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Abstract

Extending a classic result of Johnson and Newman, this paper provides a matrix
characterization for two generalized cospectral graphs with a pair of generalized
cospectral vertex-deleted subgraphs. As an application, we present a new condition
for the reconstructibility of a graph. Namely, if a vertex-deleted subgraph G — v of
G is almost controllable, then the graph G is reconstructible if G — v either has a
nontrivial automorphism group, or is asymmetric with a specific property.

Mathematics Subject Classifications: 05C50

1 Introduction

Let G be an n-vertex graph with adjacency matrix A(G). The spectrum of G refers to
the multiset of eigenvalues of A(G). Two graphs G and H are cospectral if they share the
same spectrum. It is known that if G and H are cospectral then there exists an orthogonal
matrix @ such that QT A(G)Q = A(H).

We are interested in two kinds of enhancements of the ordinary cospectrality: rooted-
cospectrality and generalized cospectrality. Let (G,u) be a rooted graph with u as the
root vertex. We say two rooted graphs (G,u) and (H,v) are cospectral if (1) G and H
are cospectral and (2) G —u and H — v are also cospectral. It turns out that the rooted-
cospectrality of graphs can be characterized by specific orthogonal matrices, as described
in the following theorem. Without loss of generality, we may assume that the root vertices
are labeled as the last vertices in graphs.

Theorem 1 ([14, 18]). Let G and H be two n-vertex graphs with vertex sets {us, ..., u,}
and {v1,...,v,}. Then the following are equivalent:
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(i) (G, u,) and (H,v,) are cospectral.

ii) There exists an orthogonal matriz of the form @ 0 such that
O 1

(QOT (1)) A(G) (g ?) — A(H).

We say that two graphs G and H are generalized cospectral if G and H are cospectral
with cospectral complements. Similar to rooted-cospectrality, generalized cospectrality
can be characterized by a special kind of orthogonal matrices. An orthogonal matrix is
reqular if the sum of each row is 1.

Theorem 2 ([12]). Let G and H be two graphs. Then the following are equivalent:
(i) G and H are generalized cospectral.
(ii) There exists a reqular orthogonal matriz Q such that QT A(G)Q = A(H).

A primary goal of this paper is to unify the above two theorems. We say that two
rooted graphs (G, u) and (H,v) are generalized cospectral if (1) G and H are generalized
cospectral, and (2) G —u and H — v are also generalized cospectral. The first main result
of this paper is the following theorem.

Theorem 3. Let G and H be two n-vertexr graphs with vertex sets {ui,...,u,} and
{v1,...,v,}. Then the following are equivalent:

(i) (G,uy,) and (H,v,) are generalized cospectral, i.e., four graphs G, G, G —u, and G — u,
are cospectral with H, H, H — v,, and H — v,,, respectively.

0 ?) such that

(%T (1)) A(G) (g ?) — A(H).

The proof of Theorem 3 will be given in Section 2. We remark that Theorem 3 was
reported by Farrugia [3] in a different but essentially equivalent form, using the notion of
overgraphs. However, the proof in [3] contains a gap, which the present work aims to fill;
see Remark 10 in the next section. As an important application of Theorem 3, we obtain
a new condition for the reconstructibility of graphs. To state the result, we recall some
basic notions.

Given a graph G with vertex set {uy,...,u,}, the deck of G, denoted by D(G), is the
multiset of its vertex-deleted (unlabeled) subgraphs G —u; for i =1,...,n. A graph H is
called a reconstruction of G if D(H) = D(G). If every reconstruction of G is isomorphic
to G, then G is said to be reconstructible. The Reconstruction Conjecture (also called
Ulam Conjecture or Kelly-Ulam Conjecture) claims that every graph with at least three
vertices is reconstructible. The conjecture has been proved for various graph classes,
such as regular graphs, disconnected graphs, trees and outerplanar graphs. It has been
verified by McKay [15] that all graphs with at most 13 vertices are reconstructible. In

(i) There exists a reqular orthogonal matriz of the form (
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a probabilistic sense, Bollobés [1] showed that almost all graphs are reconstructible, i.e.,
the probability that a randomly chosen graph on n vertices is reconstructible approaches
1 as n tends to infinity.

A classic result of Tutte [19] states that the characteristic polynomial of a graph is
reconstructible and, moreover, that graphs with irreducible characteristic polynomials are
reconstructible. Tutte’s result has received considerable attention, as it demonstrates that
linear algebraic methods are powerful tools for tackling the Reconstruction Conjecture.
Several authors have made efforts to rederive or extend Tutte’s results, see, e.g., [4, 6, 7,
10, 11, 13, 22].

An eigenvalue ) of a graph G is called a main eigenvalue if the corresponding eigenspace
is not orthogonal to the all-ones vector. An n-vertex graph G is called controllable [5]
if it has n main eigenvalues, and almost controllable [23] if it has n — 1 main eigenvalues.
It is known that graphs with irreducible characteristic polynomials are controllable, but
the converse does not hold. Tutte’s result was further improved by Godsil and McKay
[6], who showed that all graphs in a specific family—including all controllable and almost
controllable graphs—are reconstructible.

Currently, it is unknown whether almost all graphs have irreducible characteristic
polynomials. However, O’'Rourke and Touri [16] proved that almost all graphs are con-
trollable, improving upon the result of Tao and Vu [20], which states that almost all graphs
have simple spectrum. Thus the result of Godsil and McKay [6] provides an alternative
proof—using spectral graph theoretic methods—of the result of Bollobés [1] that almost
all graphs are reconstructible.

As a natural extension of the Tutte’s theorem and its subsequent improvement by
Godsil and McKay, Hong [8] established the following reconstructibility criterion for a
graph based on the properties of its deck.

Theorem 4 ([8]). Let G be a graph with at least three vertices. If there exists a vertez-
deleted subgraph that is controllable, then G is reconstructible.

Inspired by the similarity between Hong’s theorem and the theorem of Godsil and
McKay, it is natural to ask whether the controllability assumption in Theorem 4 can be
relaxed to almost controllability. As a direct application of Theorem 3, we provide an
affirmative answer to this question under a mild restriction.

Let H,, denote the family of almost controllable graphs of order n. The family H,
can be naturally partitioned into two subsets H; and H, where H; consists of graphs
G in H, that have a nontrivial automorphism, and H? contains the asymmetric graphs.
For any almost controllable graph G € H,,, we construct a unique rational regular or-
thogonal matrix Qo(G) distinct from the identity matrix (see Definition 11 in Section 3).
We now state the second main result of this paper, which provides a new condition for

reconstructibility of graphs.

Theorem 5. Let n > 3 and G be an n-vertexr graph with vertex set {ui,...,u,}. Then
G 1s reconstructible if there exists a vertex-deleted subgraph, say G — u,, satisfying either
of the following two conditions:
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(i) G —wu, € HS_4,

(i) G —u, € HE | but Qob & {0,131\ {b}, where Qy = Qo(G — u,) and b € {0,1}"*

is the indicator vector of the neighborhood of u, in G.

In Section 2, we prove Theorem 3. Section 3 presents the proof of Theorem 5, which
serves as a direct application of Theorem 3. We conclude with examples demonstrating
the effectiveness of our results in graph reconstruction.

2 Proof of Theorem 3

Let G be a graph with vertex set {uy,...,u,}. Let b be an n-dimensional (0, 1)-vector.
Following Farrugia [3], the overgraph G + b is the graph whose adjacency matrix is

A(G+0b) = (A(G) b) )

bt 0
Let A be an n x n real symmetric matrix and Aq,...,\,, be its distinct eigenvalues
with multiplicities k1, ..., k., respectively. Let P; be any n X k; matrix whose columns

consist of an orthonormal basis of £),(A), the eigenspace of A corresponding to A;. Then
A has the spectral decomposition

A=NPP +- + X\, PPy

We note that PP is well defined although P; is not unique. Indeed, if P, consists of
another orthogonal basis of £,,(A), then we must have P, = P,Q for some orthogonal
matrix (), which clearly implies F’z]-:’lT = P,PT.

For a graph G, we use x(G;x) to denote the characteristic polynomial of G, i.e.,
X(G;7) = X(A(G); 7) = det(x] — A(G)). We use ™ (or e) to denote the all-ones vector
of dimension n.

Lemma 6 ([2]). Let G be an n-vertex graph whose adjacency matriz A has spectral de-
composition A =\ PiPF + -+ + X\, P PL. Then

(i) X(G +b;x) = x(G;x) (fL‘ —2in W) for any b € {0,1}.
. 'l n m iTe 2
(i) X(Gs ) = (~1)"x(G; — — 1) (1 - T, L)
Suppose that x(G;x) is known, then it is not difficult to see from Lemma 6 that

knowledge of x(G + e;x) is equivalent to knowledge of x(G;z). This yields an equivalent
definition on generalized cospectrality:

Corollary 7. Two graphs G and H are generalized cospectral if and only if two graphs
G and G + e are cospectral with H and H + e, respectively.

We need a technical lemma.
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Lemma 8. Let \q,...,\,, be m distinct real numbers. Let ai,as,...,Qm,b1,ba, ..., by €

R. If
<1+Z)\ii)\i> :(1+Z)\fi)\i> for e R\ {\1,..., \n} (1)

then a; = b; forie€ {1,...,m}.
Proof. By Eq. (1), we have

= i b
<1+Z;/\f&> :i<1+§)\_)\i>.

We claim that the equality can hold with a negative sign for at most m different values of
the variable A. Indeed, suppose (1 + >0 e 5 ) = (1 + >0 = /\ ) By multiplying
both sides by [T~ (A — \;) and rearranging the terms, we obtain

[T =)+ (ai+b) J[ (A=) =0. (2)
i=1 i=1 j=1,j#i

Noting that the left-hand side is a polynomial of degree m, we find that Eq. (2) has at
most m roots. This proves the claim.
By the claim, we see that the equality 14+ 7", %= =1+>"", /\ Sw

maz_
2

holds for all A € R except a finite number of values. Taking A — \; in Eq. (3), we easily
find that a; = b;. This completes the proof. O

(3)

Proposition 9. Let G and H be two n-vertex graphs and b, c be two vectors in {0, 1}".
If (1) G+ b and H + ¢ are generalized cospectral and (2) G and H are also generalized
cospectral, then there exists an orthogonal matriz Q such that QTA(G)Q = A(H), QTe =e¢
and Qb = c.

Proof. Let A = A(G) and B = A(H). As A and B are cospectral, we may write the
spectral decompositions of A and B as follows:

A= i NP PP and B = i NRiR},
i=1 1=1

where each P; and R; consist of orthogonal bases of &,,(A) and &,,(B), respectively.
Claim: [|[P0|| = [[Rlc||, [|[Ple|| = |[Rfe|| and (P, Ple) = (Rfc, Rie) for i =
1L,....m.
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The first two equalities of the claim are easy consequences of Lemma 6. Indeed, noting
that x (G + b;x) = x(H + ¢; x), it follows from Lemma 6 (i) that

(- 108

i=1

As x(G;x) = x(H; z), we must have
L N 1 |

which clearly implies ||P1b|| = ||RTc||. A similar argument shows that ||Ple|| = ||RTe||.
It remains to show the last equality (Pb, PYe) = (Rlc, Rfe).

Let G = (G4b)+e™ and H = (H+C)+e(”+1) By Corollary 7 and the first condition
of this proposition, we see that G and H are cospectral. Note that the adjacency matrix
of G is

K A b e
A=1[b"T 0 1
e 10
Direct calculation shows that
X M—-A —b —e
X(Gsz) = —bT )\ —1
—eT
/\I A —b I M—-A)"% (M—-A)™!
)\ O 0 1
M —A O O
= —=pT A —bT(N — A)_lb —1—bT(\ - A)7!
-t -1 —eT( A7 A=t (N — A)7!
-3 T /\,bTPiPin — (1 +> AlAvbTPiPiTe>
N 7 ’i:l 1

1+ 2 _eTPiPl-Tb) A= > E-eTPPle
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As x(Gi2) = x(H;2), X(Gs2) = x(H;x), ||l = [|Rfe|| and [|[Pe|| = [|RFe]l, com-
bining Eqgs. (4) and (5) leads to

2
"\ (PTb, Pre) (REe, RT
(1 +) —A = 1+ Z .

=1

It follows from Lemma 8 that (Pb, Pre) = (RFc, Rfe) for i = 1,...,m. This completes
the proof of the Claim.

For each i € {1,...,m}, let k; be the multiplicity of the eigenvalue \; of A (or B).
Note that PTb, PTe, RTc, RTe € R*. By the Claim, we see that for each i there exists an
orthogonal matrix Q; of order k; such that Q;(Prb) = R}c and Q;(PTe) = Rle, see e.g.
9, Theorem 7.3.11]. Written in the form of block matrices, we have

Q1 PF R}
: (bye)=1 : | (ce). (6)
QmPy, Ry,
Define
RY
Ry,

It is easy to see that both matrices on the right-hand side of Eq. (7) are orthogonal,
implying @ is an orthogonal matrix. By Eq. (6), we have QT(b,e) = (c,e). Finally,
noting that

(PQT,...,P.QYYA(PQT, ..., PaQY) = diag(M\i 1k, - -, At

and
(Ry,...,Rn)B(Ry,...,Ry) = diag(AMi Iy, . .., Ay,
we obtain
Ry
QTAQ = (Ry,...,Rn)(PQT,....P.QY A(PQT,...,PQN) | :
RT
Ry
= (Rla--'7Rm)diag()\1]k17---:)\mlkm) :
RT
= B.
This completes the proof of this proposition. O
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Remark 10. Proposition 9 was originally reported as Theorem 12 in [3]. In that paper,
Farrugia essentially proved that there exist two orthogonal matrices )1 and )5 such that
QTAG)Q: = Q7 A(G)Q2 = A(H), Qfe = e and Q3b = c. But his claim that the
two matrices )1 and (2 can be chosen to be equal requires more justification. The key
of the current proof is the newly established equality (P'b, PTe) = (RFc, Rfe), which
guarantees the realizability of ()1 = Qs.

Proof of Theorem 3 The implication (ii) = (i) is straightforward; we only prove the
other direction. Let G; = G — u,, and H; = H — v,,. Then the adjacency matrices of G
and H have the form

A(G):(A(gl) 8) and A(H):(Agil) g)

Now the condition (i) can be restated as that both the pair G; + b, Hy + ¢ and the
pair G1, H; are generalized cospectral graphs. Noting that G; and H; contain (n — 1)
vertices, it follows from Proposition 9 that there exists an orthogonal matrix ) such that

QTA(G)Q = A(H,) QTe™ 1) = e and Q"b = c. Direct calculation shows that

(5 D (@ D~ (T D)= ()

As @ is a regular orthogonal matrix, the block matrix % ?) is also a regular orthog-

onal matrix. This completes the proof of Theorem 3.

3 Proof of Theorem 5
For an n-vertex graph G with adjacency matrix A, the walk matriz of G is
W(G) := le, Ae, ..., A" te].

It is known that the number of main eigenvalues of G equals the rank of W (G). Recall that
‘H,, denotes the set of all almost controllable graphs on n vertices. Clearly, if G € H,, then
rank W(G) = n — 1. For a graph G € H,, the following Householder matrix associated
with G is crucial.

Definition 11 ([17]). For G € H,,, define

Qo= Qu(G) = I, 255
£'¢
where £ is a unique (up to the sign) nonzero integer vector & = (ay, as, ..., a,)" satisfying

WT(G)¢ =0 and ged(ay, as, . .., a,) = 1.
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Clearly, Qg is a symmetric orthogonal matrix. Moreover, from the equation W1 (G)¢ =
0, we easily see that £Te = 0 and hence Qpe = e, i.e., the orthogonal matrix @ is regular.
Let RO(n) denote the group of regular orthogonal matrices of order n. Note that RO(n)
contains the group of n X n permutation matrices as a subgroup. The importance of
Qo(G) can be described in the following theorem.

Theorem 12 ([17, 23]). For G € H,, the solution set of the matriz equation QT A(G)Q =
A(G) with variable Q € RO(n) is exactly {I,,Qo(G)}.

Let G € H,,. By Theorem 12, we see that G € H; if and only if Qy(G) is a permutation
matrix. Now we can present a proof of Theorem 5.
Proof of Theorem 5 Let H be any reconstruction of G. It is known that G and H are
generalized cospectral, see [19] or [7]. Let A = A(G — u,). Then the adjacency matrix of

G can be written as A b
a6 = (5 4):

By relabeling vertices in H appropriately, we may assume the adjacency matrix of H has

the form p
c
am=(40)

It follows from Theorem 3 that there exists a regular orthogonal matrix of the form

(Q O) such that
(6 )G o) (6 7)=(50) ®

O 1
This means that Q € RO(n — 1), QTAQ = A, and Qb = c. Let Qy = Qo(G — u,,) be
the Householder matrix as given in Definition 11. If G — u,, € H;_,, then by Theorem
12 we have Q € {I,_1,Qo}, where Q) is a permutation matrix. But this means G and H
are isomorphic by Eq. (8). Now consider the other case G —u,, € H%_,. We may assume
¢ # b since otherwise H = G and we are done. Thus, ¢ € {0,1}""!\ {b} and hence
Qob # ¢ by the condition of this theorem. Consequently, () # (o and hence we must have
@ = I,,_1 by Theorem 12. This again forces H = G by Eq. (8). Either case implies that
H is isomorphic to G. Thus G is reconstructible, completing the proof of Theorem 5. [
We present some examples to illustrate Theorem 5.

Example 1. Let n be an integer with n > 4 and 4 { n. Consider the family of graphs
{D, +b: be{0,1}"}, where D,, is the Dynkin graph as shown in Fig. 1. It was proved
that D,, (41 n) is almost controllable [21]. Clearly, D,, € H{ as swapping vertices 1 and
2 is a nontrivial automorphism of D,,. Thus, by Theorem 5 (i), all graphs of the form
D,, + b are reconstructible.

Example 2. Let G be the graph as shown in Fig. 2. Let H be the vertex-deleted sub-
graph of GG corresponding to the vertex 8. Direct calculation shows that rank W (H) =
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1 6 2
3 o
8

Figure 2: Graph G.

6 and hence H is almost controllable. Moreover, by Definition 11, we obtain & =
+(0,—1,1,0,—1,1,0)" and hence

20 0 0 0 0 O

0o 1 1 0 -1 1 0

T 0o 1 1 0 1 —-120
Q0:I—2§§—£:% 0o 0 0 2 0 0 O
0 -1 1 0 1 1 O

0 1 -10 1 1 O

0o 0o 0 0 0 0 2

As @)y is not a permutation matrix, we see that H € ‘H3. Note that the indicator vector of
the neighborhood of vertex 8 is b = (0,0, 0,0,1,0,0)*. Thus Qub = (0, —%, %, 0, %, %, O)T ¢
{0,1}7\ {b} and hence G is reconstructible by Theorem 5 (ii).
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