Proof. Take v € V with d(u) > 6. Then X = {u} and Y = N(u) satisfy the hypothesis of
Lemma 25 since [V \ (X UY)| < 7. O

This bound can be improved. Using Lemma 27, we checked by computer calculus that
every graph on at most 17 vertices has a decomposition (X, Y, Z) as described in Lemma 25,
and is therefore 2-dicolourable, without having to consider their possible orientations.
Using the fact that a 3-dicritic graph must have minimum degree at least 4 and arboricity
at least 3, we have proceeded as follows : We have enumerated all biconnected triangle-free
graphs on n < 17 vertices with minimum degree at least 4 and maximum degree at most
n—9 (if v has degree at least n — 8, then X = {v}, Y = N(v) and Z = V' \ (X UY) satisfy
the hypothesis since |Z| < 7) using nauty. Then we filtered out all those of arboricity at
most 2. For each graph G obtained during this enumeration, we have computed several
candidates for (X,Y') by first fixing X = {u} and Y = N(u) for some vertex v € V(G),
and adding to X all vertices ' € V(G) whose neighbourhood is contained in N(u) (since
G is triangle-free, X and Y are independent sets). We have kept the couple (X,Y") for
with | X| 4+ |Y] is maximised, and there remained to check whether Z := V(G) \ (X UY)
satisfied condition (iv) of Lemma 25. It turns out that, when n < 17, condition (iv)
is systematically satisfied for the set Z C V(G) constructed as above because we have
#{z € Z : deg(z) > 2} < 8, and when equality holds G[Z] is not one of the exceptions
listed in Lemma 27. More precisely for n = 17, we found 375 graphs with arboricity at
least 3, among which 362 led to a Z with at most 7 vertices, 12 on with 8 vertices and
one with 10 vertices. For all Z with 8 vertices, G[Z] was not one of the exceptions listed
in Lemma 27. And the one on 10 vertices has 2 vertices with degree 1, and the graph
obtained by deleting them was not an exception.

Lemma 30. Any 3-dicritical oriented triangle-free graph has at least 18 vertices.

We stopped at n = 17 only because of the time needed for the enumeration of triangle-
free graphs — using a laptop, the enumeration for n = 17 took a week. Since we could find
a decomposition with X independent and Z small for each graph, we believe that our lower
bound is far from optimal. It might be possible to improve it with more computational
power.
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