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Abstract

We construct a set of 2™ points in R™ such that all pairwise Manhattan distances
are odd integers, which improves the recent linear lower bound of Golovanov, Ku-
pavskii and Sagdeev. In contrast to the Euclidean and maximum metrics, this shows
that the odd-distance set problem behaves very differently to the equilateral set
problem under the Manhattan metric. Moreover, all coordinates of the points in
our construction are integers or half-integers, and we show that our construction is
optimal under this additional restriction.

Mathematics Subject Classifications: 52C10, 05D99, 05C35

1 Introduction

An equilateral sel in a metric space is a set of points in which all pairwise distances are
the same. Determining the largest equilateral set in a metric space has been well-studied
and the case of R" equipped with the £,-norm' ||-||, has received significant attention.
Denoting the size of the largest equilateral set in R™ with the ¢,-norm by ¢,(n), Table 1
gives a summary of the best bounds known for p € {1,2, co}.

An old conjecture of Kusner [5] states that e,(n) =n + 1 for all integers 1 < p < 0o
and ej(n) = 2n. For progress on Kusner’s conjecture, see for example [1, 7, 8].

Graham, Rothschild and Straus [4] introduced the following relaxation of an equilateral
set. An odd-distance set in a metric space is a set of points in which all pairwise distances
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YA point v = (vq,...,v,) € R™ has (,-norm ||v|, = (Zim‘p)l/P for 1 < p < oo and has (. -norm
V]| oo = max;|v;].
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Lower bound Upper bound

er(n) 2n cross polytope  cnlogn  Alon and Pudldk [1]
ea(n)  n+1 unit simplex n+1  folklore
exo(n) 2" unit hypercube 2" Petty [6]

Table 1: The size of the largest equilateral sets in (R™, ||-||,).

are odd integers. We denote the size of the largest odd-distance set in R" equipped with
the ¢,-norm by odd,(n). In a normed space, any equilateral set can be scaled to a set
where all pairwise distances are 1, and so odd,(n) > e,(n). Table 2 gives a summary of
the best bounds known for odd,(n). The bounds for odds(n) were proved in the original
paper of Graham, Rothschild and Straus [4], who in fact determined the exact value of
oddy(n) (it is n + 1 except when n = —2 (mod 16)). The other bounds are due to a recent
paper of Golovanov, Kupavskii and Sagdeev [3].

Lower bound Upper bound
oddi(n) (£ —o(1))n [3] (44 o(1))n!nlogn [3]
odda(n) n+1 unit simplex n+ 2 4
oddy(n) 2™ unit hypercube 2" 3]

Table 2: The size of the largest odd-distance sets in (R", [|-]|,).

From these results we see that relaxing from the equilateral to the odd-distance problem
makes very little difference for the /5 and ¢,,-norms. The case of the ¢1-norm is less clear:
the lower bound of Golovanov, Kupavskii and Sagdeev [3] for odd;(n) is larger than
Kusner’s conjectured upper bound for e;(n), but only by a constant multiplicative factor,
and it is still smaller than the upper bound proven by Alon and Pudlak [1].

In this note, we significantly improve the lower bound for odd;(n), showing that there
are odd-distance sets of size 2" under the ¢;-norm. Together with the upper bound for e;(n)
of Alon and Pudlék [1], this confirms in a strong sense that the equilateral and odd-distance
problems behave very differently for the ¢;-norm.

Theorem 1. For all positive integers n, odd;(n) = 2". Moreover, there is an {1-odd-
distance set P C (5 - Z)" of size 2".

It is not possible to replace the half-integer lattice (% - Z)™ by the integer lattice Z" in
the statement of Theorem 1. Indeed, there is not even an odd-distance set of size 3 in Z™:
every integer z satisfies |x| = x (mod 2) and so, for any integer points a,b,c € Z", we
have that ||a —bl|; +||b—c|; = |]a— c||; (mod 2).

As a corollary of our result, we obtain a lower bound on the chromatic number of the
odd-distance graph on (R™, ||-|[1). This is the infinite graph with vertex set R™ where two
vertices are adjacent whenever their distance in the ¢;-norm is an odd integer. Theorem 1
immediately implies that any proper colouring of this graph must use at least 2" colours.
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The best upper bound is the same as the upper bound on odd;(n) obtained by Golovanov,
Kupavskii and Sagdeev [3]. This is in stark contrast with the case of the Euclidean
distance, where Davies [2] recently proved that any proper colouring must use infinitely
many colours, even in dimension 2.

We further show that Theorem 1 is best possible in the case that all coordinates are
half-integers.

Proposition 2. Let P C (5 - Z)" be an {1-odd-distance set. Then |P| < 2"

As a last result, we also note that, when considering odd-distance sets in the ¢;-norm,
we may restrict the coordinates to be elements of the ring Z[;| of dyadic rationals (that is,
rational numbers whose denominators are powers of 2).

Proposition 3. For any {i-odd-distance set P C R", there exists an {1-odd-distance set
Q C (Z[E])" of the same size as P.

2

2 Proofs

To prove the lower bound on odd;(n), we will inductively construct an odd-distance set
of size 2". We will achieve this by splitting in two a coordinate of each point of an
odd-distance set in R™. By doing this in two distinct ways, we replace each point with
two points in R™"*1. This construction relies on the following simple lemma.

Lemma 4. For every x € % -7, there exists an odd-distance set P C (% - 7Z)* of size 2
such that the coordinates of each point sum to x and all coordinates are at least x/2 —1/2
and at most x/2+1/2.

Proof. It x € Z, let

(Clearly, in both cases P satisfies the claim. O

We may now prove our main result. Our strategy is to start with an odd-distance set
P C (3 - Z)" and first space out the points in P in the first dimension. We achieve this
by translating the first coordinate of each point by some even integer while maintaining
their order in the first dimension and the odd-distance property. Then we replace each
first coordinate by the odd-distance set in (% - 7Z)?* given by Lemma 4. Because the first
dimension was sufficiently spaced out in advance, this guarantees that the relative order
of the points in the two new dimensions will be the same as their relative order in the old

dimension. As a result, the new set will be an odd-distance set in (% - Z)"t of size 2|P|.
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Theorem 1. For all positive integers n, odd;(n) > 2". Moreover, there is an {1-odd-
distance set P C (% )" of size 2".

Proof. We will prove, by induction on n, that (% - Z)™ contains an {1-odd-distance set
of size 2" for all n > 1. For n = 1, the set P = {0, 1} suffices. Now, suppose P is an
odd-distance set in (1 - Z)" of size 2". We label the points of P as py, ..., Py so that the
first coordinate is increasing. That is, for all ¢ € [2"] we may write p, = (a;,v;), where
a; < as < -+ < agm and the vectors v; are in (1 7))L

For each ¢ € [2"], let b; == a; + 2i and q; = (b;,v;). Note that Q == {qy,..., Qs } is

also an /;-odd-distance set in (3 - Z)". Indeed, for 1 <i < j < 27,

la; — q;llr = (b — i) + |lv; — villx
( —a;) + HV] Vi“l +2(j —1)
= |p; — pyllx +2(j — ),

which is odd.
By Lemma 4, for each i € [2"] there is an odd-distance set C; = {c(l) } C(3-2)*

1) Z

where the coordinates of each point sum to b; and all Coordlnates are between b; /2 — 1/2

and b;/2 + 1/2. For each i € [2"], let q = (c; c” v;) and q (cZ@),vi). Finally, let
Q = {qgl),qf), o ,qéi),qgi)}. Clearly, since all the b; are dlstlnct, Q' is a subset of

(5 - Z)"** of size 2"1. It remains to show that it is an ¢;-odd-distance set.
First note that, for all ¢ € [2"],

lal” — @@l = [lc” — Pl + [lvi — vl = [|le” — s,

which is odd as C; 1s an odd-distance set. Now fix 1 <7 < j < 2" and consider the distance
between qz» ) and qj , where r, s € {1,2}. Recall, from our choice of the b;, that b; > b, + 2.
Since the coordinates of cl(-r) are at most b;/2 + 1/2 and the coordinates of cgs) are at least
b;/2 — 1/2, both coordinates of cgr) are bounded from above by both coordinates of cgs)

Since the sum of the coordinates of cgr) is b; and the sum of the coordinates of cﬁs) is b;, it
follows that
el — €[y = b; — ;.

Thus,

gl —ai |l = 11 — ey + vy — willy = (b — b)) + [lv; — villy = [la; — a1,

which is odd since @ is an odd-distance set, as required. O

If we restrict a point set to having half-integer coordinates, we show that our construc-
tion is optimal. We prove this with a simple pigeonhole argument.

Proposition 2. Let P C (3 - Z)" be an {1-odd-distance set. Then |P| < 2

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.32 4



Proof. Let ¢: P — {0,1}" be defined by setting ¢(p) = (L{p,cz+1/2} )icn]-

First, we note that there cannot be two points p,q € P with ||¢(p)|1 Z [|¢(q)]:
(mod 2). Indeed, in such a case, there would be an odd number of coordinates ¢ € [n]
such that |p; — ¢;| € Z + 1/2, which implies that ||p — q||; is not an integer. In particular,
6(P)| <277

Secondly, we claim that there cannot be three points a, b, c € P with ¢(a) = ¢(b) =
¢(c). Indeed, otherwise a; — b;, b; — ¢;, and ¢; — a; are integers for all 7 € [n], and so
la—=blly = lai = b= (a; —b;) (mod 2),
i=1

=1
n

Ib—cli=> Ibi—ci| =) (b —¢) (mod2),
i=1

=1
la—cli = lai—ci| = (ai—¢) (mod2).
=1 =1

Adding the first two expressions and comparing with the last one, we conclude that
la—bli +[lb—clly=a—c[i (mod?2),
which is impossible, as the sum of two odd numbers is even. Thus, |P| < 2:|¢(P)| < 2. O

Finally, we show that we may assume all points in ¢;-odd-distance sets P have rational
coordinates. Indeed, the pairwise distances between the points of P can be expressed
by a system of linear equations on the coordinates of the points of P. Solutions to this
system of linear equations can be characterised by a set of free variables whose choice
determines all other variables. If we now replace all coordinates corresponding to free
variables by nearby rational numbers, this determines all remaining coordinates, and those
coordinates will also be rational since the coefficients of the linear equations were rational.
This gives a point set with rational coefficients, and if the order of the coordinates did not
change, then the distances between the points remain the same. So, the point set will be
an odd-distance set.

Lemma 5. For any (1-odd-distance set P C R", there exists an odd-distance set Q C Q"
of the same size as P.

Proof. By iteratively translating coordinates as in the proof of Theorem 1, we may assume
that |p; — ¢;| > 2 for all distinct points p,q € P and all i € [n]. Let s := 1if p; > ¢; and
s7%:= —1 otherwise. Then
Ip—alli = Z st (pi — ¢i)-
i=1
Write dpq = ||p — |1 and introduce a variable z,; for all p € P and all ¢ € [n]. This
means that the system of linear equations

n

Z P (Tpi — Tqi) = dpg

=1
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for all distinct p,q € P has a solution given by z,; = p; for all p € P and all i € [n].

Since all coefficients and all d,, q are integers, the reduced row echelon form of this
system of linear equations only has rational coefficients. Thus, in the reduced row echelon
form, there exists a set of indices F C P x [n] such that x; is a free variable for all
f € F while z, is a dependent variable for all g ¢ F, with x, = a,+ ;.7 by gz for some
Qg, bﬁg € Q.

Let C := maxyer 4¢7|bsy|. For each (p,i) € F, choose y,; € Q so that |y,; — pi| <
1/(C|PIn). For each (p,i) ¢ F let yp; = ap; + > ;7 br.(piyyy, and note that y,; € Q and

|yp,i - pl| = ap;i + Z b(q,j),(P,i)qu — a’p,i _|_ Z b(qyj%(p’i)qj
(@)eF (a,5)€F
IFIC
(a,5)eF

where the first equality used the fact that z,; = p; is a solution to the system of equations.

For each p € P, let p’ € Q" be the point with p, = y,,. Consider two distinct points
p,q € P. For each i, if p; < ¢;, then p; + 2 < ¢; by assumption, and since |p; — p;| < 1 and
|¢; — q;| < 1, this implies that p; < ¢.. Similarly, if p; > ¢;, then p; > ¢.. Therefore,

n

Ip' =l =D PP, — q) = dpa,

=1

where the last equality uses the fact that xp; = p/ is a solution to the system of equations.
In particular, the distance between p’ and ¢’ is odd, and so @ = {p’ : p € P} C Q" is an
odd-distance set of the same size as P. ]

Proposition 3 is now an easy consequence since, if we scale all coordinates of an
odd-distance set by a fixed odd integer, the resulting set is still an odd-distance set.

Proposition 3. For any {i-odd-distance set P C R", there exists an {1-odd-distance set
Q C (Z[3]))™ of the same size as P.

Proof. By Lemma 5, there exists an odd-distance set @ C Q" of the same size as P.
Let C be the least common multiple of all odd integers that divide the denominator of
any coordinate of any point of Q. Clearly, C' is an odd integer, and Q" :={Cq:q € Q} C
(Z[35])™. Moreover, for all distinct points Cp, Cq € Q' we have |Cp — Cqll; = C||p — ql|1,
which is an odd integer as a product of two odd integers, and so Q' is an odd-distance
set. O
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