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Abstract

In new progress on conjectures of Stein, and Addario-Berry, Havet, Linhares
Sales, Reed and Thomassé, we prove that every oriented graph with all in- and out-
degrees greater than 5k/8 contains an alternating path of length k. This improves
on previous results of Klimosova and Stein, and Chen, Hou and Zhou.

Mathematics Subject Classifications: 05C20, 05C35, 05C38

1 Introduction

A classical topic in graph theory is establishing minimum degree conditions for existence
of long paths and cycles in graphs. This research direction has a rich history, going back
to works of Dirac [3], Pdsa [14] and others. The present paper is a part of the ongoing
effort to establish analogous results in oriented graphs.

An oriented graph is a tuple G = (V, 5) where V is a finite set of vertices and D is a
set of (directed) edges. Fach edge is an ordered pair of distinct vertices. Moreover, for all u
and v at most one of (u,v) and (v, u) is an edge. The in-degree and out-degree of a vertex
v eV are defined as d=(v) = [{(u,v) € D :u € V}| and d*(v) = |{(v,u) € D : u € V}|,
respectively. The semidegree of v is do(v) = min{d~ (v),d" (v)}. The minimum semidegree
of the oriented graph G = (V, D) is 6°(G) := min{d°(v) : v € V'}.

Analogously to undirected graphs, it is natural to ask for oriented graphs what mini-
mum semidegree conditions would guarantee occurrence of long paths. The first case to
consider are the directed paths, i.e. paths whose edges are directed the same way. Here
Jackson [8] proved, as a corollary of a more general result, that §°(G) > k/2 implies that
G contains a directed path with k edges. The proof follows a path extension argument,
similar to the textbook proof of Dirac’s theorem [3]. Subsequent years saw a large body
of research on Hamilton cycles in oriented and directed graphs [4, 5, 6, 7, 9, 10, 11, 17].
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Motivated by the above works, as well as by results on degree conditions for occurrence
of trees in undirected and directed graphs (see [15]), Stein [15] conjectured the following
generalization of Jackson’s theorem [8].

Conjecture 1 (Stein [15]). Every oriented graph with §°(G) > k/2 contains every orien-
tation of a path with £ edges.

While it is easy to see that for °(G) > k we can find greedily every orientation of a k-edge
path, at present we do not know to replace k with any smaller value (let alone k/2), for
the statement of Conjecture 1 to hold universally.

After the directed paths, the next most natural case to consider are the alternating
paths, that is, paths in which every vertex sees either just incoming or just outgoing edges
(this case also provides a construction for the bound of £/2 in Conjecture 1: a k/2-blowup
of a directed cycle). Klimosova and Stein [12] proved that §°(G) > 3k/4 implies existence
of an alternating path with & edges, and Chen, Hou and Zhou [2] improved their bound
to 2k/3 (up to additive constants). For the special case when k is linear in the number
of vertices of the oriented graph, Stein and Zarate-Guerén [16] proved an approximate
upper bound (1/2 + o(1))k.

Our goal here is to improve the general upper bound further to 5k/8. Similarly
to [2] and [12], we shall prove a slightly more general result, using the minimum pseudo-
semidegree 6°(G), which is defined, for an oriented graph without isolated vertices, as the
minimum over all positive vertex in- and out-degrees.

For better proof clarity we decided not to optimize additive constants. Consequently,
we find it more convenient to deal with paths with k& vertices rather than edges.

Theorem 2. Every oriented graph G with 6°(G) > 5k/8 contains an alternating path
with k vertices.

Stein and Zarate-Guerén [16], using an elegant tensoring trick, observed that a digraph
H with more than (¢—1)|V (H)| edges contains a subgraph of minimum pseudo-semidegree
at least £/2. Hence, as a corollary of Theorem 2 we obtain the following improvement
towards a conjecture of Addario-Berry, Havet, Linhares Sales, Reed and Thomassé [1].

Corollary 3. Every oriented graph G with more than (5k + 4)|V(G)|/4 edges contains
an alternating path with k vertices.

2 The proof of Theorem 2.

We start with some notation. Let G = (V, l_j) be an oriented graph. For a vertex
v eV and a vertex set X C V let Ni(v) and N5 (v) denote {z € X : (v,z) € D} and
{z € X : (z,v) € D} respectively. Let d¥(v) := |N}(v)| and dy(v) := |[Nx(v)|. Let
N7t (v) := Nif (v) and N~ (v) := Ny, (v) denote the out- and in-neighbourhoods of v.

Suppose now that G is an oriented graph with 6°(G) > 5k/8. Let P a maximum
length alternating path in G, and assume for contradiction that P has strictly fewer than
k vertices. We recall a relevant result of Klimosova and Stein [12], restated below in a
convenient form.
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Proposition 4 ([12], Lemma 6). Let k' € N and let G be an oriented graph with 26°(G) >
K'. Let P be a longest alternating path in G and suppose that |P| is odd. Then |P| > k'—1.

Since we have 20°(G) > 5k/4 > [5k/4], | P| being odd would imply |P| > [5k/4] —1 > k,
a contradiction.

So, we may assume that P has an even number of vertices 2m < k. Let the vertices
of P be labeled py, ..., pom, in the order of the underlying undirected path. Without loss
of generality assume that the edge pyps is oriented toward p,. Let O and E be the sets of
the odd and even indexed vertices p;, respectively; we shall call them simply odd and even
vertices. Note that every edge of P is directed from an odd to an even vertex. Therefore,
by definition of §°(G), we have d*(v) > 5k/8 for every v € O and d~(w) > 5k/8 for every
weE.

Lemma 5. There is an alternating spanning cycle on V(P) = E U O such that each of
its edges is directed from odd to even.

Proof. We call an alternating path P' C G respectable if V(P') = F'UO and each edge of
P’ is oriented from an odd to an even vertex (in particular, one end vertex of P’ is odd
and one is even). The set of respectable paths is not empty, since P is respectable. Call
an even vertex v € E terminal if is an end vertex of a respectable path, and let T denote
the set of terminal vertices. Call an odd vertex v € O starting if it is an initial vertex of a
respectable path, and let S denote the set of starting vertices. So, for instance, ps,, € T
and p; € S, as witnessed by a respectable path P.

Suppose v € S is a starting vertex of some respectable path P’. If there is an edge
(v,w) € D from some w ¢ E U O, we would be able to extend P’ via the edge (v,w)
obtaining a longer alternating path. Thus we may assume that N (v) C EUO. So, since
dt o) =d*(v) > 5k/8 > (5/8) - 2m and |E| = |O| = m, we must have dj(v) > 0 and
also df(v) > 0. Similarly, for every terminal w € T we have N~ (w) C EU O, and in
particular d,(w) > 0 and dg(w) > 0.

Let now a € S be a starting vertex with dj;(a) = max{d}(v) : v € S}. Fix some

respectable path R starting at a, and denote its vertices a = ry,rs,..., 79, in the order
of the underlying undirected path. Note that for each r; € N} (a) we have r;_; € S, since
we have a respectable path 7;_1,...,71,7, ..., T9m. So, letting A := {r;_1: 7, € Nt (a)},

we have A C S and |A| = dj(a).
Now, by maximality of dj;(a), for each vertex u € A we have

dj(u) < dj(a) = |A],

and therefore
" 5 5
dS(u) > gk —|A] > 3 2m — | Al.

Let s := Y., d5(u). By the above, we have

u€eA

5> §|A| 2m — | A%
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On the other hand, counting the edges via out-degrees (note that there are at most

('g') < |A| edges among the vertices in A, as GG is an oriented graph) and using |O| = m,

yields
AZ
s < 04 ajm - 1),

It follows that
IAI2 5 2
+1A|(m — |A]) > 2|A] - 2m — |A[,
resulting in
m
di(a) = |A| > o

Now let B be the set of all vertices v € T such that there exists a respectable path
starting at a and terminating at v; note that B # (), as R is respectable and starts at a,
S0 9, € B. Let b € B be a vertex satisfying d,(b) = max{d,(v) : v € B}. Without
loss of generality we may assume that b = ry,. Note now that for each r; € N, (b)
we have r;y; € B due to the respectable path a = ry,...,7;, 7o, ..., 1. So, letting
C:={riz1: 17, € N5(b)}, we have C C B and |C| = d(b).

By maximality of d(b), for each vertex w € C' we have

do(w) < dp(b) = |C],

and so 5 5

Let t := ) ccdg(w). We obtain
5 2

On the other hand, counting the edges via in-degrees gives

LIk

=+ (Cl(m — €.

Hence,
C? 5
L s it —10n > 1012 -2m —

which results in

dg(b) = |C] > %

Notice now that |O| = m, and we have shown that N;5(b) C O and {r; : riy €
N (a)} C O are of size greater than m/2. Therefore, by pigeonhole, for some i we must
have 7; € N5 (b) = N5 (r9,) and 7,11 € N (a) = N (r1). This gives the desired cycle via
the cyclic ordering r1, ... 75, Tom, Tom—1, - - - s Tit1, T1- O
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We remark that Theorem 2 can now be deduced directly from Lemma 5 and Lemma 8
from [12]. Below we give an alternative argument that we believe carries some merit,
providing a different perspective.

Corollary 6. We have S = O and T = E. Consequently, for every a € O and b € E we
have N*(a) C EUO and N~ (b) C EUO.

Let now H be the simple bipartite graph obtained by taking all edges directed from
odd to even vertices, and ignoring their directions. We claim that not only is H hamilto-
nian (we already know this) but it satisfies, with room to spare, the Moon-Moser degree
condition for hamiltonicity of bipartite graphs. To this end, let d(v) denote the degree of
a vertex v € EU O in the graph H.

Lemma 7. For every 1 < { < m/2 we have
HveO:dw) <l{+1} <.

And, symmetrically,
Hwe E:dw)<l+1} < /.

Proof. Suppose for a contradiction that for some 1 < ¢ < m/2 there exists a set L C O
(the statement for F is proved in the same way) of ¢ vertices of H-degree at most ¢ + 1.
Then each vertex v € L satisfies (using d*(v) > 5k/8 and k > 2m + 1)

djg(v)>§k—€—1>g(2m+1)+1—€—1

8
5 1
It follows that
5 1 m—1 (-1
Nt Ll>-m—{—-—(m—/{)=
|(v)ﬂ|>4m€4(m€) T g
a contradiction, counting out-degrees inside L. O

Lemma 8. G contains an alternating path () on 2m vertices, of the form qy ... qom, where
(odd-indezed) g3, . .., qom—1 € O, (even-indexed) q4,...,qom € E, @2 € O, ¢ ¢ EUO, and
the edge q1qs is directed from q; to qs.

Proof. Recall that d5(v) > 0 for every v € O. So, take two vertices ¢2,q3 € O such
that (g3, q2) € D. Since d~(g2) > 0, by the minimum pseudo-semidegree condition we
have d~(q2) > 5k/8 > (5/8) - 2m in addition to d*(gs) > (5/8) - 2m, as g € O. Since
by Corollary 6 we have N*(gp) C EUO, and G is an oriented graph, we conclude that
N7 (q2) \ (FUO) # 0, and so g2 has an in-neighbour ¢; ¢ E U O.

Let O' = O\ {q2}, and let E’ be the set E' with an arbitrary vertex removed. Then,
by Lemma 7, the bipartite graph H' = H[E' U O'] satisfies the Moon-Moser condition
(Corollary 1 in [13]): for any 1 < ¢ < |O'|/2 = (m — 1)/2 the number of vertices in O’ of
H'-degree at most ¢ (thus, H-degree at most ¢ + 1) is less than ¢, and symmetrically in
E’. Therefore, H' has a hamilton cycle, and, a fortiori, a hamilton path ¢s, ..., ga,,. This
yields a desired alternating path Q = ¢1,¢2,¢3, ..., q2m in G. O
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Observe that Lemma 5 applies to any alternating path on 2m vertices, and in particu-
lar, to @, in place of P. Now consider the vertex go. Since g € O, we have N*(¢q) C EUO.
On the other hand, ¢, plays the role of an ‘even’ vertex in (). So, by Lemma 5 we must
have N~ (q2) C EUO U {q}. Put together, this would imply d~(g2) + d"(g2) < 2m,
contradicting the fact that do(g2) > (5/8) - 2m, as G is an oriented graph. This concludes
the proof.
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