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Abstract

We construct a set of 2n points in Rn such that all pairwise Manhattan distances
are odd integers, which improves the recent linear lower bound of Golovanov, Ku-
pavskii and Sagdeev. In contrast to the Euclidean and maximum metrics, this shows
that the odd-distance set problem behaves very differently to the equilateral set
problem under the Manhattan metric. Moreover, all coordinates of the points in
our construction are integers or half-integers, and we show that our construction is
optimal under this additional restriction.

Mathematics Subject Classifications: 52C10, 05D99, 05C35

1 Introduction

An equilateral set in a metric space is a set of points in which all pairwise distances are
the same. Determining the largest equilateral set in a metric space has been well-studied
and the case of Rn equipped with the ℓp-norm

1 ∥·∥p has received significant attention.
Denoting the size of the largest equilateral set in Rn with the ℓp-norm by ep(n), Table 1
gives a summary of the best bounds known for p ∈ {1, 2,∞}.

An old conjecture of Kusner [5] states that ep(n) = n+ 1 for all integers 1 < p < ∞
and e1(n) = 2n. For progress on Kusner’s conjecture, see for example [1, 7, 8].

Graham, Rothschild and Straus [4] introduced the following relaxation of an equilateral
set. An odd-distance set in a metric space is a set of points in which all pairwise distances
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1A point v = (v1, . . . , vn) ∈ Rn has ℓp-norm ∥v∥p :=
(∑

i|vi|p
)1/p

for 1 ⩽ p < ∞ and has ℓ∞-norm
∥v∥∞ := maxi|vi|.
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Lower bound Upper bound

e1(n) 2n cross polytope cn log n Alon and Pudlák [1]
e2(n) n+ 1 unit simplex n+ 1 folklore
e∞(n) 2n unit hypercube 2n Petty [6]

Table 1: The size of the largest equilateral sets in (Rn, ∥·∥p).

are odd integers. We denote the size of the largest odd-distance set in Rn equipped with
the ℓp-norm by oddp(n). In a normed space, any equilateral set can be scaled to a set
where all pairwise distances are 1, and so oddp(n) ⩾ ep(n). Table 2 gives a summary of
the best bounds known for oddp(n). The bounds for odd2(n) were proved in the original
paper of Graham, Rothschild and Straus [4], who in fact determined the exact value of
odd2(n) (it is n+1 except when n ≡ −2 (mod 16)). The other bounds are due to a recent
paper of Golovanov, Kupavskii and Sagdeev [3].

Lower bound Upper bound

odd1(n) (7
3
− o(1))n [3] (4 + o(1))n!n log n [3]

odd2(n) n+ 1 unit simplex n+ 2 [4]
odd∞(n) 2n unit hypercube 2n [3]

Table 2: The size of the largest odd-distance sets in (Rn, ∥·∥p).

From these results we see that relaxing from the equilateral to the odd-distance problem
makes very little difference for the ℓ2 and ℓ∞-norms. The case of the ℓ1-norm is less clear:
the lower bound of Golovanov, Kupavskii and Sagdeev [3] for odd1(n) is larger than
Kusner’s conjectured upper bound for e1(n), but only by a constant multiplicative factor,
and it is still smaller than the upper bound proven by Alon and Pudlák [1].

In this note, we significantly improve the lower bound for odd1(n), showing that there
are odd-distance sets of size 2n under the ℓ1-norm. Together with the upper bound for e1(n)
of Alon and Pudlák [1], this confirms in a strong sense that the equilateral and odd-distance
problems behave very differently for the ℓ1-norm.

Theorem 1. For all positive integers n, odd1(n) ⩾ 2n. Moreover, there is an ℓ1-odd-
distance set P ⊆ (1

2
· Z)n of size 2n.

It is not possible to replace the half-integer lattice (1
2
· Z)n by the integer lattice Zn in

the statement of Theorem 1. Indeed, there is not even an odd-distance set of size 3 in Zn:
every integer x satisfies |x| ≡ x (mod 2) and so, for any integer points a,b, c ∈ Zn, we
have that ∥a− b∥1 + ∥b− c∥1 ≡ ∥a− c∥1 (mod 2).

As a corollary of our result, we obtain a lower bound on the chromatic number of the
odd-distance graph on (Rn, ∥·∥1). This is the infinite graph with vertex set Rn where two
vertices are adjacent whenever their distance in the ℓ1-norm is an odd integer. Theorem 1
immediately implies that any proper colouring of this graph must use at least 2n colours.
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The best upper bound is the same as the upper bound on odd1(n) obtained by Golovanov,
Kupavskii and Sagdeev [3]. This is in stark contrast with the case of the Euclidean
distance, where Davies [2] recently proved that any proper colouring must use infinitely
many colours, even in dimension 2.

We further show that Theorem 1 is best possible in the case that all coordinates are
half-integers.

Proposition 2. Let P ⊆ (1
2
· Z)n be an ℓ1-odd-distance set. Then |P| ⩽ 2n.

As a last result, we also note that, when considering odd-distance sets in the ℓ1-norm,
we may restrict the coordinates to be elements of the ring Z[1

2
] of dyadic rationals (that is,

rational numbers whose denominators are powers of 2).

Proposition 3. For any ℓ1-odd-distance set P ⊆ Rn, there exists an ℓ1-odd-distance set
Q ⊆ (Z[1

2
])n of the same size as P.

2 Proofs

To prove the lower bound on odd1(n), we will inductively construct an odd-distance set
of size 2n. We will achieve this by splitting in two a coordinate of each point of an
odd-distance set in Rn. By doing this in two distinct ways, we replace each point with
two points in Rn+1. This construction relies on the following simple lemma.

Lemma 4. For every x ∈ 1
2
· Z, there exists an odd-distance set P ⊆ (1

2
· Z)2 of size 2

such that the coordinates of each point sum to x and all coordinates are at least x/2− 1/2
and at most x/2 + 1/2.

Proof. If x ∈ Z, let

P =

{(
x

2
+

1

2
,
x

2
− 1

2

)
,

(
x

2
,
x

2

)}
.

Otherwise, if x ∈ Z+ 1
2
, let

P =

{(
x

2
+

1

4
,
x

2
− 1

4

)
,

(
x

2
− 1

4
,
x

2
+

1

4

)}
.

Clearly, in both cases P satisfies the claim.

We may now prove our main result. Our strategy is to start with an odd-distance set
P ⊆ (1

2
· Z)n and first space out the points in P in the first dimension. We achieve this

by translating the first coordinate of each point by some even integer while maintaining
their order in the first dimension and the odd-distance property. Then we replace each
first coordinate by the odd-distance set in (1

2
· Z)2 given by Lemma 4. Because the first

dimension was sufficiently spaced out in advance, this guarantees that the relative order
of the points in the two new dimensions will be the same as their relative order in the old
dimension. As a result, the new set will be an odd-distance set in (1

2
· Z)n+1 of size 2|P|.
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Theorem 1. For all positive integers n, odd1(n) ⩾ 2n. Moreover, there is an ℓ1-odd-
distance set P ⊆ (1

2
· Z)n of size 2n.

Proof. We will prove, by induction on n, that (1
2
· Z)n contains an ℓ1-odd-distance set

of size 2n for all n ⩾ 1. For n = 1, the set P = {0, 1} suffices. Now, suppose P is an
odd-distance set in (1

2
· Z)n of size 2n. We label the points of P as p1, . . . , p2n so that the

first coordinate is increasing. That is, for all i ∈ [2n] we may write pi = (ai, vi), where
a1 ⩽ a2 ⩽ · · · ⩽ a2n and the vectors vi are in (1

2
· Z)n−1.

For each i ∈ [2n], let bi := ai + 2i and qi := (bi, vi). Note that Q := {q1, . . . ,q2n} is
also an ℓ1-odd-distance set in (1

2
· Z)n. Indeed, for 1 ⩽ i < j ⩽ 2n,

∥qj − qi∥1 = (bj − bi) + ∥vj − vi∥1
= (aj − ai) + ∥vj − vi∥1 + 2(j − i)

= ∥pj − pi∥1 + 2(j − i),

which is odd.
By Lemma 4, for each i ∈ [2n] there is an odd-distance set Ci = {c(1)i , c(2)i } ⊆ (1

2
· Z)2

where the coordinates of each point sum to bi and all coordinates are between bi/2− 1/2

and bi/2 + 1/2. For each i ∈ [2n], let q(1)
i := (c(1)i , vi) and q(2)

i := (c(2)i , vi). Finally, let

Q′ := {q(1)
1 ,q(2)

1 , . . . ,q(1)
2n ,q

(2)
2n }. Clearly, since all the bi are distinct, Q′ is a subset of

(1
2
· Z)n+1 of size 2n+1. It remains to show that it is an ℓ1-odd-distance set.
First note that, for all i ∈ [2n],

∥q(1)
i − q(2)

i ∥1 = ∥c(1)i − c(2)i ∥1 + ∥vi − vi∥1 = ∥c(1)i − c(2)i ∥1,

which is odd as Ci is an odd-distance set. Now fix 1 ⩽ i < j ⩽ 2n and consider the distance
between q(r)

i and q(s)
j , where r, s ∈ {1, 2}. Recall, from our choice of the bi, that bj ⩾ bi+2.

Since the coordinates of c(r)i are at most bi/2 + 1/2 and the coordinates of c(s)j are at least

bj/2− 1/2, both coordinates of c(r)i are bounded from above by both coordinates of c(s)j .

Since the sum of the coordinates of c(r)i is bi and the sum of the coordinates of c(s)j is bj , it
follows that

∥c(s)j − c(r)i ∥1 = bj − bi.

Thus,

∥q(s)
j − q(r)

i ∥1 = ∥c(s)j − c(r)i ∥1 + ∥vj − vi∥1 = (bj − bi) + ∥vj − vi∥1 = ∥qj − qi∥1,

which is odd since Q is an odd-distance set, as required.

If we restrict a point set to having half-integer coordinates, we show that our construc-
tion is optimal. We prove this with a simple pigeonhole argument.

Proposition 2. Let P ⊆ (1
2
· Z)n be an ℓ1-odd-distance set. Then |P| ⩽ 2n.
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Proof. Let ϕ : P → {0, 1}n be defined by setting ϕ(p) := (1{pi∈Z+1/2})i∈[n].
First, we note that there cannot be two points p,q ∈ P with ∥ϕ(p)∥1 ̸≡ ∥ϕ(q)∥1

(mod 2). Indeed, in such a case, there would be an odd number of coordinates i ∈ [n]
such that |pi − qi| ∈ Z+ 1/2, which implies that ∥p− q∥1 is not an integer. In particular,
|ϕ(P)| ⩽ 2n−1.

Secondly, we claim that there cannot be three points a,b, c ∈ P with ϕ(a) = ϕ(b) =
ϕ(c). Indeed, otherwise ai − bi, bi − ci, and ci − ai are integers for all i ∈ [n], and so

∥a− b∥1 =
n∑

i=1

|ai − bi| ≡
n∑

i=1

(ai − bi) (mod 2),

∥b− c∥1 =
n∑

i=1

|bi − ci| ≡
n∑

i=1

(bi − ci) (mod 2),

∥a− c∥1 =
n∑

i=1

|ai − ci| ≡
n∑

i=1

(ai − ci) (mod 2).

Adding the first two expressions and comparing with the last one, we conclude that

∥a− b∥1 + ∥b− c∥1 ≡ ∥a− c∥1 (mod 2),

which is impossible, as the sum of two odd numbers is even. Thus, |P| ⩽ 2·|ϕ(P)| ⩽ 2n.

Finally, we show that we may assume all points in ℓ1-odd-distance sets P have rational
coordinates. Indeed, the pairwise distances between the points of P can be expressed
by a system of linear equations on the coordinates of the points of P. Solutions to this
system of linear equations can be characterised by a set of free variables whose choice
determines all other variables. If we now replace all coordinates corresponding to free
variables by nearby rational numbers, this determines all remaining coordinates, and those
coordinates will also be rational since the coefficients of the linear equations were rational.
This gives a point set with rational coefficients, and if the order of the coordinates did not
change, then the distances between the points remain the same. So, the point set will be
an odd-distance set.

Lemma 5. For any ℓ1-odd-distance set P ⊆ Rn, there exists an odd-distance set Q ⊆ Qn

of the same size as P.

Proof. By iteratively translating coordinates as in the proof of Theorem 1, we may assume
that |pi − qi| ⩾ 2 for all distinct points p,q ∈ P and all i ∈ [n]. Let sp,qi := 1 if pi > qi and
sp,qi := −1 otherwise. Then

∥p− q∥1 =
n∑

i=1

sp,qi (pi − qi).

Write dp,q := ∥p − q∥1 and introduce a variable xp,i for all p ∈ P and all i ∈ [n]. This
means that the system of linear equations

n∑
i=1

sp,qi (xp,i − xq,i) = dp,q
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for all distinct p,q ∈ P has a solution given by xp,i = pi for all p ∈ P and all i ∈ [n].
Since all coefficients and all dp,q are integers, the reduced row echelon form of this

system of linear equations only has rational coefficients. Thus, in the reduced row echelon
form, there exists a set of indices F ⊆ P × [n] such that xf is a free variable for all
f ∈ F while xg is a dependent variable for all g /∈ F , with xg = ag +

∑
f∈F bf,gxf for some

ag, bf,g ∈ Q.
Let C := maxf∈F ,g /∈F |bf,g|. For each (p, i) ∈ F , choose yp,i ∈ Q so that |yp,i − pi| <

1/(C|P|n). For each (p, i) /∈ F let yp,i = ap,i +
∑

f∈F bf,(p,i)yf , and note that yp,i ∈ Q and

|yp,i − pi| =

∣∣∣∣∣∣
ap,i +

∑
(q,j)∈F

b(q,j),(p,i)yq,j

−

ap,i +
∑

(q,j)∈F

b(q,j),(p,i)qj

∣∣∣∣∣∣
⩽

∑
(q,j)∈F

∣∣b(q,j),(p,i) (yq,j − qj)
∣∣ < |F|C

C|P|n
⩽ 1,

where the first equality used the fact that xp,i = pi is a solution to the system of equations.
For each p ∈ P, let p′ ∈ Qn be the point with p′i = yp,i. Consider two distinct points

p,q ∈ P . For each i, if pi < qi, then pi + 2 ⩽ qi by assumption, and since |p′i − pi| < 1 and
|q′i − qi| < 1, this implies that p′i < q′i. Similarly, if pi > qi, then p′i > q′i. Therefore,

∥p′ − q′∥1 =
n∑

i=1

sp,qi (p′i − q′i) = dp,q,

where the last equality uses the fact that xp,i = p′i is a solution to the system of equations.
In particular, the distance between p′ and q′ is odd, and so Q = {p′ : p ∈ P} ⊆ Qn is an
odd-distance set of the same size as P .

Proposition 3 is now an easy consequence since, if we scale all coordinates of an
odd-distance set by a fixed odd integer, the resulting set is still an odd-distance set.

Proposition 3. For any ℓ1-odd-distance set P ⊆ Rn, there exists an ℓ1-odd-distance set
Q ⊆ (Z[1

2
])n of the same size as P.

Proof. By Lemma 5, there exists an odd-distance set Q ⊆ Qn of the same size as P.
Let C be the least common multiple of all odd integers that divide the denominator of
any coordinate of any point of Q. Clearly, C is an odd integer, and Q′ := {Cq : q ∈ Q} ⊆
(Z[1

2
])n. Moreover, for all distinct points Cp, Cq ∈ Q′ we have ∥Cp− Cq∥1 = C∥p− q∥1,

which is an odd integer as a product of two odd integers, and so Q′ is an odd-distance
set.
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