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Abstract

Extending a classic result of Johnson and Newman, this paper provides a matrix
characterization for two generalized cospectral graphs with a pair of generalized
cospectral vertex-deleted subgraphs. As an application, we present a new condition
for the reconstructibility of a graph. Namely, if a vertex-deleted subgraph G− v of
G is almost controllable, then the graph G is reconstructible if G − v either has a
nontrivial automorphism group, or is asymmetric with a specific property.

Mathematics Subject Classifications: 05C50

1 Introduction

Let G be an n-vertex graph with adjacency matrix A(G). The spectrum of G refers to
the multiset of eigenvalues of A(G). Two graphs G and H are cospectral if they share the
same spectrum. It is known that if G and H are cospectral then there exists an orthogonal
matrix Q such that QTA(G)Q = A(H).

We are interested in two kinds of enhancements of the ordinary cospectrality: rooted-
cospectrality and generalized cospectrality. Let (G, u) be a rooted graph with u as the
root vertex. We say two rooted graphs (G, u) and (H, v) are cospectral if (1) G and H
are cospectral and (2) G− u and H − v are also cospectral. It turns out that the rooted-
cospectrality of graphs can be characterized by specific orthogonal matrices, as described
in the following theorem. Without loss of generality, we may assume that the root vertices
are labeled as the last vertices in graphs.

Theorem 1 ([14, 18]). Let G and H be two n-vertex graphs with vertex sets {u1, . . . , un}
and {v1, . . . , vn}. Then the following are equivalent:
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(i) (G, un) and (H, vn) are cospectral.

(ii) There exists an orthogonal matrix of the form

󰀕
Q O
O 1

󰀖
such that

󰀕
QT O
O 1

󰀖
A(G)

󰀕
Q O
O 1

󰀖
= A(H).

We say that two graphs G and H are generalized cospectral if G and H are cospectral
with cospectral complements. Similar to rooted-cospectrality, generalized cospectrality
can be characterized by a special kind of orthogonal matrices. An orthogonal matrix is
regular if the sum of each row is 1.

Theorem 2 ([12]). Let G and H be two graphs. Then the following are equivalent:
(i) G and H are generalized cospectral.
(ii) There exists a regular orthogonal matrix Q such that QTA(G)Q = A(H).

A primary goal of this paper is to unify the above two theorems. We say that two
rooted graphs (G, u) and (H, v) are generalized cospectral if (1) G and H are generalized
cospectral, and (2) G−u and H − v are also generalized cospectral. The first main result
of this paper is the following theorem.

Theorem 3. Let G and H be two n-vertex graphs with vertex sets {u1, . . . , un} and
{v1, . . . , vn}. Then the following are equivalent:
(i) (G, un) and (H, vn) are generalized cospectral, i.e., four graphs G,G,G−un and G− un

are cospectral with H,H,H − vn and H − vn, respectively.

(ii)There exists a regular orthogonal matrix of the form

󰀕
Q O
O 1

󰀖
such that

󰀕
QT O
O 1

󰀖
A(G)

󰀕
Q O
O 1

󰀖
= A(H).

The proof of Theorem 3 will be given in Section 2. We remark that Theorem 3 was
reported by Farrugia [3] in a different but essentially equivalent form, using the notion of
overgraphs. However, the proof in [3] contains a gap, which the present work aims to fill;
see Remark 10 in the next section. As an important application of Theorem 3, we obtain
a new condition for the reconstructibility of graphs. To state the result, we recall some
basic notions.

Given a graph G with vertex set {u1, . . . , un}, the deck of G, denoted by D(G), is the
multiset of its vertex-deleted (unlabeled) subgraphs G−ui for i = 1, . . . , n. A graph H is
called a reconstruction of G if D(H) = D(G). If every reconstruction of G is isomorphic
to G, then G is said to be reconstructible. The Reconstruction Conjecture (also called
Ulam Conjecture or Kelly-Ulam Conjecture) claims that every graph with at least three
vertices is reconstructible. The conjecture has been proved for various graph classes,
such as regular graphs, disconnected graphs, trees and outerplanar graphs. It has been
verified by McKay [15] that all graphs with at most 13 vertices are reconstructible. In
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a probabilistic sense, Bollobás [1] showed that almost all graphs are reconstructible, i.e.,
the probability that a randomly chosen graph on n vertices is reconstructible approaches
1 as n tends to infinity.

A classic result of Tutte [19] states that the characteristic polynomial of a graph is
reconstructible and, moreover, that graphs with irreducible characteristic polynomials are
reconstructible. Tutte’s result has received considerable attention, as it demonstrates that
linear algebraic methods are powerful tools for tackling the Reconstruction Conjecture.
Several authors have made efforts to rederive or extend Tutte’s results, see, e.g., [4, 6, 7,
10, 11, 13, 22].

An eigenvalue λ of a graphG is called amain eigenvalue if the corresponding eigenspace
is not orthogonal to the all-ones vector. An n-vertex graph G is called controllable [5]
if it has n main eigenvalues, and almost controllable [23] if it has n− 1 main eigenvalues.
It is known that graphs with irreducible characteristic polynomials are controllable, but
the converse does not hold. Tutte’s result was further improved by Godsil and McKay
[6], who showed that all graphs in a specific family—including all controllable and almost
controllable graphs—are reconstructible.

Currently, it is unknown whether almost all graphs have irreducible characteristic
polynomials. However, O’Rourke and Touri [16] proved that almost all graphs are con-
trollable, improving upon the result of Tao and Vu [20], which states that almost all graphs
have simple spectrum. Thus the result of Godsil and McKay [6] provides an alternative
proof—using spectral graph theoretic methods—of the result of Bollobás [1] that almost
all graphs are reconstructible.

As a natural extension of the Tutte’s theorem and its subsequent improvement by
Godsil and McKay, Hong [8] established the following reconstructibility criterion for a
graph based on the properties of its deck.

Theorem 4 ([8]). Let G be a graph with at least three vertices. If there exists a vertex-
deleted subgraph that is controllable, then G is reconstructible.

Inspired by the similarity between Hong’s theorem and the theorem of Godsil and
McKay, it is natural to ask whether the controllability assumption in Theorem 4 can be
relaxed to almost controllability. As a direct application of Theorem 3, we provide an
affirmative answer to this question under a mild restriction.

Let Hn denote the family of almost controllable graphs of order n. The family Hn

can be naturally partitioned into two subsets Hs
n and Ha

n, where Hs
n consists of graphs

G in Hn that have a nontrivial automorphism, and Ha
n contains the asymmetric graphs.

For any almost controllable graph G ∈ Hn, we construct a unique rational regular or-
thogonal matrix Q0(G) distinct from the identity matrix (see Definition 11 in Section 3).
We now state the second main result of this paper, which provides a new condition for
reconstructibility of graphs.

Theorem 5. Let n 󰃍 3 and G be an n-vertex graph with vertex set {u1, . . . , un}. Then
G is reconstructible if there exists a vertex-deleted subgraph, say G− un, satisfying either
of the following two conditions:
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(i) G− un ∈ Hs
n−1,

(ii) G− un ∈ Ha
n−1 but Q0b ∕∈ {0, 1}n−1 \ {b}, where Q0 = Q0(G− un) and b ∈ {0, 1}n−1

is the indicator vector of the neighborhood of un in G.

In Section 2, we prove Theorem 3. Section 3 presents the proof of Theorem 5, which
serves as a direct application of Theorem 3. We conclude with examples demonstrating
the effectiveness of our results in graph reconstruction.

2 Proof of Theorem 3

Let G be a graph with vertex set {u1, . . . , un}. Let b be an n-dimensional (0, 1)-vector.
Following Farrugia [3], the overgraph G+ b is the graph whose adjacency matrix is

A(G+ b) =

󰀕
A(G) b
bT 0

󰀖
.

Let A be an n × n real symmetric matrix and λ1, . . . ,λm be its distinct eigenvalues
with multiplicities k1, . . . , km, respectively. Let Pi be any n × ki matrix whose columns
consist of an orthonormal basis of Eλi

(A), the eigenspace of A corresponding to λi. Then
A has the spectral decomposition

A = λ1P1P
T
1 + · · ·+ λmPmP

T
m.

We note that PiP
T
i is well defined although Pi is not unique. Indeed, if P̃i consists of

another orthogonal basis of Eλi
(A), then we must have P̃i = PiQ for some orthogonal

matrix Q, which clearly implies P̃iP̃
T
i = PiP

T
i .

For a graph G, we use χ(G; x) to denote the characteristic polynomial of G, i.e.,
χ(G; x) = χ(A(G); x) = det(xI − A(G)). We use e(n) (or e) to denote the all-ones vector
of dimension n.

Lemma 6 ([2]). Let G be an n-vertex graph whose adjacency matrix A has spectral de-
composition A = λ1P1P

T
1 + · · ·+ λmPmP

T
m. Then

(i) χ(G+ b; x) = χ(G; x)
󰀓
x−

󰁓m
i=1

||PT
i b||2

x−λi

󰀔
for any b ∈ {0, 1}.

(ii) χ(G; x) = (−1)nχ(G;−x− 1)
󰀓
1−

󰁓m
i=1

||PT
i e||2

x+1+λi

󰀔
.

Suppose that χ(G; x) is known, then it is not difficult to see from Lemma 6 that
knowledge of χ(G+ e; x) is equivalent to knowledge of χ(G; x). This yields an equivalent
definition on generalized cospectrality:

Corollary 7. Two graphs G and H are generalized cospectral if and only if two graphs
G and G+ e are cospectral with H and H + e, respectively.

We need a technical lemma.
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Lemma 8. Let λ1, . . . ,λm be m distinct real numbers. Let a1, a2, . . . , am, b1, b2, . . . , bm ∈
R. If 󰀣

1 +
m󰁛

i=1

ai
λ− λi

󰀤2

=

󰀣
1 +

m󰁛

i=1

bi
λ− λi

󰀤2

for λ ∈ R \ {λ1, . . . ,λm} (1)

then ai = bi for i ∈ {1, . . . ,m}.

Proof. By Eq. (1), we have

󰀣
1 +

m󰁛

i=1

ai
λ− λi

󰀤
= ±

󰀣
1 +

m󰁛

i=1

bi
λ− λi

󰀤
.

We claim that the equality can hold with a negative sign for at most m different values of

the variable λ. Indeed, suppose
󰀓
1 +

󰁓m
i=1

ai
λ−λi

󰀔
= −

󰀓
1 +

󰁓m
i=1

bi
λ−λi

󰀔
. By multiplying

both sides by
󰁔m

i=1(λ− λi) and rearranging the terms, we obtain

2
m󰁜

i=1

(λ− λi) +
m󰁛

i=1

(ai + bi)
m󰁜

j=1,j ∕=i

(λ− λj) = 0. (2)

Noting that the left-hand side is a polynomial of degree m, we find that Eq. (2) has at
most m roots. This proves the claim.

By the claim, we see that the equality 1+
󰁓m

i=1
ai

λ−λi
= 1+

󰁓m
i=1

bi
λ−λi

, or equivalently,

m󰁛

i=1

ai − bi
λ− λi

= 0 (3)

holds for all λ ∈ R except a finite number of values. Taking λ → λi in Eq. (3), we easily
find that ai = bi. This completes the proof.

Proposition 9. Let G and H be two n-vertex graphs and b, c be two vectors in {0, 1}n.
If (1) G + b and H + c are generalized cospectral and (2) G and H are also generalized
cospectral, then there exists an orthogonal matrix Q such that QTA(G)Q = A(H), QTe = e
and QTb = c.

Proof. Let A = A(G) and B = A(H). As A and B are cospectral, we may write the
spectral decompositions of A and B as follows:

A =
m󰁛

i=1

λiPiP
T
i and B =

m󰁛

i=1

λiRiR
T
i ,

where each Pi and Ri consist of orthogonal bases of Eλi
(A) and Eλi

(B), respectively.
Claim: ||PT

i b|| = ||RT
i c||, ||PT

i e|| = ||RT
i e|| and 〈PT

i b, P
T
i e〉 = 〈RT

i c, R
T
i e〉 for i =

1, . . . ,m.
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The first two equalities of the claim are easy consequences of Lemma 6. Indeed, noting
that χ(G+ b; x) = χ(H + c; x), it follows from Lemma 6 (i) that

χ(G; x)

󰀣
x−

m󰁛

i=1

||PT
i b||2

x− λi

󰀤
= χ(H; x)

󰀣
x−

m󰁛

i=1

||RT
i c||2

x− λi

󰀤
.

As χ(G; x) = χ(H; x), we must have

x−
m󰁛

i=1

||PT
i b||2

x− λi

= x−
m󰁛

i=1

||RT
i c||2

x− λi

,

which clearly implies ||PT
i b|| = ||RT

i c||. A similar argument shows that ||PT
i e|| = ||RT

i e||.
It remains to show the last equality 〈PT

i b, P
T
i e〉 = 〈RT

i c, R
T
i e〉.

Let Ĝ = (G+b)+e(n+1) and Ĥ = (H+c)+e(n+1). By Corollary 7 and the first condition
of this proposition, we see that Ĝ and Ĥ are cospectral. Note that the adjacency matrix
of Ĝ is

Â =

󰀳

󰁃
A b e
bT 0 1
eT 1 0

󰀴

󰁄 .

Direct calculation shows that

χ(Ĝ; x) =

󰀏󰀏󰀏󰀏󰀏󰀏

λI − A −b −e
−bT λ −1
−eT −1 λ

󰀏󰀏󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏󰀏󰀏

󰀳

󰁃
λI − A −b −e
−bT λ −1
−eT −1 λ

󰀴

󰁄

󰀳

󰁃
I (λI − A)−1b (λI − A)−1e
O 1 0
O 0 1

󰀴

󰁄

󰀏󰀏󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏󰀏󰀏

λI − A O O
−bT λ− bT(λI − A)−1b −1− bT(λI − A)−1e
−eT −1− eT(λI − A)−1b λ− eT(λI − A)−1e

󰀏󰀏󰀏󰀏󰀏󰀏

= |λI − A|

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

λ−
m󰁓
i=1

1
λ−λi

bTPiP
T
i b −

󰀕
1 +

m󰁓
i=1

1
λ−λi

bTPiP
T
i e

󰀖

−
󰀕
1 +

m󰁓
i=1

1
λ−λi

eTPiP
T
i b

󰀖
λ−

m󰁓
i=1

1
λ−λi

eTPiP
T
i e

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

= χ(G; x)

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

λ−
m󰁓
i=1

||PT
i b||2

λ−λi
−
󰀕
1 +

m󰁓
i=1

〈PT
i b,PT

i e〉
λ−λi

󰀖

−
󰀕
1 +

m󰁓
i=1

〈PT
i b,PT

i e〉
λ−λi

󰀖
λ−

m󰁓
i=1

||PT
i e||2

λ−λi

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏
. (4)

Similarly, we have

χ(Ĥ; x) = χ(H; x)

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

λ−
m󰁓
i=1

||RT
i c||2

λ−λi
−
󰀕
1 +

m󰁓
i=1

〈RT
i c,RT

i e〉
λ−λi

󰀖

−
󰀕
1 +

m󰁓
i=1

〈RT
i c,RT

i e〉
λ−λi

󰀖
λ−

m󰁓
i=1

||RT
i e||2

λ−λi

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏
. (5)
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As χ(Ĝ; x) = χ(Ĥ; x), χ(G; x) = χ(H; x), ||PT
i b|| = ||RT

i c|| and ||PT
i e|| = ||RT

i e||, com-
bining Eqs. (4) and (5) leads to

󰀣
1 +

m󰁛

i=1

〈PT
i b, P

T
i e〉

λ− λi

󰀤2

=

󰀣
1 +

m󰁛

i=1

〈RT
i c, R

T
i e〉

λ− λi

󰀤2

.

It follows from Lemma 8 that 〈PT
i b, P

T
i e〉 = 〈RT

i c, R
T
i e〉 for i = 1, . . . ,m. This completes

the proof of the Claim.
For each i ∈ {1, . . . ,m}, let ki be the multiplicity of the eigenvalue λi of A (or B).

Note that PT
i b, P

T
i e, R

T
i c, R

T
i e ∈ Rki . By the Claim, we see that for each i there exists an

orthogonal matrix Qi of order ki such that Qi(P
T
i b) = RT

i c and Qi(P
T
i e) = RT

i e, see e.g.
[9, Theorem 7.3.11]. Written in the form of block matrices, we have

󰀳

󰁅󰁃
Q1P

T
1

...
QmP

T
m

󰀴

󰁆󰁄 (b, e) =

󰀳

󰁅󰁃
RT

1
...

RT
m

󰀴

󰁆󰁄 (c, e). (6)

Define

Q = (P1Q
T
1 , . . . , PmQ

T
m)

󰀳

󰁅󰁃
RT

1
...

RT
m

󰀴

󰁆󰁄 . (7)

It is easy to see that both matrices on the right-hand side of Eq. (7) are orthogonal,
implying Q is an orthogonal matrix. By Eq. (6), we have QT(b, e) = (c, e). Finally,
noting that

(P1Q
T
1 , . . . , PmQ

T
m)

TA(P1Q
T
1 , . . . , PmQ

T
m) = diag(λ1Ik1 , . . . ,λmIkm)

and
(R1, . . . , Rm)

TB(R1, . . . , Rm) = diag(λ1Ik1 , . . . ,λmIkm),

we obtain

QTAQ = (R1, . . . , Rm)(P1Q
T
1 , . . . , PmQ

T
m)

TA(P1Q
T
1 , . . . , PmQ

T
m)

󰀳

󰁅󰁃
RT

1
...

RT
m

󰀴

󰁆󰁄

= (R1, . . . , Rm)diag(λ1Ik1 , . . . ,λmIkm)

󰀳

󰁅󰁃
RT

1
...

RT
m

󰀴

󰁆󰁄

= B.

This completes the proof of this proposition.
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Remark 10. Proposition 9 was originally reported as Theorem 12 in [3]. In that paper,
Farrugia essentially proved that there exist two orthogonal matrices Q1 and Q2 such that
QT

1A(G)Q1 = QT
2A(G)Q2 = A(H), QT

1 e = e and QT
2 b = c. But his claim that the

two matrices Q1 and Q2 can be chosen to be equal requires more justification. The key
of the current proof is the newly established equality 〈PT

i b, P
T
i e〉 = 〈RT

i c, R
T
i e〉, which

guarantees the realizability of Q1 = Q2.

Proof of Theorem 3 The implication (ii) =⇒ (i) is straightforward; we only prove the
other direction. Let G1 = G − un and H1 = H − vn. Then the adjacency matrices of G
and H have the form

A(G) =

󰀕
A(G1) b
bT 0

󰀖
and A(H) =

󰀕
A(H1) c
cT 0

󰀖
.

Now the condition (i) can be restated as that both the pair G1 + b, H1 + c and the
pair G1, H1 are generalized cospectral graphs. Noting that G1 and H1 contain (n − 1)
vertices, it follows from Proposition 9 that there exists an orthogonal matrix Q such that
QTA(G1)Q = A(H1) Q

Te(n−1) = e(n−1) and QTb = c. Direct calculation shows that

󰀕
QT O
O 1

󰀖󰀕
A(G1) b
bT 0

󰀖󰀕
Q O
O 1

󰀖
=

󰀕
QTA(G1)Q QTb

bTQ 0

󰀖
=

󰀕
A(H1) c
cT 0

󰀖
.

As Q is a regular orthogonal matrix, the block matrix

󰀕
QT O
O 1

󰀖
is also a regular orthog-

onal matrix. This completes the proof of Theorem 3.

3 Proof of Theorem 5

For an n-vertex graph G with adjacency matrix A, the walk matrix of G is

W (G) := [e, Ae, . . . , An−1e].

It is known that the number of main eigenvalues of G equals the rank ofW (G). Recall that
Hn denotes the set of all almost controllable graphs on n vertices. Clearly, if G ∈ Hn then
rankW (G) = n − 1. For a graph G ∈ Hn, the following Householder matrix associated
with G is crucial.

Definition 11 ([17]). For G ∈ Hn, define

Q0 = Q0(G) = In − 2
ξξT

ξTξ
,

where ξ is a unique (up to the sign) nonzero integer vector ξ = (a1, a2, . . . , an)
T satisfying

WT(G)ξ = 0 and gcd(a1, a2, . . . , an) = 1.
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Clearly, Q0 is a symmetric orthogonal matrix. Moreover, from the equationWT(G)ξ =
0, we easily see that ξTe = 0 and hence Q0e = e, i.e., the orthogonal matrix Q0 is regular.
Let RO(n) denote the group of regular orthogonal matrices of order n. Note that RO(n)
contains the group of n × n permutation matrices as a subgroup. The importance of
Q0(G) can be described in the following theorem.

Theorem 12 ([17, 23]). For G ∈ Hn, the solution set of the matrix equation QTA(G)Q =
A(G) with variable Q ∈ RO(n) is exactly {In, Q0(G)}.

Let G ∈ Hn. By Theorem 12, we see that G ∈ Hs
n if and only if Q0(G) is a permutation

matrix. Now we can present a proof of Theorem 5.
Proof of Theorem 5 Let H be any reconstruction of G. It is known that G and H are
generalized cospectral, see [19] or [7]. Let A = A(G− un). Then the adjacency matrix of
G can be written as

A(G) =

󰀕
A b
bT 0

󰀖
.

By relabeling vertices in H appropriately, we may assume the adjacency matrix of H has
the form

A(H) =

󰀕
A c
cT 0

󰀖
.

It follows from Theorem 3 that there exists a regular orthogonal matrix of the form󰀕
Q O
O 1

󰀖
such that

󰀕
QT O
O 1

󰀖󰀕
A b
bT 0

󰀖󰀕
Q O
O 1

󰀖
=

󰀕
A c
cT 0

󰀖
. (8)

This means that Q ∈ RO(n − 1), QTAQ = A, and QTb = c. Let Q0 = Q0(G − un) be
the Householder matrix as given in Definition 11. If G − un ∈ Hs

n−1, then by Theorem
12 we have Q ∈ {In−1, Q0}, where Q0 is a permutation matrix. But this means G and H
are isomorphic by Eq. (8). Now consider the other case G− un ∈ Ha

n−1. We may assume
c ∕= b since otherwise H = G and we are done. Thus, c ∈ {0, 1}n−1 \ {b} and hence
Q0b ∕= c by the condition of this theorem. Consequently, Q ∕= Q0 and hence we must have
Q = In−1 by Theorem 12. This again forces H = G by Eq. (8). Either case implies that
H is isomorphic to G. Thus G is reconstructible, completing the proof of Theorem 5.

We present some examples to illustrate Theorem 5.
Example 1. Let n be an integer with n 󰃍 4 and 4 ∤ n. Consider the family of graphs
{Dn + b : b ∈ {0, 1}n}, where Dn is the Dynkin graph as shown in Fig. 1. It was proved
that Dn (4 ∤ n) is almost controllable [21]. Clearly, Dn ∈ Hs

n as swapping vertices 1 and
2 is a nontrivial automorphism of Dn. Thus, by Theorem 5 (i), all graphs of the form
Dn + b are reconstructible.
Example 2. Let G be the graph as shown in Fig. 2. Let H be the vertex-deleted sub-
graph of G corresponding to the vertex 8. Direct calculation shows that rankW (H) =
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Figure 1: Graph Dn.
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Figure 2: Graph G.

6 and hence H is almost controllable. Moreover, by Definition 11, we obtain ξ =
±(0,−1, 1, 0,−1, 1, 0)T and hence

Q0 = I − 2
ξξT

ξTξ
=

1

2

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

2 0 0 0 0 0 0
0 1 1 0 −1 1 0
0 1 1 0 1 −1 0
0 0 0 2 0 0 0
0 −1 1 0 1 1 0
0 1 −1 0 1 1 0
0 0 0 0 0 0 2

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

As Q0 is not a permutation matrix, we see that H ∈ Ha
7. Note that the indicator vector of

the neighborhood of vertex 8 is b = (0, 0, 0, 0, 1, 0, 0)T. Thus Q0b =
󰀃
0,−1

2
, 1
2
, 0, 1

2
, 1
2
, 0
󰀄T ∕∈

{0, 1}7 \ {b} and hence G is reconstructible by Theorem 5 (ii).
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