R(3,10) < 41

Vigleik Angeltveit

Submitted: May 14, 2024; Accepted: Apr 29, 2025; Published: Nov 3, 2025
(© The author. Released under the CC BY license (International 4.0).

Abstract

We improve the upper bound on the Ramsey number R(3,10) from 42 to 41.
Hence R(3,10) is equal to 40 or 41.

Mathematics Subject Classifications: 05D10

1 Introduction

The Ramsey number R(s,t) is defined to be the smallest n such that every graph of order
n contains either a clique of s vertices or an independent set of ¢ vertices. See [5] for a
survey on the currently known bounds for small Ramsey numbers. The smallest Ramsey
numbers that are currently unknown are R(4,6) and R(3,10).

In this paper we prove the following result:

Theorem 1. The Ramsey number R(3,10) is less than or equal to 41.

Let R(s,t,n) denote the set of isomorphism classes of Ramsey graphs of type (s,t)
with n vertices. Similarly, let R(s,t,n,e < eg) denote the set of such graphs with at most
ep edges. In [1, Theorem 1], Exoo proved that R(3,10) > 40 by finding an explicit graph
in R(3,10,39). Combined with Theorem 1 this means that R(3,10) is either 40 or 41.
The proof of Theorem 1 uses extensive computer calculations, and can be thought of as
a follow-up to [2] where Goedgebeur and Radziszowski proved that R(3,10) < 42.

The project described in [2] took a total of about 50 CPU years, and lowering the upper
bound on R(3,10) from 42 to 41 requires several orders of magnitude more calculations.
For example, Goedgebeur and Radziszowski had to consider about 80 million R(3, 8)-
graphs and we had to consider approximately 150 billion such graphs. Despite this, we
were able to complete the proof of Theorem 1 in about 3 CPU years, and all of the
calculations were done on two standard desktop computers over a period of a few months.

To complete this project, the main challenge was to come up with algorithms that are
several orders of magnitude faster than those used in [2] to go with the several orders of
magnitude more graphs.

Mathematical Sciences Institute, Australian National University, Canberra, ACT 2601, Australia
(vigleik.angeltveit@anu.edu.au)

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.30 https://doi.org/10.37236/12936

https://doi.org/10.37236/12936

2 Outline of proof

For a graph G and a vertex v in G, we write G for the induced subgraph on the vertices
adjacent to v and refer to this as the neighbourhood of v. Similarly, we write G for
the induced subgraph on the vertices not adjacent to v and refer to this as the dual
neighbourhood of v. Note that G, does not include v as one of its vertices.

Given a hypothetical graph I' in R(3,10,41), the basic idea is to consider a vertex
v of degree d. Then the neighbourhood of v is an independent set of size d, while the
dual neighbourhood is a graph G € R(3,9,41 — d — 1). We can then use a version of
the Neighbourhood Gluing Extension Method from [2] (which we review in Section 4.0)
to reconstruct I', and it suffices to show that this kind of gluing does not produce any
output.

Proposition 2. Any graph I" in R(3,10,41) must have a vertex v with dual neighbourhood
in one of the following sets:

1. R(3,9,32,e < 112)
2. R(3,9,33,e < 121)
3. R(3,9,34, e < 130)

What the proof will show is that such a graph I' must have a vertex v with dual
neighbourhood in one of those sets or in R(3,9,35,e < 139). We note that by [2, Table
14] the set R(3,9,35,e < 139) is empty, since there is a unique R(3,9, 35)-graph and it
has 140 edges, so we do not include it in the statement.

Proof. Since R(3,9) = 36, every vertex of I' must have degree in {5,6,7,8,9}. Because
41 is odd, I'" cannot be regular of degree 9 and must have at least one vertex of degree in
{5,6,7,8}.

This result makes intuitive sense, since if I' has 40 vertices of degree 9 and a single
vertex v of degree 8 then I has a total of w = 184 edges. After removing the degree
8 vertex v and its 8 neighbours we are left with 184 — 8 - 9 = 112 edges, so the dual
neighbourhood of v is in R(3,9, 32, e = 112). We want to argue that this is the worst-case
scenario: If we start with some I' with fewer than 184 edges then we still have a vertex
whose dual neighbourhood is sparse.

Let n; denote the number of vertices of degree i in I'. First suppose ny = ng =
ny = 0, so every vertex of I' has degree 8 or 9. Then I' has 369T7”8 edges, and the dual

369—nsg

neighbourhood of a degree 8 vertex v has ==

8
— > d(w;) edges, where the sum is over
=1

(2
the 8 vertices in I' adjacent to v. Because the induced subgraph of I" on the degree 8
vertices is triangle-free and ng is odd, one of the degree 8 vertices is adjacent to at most
n5—1 other degree 8 vertices. Hence the sum of the degree of the neighbours of v is at

2
least 72 — "STfl

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.30 2

It follows that the number of edges in the dual neighbourhood I'; of that degree 8
vertex v 1s

o(Ty) = efT) = D dluwy) < =2 = (2= B2

) = 112.

Hence we have established that if every vertex of I" has degree 8 or 9 then the dual
neighbourhood of some vertex of I" is in R(3,9,32,e < 112).

Now we consider the general case. First note that I' has @ edges, where N =
ng + 2n7 + 3ng + 4ns. Let nb,(v) denote the number of neighbours of v of degree n in T'.
For a vertex v of degree at most 8, let

€(v) = nbg(v) + 2nbz(v) 4 3nbg(v) + 4nbs(v).

Then the dual neighbourhood of v is in one of the sets in the lemma if and only if

e(v) < L. To see that, we assume that €(v) < Y51 and compute
369 N
e(T, E d(w —9d(v) + €(v)
369 — N N -1
< S~ 9d(v) + =5 = 184 - 9d(v),

~
2
where once again the sum is over the neighbours of v and we note that 184 — 9d(v) gives
us exactly the numbers in the proposition.
Hence it suffices to prove that there exists a vertex v of degree at most 8 with ¢(v) <
N—1

=5=. We can compute €(v) as the degree of a vertex in another graph T of order N

constructed as follows: For each vertex v of I'; the graph I has 9 — d(v) distinct vertices,
and two vertices of [are adjacent if and only if the corresponding vertices in I' are
adjacent. In other words, delete the degree 9 vertices, keep the degree 8 vertices, keep
two copies of the degree 7 vertices, and so on. Then €(v) is precisely the degree of any of
the vertices in I' corresponding to v, since a single neighbour contributing & to €(v) has
been replaced by £ neighbours. This process preserves the property of being triangle-free,
so I is a triangle-free graph of order N. As such, it must have a vertex of degree at most
N-1

=, and the result follows. U

Corollary 3. To prove Theorem 1, it suffices to glue the graphs in Proposition 2 using
the Neighbourhood Gluing Extension Method.

This leaves us with two things to do:

1. Generate all the graphs in Proposition 2.

2. Show that none of them extend to an R(3,10,41)-graph.

3 A census of graphs

To generate the graphs in Proposition 2, we start with a partial census of R(3,7) and
work our way up.

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.30 3

3.1 A partial census of R(3,7)
We used the following sets of graphs:
1. R(3,7,16,e < 24) (46514 graphs)

R(3,7,17,e < (3131580 graphs)

R(3,7,18,e < 36) (23149358 graphs)

30)
)
) (2173527 graphs)
)

A

3
R(3,7,19, ¢ < 41
R(3,7,20,e < 46) (10613 graphs)

These are not that difficult to compute, and we computed them using a one-point
extender that takes as input an R(3,7,n)-graph and outputs all ways to add a single
vertex to produce an R(3,7,n + 1)-graph. Our results agree with those in [2, Table 12],
and we extend their counts for R(3,7,18, e < ey) from a maximum of ey = 35 to 36.

It is possible use the much smaller set R(3, 7,16, e < 21) rather than R(3,7,16,e < 24)
to generate the necessary R (3, 8)-graphs, but see Section 5 for a place where we found it
convenient to use the larger set of graphs.

3.2 A partial census of R(3,8)
We need the following sets of graphs:

1. R(3,8,23,¢ < 53) (238854716 graphs)
R(3,8,24,e < 63) (approximately 150 billion graphs)
R(3,8,25,¢ < 70) (2120846 970 graphs)

)

R(3,8,26,e < 77) (1767543 graphs)

SAEE

R(3,8,27) (477 142 graphs)

While we do not have an accurate count of |R(3,8,24,e < 63)| we do have that
IR (3,8,24,e < 62)| = 14645288 701. See Section 5 below for detalls on how to deal with
R(3,8,24, e = 63). Our results agree with those in [2, Table 13], and we extend their
counts for R(3,8,23,e < ¢g) from ey < 52 to eg < 53 and for R(3,8,24,e < ep) from
€0 < 60 to €0 < 62.

The graphs in R(3,8,27) are not logically necessary, but we found it convenient to
glue them as well in order to make an additional assumption about the minimum degree
of any vertex for the remaining gluing operations.

In each case it is a small linear programming exercise to show that gluing the above
R(3, 7)-graphs suffices to generate these R(3,8)-graphs. These linear programming argu-
ments are all similar, so we do one in detail. Recall e.g. from [4, Theorem 2.2] that for
any graph G of order n we have

D 2e(Gy) =D (d(v)(n — 2d(v)) + 2¢(GY)).

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.30 4

Here the sum is over the vertices of G.

In the case of a triangle-free graph, e(G}) = 0. Let d = @ be the average degree of
a vertex in G. Since > (d — d(v)) = 0, we can add any multiple of that to each term. In
other words, for any constant ¢ we have

D 2e(Gy) =D (d(v)(n — 2d(v)) + 2c(d — d(v))).

For example, consider some G € R(3,8,24,e = 63). Then this simplifies to

> (elGy) = (d(v)(12 = d(v)) + ¢(5.25 — d(v))) = 0.

Now we choose an appropriate value of ¢, and prove that if G is not in one of the above
sets of R (3, 7)-graphs (because e(G,)) is too large) then the corresponding term is positive.
Since not all the terms can be positive, some GG has to be in one of those sets of graphs.

In this case we can choose ¢ = 7.5. Then this shows that for at least one vertex we must
have G, in one of R(3,7,16,e < 21.875), R(3,7,17,e < 30.375), R(3,7,18,¢e < 36.875)
or R(3,7,19,e < 41.375). (We also get R(3,7,20,e < 43.875), R(3,7,21,e < 44.375) or
R(3,7,22,e < 42.875), but those are all empty.)

3.3 A partial census of R(3,9)

As explained in Proposition 2 above, we need the following sets of graphs
1. R(3,9,32,e < 112) (1554928 360 graphs)
2. R(3,9,33,e < 121) (14395 graphs)
3. R(3,9,34,e < 130) (5 graphs)

Our results agree with those in [2, Table 14|, and here we extend their counts for
R(3,9,32,e < eg) from ey < 108 to ¢y < 112 and for R(3,9,33,e < ¢y) from ey < 119 to
ep < 121. The same table says that they found |R(3,9,33,e < 121)| > 14378, so they
were missing just 17 such graphs.

In addition we considered the single graph in R(3,9, 35). This is not logically necessary,
but we found it convenient to glue it in order to make an additional assumption about
the minimum degree of any vertex for the remaining gluing operations.

Again, in each case it is a small linear programming exercise to show that gluing the
above R (3, 8)-graphs suffices to generate these R(3,9)-graphs.

We remark that R(3,8,24,e = 63) is only needed to generate the regular degree
7 graphs in R(3,9,32,e = 112). For all the remaining graphs it suffices to consider
R(3,8,24,e < 62). We explain how to generate those regular degree 7 graphs in Section
5.

ot

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.30

3.4 Checking the data

For each of the sets of graphs described above, we checked for completeness by deleting
a single vertex from each graph in all possible ways and then using a one-point extender.
No additional graphs were found. For the smaller sets we also deleted multiple vertices in
all possible ways and used a one-point extender repeatedly, and once again no additional
graphs were found. We did the same with a random sample of the larger sets of graphs.

We also compared the output of the gluing algorithm described in Section 4, with and
without each of the modifications listed in Subsections 4.1 through 4.4 (except that for
the largest graphs we did not try using a precomputed table of independence numbers),
on a random sample of graphs to verify that these optimisations had no effect other than
on the running time.

This is in addition to the comparisons to [2, Table 12, 13, 14] and the additional checks
of R(3,9,32,e < 112) by Brendan McKay.

4 Gluing algorithms

The main algorithm used by Goedgebeur and Radziszowski is the Neighbourhood Gluing
Extension Method. Similar algorithms are pervasive in the subject. We made a few
modifications to increase the performance.

4.0 The Neighbourhood Gluing Extension Method

The basic algorithm is as follows. Given G’ € R(3,¢,n) and some natural number d, one
can compute all graphs G € R(3,t+1,n+1+4+d) or G € R(3,t+1,n+1+d,e < e)
with a vertex v of degree d with neighbours vy,...,v; and dual neighbourhood G’ as
follows. First, make a list of all independent sets in G'. If S is an independent set in G’
then assigning S U {v} as the set of neighbours of some v; does not create any triangles,
and the only thing to check is if assigning Si,...,5; (and v) as the set of neighbours to
v1,...,Uq creates any independent (¢ + 1)-sets.

We say the independence number of a subset W C V(G') is the size of the largest
independent set with vertices in W. Then the above assignment is a valid assignment if

and only if for each subset K C {1,...,d} the independence number of V(G’")\ |J Sk is at
keK
most t — |K|. (This is automatic for |K| = 1.) If so, we call S1,...,S; compatible. Based

on this one can implement an inductive search algorithm, where given a list (S1,...,.S5;)
of compatible independent sets one checks each independent set S to see if (Sy,...,S;, 5)
is also compatible.

Since the isomorphism class of the resulting graph in R(3,t+1, n+1+d) is independent
of the ordering of vy,...,v4, and hence by the ordering of Si,...,S5y, we can order the
independent sets in some way and insist that (Si,...,Sy) appear in non-increasing order.
Suppose 51, ..., Sy is a complete list of independent sets in G' (which we can precompute).
A basic version of this algorithm which does not impose a restriction on the number of

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.30 6

edges is described in Algorithm 1. This algorithm assumes that we already have another
algorithm compatible which checks if the sets in a list (S5, ...,S;) are compatible.

Algorithm 1 NGEM(list (i1, ..., i) of indices)
if k = d then
Output graph G with V(G) = V(G') U {v,vq,...,v4} where v is adjacent to
{v1,...,v4} and vy is adjacent to S;, U{v} for each k=1,...,d.
else
for ipyq € {1, ce ,Zk} do
if compatible(S;,,...,
NGEM(i1, ..., iks1)
end if
end for
end if

S

Tt

) then

A version of this algorithm is given in [2, Algorithm 2]. By ordering the independent
sets by size one can also prune by checking when adding independent sets from earlier in
the list will produce a graph with too many edges.

We used their algorithm without change to compute the parts of R(3,8,n) we needed,
but we made some changes when computing R(3,9,n) and when showing that R(3, 10, 41)
is empty.

4.1 Our first modification: Using only maximal independent sets

This modification is responsible for the largest performance increase. To describe it, we
use the following result:

Lemma 4. If the independent sets Sy, ..., Sy are compatible and S; C S} for each i then
the independent sets Sy, ..., S} are also compatible.

In other words, if we can add an edge from v; to G’ without introducing any triangles
then we can add that same edge to G without introducing any triangles. Adding an
edge does not introduce any additional independent sets, so the lemma follows. Hence
it suffices to consider independent sets that are mazimal in the sense that they are not
contained in any larger independent sets. This has a massive advantage. In a typical case
this reduces the number of independent sets by an order of magnitude, and the number
of tuples by several orders of magnitude.

This modification also has some disadvantages. The first is that we can no longer
prune by number of edges, at least not at this stage of the algorithm.

The second downside is that such a maximal solution might represent a large number
of non-maximal solutions. So we need another algorithm to extract those non-maximal
solutions.

We do this as follows: Before searching for compatible d-tuples of maximal independent
sets, assign each independent set S to a maximal independent set S’ with S C S’. This
way each maximal independent set comes with an allowed list of subsets.

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.30 7

Given compatible maximal independent sets S7,...,S), we inductively try replacing

S! by each allowed subset .S; while pruning on the total number of edges.

4.2 Owur second modification: Not using a precomputed table of indepen-
dence numbers

Goedgebeur and Radziszowski used a precomputed table of the independence number of
any subset of V(G’). Precomputing this simply takes too long. If the number of vertices
is small (at most 27) we initialise a table of independence numbers to 0 and compute
independence numbers as needed. If the number of vertices is large, we use a HashMap
instead.

Note that there is a fast way to check if a pair of independent sets is compatible
without using a precomputed table of independence numbers: For each independent set
S we precompute which independent (¢ — 1)-sets are contained in V' (G’)\ S and store the
result in a bitvector. Then we can use a bitwise and operation to check if S; and S; are
compatible. We then store this result for each pair in another bitvector, so we can check
with another bitwise and operation which independent sets are pairwise compatible with
Sl, RN Sk

4.3 Owur third modification: Computing independence numbers as late as
possible

Suppose, for example, that we start with G’ € R(3,8,24) and d = 7, and that we are
looking for graphs in R (3,9, 32, e < 112). Then we are looking for compatible independent
7-tuples Sy, ..., S7 of maximal independent sets. Because bitwise operations are fast and
computing the independence number of some subset of V' (G’) is slow, we check for pairwise
compatibility only (which we compute once and then store in a bitvector) until we find
a potential solution Si,...,57. Only at this point do we start computing independence
numbers, starting with that of V(G’) \ (S1 U Sz U S3). If we do find that {51, Sz, S5} are
incompatible, we can jump straight to the next assignment of Ss.

4.4 Our fourth modification: Ordering the independent sets

We order the maximal independent sets S, ..., Sy as follows: First, we find the inde-
pendent (¢ — 1)-set which is contained in V(G’) \ S; for the largest number of maximal
independent sets, and consider those maximal independent sets last. The reason for doing
so is that none of them are compatible with each other, so we can choose at most one of
them and they only need to be considered when choosing the last independent set S, .
Hence we can work with a smaller collection of independent sets until the tail end of the
recursive search (or, as we implemented it, in the inner-most loop). This can be repeated.

When aiming for R(3,10,41) this gives us an especially large saving, as we almost
never have to consider the last 3 or 4 subsets of maximal independent sets.

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.30 8

4.5 Performance

For example, these modifications allow us to glue approximately 250 graphs in R(3, 8,24)
per second (per CPU core) on a modern computer to produce graphs in R(3,9,32, e <
112), and a similar number of graphs in R(3,9, 32) per second to produce (hypothetical)
graphs in R(3,10,41).

5 The special case of extending the set R(3,8,24,e = 63) to
R(3,9,32,e = 112)

There are approximately 150 billion graphs in R(3, 8,24, ¢ = 63), and these are needed to
find the regular degree 7 graphs in R(3,9,32,e = 112) only. With the obvious algorithm
this would take much longer than any of the other calculations, but we can take advantage
of the fact that we only need them to find the regular degree 7 graphs to produce a much
more efficient algorithm.

T e R(3,9,32,e = 112) is regular of degree 7 then every vertex of I' has dual
neighbourhood in R(3, 8,24, e = 63).

Suppose in addition that the dual neighbourhood of some vertex v of I in R(3, 8,24, e
= 63) has a degree 7 vertex w. That means the neighbourhoods of v and w in I' are disjoint,
and the intersection of the dual neighbourhoods of v and w is a graph G’ € R(3,7,16).
Hence I is given by gluing two graphs G, Gy € R(3,8,24,e = 112) along G’ € R(3,7,16).

For a fixed G' € R(3,7,16) we first find all G € R(3,8,24, e = 63) with G’ as a dual
neighbourhood using the usual Neighbourhood Gluing Extension Method. For each pair
G1,Gy € R(3,8,24,e = 63) intersecting in G' we can then compute the degree of each
vertex x € V(G') considered in T', and each must have degree exactly 7. That is a very
strong condition, so very few pairs are compatible. For a fixed G’ there might be several
hundred million extensions to R(3,8, 24, e = 63), so that leaves approximately 10'7 pairs
in that case. To avoid having to check every pair, we put the graphs in a HashMap
based on the degree sequence of the vertices in V(G’) considered in G. Then, for each
G1 € R(3,8,24,e = 63) extending G’ we can simply look up the compatible G5 in the
HashMap.

After finding a pair that is compatible, we do the following: For each neighbour v; of
v and neighbour w; of w, we add an edge between v; and w; if this does not introduce
a triangle. This can be checked with a single bitwise and for each pair (v;, w;). If every
vertex now has degree at least 7, we check if this is an R(3,9, 32)-graph. If it is, we then
remove edges in all possible ways between degree > 8 vertices and record the R(3,9,32)-
graphs we get.

A similar algorithm works for G’ € R(3,7,17) or G’ € R(3,7,18). The restriction on
the degree of the vertices in G’ considered in I' is weaker, but we also have fewer pairs.

Because this has to work for every neighbourhood, we can exclude any graph G €
R(3,8,24,e = 63) that has already been considered. It is possible to do this without
storing R(3, 8,24, e = 63), for example as follows:

We first ran this program for G’ € R(3,7,16,e = 24). Next, we ran it for G’ €

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.30 9

R(3,7,17,e = 30) while excluding any output in R(3,8,24,e = 63) with some dual
neighbourhood in R(3,7,16,e = 24). Next we considered R(3,7,18,¢ = 36) while ex-
cluding any output in R(3,7,16,e = 24) or R(3,7,17,e = 30). After that we considered
R(3,7,16,e = 23) while excluding the graphs with a dual neighbourhood in one of the
previous cases, and so on until covering all of R(3,7,16,e < 24), R(3,7,17,e < 30) and
R(3,7,18,e < 36). Finally we also considered R(3,7,19, e < 40) (which is small and only
required a simple one-point extender.)

This produced a total of 506 regular degree 7 graphs in R(3,9,32,e = 112), in about
6 months of CPU time.

6 Extending the necessary R(3,9)-graphs

In the end we had about 1.6 billion graphs in R(3,9,32,e < 112), 14395 graphs in
R(3,9,33,e < 121) and 5 graphs in R(3,9,34,e < 130). The latter two cases were very
fast. The first case took about 3 months of CPU time to extend to R(3,10,41). Since
this produced no outputs, this finishes the proof of Theorem 1.

Since running a program that produces no output is not very satisfying we had our
program produce a large number of graphs in R(3, 10, 38) instead, and used a one-point
extender to verify that none of them extended to R(3,10,41). In fact, none of the graphs
we produced extended to R(3,10,40). (Otherwise this would have determined R(3,10)
exactly.)

7 A partial census of R(3,10,39)

This project produced a large number of graphs in R(3,10,39), and we were able to
produce many more by deleting a single vertex from each such graph in all possible ways
and then using a one-point extender. In this way we produced 39745077 such graphs.
Most of these had already been found by Goedgebeur and Radziszowski [2] who found
43117868 such graphs. By taking the union (and deleting a single vertex and using a one-
point extender) we extended this to 43 146 537 graphs. By deleting two or three vertices
and extending back up in all possible ways we further extended this to 43 225483 graphs.

One might consider the set R(s,t,n) for n = R(s,t) — 1 of mazimal Ramsey graphs
for various values of s and t. We see that |R(3,10,39)| is much larger than the number
of maximal Ramsey graphs in other confirmed or conjectured cases:

The obvious conjecture is that R(3,10) = 40. But because R(3,10,39) is so large,
we are not confident in this prediction. If, indeed, R(3,10) = 40 then this is going to
be quite difficult to prove with current techniques. For example, a potential R(3, 10, 40)-
graph might be regular of degree 9 and then the dual neighbourhood of any vertex will
be in R(3,9,30,e = 99). This contains many orders of magnitude more graphs than
R(3,9,32,e < 112).

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.30 10

Table 1: The number of maximal Ramsey graphs in some cases

IR(3,5,13)] 1
IR(3,6,17)| 7
IR(3,7,22), 191
IR(3,8,27)| 477142
IR(3,9,35)] 1
IR(4,4,17)| 1
IR(4,5,24), 352366
IR(4,6,35)| > 37
IR(5,5,42)| > 656
IR(3,10,39)] | > 43225483

Acknowledgements

The author would like to thank Brendan McKay for doing some sanity checks on some

of the sets of graphs generated in this project and for commenting on an early draft.

In particular, he spent some CPU time verifying that the census of R(3,9,32,e < 112)

graphs is complete. I would also like to thank Jan Goedgebeur for some useful comments

and for sharing a file with 43117868 R (3, 10, 39)-graphs he and Radziszowski found in

2]. Finally I would like to thank the anonymous referees for their constructive comments.
This project also used the software package nauty extensively. See [3].

References

[1] Geoffrey Exoo. On two classical Ramsey numbers of the form R(3,n). SIAM J.
Discrete Math., 2(4):488-490, 1989.

2] Jan Goedgebeur and Stanistaw P. Radziszowski. New computational upper bounds
for Ramsey numbers R(3, k). Electron. J. Combin., 20(1):#P30, 2013.

[3] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symbolic
Comput., 60:94-112, 2014.

[4] Brendan D. McKay and Stanistaw P. Radziszowski. Subgraph counting identities and
Ramsey numbers. J. Combin. Theory Ser. B, 69(2):193-209, 1997.

[5] Stanistaw P. Radziszowski. Small Ramsey numbers, FElectron. J. Combin., #DSI.
1994-2021.

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.30 11

	Introduction
	Outline of proof
	A census of graphs
	A partial census of R(3,7)
	A partial census of R(3,8)
	A partial census of R(3,9)
	Checking the data

	Gluing algorithms
	The Neighbourhood Gluing Extension Method
	Our first modification: Using only maximal independent sets
	Our second modification: Not using a precomputed table of independence numbers
	Our third modification: Computing independence numbers as late as possible
	Our fourth modification: Ordering the independent sets
	Performance

	The special case of extending the set R(3,8,24,e=63) to R(3,9,32,e=112)
	Extending the necessary R(3,9)-graphs
	A partial census of R(3,10,39)

