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Abstract

We prove that χ(G) ⩽ ⌈(∆+1)/2⌉+1 for any triangle-free graph G of maximum
degree ∆ provided ∆ ⩾ 524. This gives tangible progress towards an old problem
of Vizing, in a form cast by Reed. We use a method of Hurley and Pirot, which in
turn relies on a new counting argument of the second author.

Mathematics Subject Classifications: 05C15, 05C35

1 Introduction

Over half a century ago, Vizing [38] wrote (this is a translation from Russian [39] adapted
to modern symbol usage, with ω, ∆, and χ denoting clique number, maximum degree,
and chromatic number, respectively):

‘If ∆(G) is the maximum degree of a vertex in a graph G, it is clear that
χ(G) ⩽ ∆(G)+1. Brooks showed in 1941 that χ(G) ⩽ ∆(G) whenever ∆(G) ⩾
3 and ω(G) ⩽ ∆(G). Further investigations could be conducted, taking into
account a more exact relation between ∆ and ω. Perhaps one should start with
estimates of the chromatic number of a graph without triangles (ω = 2) and
with given maximal degree for vertices.’

This problem has its roots in even older questions and results about triangle-free graphs
with arbitrarily high chromatic number [37, 41, 31, 17]. Deep connections with the off-
diagonal Ramsey numbers, especially with the classic work of Ajtai, Komlós, Szemerédi [1,
2] and Shearer [36], became evident through the seminal works of Johansson [24] and, more
recently, Molloy [27].

Theorem 1 (Molloy [27], cf. [24]). As ∆ → ∞, it holds that χ(G) ⩽ (1 + o(1))∆/ log∆
for any triangle-free graph G of maximum degree ∆.
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This result has as a simple corollary an upper bound on the off-diagonal Ramsey number
R(3, k) that asymptotically (as k → ∞) matches the longstanding bound of Shearer [36].

It transpires that the link between the task of finding either large independent sets or
good colourings of triangle-free graphs and facets of the Lovász local lemma [18], such as
the hard-core model (see [35]) or the entropy compression method [29, 30], is fundamental.
It underpins many recent developments in the area, see e.g. [7, 8, 14, 15, 16, 21, 22, 27].

This work is no exception. To wit, a ‘counting trick’ introduced recently by second
author [34] has shone a new light on the entropy compression method (see [40]). This
‘trick’ is the main ingredient of an elegant new proof of Theorem 1 devised by Hurley and
Pirot [21, 22]. Here we observe how these recent developments yield tangible progress
towards the old question above, in a sense that Vizing may have originally intended. Our
focus is the following conjecture1.

Conjecture 2. It holds that χ(G) ⩽ ⌈(∆ + 1)/2⌉ + 1 for any triangle-free graph G of
maximum degree ∆.

While Theorem 1 is only known to be sharp up to a multiplicative factor 2 + o(1) (as
∆ → ∞), the bound in Conjecture 2 is an ‘exact relation’ in the sense that it is attained
by the 4-regular, 4-chromatic Chvátal graph [13] (as well as by, for example, odd cycles of
length 5 or more, the Petersen graph, and the Clebsch graph). The conjecture is a special
case (ω = 2) of Reed’s conjecture [33], which asserts that any graph of clique number
ω and maximum degree ∆ has chromatic number at most ⌈1

2
(ω + ∆ + 1)⌉. (The most

significant general progress to date on Reed’s conjecture is due to Hurley, de Joannis de
Verclos and the first author [20].) The bound in Conjecture 2 may have earlier provenance.
That is, Kostochka [25], motivated by Vizing’s problem, proved the very same bound
holds under the much stronger condition of girth being at least 4(∆ + 2) log∆. Borodin
and Kostochka [9], Catlin [12], and Lawrence [26] independently, proved an upper bound
of ⌈3(∆ + 1)/4⌉. Kostochka (see [23, p. 83] and also [32]) proved an upper bound of
2⌈(∆ + 2)/3⌉. Brooks’ theorem [10] implies the conjecture for ∆ ⩽ 4. We wish to
separately emphasise the current smallest open case.

Conjecture 3 (∆ = 5 of Conjecture 2). Every 5-regular triangle-free graph has chro-
matic number at most 4.

This aligns with one of the few remaining cases of an old and largely refuted conjecture
of Grünbaum [19]; he actually conjectured the negation of this.

Obviously Theorem 1 implies the existence of some ∆0 such that the bound asserted
in Conjecture 2 holds for all ∆ ⩾ ∆0. But to the best of our knowledge, no deliberate
effort was made to explicitly bound ∆0. This is likely due to the technicality of earlier
methods used to prove Theorem 1 and its precursors. The situation has changed and the
result we highlight in this note is as follows.

1One could rightly argue that Vizing has asked for the value of χω=2(∆) := sup{χ(G) :
G is a triangle-free graph of maximum degree ∆} for all ∆, but here we take the more concrete Con-
jecture 2 as our point of reference, which clearly is sufficient challenging.
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Theorem 4. The bound asserted in Conjecture 2 holds for all ∆ ⩾ 524.

We prove this by adapting the method of Hurley and Pirot to this version of the triangle-
free colouring problem. We note that one straightforwardly derives an estimate of around
30000 for ∆0 from Hurley and Pirot’s main result [22, Thm. 2.10]. In showing Theorem 4,
we wanted to indicate how a satisfying resolution to Vizing’s triangle-free problem, as
interpreted through Conjecture 2 and Reed’s conjecture, is already within a stone’s throw.
We would be interested to see better estimates on ∆0, although we do not expect anything
below around 100 without significant new ideas.

Later in the note we consider some related problems for bipartite or C4-free graphs.

1.1 Notation and preliminaries

We write deg(v) for the degree of v ∈ V (G).
We will establish Theorem 4 in a more general context than chromatic number, not

only in terms of list colouring, but also in an even more refined context, that of local
colouring (as in [14, 15], for instance). For this, we need some extra terminology. Our
notation is mostly standard; we collect it here for convenience.

Given a graph G, a list-assignment of G is a mapping L : V (G) → 2N. Given a positive
integer function on the vertices k : V (G) → N, we say that L is a k-list-assignment if
|L(v)| ⩾ k(v) for all v ∈ V (G). Given a colouring c : V (G) → N of G, we say that c
is an L-colouring if c(v) ∈ L(v) for all v ∈ V (G). We will be preoccupied with proper
colourings c, that is, with c(v) ̸= c(v′) for any edge vv′ ∈ E(G), and sometimes we will
omit the term proper if there is no possible confusion.

Recall that the list chromatic number χℓ(G) of G is the least integer k such that G
admits an L-colouring for any k-list-assignment L of G.

We also work with partial colourings c : S → N for some S ⊊ V (G). Given a (partial)
proper L-colouring c of G and v ∈ V (G), we write Lc(v) for the set of colours from L(v)
that are still available to v, that is, Lc(v) = L(v) \ {c(u) : u ∈ N(v)}. For any subgraph
H ⊆ G, we write CL(H) for the set of proper L-colourings of H. In Section 2, it will be
essential to have good control on how the order of CL evolves.

In the next section, we need the following simple technical result that will allow us to
apply Jensen’s inequality in the proof of our main result.

Lemma 5. For all c > 0, a > 0 and b > 1, the function z 7→ min{0, cz(1 − 1
b
)ab/z} is

convex.

Proof. This is easily verified by differentiating twice. For z ∈ (0,+∞), the second deriva-
tive is

z 7→ c

(
1− 1

b

)ab/z (
ab ln

(
1− 1

b

))2
z3

,

which is positive and vanishes as z ↓ 0.
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2 Main bound

With the above terminology, we can fully state and prove our main result.

Theorem 6. Define k : x 7→ ⌈(x+ 1)/2⌉+ 1. Let G be a triangle-free graph of minimum
degree at least 524. Then G admits a proper L-colouring for any (k ◦deg)-list-assignment
L of G.

Note that this statement directly implies Theorem 4 even with the stronger parameter
of list chromatic number χℓ(G) of G. Similarly, Theorem 6 but without the minimum
degree condition would be a much stronger form of Conjecture 2. Theorem 6 will follow
immediately by combining the following two lemmata.

We remark that we have made a choice of k here to align with Conjecture 2, but we
could very well have chosen x 7→ ⌈3(x + 1)/4⌉ or x 7→ 2⌈(x + 2)/3⌉, say, and obtained
—under a similar minimum degree condition, and through suitable though unilluminating
technical adjustments— the same conclusion.

For any positive integers ∆0, ℓ, t and a non-decreasing function k : N → N, we say
that (∆0, ℓ, t, k) has Property (P) if for all integers δ ⩾ ∆0,

1. 0 < t < ℓ < k(δ) < δ, and

2.
(
k(δ)− tδ

ℓ

) (
1− 1

t+1

) (t+1)(δ−tδ/ℓ)
k(δ)−tδ/ℓ ⩾ ℓ .

Lemma 7. Let ∆0, ℓ and t be positive integers and k : N → N be a non-decreasing
function such that (∆0, ℓ, k, t) has Property (P). Let G be a triangle-free graph with
minimum degree at least ∆0, and let L be a (k ◦ deg)-list-assignment of G. Then, for any
v ∈ V (G),

|CL(G)|/|CL(G− v)| ⩾ ℓ .

For brevity, we allow ourselves to write k instead of k ◦ deg.

Proof. The proof is by induction on the order of the vertex set V (G). The case V (G) = {v}
is trivial. We suppose that our claim holds for all strict subgraphs of G and our goal is
to prove that this holds for G. We consider what happens if we choose a colouring c
uniformly at random from CL(G− v).

Our induction hypothesis implies that for all u ∈ V (G)− v,

|CL(G− v)| ⩾ ℓ|CL(G− v − u)| .

Fix a vertex u ∈ N(v). Let F = {c ∈ CL(G− v) : |Lc(u)| ⩽ t}. The restriction of any
coloring c ∈ F to G−v−u is in CL(G−v−u). Moreover, any coloring from CL(G−v−u)
is the restriction of at most t such colourings, hence, |F | ⩽ t|CL(G− v − u)|. We deduce
that

P(|Lc(u)| ⩽ t) =
|F |

|CL(G− v)|
⩽

t|CL(G− v − u)|
ℓ|CL(G− v − u)|

=
t

ℓ
.
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Let tv = |{u ∈ N(v) : |Lc(u)| ⩽ t}|. Then by linearity of expectation

E[tv] ⩽
t deg(v)

ℓ
. (1)

Let G0 = G−v−N(v), and consider the distribution of c conditioned on c|G0 = c0 for
some c0 ∈ CL(G0). Note that for all u ∈ N(v), Lc(u) = Lc0(u). Conditioned on c|G0 = c0,
the colours of the neighbours of v are conditionally independent and uniformly chosen
from the respective sets Lc0(u).

The problem is reduced to the following elementary statement. We are given sets
Lc(u) of colours, for each u ∈ N(v). We are also given random variables Xu ∈ Lc(u), for
each u ∈ N(v), each chosen independently and uniformly from the respective set. Writing
X = |L(v) − {Xu : u ∈ N(v)}| (note that it is possible that Xu ̸∈ L(v)), we have that
|CL(G)|

|CL(G−v)| = E[|Lc(v)|] = E[X]. The problem is thus reduced to showing that E[X] ⩾ ℓ.

In order to bound E[X], we condition on the values ofXu for each u such that |Lc(u)| ⩽
t, and we write B for the (random) set of those values. For each j ∈ L(v), we write the
indicator variable Yj = [j ∈ X], hence X ⩾

∑
j∈L(v)\B

E[Yj]. By linearity of expectation,

the conditional expectation of X given c0 satisfies

E[X | c|G0 = c0] ⩾
∑

j∈L(v)\B

∏
u∈N(v)
Lc0 (u)∋j
|Lc0 (u)|>t

(
1− 1

|Lc0(u)|

)

⩾ (k(v)− |B|)


∏

j∈L(v)\B

∏
u∈N(v)
Lc0 (u)∋j
|Lc0 (u)|>t

(
1− 1

|Lc0(u)|

)


1/(k(v)−|B|)

⩾ (k(v)− |B|)

 ∏
u∈N(v)

|Lc0 (u)|>t

∏
j∈Lc0 (u)∩L(v)\B

(
1− 1

|Lc0(u)|

)
1/(k(v)−|B|)

⩾ (k(v)− |B|)

 ∏
u∈N(v)

|Lc0 (u)|>t

(
1− 1

|Lc0(u)|

)|Lc0 (u)|


1/(k(v)−|B|)

⩾ (k(v)− |B|)
(
1− 1

t+ 1

) (t+1)(deg(v)−|B|)
k(v)−|B|

= (k(v)− |B|)
(
1− 1

t+ 1

)(t+1)(
1− 1

t+ 1

) (t+1)(deg(v)−k(v))
k(v)−|B|

,
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where the second inequality is an application of the AM–GM inequality.
By Lemma 5 (with c = (1 − 1/(t + 1))t+1, a = deg(v) − k(v) and b = t + 1), the

minimum of zero and this last quantity is a convex function of k(v)− |B|. Thus, we can
use Jensen’s inequality to average over all values of c0 as follows:

E[X] ⩾ E

[
min

{
0, (k(v)− |B|)

(
1− 1

t+ 1

) (t+1)(deg(v)−|B|)
k(v)−|B|

}]

⩾ min

{
0,E [k(v)− |B|]

(
1− 1

t+ 1

) (t+1)(deg(v)−k(v)+E[k(v)−|B|])
E[k(v)−|B|]

}
.

By definition |B| ⩽ tv. Hence, by equation (1), we have

E [k(v)− |B|] ⩾ k(v)− t deg(v)

ℓ
.

This and the previous series of inequalities imply

E[X] ⩾

(
k(v)− t deg(v)

ℓ

)(
1− 1

t+ 1

) (t+1)(deg(v)−t deg(v)/ℓ)
k(v)−t deg(v)/ℓ

,

which by our theorem hypothesis implies E(X) ⩾ ℓ as desired.

Lemma 8. Let ∆0 = 524, ℓ = 8, t = 1 and k be the function such that for all δ ∈ N,
k = ⌈ δ+1

2
⌉+ 1. The quadruplet (∆0, ℓ, t, k) has Property (P).

Proof. By definition of k, t and ℓ, we have for all δ > 0 that

• k(δ)− tδ/ℓ ⩾ 3δ
8
+ 1, and

• δ−tδ/ℓ
k(δ)−tδ/ℓ

⩽ 1−t/ℓ
3/8

= 7
3
.

We can now verify that(
k(δ)− tδ

ℓ

)(
1− 1

t+ 1

) (t+1)(δ−tδ/ℓ)
k(δ)−tδ/ℓ

⩾

(
3δ

8
+ 1

)
2−14/3 ⩾ 8.01 > ℓ ,

where we use the fact that δ ⩾ 540 for the second inequality.
For each of the remaining cases, with 524 ⩽ δ < 540, one can (for instance with the

help of a computational mathematical engine) verify the inequality by direct computation.
This completes the establishment of Property (P).
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3 The bipartite case

Conjecture 2 is quite trivial in the special case of bipartite G. But in consideration
of Theorem 6, it is perhaps insightful to point out how the following result holds as a
consequence of polynomial methods. We thank Zdeněk Dvořák and Ronen Wdowinski
for pointing us to this implication.

Theorem 9 ([6]). For k : x 7→ ⌈x/2⌉ + 1, any bipartite graph G admits a proper L-
colouring for any (k ◦ deg)-list-assignment L of G.

Proof. There is an orientation of G in which the outdegree is at most ⌈deg(v)/2⌉ for each
v ∈ V (G). For example, add a vertex v′ adjacent to all vertices of odd degree, take
any Eulerian orientation of the resulting supergraph, and then remove v′. Moreover, the
orientation contains no odd directed cycle, since G is bipartite. The result then follows
by a result of Alon and Tarsi [6, Thm. 1.1].

Since K3,3 has list chromatic number 3, this result is best possible. Moreover, the con-
clusion of Theorem 9 fails if we take k to be any sublinear function, due to a simply
defined tree construction with a very large span of degrees [14, Prop. 11]. Theorem 9 is
related to a vexing conjecture of Alon and Krivelevich [4], which posits a bound on the
list chromatic number logarithmic in ∆. We have implicitly conjectured (shortly after
stating Theorem 6) an essentially stronger form of Theorem 9 for G being triangle-free.

Next, as a means of comparison, we focus on an assertion that is in fact weaker
than Theorem 9. For this, we introduce some extra terminology. Given a bipartite
graph G = (V=A ∪ B,E) with parts A, B and positive integers kA, kB, a mapping

L : A →
(Z+

kA

)
, B →

(Z+

kB

)
is called a (kA, kB)-list-assignment of G. We say G is (kA, kB)-

choosable if there is guaranteed a proper L-colouring of G for any such L. It is natural
to permit maximum degree constraints ∆A and ∆B that vary per part, and then ask
for bounds on kA and kB (in terms of ∆A and ∆B) that guarantee (kA, kB)-choosability.
This problem was introduced in [3], but in the current context we highlight the following
corollary of Theorem 9.

Theorem 10. Let ∆A,∆B be positive integers. Then any bipartite graph G = (V=A ∪
B,E) with parts A and B having maximum degrees at most ∆A and ∆B, respectively, is
(⌈∆A/2⌉+ 1, ⌈∆B/2⌉+ 1)-choosable.

We note that modest adaptation of the method used in Section 2 establishes Theorem 10
for all but at most 274000 pairs (∆A,∆B). Our aim in this section is to illustrate for
comparison how another method, given in [3], establishes Theorem 10 for all but at most
27000 pairs (∆A,∆B). We straightforwardly apply the following result.

Lemma 11 ([3, Thm. 4]). Let the positive integers ∆A, ∆B, kA, kB, with kA ⩽ ∆A and
kB ⩽ ∆B, satisfy one of the following conditions:

kB ⩾ (ekA∆B)
1/kA∆A; or (2)

e(∆A(∆B − 1) + 1)
(
1− (1− 1/kB)

∆A min{1,kB/kA})kA ⩽ 1. (3)
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Then any bipartite graph G = (V=A∪B,E) with parts A and B having maximum degrees
at most ∆A and ∆B, respectively, is (kA, kB)-choosable.

This result relies on two direct applications of the Lovász Local Lemma. We remark
that of these two conditions, Condition 3, based on a “coupon collector” intuition, is the
one of greater importance for our purposes here.

Theorem 12. The conclusion of Theorem 10 holds true under additionally either of
the following conditions (or, symmetrically, the analogous conditions with ∆A and ∆B

exchanged):

1. ∆A ⩾ 165 and ∆A ⩾ ∆B ⩾ 56; or

2. ∆A ⩽ 55 and ∆B ⩾ 153.

Proof. Throughout the proof, we let kA = ⌈∆A/2⌉+ 1 and kB = ⌈∆B/2⌉+ 1.
We begin with proving the assertion under Condition 1. For this it suffices to check

that (3) holds. We need the following inequalities:

∆A min{1, kB/kA} = ∆A
⌈∆B/2⌉+ 1

⌈∆A/2⌉+ 1
⩽ ∆A

∆B/2 + 1.5

∆A/2
= ∆B + 3 and

kB ⩾ (∆B + 2)/2 .

Using these, we can give a first bound on the left-hand side of (3),

LHS of (3) ⩽ e(∆A(∆B − 1) + 1)

(
1−

(
1− 2

∆B + 2

)∆B+3
)kA

⩽ e∆2
A

(
1−

(
1− 2

∆B + 2

)∆B+3
)kA

.

Computing the derivative of ∆B 7→ 1 −
(
1− 2

∆B+2

)∆B+3

, one finds that this function is

decreasing for ∆B ⩾ 0 (and this easy exercise is left to the reader). Hence, using that
∆B ⩾ 56,

1−
(
1− 2

∆B + 2

)∆B+3

⩽ 1−
(
1− 2

58

)59

< 0.874 .

We then deduce the following simpler bound on the LHS of (3):

LHS of (3) < e∆2
A · 0.874⌈∆A/2⌉+1 ⩽ e∆2

A · 0.874∆A/2+1

⩽ e · 1652 · 0.87483.5 < 0.97 < 1,

where the third inequality uses that by assumption ∆A ⩾ 165 and that the previous
expression is a decreasing function of ∆A for ∆A ⩾ 35 (which is verified by computing
the derivative). So we can apply Lemma 11 to reach the conclusion in this case.
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∆A 2 3 4 5 6 7 8 9 10
87 42 65 48 61 52 62 57 64

∆A 11 12 13 14 15 16 17 18 19
61 67 65 70 69 74 73 78 77

∆A 20 21 22 23 24 25 26 27 28
82 81 86 86 90 90 94 94 98

∆A 29 30 31 32 33 34 35 36 37
98 102 102 106 107 110 111 114 115

∆A 38 39 40 41 42 43 44 45 46
118 119 122 123 127 128 131 132 135

∆A 47 48 49 50 51 52 53 54 55
136 139 140 143 144 147 148 151 153

Table 1: Evaluations of
⌈(
ekA(2∆A)

kA
)1/(kA−1)

⌉
for ∆A ∈ {2, . . . , 55}.

Next we show how to derive the conclusion under Condition 2. The case ∆A = 1 is
trivial, so we assume ∆A ⩾ 2. In this case, we aim to check that (2) holds. It suffices to
show that the following inequality holds:

∆B/2 ⩾ (ekA∆B)
1/kA∆A ,

which is equivalent to

∆B ⩾
(
ekA(2∆A)

kA
)1/(kA−1)

. (4)

It remains simply to compute this last expression for all ∆A ⩾ 2 under Condition 2; the
results of this computation are provided in Table 1. As desired, the right-hand side is
always at most 153 ⩽ ∆B, establishing (2). So again we apply Lemma 11 to reach the
conclusion in this case.

In this section, we made Theorem 10 a baseline for comparison due to our objec-
tive in Conjecture 2. From this viewpoint, the method via Theorem 9 appears most
effective. However, both the method used for Theorem 12 and the one in Section 2
can be used to establish (kA, kB)-choosability for kA = (1 + o(1))∆A/ log∆A and kB =
(1 + o(1))∆B/ log∆B [3, 21, 22], which seems out of reach for the Alon–Tarsi method.
Moreover, the method used for Theorem 12 depends critically on the bipartition, and,
while the method does not obviously transfer to triangle-free graphs, it handles more
asymmetric dependencies of kA and kB upon ∆A and ∆B, as in [3]. Thus each method
has its strength.

4 Concluding remarks

We have demonstrated how Conjecture 2 is temptingly within reach. We encourage further
research on this. We end with yet another related problem.
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Conjecture 13. It holds that χ(G) ⩽ ⌈(∆+1)/2⌉+1 for any C4-free graphG of maximum
degree ∆.

This bound is attained for the line graph of any snark of girth at least 5. Catlin [11] proved
an upper bound of 2(∆+3)/3. An O(∆/ log∆) bound was observed in [5, Cor. 2.4], which
was recently tightened to a (1 + o(1))∆/ log∆ bound in [15, Thm. 4] (in fact for any
forbidden cycle length ℓ = ∆o(1) as ∆ → ∞). One can derive from [22, Thm. 2.10] that
the bound in Conjecture 13 holds for all ∆ at least around 60000. We remark that while
the fractional chromatic number version of Conjecture 2 is known (see [28, Sub. 21.3]),
the fractional analogue of Conjecture 13 may already be nontrivial.
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[2] M. Ajtai, J. Komlós, and E. Szemerédi. A dense infinite Sidon sequence. European
J. Combin., 2(1):1–11, 1981.

[3] N. Alon, S. Cambie, and R. J. Kang. Asymmetric list sizes in bipartite graphs. Ann.
Comb., 25(4):913–933, 2021.

[4] N. Alon and M. Krivelevich. The choice number of random bipartite graphs. Ann.
Comb., 2(4):291–297, 1998.

[5] N. Alon, M. Krivelevich, and B. Sudakov. Coloring graphs with sparse neighborhoods.
J. Combin. Theory Ser. B, 77(1):73–82, 1999.

[6] N. Alon and M. Tarsi. Colorings and orientations of graphs. Combinatorica,
12(2):125–134, 1992.

[7] A. Bernshteyn. The Johansson-Molloy theorem for DP-coloring. Random Structures
Algorithms, 54(4):653–664, 2019.

[8] A. Bernshteyn, T. Brazelton, R. Cao, and A. Kang. Counting colorings of triangle-
free graphs. J. Combin. Theory Ser. B, 161:86–108, 2023.

the electronic journal of combinatorics 32(4) (2025), #P4.3 10



[9] O. V. Borodin and A. V. Kostochka. On an upper bound of a graph’s chromatic
number, depending on the graph’s degree and density. J. Combinatorial Theory Ser.
B, 23(2-3):247–250, 1977.

[10] R. L. Brooks. On colouring the nodes of a network. Proc. Cambridge Philos. Soc.,
37:194–197, 1941.

[11] P. A. Catlin. Another bound on the chromatic number of a graph. Discrete Math.,
24(1):1–6, 1978.

[12] P. A. Catlin. A bound on the chromatic number of a graph. Discrete Math., 22(1):81–
83, 1978.
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