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Abstract

In this note, we describe an infinite family of sharp Szemerédi-Trotter construc-
tions. These constructions are cartesian products of arbitrarily high dimensional
generalized arithmetic progressions (GAPs), where the bases for these GAPs come
from arbitrary number fields over Q. This can be seen as an extension of a recent re-
sult of Guth and Silier, who provided similar constructions based on the field Q(

√
k)

for square-free k. However, our argument borrows from an idea of Elekes, which
produces cartesian products where the parts are of unequal size. This significantly
simplifies the analysis and allows us to easily give constructions coming from any
number field.

Mathematics Subject Classifications: 52C10, 52C30

1 Introduction

An incidence between a pointset P and a set of curves C in the plane is a tuple (p, c) ∈
P ×C such that the point p is on the curve c. In 1983, Szemerédi and Trotter [18] gave a
bound on the number of incidences between points and lines.

Theorem 1. The maximum number of incidences between a set of N points and a set of
M lines in R2 is O(N2/3M2/3 +N +M)1.

This was extended to points and lines in C2 in [20] and [21]. Often, it is easier to use
the following theorem, which can be shown to be equivalent to Theorem 1. This result is
stated in terms of r-rich lines; that is, lines that contain at least r points of the pointset.

Theorem 2. A set of N points in the plane determines at most O(N
2

r3
+ N

r
) r-rich lines.
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1Here, we say F = O(G) or equivalently G = Ω(F ) if there exists a constant C such that F ⩽ CG.
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These theorems are known to be tight. If r > N1/2, in which case N
r
term dominates,

then the constructions are trivial; one may simply take r points on each of an arbitrary
collection of N/r lines. Historically, there were two examples known to match the bound
when r ⩽ N1/2, where N2

r3
is the dominant term. Erdős showed that the N1/2 × N1/2

integer grid has Ω(N
2

r3
) r-rich lines, and in [5], Elekes gave a simple argument showing the

same for the r ×N/r integer grid.

For the last 20 or so years, these have remained the only known constructions when
r ⩽ N1/2; this left open the possibility that all sharp examples were integer grids, or
simple transformations of them. However, very recently Guth and Silier [10] gave exam-

ples based on pointsets of the form (a + b
√
k, c + d

√
k), where 0 ⩽ |a|, |b|, |c|, |d| ⩽ N1/4

2

and k is a square-free integer. This is a N1/2 × N1/2 cartesian product and can be seen
as analogous to Erdős’ construction, but coming from the field Q(

√
k). The result we

present here will instead generalize Elekes’ construction. This gives a r × N/r cartesian
product, but coming from any finite dimensional extension of Q.

To discuss this result, we need some definitions. We say that a field extension K of
Q is a number field if its dimension as a Q-vector space is finite. Furthermore, if α ∈ K
is the root of a monic polynomial with integer coefficients, we say that α is an algebraic
integer. Now, if Λ = {λ1, . . . , λn} is a basis for K over Q, we say that Λ is a nice basis
if λiλj is a Z-linear combination of elements of Λ, for all 1 ⩽ i, j ⩽ n. One example of a
nice basis is any integral basis - that is, a basis Λ for K such that any algebraic integer
is a Z-linear combination of the elements of Λ. Such a basis exists for any number field.
Furthermore, if [K : Q] = n and α ∈ K is an algebraic integer of degree n over Q, then
the power basis 1, α, . . . , αn−1 is also a nice basis.

Finally, for integers k1, k2, we let [k1, k2] := {k1, k1 + 1, . . . , k2}. Furthermore, for a

positive integer m, we define Am(Λ) := {a1λ1+ · · ·+ anλn : |ai| ∈ [0, m
1/n

2
]} and note that

|Am(Λ)| = m. We will generally omit floors and ceilings unless necessary for clarity.

In this language, Elekes’ construction shows that the N -element pointset Ar({1}) ×
AN/r({1}) determines Ω(N2/r3) r-rich lines for any r ⩽ N1/2. Analogously, we will
prove the following result.

Theorem 3. Let N, r be positive integers, with r ⩽ N1/2. Then, for any nice basis Λ of
a number field K over Q, the set Ar(Λ)× AN/r(Λ) determines Ω(N2/r3) 2 r-rich lines.

In particular, the pointsets generated here are cartesian products of arbitrarily high-
dimensional generalized arithmetic progressions, and no such constructions were previ-
ously known. Furthermore, this gives a variety of sharp constructions in C2. To our
knowledge, prior to [10], the only known sharp constructions in C2 were simple transfor-
mations of constructions from R2.

2The implied constant here is allowed to depend on K and Λ but not N or r
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It is worth taking a moment to discuss the motivation for these results. These construc-
tions are part of a larger project to understand the inverse problem for Szemerédi-Trotter;
that is, attempting to classify configurations that can match the bound in Theorems 1
and 2 up to a constant. The Szemerédi-Trotter theorem and its relatives have seen nu-
merous applications to a diverse range of problems (see e.g. [1, 2, 4, 8] for some examples
or [3, 5, 19] for additional results) and have been instrumental in the development of
discrete geometry and additive combinatorics. Thus, a reasonable characterization of the
extremal configurations would immediately translate into information about (and poten-
tially better bounds on) a diverse range of problems. In our view, understanding the
possible constructions is an integral part of making progress on this difficult problem. For
further references on the inverse problem, see for example [6, 7, 11, 13, 14, 17].

As a second motivation, these constructions give new possibilities for pointsets in other
incidence geometry problems. In general, many incidence geometry results are not known
to be tight. The best lower bounds often come from finding an affine copy of some curve
that intersects an integer grid as much as possible, and then simply taking many trans-
lates of that curve to create many incidences. It would be helpful to have other good
candidates for pointsets to test when attempting to generate lower bounds on these prob-
lems. Furthermore, there is evidence that the pointsets described in Theorem 3 might be
useful for this purpose, since they can generate many incidences with another polynomial
curve (parabolas) as well. This is discussed in more depth in the section 3.

As a final motivation, for several other incidence-type problems, the best known lower
bounds are obtained directly from sharp Szemerédi-Trotter constructions. In other words,
to generate constructions for these other problems, we take a sharp Szemerédi-Trotter con-
struction and perform a basic transformation on it, taking e.g. points to circles or lines
to ellipses. See for example [9, 15]. Thus, the constructions given by Theorem 3 translate
immediately into new best-known constructions for other interesting problems.

2 Construction

For any nice basis Λ = {λ1, . . . , λn} of an n-dimensional number field K, let ci,jk be the
integers defined by λiλj = ci,j1 λ1+ · · ·+ci,jn λn, and define CΛ := maxi,j,k |ci,jk |. To complete

the proof of Theorem 3, we will show that Ar(Λ)×AN/r(Λ) has
(

1
(2n2CΛ)n

)
N2

r3
r-rich lines.

Proof. Our line set L will be defined as follows

L = {y = mx+ b : m ∈ A N
(CΛn2)nr2

(Λ), b ∈ A N
2nr

(Λ)}.

We note that |L| = N2

(2CΛn2)nr3
= Ω(N

2

r3
). Thus, it remains to be shown only that each

line is r-rich. Let ℓ ∈ L be the line y = mx + b where m = m1λ1 + · · · + mnλn and
b = b1λ1 + · · ·+ bnλn, and let x′ = x1λ1 + · · ·+ xnλn ∈ Ar(Λ). Then, we see

the electronic journal of combinatorics 32(4) (2025), #P4.28 3



y′ := mx′ + b = (m1λ1 + · · ·+mnλn)(x1λ1 + · · ·+ xnλn) + (b1λ1 + · · ·+ bnλn)

=
∑

1⩽i,j⩽n

mixjλiλj + (b1λ1 + · · ·+ bnλn)

=
∑

1⩽k⩽n

( ∑
1⩽i,j⩽n

mixjc
i,j
k + bk

)
λk

We note that for any i, j, k we have |mixjc
i,j
k | ⩽

(
N1/n

2CΛn2r2/n

)(
r1/n

2

)
CΛ = N1/n

4n2r1/n
and thus∣∣∣∑1⩽i,j⩽n mixjc

i,j
k

∣∣∣ ⩽ N1/n

4r1/n
. Additionally, for each k we have

|bk| ⩽
N1/n

4r1/n

and so we conclude ∣∣∣∣∣ ∑
1⩽i,j⩽n

mixjc
i,j
k + bk

∣∣∣∣∣ ⩽ N1/n

2r1/n

and thus y′ ∈ AN/r(Λ). In particular, (x′, y′) ∈ Ar(Λ) × AN/r(Λ) and since there are r
choices for x′, we conclude that ℓ is r-rich.

3 Concluding remarks

For this final section we focus on the case r ≈ N1/3, as this produces roughly equal num-
bers of points and lines and is the most frequently discussed in the literature. However,
we note that the ideas here should apply to any r ⩽ N1/2.

In [16], they show that one can “interpolate” between the integer grid constructions
given by Erdős’ (N1/2×N1/2) and Elekes’ (N1/3×N2/3). That is, for any 1/3 < α < 1/2,
the Nα × N1−α integer grid determines Ω(N) N1/3-rich lines, which by Theorem 2 is
maximum possible. We suspect that in general something similar is possible. We make
the following conjecture which, if true, would include all known constructions.

Conjecture 4. For any number field K, nice basis Λ, and real number 1/3 ⩽ α ⩽ 1/2,
the set ANα(Λ)× AN1−α(Λ) determines Ω(N) N1/3-rich lines.

We’ve shown here the case that α = 1/3, and in [10], Guth and Silier showed the case
when α = 1/2 and Λ = {1,

√
k}. However, even in the limited case shown in [10], the

analysis is somewhat involved, and the difficulty of extending their argument appears to
increase with the degree of the number field. Thus, it would be interesting to see if there
is a way to simplify their analysis to show, at least, the case of α = 1/2 for some other
number fields. Furthermore, since conjecture 4 covers all known constructions, it would
of course be of particular interest to identify any sharp construction that is not a simple
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transformation of one of these pointsets.

As mentioned in the introduction, there is also some evidence that these pointsets might
serve as useful examples for other incidence problems.

Example 5. Let Λ be a nice basis for a number field. We observe first that the parabola
y = x2 has Ω(N1/3) incidences with the pointset AN1/3(Λ) × AN2/3(Λ). To see this, we
need note only that a positive fraction of squares from AN1/3(Λ) are in AN2/3(Λ). Taking
translates of the parabola along vectors from AN1/3(Λ)×AN2/3(Λ), we get a collection of
Ω(N) parabolas and N points that determine Ω(N4/3) incidences. This is the maximum-
possible number of incidences between N points and N translates of a fixed parabola, by
Szemerédi-Trotter-type arguments (see e.g. [12])

What is not known, however, is how these pointsets behave with respect to other poly-
nomial curves. As a specific example, the famous Erdős Unit Distance Problem asks for
the maximum number of incidences between N points and N unit circles in R2. Thus,
the following would be of particular interest.

Question 6. What is the maximum possible number of incidences between a unit circle
and an affine copy of the set AN1/2(Λ)× AN1/2(Λ)?
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[18] E. Szemerédi and W. T. Trotter, Extremal problems in discrete geometry, Combina-
torica 3 (1983), no. (3-4), 381–392

[19] T. Tao, V. Vu Additive Combinatorics Cambridge Studies in Advanced Mathematics,
105. Cambridge University Press, Cambridge, 2006.
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