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Abstract

Given graphs G1, . . . , Gs all on a common vertex set and a graph H with e(H) =
s, a copy of H is transversal if it contains one edge from each Gi. We establish
a stability result for transversal Hamilton cycles: the minimum degree required
to guarantee a transversal Hamilton cycle can be lowered as long as the graph
collection G1, . . . , Gn is far in edit distance from several extremal cases. We obtain
an analogous result for Hamilton paths. The proof is a combination of our newly
developed regularity-blow-up method for transversals, along with the absorption
method.

Mathematics Subject Classifications: 05C35, 05C38

1 Introduction

Given graphs G1, . . . , Gs on a common vertex set and a graph H with e(H) = s, a
transversal copy of H is a copy of H containing exactly one edge from each of the graphs
G1, . . . , Gs. We often think of each Gi having the colour i, and so a graph with at most
one edge of each colour is called rainbow. Thus a transversal copy is also a rainbow copy.
The following general question was formulated by Joos and Kim in [16].

Question 1. Let H be a graph with s edges and let G = (G1, . . . , Gs) be a collection of
graphs on a common vertex set V . Which properties imposed on G yield a transversal
copy of H?

Note that when G1 = . . . = Gs = G ∈ G, a transversal copy of H inside G is
equivalent to a subgraph H of G. So the question of Joos and Kim is a generalisation of
the classical embedding problem. An important line of research for the classical problem
has been to seek sufficient conditions for a graph to contain a copy of H, which is of
particular interest as the problem is often computationally difficult. Question 1 is the
transversal generalisation.
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1.1 General transversal embedding

There are transversal analogues of several classical embedding theorems. Mantel’s well-
known theorem from 1907 states that any n-vertex graph with more than ⌊n2/4⌋ edges
contains a triangle. Aharoni, DeVos, de la Maza, Montejano and Šámal [1] showed that
in any collection of three graphs on the same vertex set, each one must have significantly
more than n2/4 edges to guarantee a transversal triangle. It is still a major open problem
in this area to generalise their result to arbitrary Kr.

Dirac’s theorem on Hamilton cycles from 1952 states that in an n-vertex graph G, min-
imum degree δ(G) 󰃍 n/2 suffices to guarantee a Hamilton cycle. Aharoni [1] conjectured
that the transversal generalisation holds: given graphs G1, . . . , Gn on a common vertex
set of size n, if δ(Gi) 󰃍 n/2 for each i ∈ [n], then there exists a transversal Hamilton
cycle. This conjecture was asymptotically verified by Cheng, Wang and Zhao [11] and
later fully proved by Joos and Kim [16], who used a short ‘elementary’ argument.

As in Dirac’s theorem, to guarantee a transversal copy of a spanning graph, it is
natural to impose a minimum degree condition on every graph in a collection. Given a
graph H and a positive integer n, the transversal minimum degree threshold of H is the
minimum d such that if every graph in a collection of e(H) n-vertex graphs has minimum
degree at least d, then the collection contains a transversal copy of H. If the transversal
minimum degree threshold is, up to an additive o(n) term, the same as the minimum
degree threshold (for a single n-vertex graph) then we say that H is colour-blind. Note
that the transversal minimum degree threshold is always at least as large as the minimum
degree threshold for embedding in a single graph, which can be seen by taking a graph
collection of identical copies of one graph.

Joos and Kim [16] showed that perfect matchings are colour-blind (in fact without
any error term). Given a graph F with v(F )|n, an n-vertex F -factor H is a spanning
graph consisting of vertex-disjoint copies of F . Cheng, Han, Wang and Wang [8] and
independently, Montgomery, Müyesser and Pehova [21], showed that the Kk-factor is
colour-blind. The authors of [21] further characterised those F for which F is colour-
blind, and determined the correct transversal minimum degree threshold when F is not
colour-blind. These results are approximate transversal versions of the Hajnal-Szemerédi
theorem [14] and a theorem of Kühn and Osthus [19]. In [21] it was also shown that
spanning trees with maximum degree o(n/ log(n)) are colour-blind, generalising a well-
known result of Komlós, Sárközy and Szemerédi [17].

Gupta, Hamann, Müyesser, Parczyk and Sgueglia [13] showed that the (k−1)-th power
Ck−1

n of a Hamilton cycle is colour-blind, as are certain hypergraph cycles. Chakraborti,
Im, Kim and Liu [6] generalised many of the results in this section by proving a ‘transversal
bandwidth theorem’ which gives an upper bound on the transversal minimum degree
threshold for a large class of graphs, which is tight in many cases, and hence gives a rich
class of graphs H which are colour-blind.

Other than the results of Joos and Kim on Hamilton cycles and perfect matchings [16],
there are few results which determine the exact transversal minimum degree threshold.
It would be interesting to improve all of the results in this section in this direction and
determine whether a given H is ‘exactly colour-blind’. We make further remarks on this
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at the end of the paper in Section 8.

1.2 Transversal embedding of Hamilton cycles

Following Joos and Kim’s transversal generalisation of Dirac’s theorem, there has been
much progress on further questions related to the Hamiltonian case of Question 1 for
graph collections on n vertices. Cheng, Wang and Zhao [11] also showed that minimum
degree (n + 1)/2 is sufficient to guarantee a rainbow cycle of every length 3, . . . , n −
1. Bradshaw [4] proved analogues of the results of Joos and Kim in bipartite graph
collections. Chakraborti, Kim, Lee and Seo [7] studied the problem of finding transversal
Hamilton cycles in tournaments (a tournament is a complete oriented graph). Li, Li and
Li [20] and Zhang and van Dam [25] imposed Ore-type conditions rather than a minimum
degree condition to find transversal Hamilton paths and cycles. Bradshaw, Halasz and
Stacho [5] showed that minimum degree at least n/2 guarantees not just one transversal
Hamilton cycles as per [16], but exponentially many.

Transversal Hamilton cycles have also been well studied in hypergraphs. Extending a
result of Rödl, Ruciński and Szemerédi [22, 23], Cheng, Han, Wang, Wang and Yang [24]
proved an asymptotically optimal bound on the minimum codegree guaranteeing a tight
Hamilton cycle in a uniform hypergraph. The main result in [13] implies asymptotically
optimal results for other types of Hamilton cycles in uniform hypergraphs, for various
degree conditions. Answering a question left open here, the notable case of vertex degree
for tight 3-uniform Hamilton cycles was obtained by Tang, Wang, Wang and Yan [24].

The problem of finding a Hamilton cycle with a given colouring in a graph collection
(rather than a transversal Hamilton cycle which is some rainbow cycle) was studied by
Bowtell, Morris, Pehova and Staden in [3]. It turns out that minimum degree (1

2
+ o(1))n

is enough to guarantee such a cycle, but at least ⌊n/2⌋ + 1 is required. Ferber, Han and
Mao [12] and Anastos and Chakraborti [2] studied robustness of transversal Hamiltonicity.
In [2] the threshold at which a graph collection consisting of random subgraphs of graphs
satisfying Dirac’s condition contains a transversal Hamilton cycle is determined. This
generalises a result of Krivelevich, Lee and Sudakov [18].

1.3 Stability for transversal Hamilton cycles and paths

In this paper, we are interested in the stability phenomenon for Hamilton paths and
cycles, and will show that graph collections which do not contain a Hamilton cycle, but
whose graphs all have minimum degree slightly smaller than that needed to guarantee
one, in fact have a special structure.

We define two extremal graphs and of order n as follows:
• the n-vertex graph is the union of two disjoint cliques of size as equal as possible;
• the n-vertex graph is a complete bipartite graph whose two parts have size as
equal as possible.

Since Dirac’s theorem shows that a Hamilton cycle is guaranteed in any n-vertex graph
G with minimum degree δ(G) 󰃍 n/2, graphs satisfying this minimum degree condition
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are called Dirac graphs. As mentioned in the previous section, Joos and Kim [16] showed
that any collection of n Dirac graphs contains a transversal Hamilton cycle.

Dirac’s theorem is tight: the graph does not contain a Hamilton cycle, and when
n is even it has minimum degree n/2 − 1 = ⌈n/2⌉ − 1. The graph does not contain a
Hamilton cycle when n is odd, in which case it has minimum degree (n−1)/2 = ⌈n/2⌉−1
and contains no Hamilton cycle. In fact, when n is odd, we can add arbitrary edges into
the smaller part of without creating a Hamilton cycle. For any n, we can perturb either
of these examples slightly, at the expense of slightly reducing the minimum degree, to get
a non-Hamiltonian graph.

In fact, it is well-known that these are the only examples. Given κ > 0, we say that
two graphs G,G′ on the same vertex set of size n are κ-close if one can add and remove
at most κn2 edges of G to obtain G′.

Theorem 2 (Stability for Dirac’s theorem, folklore). For all κ > 0, there exist µ > 0
and n0 such that the following holds for all integers n 󰃍 n0. Let G be an n-vertex graph
with δ(G) 󰃍 (1

2
−µ)n. If G contains no Hamilton cycle, then either G is κ-close to with

arbitrary edges added inside one part; or G is κ-close to .

Given a graph collection G, we write δ(G) := minG∈G δ(G) for its minimum degree.
Now suppose that a graph collection G = (G1, . . . , Gn) on a common vertex set of size n
with δ(G) 󰃍 (1

2
− µ)n has no transversal Hamilton cycle (we say G is non-Hamiltonian).

Of course, one can take Gi = G where G is non-Hamiltonian; that is, we can take G to
be a collection of identical copies of one of the graphs in Theorem 2. On the other hand,
taking copies of and with, say, uniformly random partitions will give a graph collection
which is Hamiltonian with high probability. However, one can combine these graphs to
get further collections without a transversal Hamilton cycle.

Definition 3 (Hb
a, half-split graph collection). Given integers a, b 󰃍 0, let Hb

a be the
graph collection on a common vertex set of size n obtained by taking a copies of and b
copies of where they are defined on the same equitable partition A ∪B.

We say that a graph collection J on a common vertex set V of size n is half-split if
there is A ⊆ V with |A| = ⌊n/2⌋ + 1 such that J [A] = ∅ and J [A, V \ A] is complete for
all J ∈ J .

Note that δ(Hb
a) = ⌊n/2⌋− (a > 0). Note that H0

n is non-Hamiltonian since is, and
when n is odd, Hn

0 is also non-Hamiltonian since is. We claim that when b is odd and
a+ b = n, the collection Hb

a is non-Hamiltonian. Suppose not, and let C be a transversal
Hamilton cycle and cyclically direct its edges. We say an edge of C is of 1-type if it comes
from an copy and of 2-type if it comes from an copy. Note that the number of 2-type
edges directed from A to B is equal to the number of 2-type edges directed from B to
A. Hence, the total number of 2-type edges in C is even, which implies that b is even, a
contradiction.

A half-split graph collection J on n vertices has δ(J) = ⌈n/2⌉− 1. Further, J is non-
Hamiltonian since if it contained any Hamilton cycle C (with any colours), then between
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each pair of vertices in A on C there is at least one vertex of V \ A, so |V \ A| 󰃍 |A|, a
contradiction.

Given κ > 0, we say that two graph collections G,G′ on the same common vertex
set of size n are κ-close if one can add and remove at most κn3 edges of graphs in G to
obtain G′. Our first result shows that any non-Hamiltonian collection of n almost-Dirac
graphs on n vertices is close to one of these two families.

Theorem 4. For all κ > 0, there exist µ > 0 and n0 such that the following holds for all
integers n 󰃍 n0. Let G = (G1, . . . , Gn) be a graph collection on a common vertex set V
of size n, with δ(G) 󰃍 (1

2
−µ)n. If G contains no transversal Hamilton cycle, then either

G is κ-close to Hb
a for some a ∈ [n]; or G is κ-close to a half-split graph collection.

In contrast to the Hamilton cycle case, our second result demonstrates that half-split
graph collections and H0

n−1 are the only extremal constructions (in an approximate sense)
for transversal Hamilton paths. Clearly H0

n−1 does not contain a transversal Hamilton
path, while if we increase the size of A by one when n is odd, a half-split collection of
n− 1 graphs does not contain a transversal Hamilton path either.

Theorem 5. For all κ > 0, there exist µ > 0 and n0 such that the following holds for all
integers n 󰃍 n0. Let G = (G1, . . . , Gn−1) be a graph collection on a common vertex set V
of size n, with δ(G) 󰃍 (1

2
− µ)n. If G does not contain a transversal Hamilton path, then

G is either κ-close to H0
n−1 or G is κ-close to a half-split graph collection.

We prove these theorems in a unified manner, combining our newly-developed
regularity-blow-up method from [10] and the absorption method for transversals, which
uses ideas from the papers [8, 9, 11] of the first author. We give a sketch of the proofs in
Section 1.6.

Theorems 4 and 5 improve a result of Anastos and Chakraborti, [2, Theorem 4.4]
proved in their work on robust Hamiltonicity mentioned earlier. They show that any graph
collection G satisfying the hypotheses of Theorem 4 is close to some graph collection in a
set HAC, consisting of collections Hb

0 ∪ Ja where Ja is a half-split collection of a = n− b
graphs, and the common independent set A in Ja is one of the parts of the graphs in
Hb

0. Note that the fraction of HAC which are in fact Hamiltonian tends to 1 as n tends
to infinity. On the other hand, Theorem 4 is best possible in the sense that none of the
collections in its H = H4 are Hamiltonian (and H4 is a very small subset of HAC) so H4

is in some sense minimal.
The approach we take is very different to that of [2]. Indeed, for the ‘stable case’

of Theorem 4, we use the regularity-blow-up method and absorption method; while [2,
Theorem 4.4], which is similar to this case, instead uses iterative absorption. Several new
ideas (in particular those in Section 6) would be needed to deduce either Theorem 4 or 5
from [2, Theorem 4.4]. In fact, as needed for its application, [2, Theorem 4.4] actually
guarantees that when a collection is far from any H ∈ HAC, not only is it Hamiltonian,
there is a certain measure on the set of transversal Hamilton cycles which in particular
implies there are many of them.
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1.4 Notation and organisation

Notation. Let G be any graph. We denote its vertex set by V (G) and its edge set by
E(G). We write v(G) = |V (G)| and e(G) = |E(G)| for their sizes. Given v ∈ V (G),
the neighbourhood NG(v) of v is the set of vertices that are incident to v and the degree
of v is dG(v) := |NG(v)|. For any U ⊆ V (G), let G[U ] be the induced graph of G on
U , i.e., graph with vertex set U and those edges of G with both endpoints in U . Let
G − U := G[V (G) \ U ] and G − v := G − {v}. For each vertex v ∈ V (G) and subset
U ⊆ V (G), let NG(v, U) = NG(v)∩U and dG(v, U) = |NG(v, U)|. Let EG(X, Y ) be the set
of edges with one endpoint in X and another in Y (so edges in G[X ∩Y ] are only counted
once) and let eG(X, Y ) = |EG(X, Y )|. We write EG(X) := EG(X,X) = E(G[X]). We
write P = v1 . . . vt to denote a path of length t, and will sometimes write v1Pvt or v1P or
Pvt for P if we wish to emphase its endpoint(s).

Given any collection G = (Gc : c ∈ C ) of graphs on a common vertex set V , we call
C the colour set of G. For any two sets X, Y ⊆ V , let EG(X, Y ) be the multiset of edges
of any colour with one endpoint in X and another in Y and eG(X, Y ) = |EG(X, Y )| =󰁓

G∈G eG(X, Y ). Given any edge-coloured graph H with V (H) ⊆ V with edge-colouring
σ : E(H) → C , we write col(H) :=

󰁖
e∈E(H) σ(e) for the set of colours used on H.

We say a constant x = a ± b if we have a − b 󰃑 x 󰃑 a + b. For any two constants
α, β ∈ (0, 1), we write α ≪ β if there exists function α0 = α0(β) such that the subsequent
arguments hold for all 0 < α 󰃑 α0. When we write multiple constants in a hierarchy, we
mean that they are chosen from right to left. For any two integers a 󰃑 b, let [a, b] = {a 󰃑
x 󰃑 b : x ∈ Z} and [a] := [1, a]. Given a set X and positive integer k, we write

•
󰀃
X
k

󰀄
for the set of all k-subsets of X,

• Xk for the set of all k-tuples of elements of X,
• (X)k for the set of all k-tuples of distinct elements of X.

We use script letters e.g. C ,A to denote sets of colours and bold letters e.g. G,J to
denote graph collections.

Organisation. We conclude this section with a sketch of the proofs of Theorems 4 and 5.
In Section 2, we introduce our regularity-blow-up method for transversals and state the
definitions and tools we will need later. The remainder of the paper contains the proofs
of our two main results. We prove them in a unified manner and all of the auxiliary
results along the way concern the setting of Theorem 4, i.e. collections of n graphs and
transversal Hamilton cycles (as opposed to paths). Section 3 introduces suitable notions
of extremality and stability for graphs and graph collections; the proof will be split into a
‘stable case’ and an ‘extremal case’. In Section 4, we prove some results about absorption
that will be used in the proof of the stable case. Then, in Section 5 we show that there
is always a transversal Hamilton cycle in this case. Section 6 deals with the extremal
case. We combine the results of Sections 3–6 to give a unified proof of Theorems 4 and 5
in Section 7. In Section 8 with finish with some concluding remarks and a discussion of
‘exact’ results for transversal embedding.
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1.5 Probabilistic tools

We use the following version of Chernoff’s bound:

Lemma 6 (See e.g. Corollary 2.3 in [15]). Let X be a random variable with binomial or
hypergeometric distribution, and let 0 < ε < 3

2
. Then

P[|X − E(X)| 󰃍 εE(X)] 󰃑 2e−
ε2

3
E(X).

1.6 Sketch of the proof of Theorems 4 and 5

We will define two kinds of stability for a graph family G = (G1, . . . , Gn) with minimum
degree at least (1

2
− o(1))n (see Definition 18). We will say that

• G is strongly stable if G contains many graphs which are not close to containing
either or , while

• G is weakly stable if almost all graphs in G are close to containing either or , but
the vertex partitions associated with these subgraphs are not similar.

We say that G is stable if it is either strongly stable or weakly stable. Thus if G is not
stable, most graphs in G are close to containing either or and their associated vertex
partitions are almost the same. The first part of the proof is to show that if G is stable,
then G contains a transversal Hamilton cycle. We then deal with the extremal case,
where G is not stable.

The stable case

Step 1. Build the absorbing cycle when G is stable. (Section 4)
We build an ‘absorbing cycle’ C for G with the property that C is very small and there
is a set A consisting of some colour-vertex pairs (c, v) and colour-vertex-vertex triples
(c, u, v) such that whenever A0 ⊆ A is sufficiently small compared to |C|, C can absorb
all of its elements (see Definition 25). This property implies

• we can add any (c, v) ∈ A0 to the cycle C, which means there is a new cycle C ′

with colour set col(C ′) = col(C) ∪ {c} and vertex set V (C ′) = V (C) ∪ {v}; and,
• for any (c, u, v) ∈ A0, whenever P is a rainbow path with endpoints u, v, we can
add P into C using only the new colour c.

In fact, when G is strongly stable, A contains all pairs and triples. But in general, we
need to construct an additional auxiliary set to absorb those colours and vertices which
C cannot. After C is constructed, we delete C and its colour set from G.
Step 2. Use the regularity-blow-up method for transversals to cover with long paths.
We apply the regularity lemma for graph collections (Lemma 10) to G and thus get
a reduced graph collection R that inherits the minimum degree condition of G. By
randomly partitioning its colour set, we obtain two families R1 and R2, each using about
half of the colour clusters. Since R1 and R2 inherit the original degree condition, we
are able to find two almost perfect rainbow matchings M1, M2 from R1 and R2 (see
Lemma 20). The union of these matchings is ‘locally’ like a Hamilton cycle. We apply
the transversal blow-up lemma (Theorem 13) to obtain almost spanning disjoint rainbow
paths inside each edge of M1 ∪M2, which cover almost all the vertices outside C.
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Step 3. Connect the paths and cover remaining vertices via the absorbing cycle.
The last step is to use the absorbing property of C as well as the auxiliary set to connect
all the paths to a transversal Hamilton cycle.

The extremal case (Section 6)
The remaining case is when G is not stable and thus most graphs in G are close to
containing either or and their vertex partitions are almost the same partition V = A∪B.
To prove Theorem 4, we need to show that if G is not close to a half-split graph collection
or close to Hb

a for some a ∈ [n] where b = n − a is odd, then G contains a transversal
Hamilton cycle. For this, we first find a short path that covers atypical vertices and
colours, and in some cases, balances the two sides of the partition. Next, we find partitions
A = A0 ∪ A10 ∪ A11 and B = B0 ∪ B10 ∪ B11 whose sizes depend on the exact number
of graphs that are close to and to . The transversal blow-up lemma guarantees that
there are spanning transversal paths in each of G[A0, B0], G[A10, A11], G[B01, B11] with
disjoint colour sets and endpoints in any given large subsets. The structure of G allows us
to find such paths which can be concatenated into a transversal Hamilton cycle, proving
Theorem 4. The proof of Theorem 5 differs only at the end: we use the fact that given
a collection G of n − 1 graphs on a common vertex set of size n, the n-graph collection
obtained from adding a complete graph to G has a Hamilton cycle if and only if G has
a Hamilton path.

2 The regularity-blow-up method for transversals

In this section, we introduce the tools developed in our paper [10]. We first define (su-
per)regularity for graph collections.

Definition 7 (Regularity and superregularity). Suppose that G is a graph collection with
colour set C , where each Gc is bipartite with parts V1, V2. We say that

• G is (ε, d)-regular if whenever V ′
i ⊆ Vi with |V ′

i | 󰃍 ε|Vi| for i = 1, 2 and C ′ ⊆ C
with |C ′| 󰃍 ε|C |, we have

󰀏󰀏󰀏󰀏

󰁓
c∈C ′ eGc(V

′
1 , V

′
2)

|C ′||V ′
1 ||V ′

2 |
−

󰁓
c∈C eGc(V1, V2)

|C ||V1||V2|

󰀏󰀏󰀏󰀏 < ε

and eG(V1, V2) 󰃍 d|C ||V1||V2|.
• G is (ε, d)-superregular if it is (ε, d)-regular and

󰁓
c∈C dGc(x) 󰃍 d|C ||V3−i| for all

x ∈ Vi where i ∈ [2], and e(Gc) 󰃍 d|V1||V2| for all c ∈ C .

Note that if every Gc with c ∈ C is the same, then G is (ε, d)-regular if and only if
Gc is (ε, d)-regular; and G is (ε, d)-superregular if and only if Gc is (ε, d)-superregular.

Lemma 8 (Typical vertices and colours [10]). Let 0 < ε ≪ d 󰃑 1, and let G be an (ε, d)-
regular graph collection with colour set C , where each Gc is bipartite with parts V1, V2.
Then the following hold:
(i) for every i ∈ [2] and all but at most ε|Vi| vertices v ∈ Vi we have

󰁓
c∈C dGc(v) 󰃍

(d− ε)|V3−i||C |;
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(ii) for all but at most ε|C | colours c ∈ C we have e(Gc) 󰃍 (d− ε)|V1||V2|.

Lemma 9 (Slicing lemma [10]). Let 0 < 1/n ≪ ε ≪ α ≪ d 󰃑 1, and let G be a graph
collection with colour set C , where each Gc is bipartite with parts V1, V2 each of size at
least n. Suppose that G is (ε, d)-regular. Let V ′

i ⊆ Vi with |V ′
i | 󰃍 α|Vi| for i ∈ [2] and

C ′ ⊆ C with |C ′| 󰃍 α|C |. Then G′ := (Gc[V
′
1 , V

′
2 ] : c ∈ C ′) is (ε/α, d/2)-regular.

We use the following regularity lemma for graph collections.

Lemma 10 (Regularity lemma for graph collections [10]). For all integers L0 󰃍 1 and
every ε, δ > 0, there is an n0 = n0(ε, δ, L0) such that for every d ∈ [0, 1) and every graph
collection G = (Gc : c ∈ C ) on vertex set V of size n 󰃍 n0 with δn 󰃑 |C | 󰃑 n/δ,
there exists a partition of V into V0, V1, . . . , VL, of C into C0,C1, . . . ,CM and a spanning
subgraph G′

c of Gc for each c ∈ C such that the following properties hold:
(i) L0 󰃑 L,M 󰃑 n0 and |V0|+ |C0| 󰃑 εn;
(ii) |V1| = . . . = |VL| = |C1| = . . . = |CM | =: m;
(iii)

󰁓
c∈C dG′

c
(v) >

󰁓
c∈C dGc(v) − (3d/δ2 + ε)n2 for all v ∈ V and e(G′

c) > e(Gc) −
(3d/δ2 + ε)n2 for all c ∈ C ;

(iv) if, for c ∈ C , the graph G′
c has an edge with both vertices in a single cluster Vi for

some i ∈ [L], then c ∈ C0;
(v) for all triples ({h, i}, j) ∈

󰀃
[L]
2

󰀄
× [M ], we have that either G′

c[Vh, Vi] = ∅ for all
c ∈ Cj, or G′

hi,j := (G′
c[Vh, Vi] : c ∈ Cj) is (ε, d)-regular.

The sets Vi are called vertex clusters and the sets Cj are called colour clusters, while
V0 and C0 are the exceptional vertex and colour sets respectively.

Definition 11 (Reduced graph collection). Given a graph collection G = (Gc : c ∈ C )
on V and parameters ε > 0, d ∈ [0, 1) and L0 󰃍 1, the reduced graph collection R =
R(ε, d, L0) of G is defined as follows. Apply Lemma 10 to G with parameters ε, δ, d, L0

to obtain G′ and a partition V0, . . . , VL of V and C0, . . . ,CM of C where V0, C0 are the
exceptional sets and V1, . . . , VL are the vertex clusters and C1, . . . ,CM are the colour
clusters. Then R = (R1, . . . , RM) is a graph collection of M graphs each on the same
vertex set [L], where, for ({h, i}, j) ∈

󰀃
[L]
2

󰀄
× [M ], we have hi ∈ Rj whenever G′

hi,j is
(ε, d)-regular.

The next lemma states that clusters inherit a minimum degree bound in the reduced
graph from G.

Lemma 12 (Degree inheritance [10]). Suppose L0 󰃍 1 and 0 < 1/n ≪ ε 󰃑 d ≪ δ, γ, p 󰃑
1. Let G = (Gc : c ∈ C ) be a graph collection on a vertex set V of size n with δ(Gc) 󰃍
(p + γ)n for all c ∈ C and δn 󰃑 |C | 󰃑 n/δ. Let R = R(ε, d, L0) be the reduced graph
collection of G on L vertices with M graphs. Then
(i) for every i ∈ [L] there are at least (1 − d1/4)M colours j ∈ [M ] for which dRj

(i) 󰃍
(p+ γ/2)L;

(ii) for every j ∈ [M ] there are at least (1 − d1/4)L vertices i ∈ [L] for which dRj
(i) 󰃍

(p+ γ/2)L.
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All of the above definitions and lemmas are merely convenient restatements of ‘weak
regularity’ for 3-uniform hypergraphs, specialised to the transversal setting. However,
the next lemma, our transversal blow-up lemma, which was the main result of [10], is a
non-trivial tool which we will use in the proofs of Theorems 4 and 5.

An n-vertex graph H is µ-separable if there is X ⊆ V (H) of size at most µn such that
H − X consists of components of size at most µn. This class of graphs includes many
natural graphs including F -factors, 2-regular graphs and powers of Hamilton cycles. In
this paper, we will only use it for Hamilton paths. Thus it suffices to state a simplified
version of the main result of [10].

Theorem 13 (Transversal blow-up lemma [10]). Let 0 < 1/n ≪ ε, µ,α,≪ ν, d, δ, 1/∆ 󰃑
1. Let C be a set of at least δn colours and let G = (Gc : c ∈ C ) be a collection of
bipartite graphs with the same vertex partition V1, V2, where n 󰃑 |V1| 󰃑 |V2| 󰃑 n/δ, such
that G is (ε, d)-superregular. Let H be a µ-separable bipartite graph with parts A1, A2 of
sizes |V1|, |V2| respectively, and |C | edges and maximum degree ∆. Suppose further that,
for i = 1, 2, there is a set Ui ⊆ Ai with |Ui| 󰃑 α|Ai| and for each x ∈ Ui, a target set
Tx ⊆ Vi with |Tx| 󰃍 ν|Vi|. Then G contains a transversal copy of H such that for i = 1, 2,
every x ∈ Ui is embedded inside Tx.

3 Extremality and stability

3.1 Extremal and stable graphs

In this section, we define extremality for a single graph. A graph G is not extremal if any
two half-sized sets have many edges between them.

Definition 14 (nice, extremal). Let G be a graph on a vertex set V of size n and let
ε > 0. We say that

• G is ε-nice if for any two sets A,B ⊆ V of size at least (1
2
−ε)n, we have eG(A,B) 󰃍

εn2.
• G is ε-extremal if it is not ε3-nice.

Note that whenever ε′ 󰃍 ε > 0, an ε′-nice graph is ε-nice and hence an ε-extremal
graph is ε′-extremal.

The following is a version of a well-known fact about the structure of almost Dirac
graphs which forms the basis of our extremal case distinction (for example, see [18]).

Lemma 15. Suppose that 0 < 1/n ≪ d ≪ ε 󰃑 1. Let G be a graph on a vertex set V of
size n with dG(x) 󰃍 (1

2
− ε3)n for all but at most dn vertices x ∈ V which is ε-extremal.

Then there is a characteristic partition (A,B,C) of G such that
(i) A,B,C partition V ;
(ii) |A| = |B| = (1

2
− ε)n;

(iii) one of the following holds:

• dG(a,A) 󰃍 (1
2
− 2ε)n for all a ∈ A and dG(b, B) 󰃍 (1

2
− 2ε)n for all b ∈ B and

eG(A,B) 󰃑 εn2; here we say that G is (ε, )-extremal;
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• dG(a,B) 󰃍 (1
2
− 2ε)n for all a ∈ A and dG(b, A) 󰃍 (1

2
− 2ε)n for all b ∈ B, and

either eG(A) 󰃑 εn2 or eG(B) 󰃑 εn2; here we say that G is (ε, )-extremal.

Proof. By adding the at most dn vertices with degree less than (1
2
− ε3)n to C, it suffices

to prove that if G has δ(G) 󰃍 (1
2
− ε3)n, then the conclusion holds with ε/2 in place of

ε. Let µ := ε3. Since G is ε-extremal, there are X, Y ⊆ V each of size at least (1
2
− µ)n

such that eG(X, Y ) < µn2. Let U := X ∩ Y and D := V \ (X ∪ Y ). We divide the proof
into two cases based on the size of U .

Case 1. |U | 󰃍 2
√
µn. Let U0 := {u ∈ U : dG(u,D) 󰃑 (1

2
− 3

√
µ)n}. If |U0| >

√
µn, then

since dG(v,X ∪ Y ) 󰃍 2
√
µn for each v ∈ U0, we have eG(X, Y ) 󰃍 eG(U,X ∪ Y ) 󰃍 1

2
·

2
√
µn ·√µn = µn2, a contradiction. Thus we have |U0| 󰃑

√
µn and hence |U \U0| 󰃍

√
µn.

In particular, U \U0 ∕= ∅ and thus |D| 󰃍 (1
2
− 3

√
µ)n, so |X ∪Y | 󰃑 (1

2
+3

√
µ)n. We have

|U \ U0| = |X|+ |Y |− |X ∪ Y |− |U0| 󰃍 2(1
2
− µ)n− (1

2
+ 3

√
µ)n−√

µn 󰃍 (1
2
− 5

√
µ)n.

Each vertex in U \ U0 has at least (1
2
− 3

√
µ)n neighbours in V \ U . Since dG(v,D) 󰃍

(1
2
− 3

√
µ)n for all v ∈ U \U0, we have eG(U \U0, D) 󰃍 (1

2
− 5

√
µ)(1

2
− 3

√
µ)n2 and hence

D0 := {x ∈ D : dG(x, U \ U0) 󰃑 (1
2
− 3

√
µ)n} has size |D0| 󰃑 6

√
µn. So |D \ D0| 󰃍

(1
2
− 9

√
µ)n.

Now choose any A ⊆ U \ U0 and B ⊆ D \ D0 with |A| = |B| = (1
2
− ε/2)n, and let

C := V \ (A ∪ B). Then A and B are disjoint, and we have dG(a,B) 󰃍 dG(a,D \D0)−
(ε/2 + 5

√
µ)n 󰃍 (1

2
− ε)n for all a ∈ A and similarly for dG(b, A) for all b ∈ B. Finally,

eG(A) 󰃑 eG(U) 󰃑 eG(X, Y ) < µn2 < εn2/2. Thus G is (ε/2, )-extremal.

Case 2. |U | < 2
√
µn. This case is very similar so we only sketch the proof. It is easy to

see that for all but most 2
√
µn vertices v in X we have dG(v, Y ) 󰃑 √

µn. Similarly, for
all but most 2

√
µn vertices v in Y we have dG(v,X) 󰃑 √

µn. We delete these exceptional
vertices from X and from Y . Let X1 := X \ Y and Y1 := Y \ X. Note that these
sets are disjoint and each has size at least (1

2
− 5

√
µ)n. Now it follows that for each

vertex v ∈ X1, we have dG(v,X1) 󰃍 (1
2
− 8

√
µ)n and for each vertex v ∈ Y1, we have

dG(v, Y1) 󰃍 (1
2
− 8

√
µ)n. We choose A ⊆ X1 and B ⊆ Y1 of the correct sizes, and note

that eG(A,B) 󰃑 eG(X, Y ) 󰃑 µn2. Thus G is (ε/2, )-extremal. □

3.2 Stable graph collections

We now move on to consider stability for graph collections. Lemma 15 implies that given
a positive integer n and 0 < 1/n ≪ ε 󰃑 1 and a graph collection G = (G1, . . . , Gn) on a
common vertex set V of size n, whenever Gi is ε-extremal, we can fix a

characteristic partition (Ai, Bi, Ci) of Gi.

We say that a vertex v ∈ V is i-good if either Gi is not ε-extremal (that is, Gi is ε
3-nice)

or Gi is ε-extremal and v ∈ Ai ∪Bi. Extremality of a graph collection depends on where
graphs are in relation to one another, hence we make the following definitions.
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Definition 16 (crossing, cross graph). Let 0 < 1/n, ε, δ < 1 where n ∈ N and let
G = (G1, . . . , Gn) be a graph collection on a common vertex set V of size n. Given
i, j ∈ [n] such that Gi and Gj are both ε-extremal, we say that they are δ-crossing if

|Ai △ Aj| 󰃍 δn and |Ai △ Bj| 󰃍 δn. We define the cross graph Cε,δ
G to be the graph

with vertex set [n] where i is adjacent to j if and only if Gi, Gj are both ε-extremal and
δ-crossing.

Observation 17. Suppose that 0 < ε 󰃑 δ/8. If Gi and Gj are δ-crossing, then |Xi∩Yj| 󰃍
δn/4 whenever X, Y ∈ {A,B}.

Proof. Since |Ai △ Bj| 󰃍 δn and |Ai| = |Bj| we get |Ai \ Bj| 󰃍 δn/2. Thus |Ai ∩ Aj| =
|Ai \ (Bj ∪ Cj)| 󰃍 δn/2− 2εn 󰃍 δn/4. The other assertions hold by symmetry. □

We can now define stability for graph collections.

Definition 18 (strongly stable, weakly stable, stable, nice). Let n ∈ N and 0 <
µ, γ,α, ε, δ < 1 be parameters. Suppose that G = (G1, . . . , Gn) is a graph collection
on a common vertex set V of size n. We say that

• G is (γ,α)-strongly stable if Gi is α-nice for at least γn colours i ∈ [n];
• G is (ε, δ)-weakly stable if e(Cε,δ

G ) 󰃍 δn2;
• G is (γ,α, ε, δ)-stable if it is either (γ,α)-strongly stable or (ε, δ)-weakly stable (or
both).

• G is µ-nice if for every A ⊆ V of size ⌊n/2⌋ we have eG(A) > µn3 and eG(A, V \A) >
µn3.

When the parameters are clear from the text, we simply say G is strongly stable, weakly
stable, stable or nice.

Note that whenever γ′ 󰃍 γ > 0 and α′ 󰃍 α > 0, a (γ′,α′)-strongly stable collection is
(γ,α)-strongly stable, and whenever 0 < ε′ 󰃑 ε and δ′ 󰃍 δ > 0, an (ε′, δ′)-weakly stable
collection is (ε, δ)-weakly stable.

Lemma 19. Suppose that 0 < 1/n ≪ µ ≪ γ,α, ε, δ < 1. Let G = (G1, . . . , Gn) be a
graph collection on a common vertex set V of size n. If G is (γ,α, ε, δ)-stable, then G is
µ-nice.

Proof. Suppose that there is A ⊆ V of size ⌊n/2⌋ such that eG(A) 󰃑 µn3. Therefore,
for all but at most

√
µn colours i ∈ [n], we have eGi

(A) 󰃑 √
µn2, and hence Gi is not√

µ-nice. This implies that G is not (1 −√
µ,

√
µ)-strongly stable and hence not (γ,α)-

strongly stable. Without loss of generality, suppose that for each i ∈ [(1 − √
µ)n], Gi is

ε-extremal with characteristic partition (Ai, Bi, Ci) (as we fixed at the beginning of the
subsection). Let B := V \ A. It follows that, after possibly relabelling Ai and Bi, we
have |A△ Ai| 󰃑 δ2n and |B △ Bi| 󰃑 δ2n for all but at most δ2n colours i ∈ [(1−√

µ)n],
otherwise we have at least δ4n3/2 > µn3 edges of G inside A by µ ≪ δ, a contradiction.
Delete such colours from [(1−√

µ)n] and let C be the remaining colour set. Thus for every

i, j ∈ C , the graphs Gi and Gj are not δ
2-crossing. Therefore e(Cε,δ

G ) 󰃑 √
µn2+δ2n2 < δn2

by µ ≪ δ. Thus G is not (ε, δ)-weakly stable, a contradiction.
The proof of the other case is similar and we omit it. □
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The next key lemma guarantees that a nice graph collection in which all vertices have
degree at least (1

2
− µ)n in almost all colours contains a transversal copy of a graph H

which locally looks like a Hamilton cycle: almost all degrees equal two. We choose H to
be a union of two almost perfect matchings. It is vital that here, ‘almost all’ means a
1− θ proportion where θ ≪ µ. If we were allowed to take, say, θ = 3µ, then the very first
part of the argument of Joos and Kim on the transversal minimum degree threshold for
matchings [16] would give a very short proof even without assuming the graph collection
is stable. Instead, we need to analyse the structure of maximal matchings in a collection
of almost Dirac graphs.

This lemma will be applied in a reduced graph, which is why we only assume a weaker
degree condition, and then the transversal blow-up lemma will be applied to obtain a
rainbow collection of long paths covering almost the whole of V .

Lemma 20. Let 0 < 1/n ≪ d ≪ θ ≪ µ ≪ γ,α, ε, δ ≪ 1. Suppose that G = (G1, . . . , Gn)
is a graph collection defined on a common vertex set V of size n and for each vertex v ∈ V ,
we have dGi

(v) 󰃍 (1
2
− µ)n for all but at most dn colours i ∈ [n]. If G is (γ,α, ε, δ)-

stable, then G contains two edge-disjoint rainbow matchings M1 and M2 in G such that
e(Mℓ) 󰃍 (1

2
− θ)n for ℓ = 1, 2 and col(M1) ∩ col(M2) = ∅.

The lemma is an easy consequence of the next lemma which guarantees an almost
spanning rainbow matching in a nice graph collection containing about n/2 graphs.

Lemma 21. Let 0 < 1/n ≪ d ≪ θ ≪ µ ≪ 1. Suppose that G = (G1, . . . , G( 1
2
−θ/4)n) is a

graph collection defined on a common vertex set V of size n and for each vertex v ∈ V ,
we have dGi

(v) 󰃍 (1
2
− µ)n for all but at most dn colours i ∈ [n]. If G is 100µ-nice, then

G contains a rainbow matching M with e(M) 󰃍 (1
2
− θ)n.

Proof of Lemma 20 given Lemma 21. Let C1 be a random set obtained by selecting each
colour in [n] randomly and independently with probability 1

2
, and let C2 := [n] \ C1.

Claim 22. With high probability, for ℓ = 1, 2 we have |Cℓ| = n/2 ± n3/4 and the graph
collection Gℓ := (Gi : i ∈ Cℓ) is µ-nice.

Proof of Claim. The first statement follows from Chernoff’s inequality (Lemma 6).
Suppose first that G is (γ,α)-strongly stable. Then A := {i ∈ [n] : Gi is α-nice}

satisfies |A | 󰃍 γn. By Chernoff’s inequality, with high probability, we have |A ∩ Cℓ| 󰃍
γn/3 and thus Gℓ is (γ/2,α)-strongly stable for ℓ = 1, 2.

Suppose instead that G is (ε, δ)-weakly stable. Let A := {i ∈ [n] : Gi is ε-extremal}.
We have e(Cε,δ

G ) 󰃍 δn2, so in particular, |A | 󰃍 δn. Let H := Cε,δ
G and B := {i ∈ A :

dH(i,A ) 󰃍 δn}. It follows that |B| 󰃍 δn. Let B := {NH(v,A ) : v ∈ B}. By Chernoff’s
inequality, with high probability, we have |B ∩ Cℓ| 󰃍 δn/3 and |N ∩ Cℓ| 󰃍 δn/3 for each
N ∈ B and ℓ = 1, 2. Thus with high probability, we have e(H[Cℓ]) 󰃍 δ2n2/18 and thus
Gℓ is (ε, δ2/18)-weakly stable for ℓ = 1, 2.

In both cases, Lemma 19 implies that Gℓ is µ-nice for ℓ = 1, 2. □
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Fix such C1 and C2. Apply Lemma 21 to G1 to obtain a rainbow matching M1 with
e(M1) 󰃍 (1

2
− θ)n and colours from C1. Remove any xy ∈ E(M1) from G2

i for each i ∈ C2.
Every vertex degree in every graph reduces by at most one, so G2 is still 2µ-nice. Apply
Lemma 21 to G2 to obtain a rainbow matching M2 with e(M2) 󰃍 (1

2
− θ)n and colours

from C2. □

Proof of Lemma 21. Let M be a maximal rainbow matching in G and suppose for a
contradiction that e(M) < (1

2
− θ)n. Let v1, v2 /∈ V (M) and c1, c2 /∈ col(M) be distinct

such that Nℓ := NGcℓ
(vℓ) satisfies |Nℓ| 󰃍 (1

2
− µ)n for ℓ = 1, 2. Let U := V \ (V (M) ∪

{v1, v2}) and C := [(1
2
− θ/4)n] \ (col(M) ∪ {c1, c2}). Given x ∈ V (M), we write x+ to

denote the unique neighbour of x in M and given A ⊆ V (M), we write A+ := {x+ : x ∈
A}. Given A ⊆ V , we write A := V \ A.
Claim 23. We have Nℓ ⊆ V (M) and (1

2
−µ)n 󰃑 |Nℓ| 󰃑 (1

2
+3µ)n for ℓ = 1, 2 and exactly

one of the following holds:
• |N1 △N2| 󰃑 6µn, and writing Mℓ := M [Nℓ] and Xℓ := V (Mℓ) for ℓ = 1, 2, we have
e(Mℓ) 󰃍 (1

4
− 2µ)n and X1 ∩X2 = ∅ and e(Gc[X1, X2]) = 0 for all c ∈ C ;

• |N1 △N2| 󰃑 6µn, and there is X ⊆ N1 ∪N2 ∩ V (M) with X+ ⊆ N1 ∩N2 such that
|N1 ∪N2 \X|, |(N1 ∩N2) \X+| 󰃑 6µn and |X| 󰃍 (1

2
− 3µ)n and e(M [X+]) = 0 and

e(Gc[X]) = 0 for all c ∈ C .

Proof of Claim. If there is y /∈ V (M) with vℓy ∈ Gcℓ for some ℓ = 1, 2 then we can
add vℓy to M to get a larger matching. Thus Nℓ ⊆ V (M) for ℓ = 1, 2. Moreover,
we have N+

ℓ ∩ N3−ℓ = ∅ since otherwise we get a 3-path v3−ℓww
+vℓ with col(v3−ℓw) =

c3−ℓ, col(vℓw
+) = cℓ and ww+ ∈ E(M). Replacing ww+ by v3−ℓw and w+vℓ gives a

rainbow matching that is larger than M , a contradiction. Let Sℓ := E(M [Nℓ]) and
Tℓ := E(M [Nℓ, V −Nℓ]) and write sℓ := |Sℓ| and tℓ := |Tℓ|. Note that, sinceN+

ℓ ∩N3−ℓ = ∅,
we have

S1 ∩ S2 = S1 ∩ T2 = T1 ∩ S2 = ∅. (1)

Since Nℓ ⊆ V (M) we have

2sℓ + tℓ = |Nℓ| 󰃍 (1
2
− µ)n. (2)

Case 1. t1+t2 󰃑 2µn. We will show that the first alternative holds. We have x ∈ N2 only if
x+ /∈ N1 so |N1∩N2| 󰃑 t1+t2 󰃑 2µn, and |N1 ∪N2| 󰃑 n−2(s1+s2) 󰃑 2µn+t1+t2 󰃑 4µn.
So |N1 △ N2| 󰃑 6µn. Also |N2| 󰃑 |N1| + 2µn 󰃑 (1

2
+ 3µ)n so by symmetry we have

(1
2
− µ)n 󰃑 |Nℓ| 󰃑 (1

2
+ 3µ)n for ℓ = 1, 2. Next, e(Mℓ) = sℓ 󰃍 1

2
(|Nℓ| − tℓ) 󰃍 (1

4
− 2µ)n

by (2). We have Xℓ = V (Sℓ) and since Sℓ is a matching, S1 ∩ S2 = ∅ implies that
X1 ∩X2 = ∅.

Finally, suppose E(Gc[X1, X2]) ∕= ∅ for some c ∈ C . Then there are wℓw
+
ℓ ∈ E(Mℓ)

for ℓ = 1, 2 with w+
1 w2 ∈ Gc. Thus there is a rainbow path v1w1w

+
1 w2w

+
2 v2 using c1, c2, c

and two colours from M . Hence we can replace w1w
+
1 and w2w

+
2 by v1w1, w

+
1 w2, v2w

+
2 to

obtain a larger rainbow matching, a contradiction.
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Case 2. t1 + t2 󰃍 2µn. We will show that the second alternative holds. Now (1) implies
that

|T1 ∩ T2| = t1 + t2 − |T1 ∪ T2| 󰃍 t1 + t2 − (e(M)− s1 − s2)

=
t1 + t2

2
+

2s1 + t1
2

+
2s2 + t2

2
− e(M)

(2)

󰃍 µn+ (1
2
− µ)n− (1

2
− θ)n 󰃍 θn.

Since N+
ℓ ∩ N3−ℓ = ∅, we can choose an edge v3v

+
3 ∈ T1 ∩ T2 where v+3 ∈ N1 ∩ N2

and v3 ∈ N1 ∪N2. Choose any colour c3 ∈ C such that dGc3
(v3) 󰃍 (1

2
− µ)n. Let

N3 := NGc3
(v3).

Suppose N3 ∩ N+
ℓ ∕= ∅ for ℓ ∈ [2]. Thus there exists ww+ ∈ E(M) such

that col(vℓw
+) = cℓ, col(v3w) = c3 and hence vℓw

+wv3v
+
3 v3−ℓ is a rainbow path

with vℓw
+, wv3, v

+
3 v3−ℓ coloured by cℓ, c3, c3−ℓ. By replacing v3v

+
3 , ww

+ in M by
v+3 v3−ℓ, vℓw

+, wv3, we get a larger rainbow matching, a contradiction. Thus N3∩N+
ℓ = ∅.

Also, N3 ⊆ V (M): if not, there is w /∈ V (M) such that we can replace v3v
+
3 in M with

v3w, v
+
3 v1 using colours c3, c1. We have shown that N3, N

+
1 ∪ N+

2 are pairwise disjoint
subsets of V (M). By definition, we have the partition

N+
1 ∪N+

2 = V (S1) ∪ V (S2) ∪ Y where

Y := {x+ : x ∈ N1, xx
+ ∈ T1} ∪ {x+ : x ∈ N2, xx

+ ∈ T2}.

Whenever x ∈ Y we have x+ /∈ Y . So |Y | 󰃍 |T1 ∪ T2| and hence |V (M)| 󰃍 |N3| + 2s1 +
2s2 + |T1 ∪ T2|. Therefore

|T1∩T2| = t1+ t2− |T1∪T2| 󰃍
󰁛

ℓ=1,2

(2sℓ+ tℓ)+ |N3|− |V (M)|
(2)

󰃍 3(1
2
−µ)n−n 󰃍 (1

2
−3µ)n.

Let X := {x ∈ N1 ∪N2 : xx
+ ∈ T1∩T2}. So X ⊆ N1 ∪N2 and X+ ⊆ N1∩N2 are disjoint,

so |X| = |X+| 󰃍 |T1∩T2|. Thus also |N1 ∪N2\X|, |(N1∩N2)\X+| 󰃑 n−|X|−|X+| 󰃑 6µn.
Since N1 ∪N2 and X are disjoint, we have |Nℓ| 󰃑 |N1 ∪N2| 󰃑 (1

2
+ 3µ)n for ℓ = 1, 2. We

have |N1 △ N2| = |N1 ∪ N2| − |N1 ∩ N2| 󰃑 n − |X+| − |X| 󰃑 6µn. The definition of X
implies that E(M [X+]) = ∅.

Finally, suppose e(Gc[X]) ∕= 0 for some c ∈ C . Then as before we obtain a contradic-
tion by adding such an edge xy along with v1x

+, v2y
+ (of colours c, c1, c2) and removing

xx+, y+y. This completes the proof of the claim. □

By Claim 23, we have Nℓ ⊆ V (M) and (1
2
− µ)n 󰃑 |Nℓ| 󰃑 (1

2
+ 3µ)n for ℓ = 1, 2 and

one of the following cases:

Case 1 : |N1 △ N2| 󰃑 6µn, and writing Mℓ := M [Nℓ] and Xℓ := V (Mℓ) for ℓ = 1, 2, we
have e(Mℓ) 󰃍 (1

4
− 2µ)n and X1 ∩X2 = ∅ and e(Gc[X1, X2]) = 0 for all c ∈ C .

It suffices to show that for all colours c ∈ col(M1∪M2), we have eGc(X1, X2) 󰃑 13µn2.
Indeed, there are at least 2(1

4
− 2µ)n = (1

2
− 4µ)n such colours so eG(X1, X2) 󰃑 13µn3 +
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4µn3 = 17µn3. Also X1, X2 are disjoint sets of size at least (1
2
− 4µ)n, so there is a set Y

of size n/2 such that eG(Y, Y ) 󰃑 30µn3, and therefore G is not 30µ-nice.
Now let c ∈ col(M1∪M2). Without loss of generality, there is ww+ ∈ E(M1) such that

col(ww+) = c. Choose a colour c3 ∈ C so that N3 := NGc3
(w) satisfies |N3| 󰃍 (1

2
− µ)n.

Since w ∈ X1, our assumption that e(Gc3 [X1, X2]) = 0 implies that N3∩X2 = ∅. Now let
M ′ := M−ww++v1w

+ be the rainbow matching with col(M ′) = (col(M)\{c})∪{c1} and
consider new vertex pair (w, v2) and colour pair (c3, c2). We have {c, c2, c3}∩col(M ′) = ∅.
The matching M ′ is maximal, otherwise the maximality of M is contradicted. So Claim
23 applies to M ′.

Now, N3 ∩ X2 = ∅ so |N3 ∩ N2| 󰃑 |N2| − |X2| 󰃑 (1
2
+ 3µ)n − (1

2
− 4µ)n = 7µn and

in particular the second alternative cannot hold. Thus |N3 △ N2| 󰃑 6µn, and writing
M ′

ℓ := M ′[Nℓ] and X ′
ℓ := V (M ′

ℓ) for ℓ = 2, 3, we have e(M ′
ℓ) 󰃍 (1

4
− 2µ)n and X ′

2∩X ′
3 = ∅

and E(Gc[X
′
2, X

′
3]) = ∅. We have |N1 △ N3| 󰃑 |N1 △ N2| + |N2 △ N3| 󰃑 12µn. Since

M,M ′ differ by two edges we therefore have |X1 △ X ′
3| + |X2 △ X ′

2| 󰃑 13µn. Thus
eGc(X1, X2) 󰃑 eGc(X

′
3, X

′
2) + 13µn2 = 13µn2, as required.

Case 2 : |N1 △ N2| 󰃑 6µn, and there is X ⊆ N1 ∪N2 ∩ V (M) with X+ ⊆ N1 ∩ N2 such
that |N1 ∪N2 \X|, |(N1 ∩N2) \X+| 󰃑 6µn such that |X| 󰃍 (1

2
− 3µ)n and e(M [X+]) = 0

and e(Gc[X]) = 0 for all c ∈ C .
It suffices to show that eGc(X) 󰃑 24µn2 for all c ∈ col(M [X,X+]). Indeed, there are

|X| 󰃍 (1
2
− 3µ)n such colours, so eG(X) 󰃑 24µn3 + 3µn3 = 27µn3. Since (1

2
− 3µ)n 󰃑

|X| 󰃑 n − |X+| 󰃑 (1
2
+ 3µ)n, there is a set Y of size n/2 with eG(Y ) 󰃑 40µn3. Thus G

is not 40µ-nice.
Let c ∈ col(M [X,X+]). Let w ∈ X be such that col(ww+) = c. Choose a colour c3

from C such that N3 := NGc3
(w) satisfies |N3| 󰃍 (1

2
− µ)n. Since w ∈ X, our assumption

that e(Gc3 [X]) = 0 implies that N3 ∩ X = ∅. Now let M ′ := M − ww+ + v1w
+ be

the rainbow matching with col(M ′) = (col(M \ {c}) ∪ {c1} and consider new vertex pair
(w, v2) and colour pair (c3, c2). So {c, c2, c3}∩ col(M ′) = ∅. The matching M ′ is maximal,
otherwise the maximality of M is contradicted. So Claim 23 applies to M ′. We have
N3 ∪N2 ⊆ X so |N3 ∩N2| 󰃍 |N3|+ |N2|− (n− |X|) 󰃍 2(1

2
− µ)n− n+ |X| > (1

2
− 5µ)n,

so in particular the first alternative cannot hold.
So |N3 △N2| 󰃑 6µn, and there is X ′ ⊆ N3 ∪N2 with |N3 ∪N2 \X ′| 󰃑 6µn such that

|X ′| 󰃍 (1
2
− 3µ)n and e(M [(X ′)+]) = 0 and e(Gc[X

′]) = 0. Now,

|X ′ △X| 󰃑 |X ′ △N3 ∪N2|+ |N3 ∪N2 △N1 ∪N2|+ |N1 ∪N2 △X|
󰃑 12µn+ |N3 △N1|
󰃑 12µn+ |N3 △N2|+ |N2 △N1| 󰃑 24µn.

Thus eGc(X) 󰃑 24µn2, as required.
This completes the proof of Lemma 21. □
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4 Absorbing

Recall that (V )k denotes the set of all k-tuples of distinct elements of V . A pairH = (V,E)
where V is a set and E ⊆ (V )k is called a directed k-graph, while if we allow E to be a
multiset, it is a directed multi-k-graph. The elements of E are edges. LetH = (H1, . . . , Ht)
be a collection of directed k-graphs on the same vertex set V . A matching M is a directed
k-graph where no v ∈ V appears in more than one k-tuple in E, and it is rainbow if it
uses at most one edge from each Hi with 1 󰃑 i 󰃑 t. We use the same notation for directed
k-graphs as for graphs. The following lemma is the key tool that we will use to build an
absorbing structure. Similar ideas have already been used in the papers [8, 9, 11] of the
first author.

Lemma 24. Let k, C, n ∈ N suppose that 0 < 1/n ≪ γ ≪ ε ≪ 1/k, 1/C 󰃑 1 and let
m ∈ [nC ] and t := γn. Let H = (H1, . . . , Ht) be a collection of directed k-graphs and
let Z = (Z1, . . . , Zm) be a collection of directed multi-k-graphs all defined on a common
vertex set V of size n. Suppose that e(Hi) 󰃍 εnk for all i ∈ [t] and for each j ∈ [m],
we have |E(Zj) ∩ E(Hi)| 󰃍 εnk for at least εt indices i ∈ [t]. Then there is a rainbow
matching M in H of size at least (1−ε2/4)t and |E(Zj)∩E(M)| 󰃍 ε2t/4 for each j ∈ [m].

Proof. Let W = {e1, . . . , et} be obtained by independently picking ei from E(Hi), i ∈ [t],
uniformly at random. For each i ∈ [t] and j ∈ [m], let χij = (ei ∈ Zj). By definition, we
have e(Hi) 󰃑 nk for each i ∈ [t] and thus E(χij) = P(ei ∈ Zj) = |E(Zj)∩E(Hi)|/|E(Hi)| 󰃍
εnk/nk = ε whenever |E(Zj)∩E(Hi)| 󰃍 εnk. Therefore E(|W ∩E(Hj)|) = E(

󰁓
i∈[t] χij) =󰁓

i∈[t] E(χij) 󰃍 ε2t for each j ∈ [m]. Chernoff’s inequality and a union bound imply that

with probability at least 1− e−
√
n, we have |W ∩ E(Hj)| 󰃍 ε2t/2 for all j ∈ [m].

Let Y be the number of intersecting pairs of edges in W . So Y 󰃑
󰁓

ii′∈([t]2 )
Yii′ where

Yii′ = (V (ei) ∩ V (ei′) ∕= ∅). Let Iii′ be the number of intersecting pairs of edges {ai, ai′}
with ah ∈ E(Hh) for h = i, i′. So |Iii′ | 󰃑 kn2k−1. Hence, for every ii′ ∈

󰀃
[t]
2

󰀄
, we have

E(Yii′) =
|Iii′ |

e(Hi)e(Hi′)
󰃑 kn2k−1

ε2n2k
=

k

ε2n
and so

E(Y ) 󰃑
󰁛

ii′∈([t]2 )

E(Yii′) 󰃑
󰀕
t

2

󰀖
k

ε2n
󰃑 k

2ε2
γ2n 󰃑 ε2t

8
.

Markov’s inequality implies that P(Y 󰃑 ε2t/4) 󰃍 1/2. Thus a union bound implies that
there exists W with |W | = t, |W ∩ E(Zj)| 󰃍 ε2t/2 for all j ∈ [m] and there are at most
ε2t/4 pairs of intersecting edges in W . The required M is obtained by deleting one edge
from each intersecting pair of W . □

Let G = (G1, . . . , Gn) be a graph collection on a common vertex set V of size n. For
every pair x, y of distinct vertices in V , we define L(xy) := {i ∈ [n] : xy ∈ E(Gi)} to be
the set of colours appearing on xy.
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Figure 1: A c-absorbing path of (v, v) and a c-absorbing path of (v, u) for v ∕= u.

Definition 25 (absorbing path, absorbing cycle). Given any two not necessarily distinct
vertices u, v ∈ V , a rainbow path P = v1v2v3v4 with u, v /∈ V (P ) is called a c-absorbing
path of (v, u) if c ∈ L(v2v) and col(v2v3) ∈ L(v3u) (see Figure 1).

Given δ, δ′, γ, γ′ > 0, a rainbow cycle C = v1v2 . . . vt is an absorbing cycle with pa-
rameters (δ, δ′, γ, γ′) if t 󰃑 γn and there exists a colour set C of size at least δn such
that
(i) given any colour c ∈ C and any Gc-good vertex v, for all but at most δ′n vertices

u ∈ V , there are at least γ′n disjoint c-absorbing paths of (v, u) inside C;
(ii) given any colour c ∈ C , for all but at most δ′n Gc-good vertices v, there are at least

γ′n disjoint c-absorbing paths of (v, v) inside C.

It is easy to see that if C is a rainbow cycle containing a c-absorbing path of (v, v) where
v /∈ V (C) and c /∈ col(C), then there exists a rainbow cycle C ′ such that V (C ′) = V (C)∪
{v} and col(C ′) = col(C) ∪ {c} (insert v between v2 and v3). Similarly, if C is a rainbow
cycle containing a c-absorbing path of (v, u) where u, v are the endpoints of a rainbow
path P , V (P ) ∩ V (C) = ∅ and col(P ), {c}, col(C) are pairwise disjoint, then there exists
a rainbow cycle C ′ such that V (C ′) = V (C) ∪ V (P ) and col(C ′) = col(C) ∪ col(P ) ∪ {c}
(insert P between v2 and v3).

Using Lemma 24 it is quite straightforward to find an absorbing cycle when G is
strongly stable, using the many nice graphs Gi guaranteed by strong stability.

Lemma 26. Let 0 < 1/n ≪ λ, µ ≪ γ,α ≪ 1 and suppose that G = (G1, . . . , Gn) is a
graph collection defined on a common vertex set V of size n with δ(G) 󰃍 (1

2
− µ)n. If G

is (γ,α)-strongly stable, then there exists an absorbing cycle with parameters (1, 0,λ,λ2).

Proof. Without loss of generality, we assume that G1, . . . , Gγn are α-nice and 6|λn. We
divide the colour set [λn/2] into consecutive sets {1, 2, 3}, {4, 5, 6}, . . . , {λn/2− 2,λn/2−
1,λn/2} of three. For each i ∈ I := [λn

6
], we define

Fi := {(v1, v2, v3, v4) ∈ (V )4 : 3(i− 1) + ℓ ∈ L(vℓvℓ+1) ∀ℓ ∈ [3]}.

Our minimum degree condition implies that e(Fi) 󰃍 n((1
2
− µ)n)3 󰃍 n4/9. Now we

fix a colour c ∈ [n] and two not necessarily distinct vertices v, v′ ∈ V (which are not
required to be Gc-good). We let Zi(c, vv

′) be the collection of (v1, v2, v3, v4) ∈ Fi for which
P = v1v2v3v4 with the given colours is a c-absorbing path of (v, v′). Since the graph G3i+2

is α-nice, there are at least αn2 ways to choose v2v3 with v2 ∈ NGc(v), v3 ∈ NG3i+2
(v′) and

v2v3 ∈ E(G3i+2). When v2, v3 are fixed, there are at least (1
2
− µ)2n2 ways to choose v1

and v4. Thus |Zi(c, vv
′)| 󰃍 (1

2
− µ)2n2αn2 󰃍 αn4/5.
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We can apply Lemma 24 with H := (Fi : i ∈ I), Z := (Z(c, vv′) :=
󰁖

i∈I Zi(c, vv
′) :

c ∈ [n], vv′ ∈ V 2), where this is a multiset union, and parameters |I| = t and α/5 =
ε, to obtain a rainbow matching M in H of size at least (1 − α2/100)λn/6 such that
|E(Z(c, vv′)) ∩ E(M)| 󰃍 α2λn/600 for all c ∈ [n] and vv′ ∈ V 2. That is, there is I ′ ⊆ I
with |I ′| 󰃍 (1−α2/100)λn/6 such that for each i ∈ I ′ there is a rainbow path Pi = vi1v

i
2v

i
3v

i
4

with 3(i− 1) + ℓ ∈ L(viℓv
i
ℓ+1) for all ℓ ∈ [3], and for every c ∈ [n] and vv′ ∈ V 2, there are

at least α2λn/600 paths Pi which are c-absorbing of (v, v′).
Relabel indices so that I ′ = [s] where s := (1 − α2/100)λn/6. We will connect the

paths P1, . . . , Ps one by one into a rainbow cycle C. We first connect P1 and P2 into a
single rainbow path P1xyP2. For this, choose distinct unused colours c1, c2 ∈ [λn + 1, n]
and c3 ∈ [λn/2+1,λn]. Let U := V \V (

󰁖
i∈[s] V (Pi)). Note that dGc1

(v14, U), dGc2
(v21, U) 󰃍

(1
2
− µ− λ)n 󰃍 (1

2
− α)n. Since c3 ∈ [λn/2 + 1,λn], the graph Gc3 is α-nice, so there are

at least αn2 c3-coloured edges between NGc1
(v14, U) and NGc2

(v21, U). Thus we can choose
a c3-coloured edge xy between NGc1

(v14, U) and NGc2
(v21, U) such that C = P1xyP2 is a

rainbow path with colour set col(P1) ∪ col(P2) ∪ {c1, c2, c3}.
We repeat the process above for each pair (Pi, Pi+1) for i ∈ [s], where Ps+1 := P1. Each

time we use two unused colours from [λn+1, n] and one unused colour from [λn/2+1,λn].
This is possible since 2s 󰃑 λn/3. The number of used vertices at each step is at most
6s 󰃑 λn so we have the same bounds on degrees into the set of used vertices. By
construction, C is an absorbing cycle with parameters (1, 0, 6s/n,α2λ/600) and hence
with parameters (1, 0,λ,λ2) since λ ≪ α. □

To complete this section, we find an absorbing cycle when G is weakly stable. This is
much more involved than the strongly stable case. Again we use Lemma 24 to construct
the cycle, using the many pairs of extremal graphs which are all highly crossing, as
guaranteed by weak stability.

Lemma 27. Let 0 < 1/n ≪ λ, µ, ε ≪ δ < 1. Suppose that G = (G1, . . . , Gn) is a graph
collection defined on a common vertex set V where |V | = n and δ(G) 󰃍 (1

2
−µ)n. If G is

(ε, δ)-weakly stable, then there exists an absorbing cycle C with parameters (δ/3,
√
ε,λ,λ2).

Proof. For each j 󰃑 n/3, define the following family.

Fj = {(v1, v2, v3, v4) ∈ (V )4 : 3(j − 1) + ℓ ∈ L(vℓvℓ+1) ∀ℓ ∈ [3]}.

We first prove the following claim, which requires only the minimum degree condition on
G.

Claim 28. Let ij ∈ E(Cε,δ
G ) where j+1 󰃑 n and let u be a Gj-good vertex and v be a Gi-

good vertex. Let Zj(i, vu) be the collection of (v1, v2, v3, v4) ∈ F(j+1)/3 where P = v1v2v3v4
is an i-absorbing path of (v, u). Then |Zj(i, vu)| 󰃍 2−7δ2n4.

Proof of Claim. Fix any such i, j, u, v. By the definition of characteristic partition, we
have dGi

(v, Ai) 󰃍 (1
2
−2ε)n or dGi

(v, Bi) 󰃍 (1
2
−2ε)n. Without loss of generality, we assume

that the former case holds since the latter case can be proved similarly. Since the graphs
Gi and Gj are δ-crossing, we have |Ai ∩Aj| 󰃍 δn/4 and |Ai ∩Bj| 󰃍 δn/4 by Observation
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17. Since dGi
(v, Ai) 󰃍 (1

2
− 2ε)n, we have dGi

(v, Aj) 󰃍 |Ai ∩ Aj| − (|Ai| − dGi
(v, Ai)) 󰃍

δn/4 − εn 󰃍 δn/5 by ε ≪ δ. Similarly, we have dGi
(v, Bj) 󰃍 δn/5. Since u is Gj-good,

u ∈ Aj ∪Bj. We divide the proof into the following cases:

Case 1 : u ∈ Aj and Gj is (ε, )-extremal. In this case, in the graph Gj, every vertex in
Aj is adjacent to all but at most εn vertices in Aj. Thus J := Gj[NGi

(v, Aj)] is an almost
complete graph of order at least δn/5 in the sense that each vertex in it is adjacent to all
but at most εn vertices. Any choice of x ∈ V (J), y ∈ NGj

(u)∩NJ(x), x
′ ∈ NGj−1

(x) and
y′ ∈ NGj+1

(y) yields an i-absorbing path x′xyy′ of (v, u) in F(j+1)/3 (so its colours are, in
order, j−1, j, j+1, and i ∈ L(xv) and j ∈ L(yu)). The number of such paths is therefore
at least δn/5 · (δn/5− 2εn) · (1

2
− µ)2n2 󰃍 2−7δ2n4.

Case 2 : u ∈ Aj and Gj is (ε, )-extremal. In this case, in the graph Gj, every vertex in Aj

is adjacent to all but at most εn vertices in Bj and every vertex in Bj is adjacent to all but
at most εn vertices in Aj. Thus J := Gj[NGi

(v, Aj), NGj
(u,Bj)] is a bipartite graph with

each part of order at least δn/5 which is almost complete in the sense that each vertex
is adjacent to all but at most εn vertices from other side. Any choice of x ∈ V (J) ∩ Aj,
y ∈ NGj

(u) ∩ NJ(x), x
′ ∈ NGj−1

(x) and y′ ∈ NGj+1
(y) yields an i-absorbing path x′xyy′

of (v, u) in F(j+1)/3. The same lower bound from the previous case applies to the number
of such choices.

The remaining cases when u ∈ Bj are identical, so we omit them. □

For any vertex v, recall Definition 16 and let

Gv := {i ∈ [n] : v is Gi-good}.

Since e(Cε,δ
G ) 󰃍 δn2, there is a subgraph H of Cε,δ

G such that δ(H) 󰃍 δn, so in particular,
|V (H)| > δn. For each i ∈ V (H), define the set Ti := {u ∈ V : |NH(i)\Gu| 󰃍 δn/2}. Note
that since |Ci| = 2εn for each i where Gi is ε-extremal, we have |Ti|δn/2 󰃑

󰁓
u∈V |[n] \

Gu| =
󰁓

j∈[n] |Cj| 󰃑 2εn2 and thus |Ti| 󰃑 4εn/δ 󰃑 √
εn/2 since ε ≪ δ. Let T i := V \ Ti.

For each i ∈ V (H) and u ∈ T i, we have |T i| 󰃍 (1−
√
ε/2)n and |Gu ∩NH(i)| 󰃍 δn/2.

Now we independently and randomly select vertices from V (H) with probability κ :=
λ/14 to obtain a set U of colours. A Chernoff bound implies that, with high probability,
(i) κ|V (H)|/2 󰃑 t := |U | 󰃑 2κ|V (H)|;
(ii) for every i ∈ V (H) and u ∈ T i, we have |Gu ∩NH(i,U )| 󰃍 δκn/4.

Fix such a U . By relabelling colours, we assume that U = {3j − 1 : j ∈ [t]}. Let
U := V (H) ∩ [3t + 1, n]. So U ∩ U = ∅ and |U | 󰃍 δn/2 and δ(H[U ]) 󰃍 δn/2 since
λ ≪ δ. For each colour j ∈ [t], let Ij be the collection of (i, vu) ∈ [n] × V 2 with i ∈ U ,
u ∈ T i, j ∈ Gu ∩NH(i,U ) and v a Gi-good vertex.

Given i and u, the number of choices of j is at least δκn/4 by (ii). Since i, j ∈ V (H) and
u is Gj-good, Claim 28 implies that there are at least 2−7δ2n4 i-absorbing paths of (v, u)
whose ordered vertex set is in F(j+1)/3. We can apply Lemma 24 with H := {Fj : j ∈ [t]}
and the directed multi-4-graph collection

Z := (Z(i, vu) :=
󰁖

j∈Gu∩NH(i,U ) Zj(i, vu) : i ∈ U , u ∈ T i, v is Gi-good)
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and with 2−7δ2 playing the role of ε. Now, e(Fj) 󰃍 n4/9 for all j ∈ [t] and H contains
κδn/2 󰃑 t 󰃑 2κn graphs by (i), so t/n ≪ 2−7δ2. For each (i, vu) for which Z(i, vu) ∈ Z
and every fixed j ∈ Gu∩NH(i,U ), we have (j+1)/3 ∈ [t] and |E(Z(i, vu))∩E(F(j+1)/3)| 󰃍
2−7δ2n4. The number of such j is at least δκn/4 󰃍 δt/8 by (ii). Thus there is a rainbow
matching M in H of size at least (1− 2−16δ4)t such that |E(Z(i, vu))∩E(M)| 󰃍 2−16δ4t
for all Z(i, vu) ∈ Z. That is, there is I ⊆ [t] with |I| 󰃍 (1 − 2−16δ4)t such that for each
j ∈ I there is a path Pj = vj1v

j
2v

j
3v

j
4 in F(j+1)/3 and for every i ∈ U , u ∈ T i and v which

is Gi-good, there are at least 2−16δ4t paths Pj which are i-absorbing of (v, u).
Relabel indices so that I = [s] where s := (1 − 2−16δ4)t. It remains to connect the

P1, . . . , Ps into an absorbing cycle C. Recall that no colour in U appears on any Pi. We
first connect P1 and P2 into a single rainbow path P1v

1
4xzyv

2
1P2. For this, we first choose

distinct colours c1, c2, c3, c4 ∈ U where c1c2 ∈ E(H). There are at least |U | 󰃍 δn/2
choices for c1, and given this at least δ(H[U ]) 󰃍 δn/2 for c2, and at least |U |− 3 > δn/3
choices for each of c3, c4. Next we choose unused vertices x, y such that x ∈ NGc3

(v14) is
Gc1-good and y ∈ NGc4

(v21) is Gc2-good. There are at least (
1
2
−µ)n−4e(M)−2εn choices

for each of these. Finally, we choose z ∈ NGc1
(x) ∩ NGc2

(y). We claim that there are at
least δn/5 choices for z.

To prove the claim, since c1c2 ∈ E(H) ⊆ E(Cε,δ
G ), both Gc1 and Gc2 are ε-extremal,

so x ∈ Ac1 ∪ Bc1 and y ∈ Ac2 ∪ Bc2 , and Gc1 and Gc2 are δ-crossing. By Observation 17,
we have |Xc1 ∩ Yc2 | 󰃍 δn/4 whenever X, Y ∈ {A,B}. By the definition of characteristic
partition, there are Z,W ∈ {A,B} such that dGc1

(x, Zc1) 󰃍 |Zc1 |− εn and dGc2
(y,Wc2) 󰃍

|Wc2 |−εn. Thus |NGc1
(x)∩NGc2

(y)| 󰃍 |NGc1
(x, Zc1)∩NGc2

(y,Wc2)| 󰃍 |Zc1∩Wc2 |−2εn 󰃍
δn/5. This completes the proof of the claim.

Thus there are at least δn/5 choices for each of c1, c2, c3, c4, x, y, z given any previous
choices. So we can obtain the desired P1xyzP2. We can further repeat the process for
each pair (Pj, Pj+1) for j ∈ [s] where Ps+1 := P1. Each time we use four unused colours in
U and three unused vertices, so for each choice of colour at most 4s 󰃑 4t 󰃑 8κn < δn/10
colours are forbidden and 3s < δn/10 vertices are forbidden. Thus we obtain a cycle C
of length 7s which contains every Pj with j ∈ [s] as a segment. By construction, for
every colour i ∈ U and any Gi-good vertex v, for every vertex u ∈ T i, there are at
least 2−16δ4t 󰃍 2−17κδ5n disjoint i-absorbing paths of (v, u) inside C. Moreover, since
at most 2εn vertices are Gi-bad, the number of vertices in T i which are Gi-good is at
least |T i| − 2εn 󰃍 (1 −

√
ε/2)n − 2εn 󰃍 (1 −

√
ε)n. Thus C is an absorbing cycle with

parameters (δ/3,
√
ε, 14κ, 2−17κδ5) and hence with (δ/3,

√
ε,λ,λ2). □

5 The stable case

In this section we combine the results of the previous sections and use the regularity-
blow-up method to find a transversal Hamilton cycle when G is stable. First, we show
that the reduced graph inherits stability.

Lemma 29. Suppose that 0 < 1/n ≪ 1/L0 ≪ ε0 ≪ d ≪ µ,α ≪ γ, ε ≪ δ < 1.
Let G = (G1, . . . , Gn) be a graph collection on a common vertex set V of size n. Let
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R = R(ε0, 1, L0) be the reduced graph collection of G. If G is (γ,α, ε, δ)-stable, then R
is (γ/2,α2, ε, δ/2)-stable.

Proof. We may assume that 1/n ≪ 1/n0 where n0 = n0(ε, 1, L0) is the constant from
Lemma 10 (the regularity lemma for graph collections). Write [L] for the common vertex
set of R and [M ] for the set of colour clusters where L0 󰃑 L,M 󰃑 n0. Thus there is
a partition V0, . . . , VL of V and C0, . . . ,CM of [n] and a graph collection G′ satisfying
(i)–(v) of Lemma 10 and for ({h, i}, j) ∈

󰀃
[L]
2

󰀄
× [M ], we have hi ∈ Rj whenever G′

hi,j is
(ε0, d)-regular, where G′

hi,j := (G′
c[Vh, Vi] : c ∈ Cj). We have Lm 󰃑 n 󰃑 Mm + ε0n and

Mm 󰃑 n 󰃑 Lm + ε0n so |L −M | 󰃑 ε0n/m 󰃑 ε0L/(1 − ε0). Thus we may assume that
M = L at the expense of assuming the slightly worse bound |V0| + |C0| 󰃑 3ε0n. Given

X ⊆ V (R) = [L], we write 󰁥X :=
󰁖

j∈X Vj. So | 󰁥X| = m|X|.
Claim 30. Let α′ ≫ d. Suppose that i ∈ [L] and there are sets A,B ⊆ V (R) = [L] of size
at least (1

2
− α′)L such that eRi

(A,B) 󰃑 α′L2. Then, for all but at most 2
√
α′m colours

c ∈ Ci, we have eGc( 󰁥A, 󰁥B) 󰃑
√
α′n2.

Proof of Claim. Let t be the number of colours c ∈ Ci such that eGc( 󰁥A, 󰁥B) >
√
󰁨αn2. Since

e(Gc)− e(G′
c) 󰃑 (3d+ ε0)n

2 for all c ∈ [n], we have

√
α′n2t 󰃑

󰁛

c∈Ci

eGc( 󰁥A, 󰁥B) 󰃑
󰁛

c∈Ci

(eG′
c
( 󰁥A, 󰁥B) + (3d+ ε0)n

2)

󰃑 |Ci|eRi
(A,B)m2 + |Ci|(3d+ ε0)n

2 󰃑 α′L2m3 + 4dmn2 󰃑 2α′mn2.

This implies t 󰃑 2
√
α′m. □

Case 1 : G is (γ,α)-strongly stable. We claim thatR is (γ/2,α2)-strongly stable. Suppose
for a contradiction that there exists a subset I ⊆ [L] with |I| 󰃍 (1− γ/2)L such that Ri

is not α2-nice for any i ∈ I. The claim applied with α′ = α2 implies that there are at
least (1− 2α)m colours c ∈ Ci such that Gi is not α-nice, since | 󰁥A|, | 󰁥B| 󰃍 (1

2
− α2)Lm >

(1
2
− α)n. Thus the number of colours c ∈ [n] for which Gc is not α-nice is at least

(1− 2α)m(1− γ/2)L > (1− γ)n since α ≪ γ. This contradicts the (γ,α)-strong stability
of G.

Case 2 : G is (ε, δ)-weakly stable. Suppose that R is not (γ/2,α2)-strongly stable. It
suffices to show that R is (ε, δ/2)-weakly stable. There is I ⊆ [L] with |I| 󰃍 (1− γ/2)L
such that for all i ∈ I, Ri is not α

2-nice. Thus Ri is α
2/3-extremal, and hence ε-extremal.

Lemma 12 implies that dRi
(j) 󰃍 (1

2
− 2µ)L for all but at most d1/4L vertices j ∈ [L].

Lemma 15 now implies that Ri has a characteristic partition (A′
i, B

′
i, C

′
i). Furthermore,

there are Z,W ∈ {A,B} such that eRi
(Z ′

i,W
′
i ) 󰃑 α2/3L2 (and Z ∕= W if Ri is (α2/3, )-

extremal, while Z = W if Ri is (α2/3, )-extremal). We have |󰁦W ′
i | = | 󰁥Z ′

i| = |Z ′
i|m =

(1
2
− α2/3)Lm 󰃍 (1

2
− 2α2/3)n. By Claim 30 applied with (W ′

i , Z
′
i) and α′ := α1/3, there is

Bi ⊆ Ci with |Ci \ Bi| 󰃑 2α1/3m such that for all c ∈ Bi, we have eGc(
󰁦W ′

i ,
󰁥Z ′
i) 󰃑 α1/3n2.

It follows that every such Gc is 2α1/3-extremal. Thus, recalling that (Ac, Bc, Cc) is the
characteristic partition of Gc, there are Z, Y,W ∈ {A,B} with {Z, Y } = {A,B} such
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that eGc(Zc,Wc) 󰃑 α1/4n2 and eGc(Yc,Wc) 󰃍 (1
4
− α1/4)n2. But then we must have

| 󰁥Z ′
i △ Zc|, |󰁦Y ′

i △ Yc| < εn or | 󰁥Z ′
i △ Yc|, |󰁦Y ′

i △ Zc| < εn. So either |󰁦A′
i △Ac|, |󰁦B′

i △Bc| < εn

or |󰁦A′
i △ Bc|, |󰁦B′

i △ Ac| < εn. That is, for all c ∈ Bi, the characteristic partition of Gc is
almost the same as the union of clusters corresponding to the characteristic partition of
Ri.

Suppose now that c, c′ ∈ [n] are such that Gc and Gc′ are ε-extremal and δ-crossing and

c ∈ Bi and c′ ∈ Bj for some i, j ∈ [L]. We must have i ∕= j. Then, if |󰁦A′
i△Ac|, |󰁦A′

j△Ac′ | <
εn, we have |A′

i △A′
j|m = |󰁦A′

i △ 󰁦A′
j| 󰃍 |Ac △Ac′ |− |󰁦A′

i △Ac|− |󰁦A′
j △Ac′ | 󰃍 δn− 2εn 󰃍

δn/2 󰃍 δmL/2. The other cases are almost identical. Thus Ri and Rj are δ/2-crossing.

Since G is (ε, δ)-weakly stable, we have e(Cε,δ
G ) 󰃍 δn2. The number of pairs i, j ∈ [L] with

c, c′ as above is therefore at least δn2/m2 󰃍 δL2/2. Thus e(C
ε,δ/2
R ) 󰃍 δL2/2, and hence R

is (ε, δ/2)-weakly stable. □

Lemma 31. Let 0 < 1/n ≪ µ ≪ α ≪ γ, ε ≪ δ ≪ 1. Suppose that G = (G1, . . . , Gn)
is a graph collection on a common vertex set V of size n and δ(G) 󰃍 (1

2
− µ)n. If G is

(γ,α, ε, δ)-stable, then G contains a transversal Hamilton cycle.

Proof. Choose additional parameters n0, L0, ε0, d, β,λ where n0 = n0(ε, 1, L0) is obtained
from Lemma 10 and so that

0 < 1/n ≪ 1/n0 ≪ 1/L0 ≪ ε0 ≪ d ≪ µ ≪ β ≪ λ ≪ α ≪ γ, ε ≪ δ ≪ 1,

where the previous lemmas in this section hold with suitable parameters. By Lemmas 26
and 27, G has an absorbing cycle C with parameters (δ/3,

√
ε,λ,λ2). For any colour c and

two vertices (x, y) ∈ V 2, we say the triple (c, x, y) is absorbable if there are at least λ2n
disjoint c-absorbing paths of (x, y) inside C. Similarly, we say the pair (c, x) is absorbable
if there are at least λ2n disjoint c-absorbing paths of (x, x) inside C. Let c, c′ ∈ [n] be
two colours and x, y ∈ V be two vertices. We say (c, c′, x, y) is totally absorbable if (c, x),
(c′, y) and (c, x, y) are all absorbable. By definition, C has length at most λn, and there
exists a colour set C ⊆ [n] with C ∩ col(C) = ∅ of size at least δn/3 such that
(i) given any colour c ∈ C and any Gc-good vertex v, the triple (c, v, u) is absorbable

for all but at most
√
εn vertices u.

(ii) given any colour c ∈ C , for all but at most
√
εn Gc-good vertices v, the pair (c, v)

is absorbable.

Claim 32. There is (2 − 2−10)βn 󰃑 r 󰃑 2βn and for each i ∈ [r], disjoint vertex
pairs (vi, v

′
i) ∈ (V )2 and disjoint colour pairs (ci, c

′
i) ∈ (C )2 such that the family Q :=

{(ci, c′i, vi, v′i) : i ∈ [r]} has the following properties:
(a) (ci, c

′
i, vi, v

′
i) is totally absorbable for all i ∈ [r];

(b) for every pair (u1, u2) ∈ V 2 and c ∈ [n], there are at least 2−9βn values i ∈ [r] such
that c ∈ L(u1vi) and c′i ∈ L(u2v

′
i).

Proof of Claim. For every (b1, b2) ∈ (C )2, every (u1, u2) ∈ V 2 and c ∈ C , let
S(b1, b2, u1, u2, c) be the multiset of pairs (v1, v2) ∈ (V )2 such that c ∈ L(u1v1), b2 ∈
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L(u2v2) and (b1, b2, v1, v2) is totally absorbable. We will show that |S(b1, b2, u1, u2, c)| 󰃍
2−4n2.

For this, we first count the number of choices for v1. Note that we have dGc(u1) 󰃍
(1
2
− µ)n and the number of vertices v1 such that v1 is not Gb1-good or (b1, v1) is not

absorbable is at most 2εn +
√
εn. Thus we have at least n/4 choices of v1 such that

v1 ∈ NGc(u1), v1 is Gb1-good and (b1, v1) is absorbable. Now we fix v1. Let N2 := {x ∈
NGb2

(u2) : x is Gb2-good}. So |N2| 󰃍 (1
2
− µ)n − 2εn. By (i), for all but at most

√
εn

vertices v2 ∈ V , the pair (v1, v2) has at least λ
2n b1-absorbing paths inside C. Thus, we

can delete at most
√
εn + 1 vertices from N2 and obtain a set N ′

2 such that |N ′
2| 󰃍 n/4,

and for each v2 ∈ N ′
2, v2 ∕= v1 and (b1, b2, v1, v2) is totally absorbable. Therefore, the total

number of choices for (v1, v2) is at least 2
−4n2.

Let {ci, c′i : i ∈ [2βn]} ⊆ C be a collection of distinct colours. Set

H := (Fi := {(v1, v2) ∈ (V )2 : (ci, c
′
i, v1, v2) is totally absorbable} : i ∈ [2βn])

and define the collectionZ := {S(u1, u2, c) :=
󰁖

i∈[2βn] S(ci, c
′
i, u1, u2, c) : (u1, u2) ∈ V 2, c ∈

[n]} of multi-2-graphs. For every S = S(u1, u2, c) ∈ Z and every index i ∈ [2βn], we have
|E(S)∩E(Fi)| 󰃍 2−4n2. Lemma 24 applied with 2βn, 2−4 playing the roles of t, ε, implies
that there is a rainbow matching M in H of size at least (2− 2−10)βn (and at most 2βn)
and |E(S) ∩ E(M)| 󰃍 2−9βn for all S ∈ Z. □

For the remainder of the proof, we will cover most of the unused vertices and colours
by a small number of long paths. This step will use the regularity-blow-up method for
transversals. Finally, we will use the absorbing cycle C and family Q to absorb the
remaining colours and vertices and connect the long paths.

Let

Vabs :=
󰁞

i∈[r]

{vi, v′i}, Cabs :=
󰁞

i∈[r]

{ci, c′i}, Crem := [n] \ (col(C) ∪ Cabs),

U := V \ (V (C) ∪ Vabs) and J = (Ji : i ∈ Crem) where Ji := Gi[U ].

So |[n] \ Crem| = |V \ U | 󰃑 λn+ 2βn 󰃑 2λn.
Since λ ≪ γ,α, ε, δ, it is easy to see that since G is (γ,α, ε, δ)-stable, J is

(γ/2,α/2, 2ε, δ/2)-stable, and δ(Ji) 󰃍 (1
2
− µ − 2λ)n 󰃍 (1

2
− 3λ)n for i ∈ Crem. Apply

Lemma 10 (the regularity lemma for graph collections) to J with parameters (ε0, 1, d, L0).
Let R be the reduced graph of J . Write [L] for the common vertex set of R where
L0 󰃑 L 󰃑 n0, and [M ] for the set of colour clusters. Thus there is a partition V0, . . . , VL

of V and C0, . . . ,CM of [n] and a graph collection J ′ satisfying (i)–(v) of Lemma 10.
Therefore, for ({h, i}, j) ∈

󰀃
[L]
2

󰀄
× [M ], we have hi ∈ Rj whenever J ′

hi,j is (ε0, d)-regular,
where J ′

hi,j := (J ′
c[Vh, Vi] : c ∈ Cj). Recall that m is the order of each |Vi| for 1 󰃑 i 󰃑 L

and each |Cj| for 1 󰃑 j 󰃑 M . We have Lm 󰃑 n 󰃑 Mm+ ε0n and Mm 󰃑 n 󰃑 Lm+ ε0n
so |L −M | 󰃑 ε0n/m 󰃑 ε0L/(1 − ε0). Thus we may assume that M = L at the expense
of assuming the slightly worse bound |V0|+ |C0| 󰃑 3ε0n. Lemma 12 implies that for each
vertex i ∈ [L], there are at least (1− d1/4)L colours j ∈ [L] such that dRj

(i) 󰃍 (1
2
− 4λ)L.
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By Lemma 29, R is (γ/4,α2/4, 2ε, δ/4)-stable. Lemma 20 implies that there exist two
edge-disjoint rainbow matchings M1 and M2 in R such that e(Mℓ) 󰃍 (1

2
− θ)L for ℓ = 1, 2

and col(M1) ∩ col(M2) = ∅.
Now for each vertex i ∈ [L], let Vi = V 1

i ∪V 2
i be an arbitrary equipartition. Lemma 9(i)

implies that whenever hi ∈ E(Rj) where j ∈ [L], we have that J ℓ
hi,j = (J ′

c[V
ℓ
h , V

ℓ
i ] : c ∈ Cj)

is (2ε0, d/2)-regular for both ℓ = 1, 2. By Lemma 8, for each ℓ = 1, 2 and hi ∈ E(Mℓ), we
can remove at most 2ε0m vertices in V ℓ

h and at most 2ε0m colours c ∈ Cj, where j is the
colour of hi in Mℓ, so that the remaining graph collection is (4ε0, d/4)-superregular.

Apply Theorem 13 (the transversal blow-up lemma) to obtain a rainbow path Phi,j

with 2min{|V ℓ
h |, |V ℓ

i |} vertices using colours from Cj. (Note that we could have avoided
using the blow-up lemma and instead used a tool for embedding an almost spanning
structure inside a regular pair (as opposed to superregular), but it was convenient to
follow the above approach.) The collection of Phi,j over hi ∈ E(M1) ∪ E(M2) (where hi
has colour j in its matching) is vertex-disjoint, since the subcluster V ℓ

h is used dMℓ
(h) 󰃑 1

times, and rainbow since M1 ∪M2 is rainbow. The number of vertices not in any Phi,j is
at most 4ε0mL+ 3ε0n+ 2(L− e(M1)− e(M2))m 󰃑 3θn. Thus the number of colours not
in any Phi,j is at most 3θn+ e(M1)+ e(M2) 󰃑 4θn. We consider each vertex in U but not
in any Phi,j to be a path (of length 0).

Now relabel so that the paths are P1, . . . , Ps, so s 󰃑 e(M1)+e(M2)+3θn 󰃑 3θn+L/2 󰃑
4θn, and let xi, yi be the startvertex and endvertex of Pi for each i ∈ [s] (so xi = yi if
Pi has length 0). The paths P1, . . . , Ps are rainbow, pairwise vertex-disjoint, pairwise
colour-disjoint and cover U . Thus the number of colours in Crem which are not used on
any Pi is precisely s.

Do the following for each i = 1, . . . , s in turn. Let ai be an arbitrary unused colour, in
Crem. Choose an unused 4-tuple Qi = (cji , c

′
ji
, vji , v

′
ji
) ∈ Q where ji ∈ [r], ai ∈ L(xivji) and

c′ji ∈ L(yiv
′
ji
). This is possible since Claim 32 implies there are at least 2−9βn choices for

Qi, of which at most s 󰃑 4θn have been used. Now, (cji , c
′
ji
, vji , v

′
ji
) is totally absorbable,

so there are at least λ2n disjoint cji-absorbing paths of (vji , v
′
ji
) inside C. So we can

choose one of them, Si := xi
1x

i
2x

i
3x

i
4, whose vertices have not been previously chosen since

s/n ≪ λ, and whose colours are, in order, bi1, b
i
2, b

i
3.

At the end of this process, there remains I ⊆ [r] such that the (cj, c
′
j, vj, v

′
j) ∈ Q with

j ∈ I are precisely the 4-tuples which were not chosen to be some Qi. For each one, there
are at least λ2n disjoint cj-absorbing paths of (vj, vj) and disjoint c′j-absorbing paths of
(v′j, v

′
j) inside C. So, since β ≪ λ, we can choose one such path Ti, T

′
i for each of (vj, cj)

and (v′j, c
′
j), which are vertex-disjoint and whose vertices have not previously been chosen.

At the end of this process, we have a collection {Si : i ∈ [s]}, {Ti : i ∈ I}, {T ′
i : i ∈ I}

of vertex-disjoint paths in C where, for each i ∈ [s], Si is a cji-absorbing path of (vji , v
′
ji
);

for each i ∈ I, Ti is a ci-absorbing path of (vi, vi) and T ′
i is a c′i-absorbing path of

(v′i, v
′
i). For each i ∈ [s], we replace Si by xi

1x
i
2vjixiPiyiv

′
ji
xi
3x

i
4 with colours bi1, cji , ai,

followed by the colours inherited from Pi, followed by c′ji , b
i
2, b

i
3. That is, we have replaced

Si by a path with the same endpoints, vertices V (Si) ∪ V (Pi) ∪ {vji , v′ji} and colours
col(Si) ∪ col(Pi) ∪ {cji , c′ji , ai}. For each i ∈ I, we replace Ti = yi1y

i
2y

i
3y

i
4 by yi1y

i
2viy

i
3y

i
4

where colours are inherited except col(yi2vi) = ci and col(viy
i
3) = col(yi2y

i
3). We do a
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similar replacement of T ′
i , using new vertex v′i and new colour c′i. So we have replaced Ti

by a path with the same endpoints, vertices V (Ti) ∪ {vi} and colours col(Ti) ∪ {ci}, and
T ′
i by a path with the same endpoints, vertices V (T ′

i ) ∪ {v′i} and colours col(T ′
i ) ∪ {c′i}.

Thus we have obtained a cycle using vertices V (C) ∪
󰁖

i∈[s] V (Pi) ∪ {vi, v′i : i ∈ [r]} = [n]

and colours col(C) ∪
󰁖

i∈[s] col(Pi) ∪ {ci, c′i : i ∈ [r]} = [n] where each colour is used at

most once (and hence exactly once). That is, we have constructed a transversal Hamilton
cycle. □

6 The extremal case

This section concerns the remaining case when G is not stable; so most graphs in the
collection are close to containing one of the two extremal graphs or , and moreover their
characteristic partitions are similar. Throughout, we assume the following hypothesis:

(†) Suppose that
0 < 1/n ≪ µ ≪ ε ≪ δ ≪ η ≪ 1.

Let m = (1−3δ)n. Let G = (G1, . . . , Gn) be a graph collection on a common vertex
set V of size n and δ(G) 󰃍 (1

2
−µ)n. Suppose that for each i ∈ [m], Gi is ε-extremal

with characteristic partition (Ai, Bi, Ci) and |A1 △ Ai|, |B1 △ Bi| 󰃑 δn.

We also use the following notation:

C (H) := {i ∈ [m] : Gi is (ε, H)-extremal},
G(H) := (Gi : i ∈ C (H)) for H ∈ { , },
Vbad := C1 ∪ V A

bad ∪ V B
bad where

V Z
bad := {x ∈ Z1 : x /∈ Zi for at least

√
δn colours i ∈ [m]} for all Z ∈ {A,B},

Cbad := [m+ 1, n].

Now,
√
δn|V Z

bad| 󰃑
󰁓

i∈[m] |Z1 \ Zi| 󰃑 mδn for each Z ∈ {A,B}, so

|Vbad| 󰃑 2εn+ 2
√
δm 󰃑 3

√
δn.

It is a consequence of Lemma 15 that C ( ) ∩ C ( ) = ∅. The first result in this section is
an application of the transversal blow-up lemma for embedding rainbow Hamilton paths
inside very dense bipartite graph collections. We note that this application is more for
convenience than necessity.

Lemma 33. Suppose that (†) holds. Let W,Z ∈ {A,B}. Let W ∗ ⊆ W1 \ Vbad and
Z∗ ⊆ Z1 \ Vbad where |W ∗|, |Z∗| 󰃍 ηn and W ∗ ∩ Z∗ = ∅ and |W ∗| − |Z∗| =: t ∈ {0, 1}.
Let T := Z if t = 0 and T := W if t = 1. Let C ⊆ [n] satisfy |C | = |W ∗| + |Z∗| − 1,
where C ⊆ C ( ) if W = Z and C ⊆ C ( ) if W ∕= Z. Let W− ⊆ W ∗ and T+ ⊆ T ∗ with
|W−|, |T+| 󰃍 ηn. Then there is a rainbow Hamilton path in {Gi[W

∗, Z∗] : i ∈ C } starting
in W− and ending in T+.
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Proof. Choose a new constant ξ with η ≪ ξ ≪ 1. We will show that {Gi[W
∗, Z∗] : i ∈ C }

is (ξ, 1− ξ)-superregular.
Suppose that W ∕= Z, so {W ∗, Z∗} = {A∗, B∗} and C ⊆ C ( ). For every i ∈ C ,

we have eGi
(Wi, Zi) 󰃍 |Wi||Zi| − εn2 and hence eGi

(W ∗, Z∗) > (1 − ξ)|W ∗||Z∗|. Now
let x ∈ W ∗ and C ′ ⊆ C with |C ′| 󰃍 ξ|C | and Z ′ ⊆ Z∗ with |Z ′| 󰃍 ξ|Z∗|. Then
x /∈ Vbad, so x ∈ Wi for all but at most

√
δn colours in i ∈ [m]. For each such i we have

dGi
(x, Zi) 󰃍 (1

2
−2ε)n = |Zi|−εn by Lemma 15. Thus dGi

(x, Z ′) 󰃍 |Z ′|−εn− |Z1△Zi| 󰃍
|Z ′| − 2δn. Thus

󰁓
i∈C ′ dGi

(x, Z ′) 󰃍 (|C ′| − 2
√
δn)(|Z ′| − 2δn) > (1 − ξ)|C ′||Z ′|. An

analogous statement holds for vertices in Z∗. Thus
󰁓

i∈C dGi
(x, Z∗) 󰃍 (1− ξ)|C ||Z∗| for

all x ∈ W ∗ and
󰁓

i∈C dGi
(y,W ∗) 󰃍 (1−ξ)|C ||W ∗| for all y ∈ Z∗ and (1−ξ)|C ′||W ′||Z ′| 󰃑󰁓

i∈C ′ eGi
(W ′, Z ′) 󰃑 |C ′||W ′||Z ′|. Thus (Gi[W

∗, Z∗] : i ∈ C ) is (ξ, 1− ξ)-superregular.
Suppose instead that W = Z, so C ⊆ C ( ). A very similar argument shows that,

since every Gi[Z
∗] and hence Gi[W

∗, Z∗] is almost complete, the same conclusion holds
here.

Let s := |W ∗|+ |Z∗|. Since |W ∗|− |Z∗| = t ∈ {0, 1}, there is an s-vertex path Ps which
is bipartite with parts AW , AZ of size |W ∗|, |Z∗| respectively, with |C | = |W ∗|+ |Z∗|− 1
edges and whose first vertex lies in AW and whose last lies in AT . Thus we can apply
Theorem 13 (the transversal blow-up lemma) with target sets W−, T+ for the first and
last vertex of Ps respectively to obtain the required rainbow Hamilton path. □

The next lemma shows that whenever there are many (ε, )-extremal graphs, we can
find a short rainbow path which covers bad vertices and colours.

Lemma 34. Suppose that (†) holds, and |C ( )| 󰃍 ηn. Given any F ⊆ [n] with |F | 󰃑 1,
there is a rainbow path P in G with endpoints x, y such that the following holds:
(i) Vbad ⊆ V (P ) and Cbad \ F ⊆ col(P );
(ii) |V (P )| 󰃑 19

√
δn;

(iii) x, y /∈ Vbad and there are distinct c, c′ ∈ C ( ) \ col(P ) such that x ∈ Ac ∩ A1 and
y ∈ Bc′ ∩B1;

(iv) F ∩ (col(P ) ∪ {c, c′}) = ∅.

Proof. Since |Vbad| 󰃑 3
√
δn and |Cbad| 󰃑 3δn, by adding vertices to Vbad if necessary we

may assume that |Cbad| < r := |Vbad| 󰃑 3
√
δn. Let A := A1 \ Vbad and B := B1 \ Vbad.

We will find a rainbow family P = {yixiy
′
i : i ∈ [r]} of vertex-disjoint 3-vertex paths,

with colour set {ci, c′i : i ∈ [r]} ⊇ Cbad where Vbad = {x1, . . . , xr} and {y′i, y′i : i ∈ [r]} ⊆
A∪B. For this, let x ∈ Vbad and let c, c′ ∈ [m] be distinct colours. Since dGc(x) 󰃍 (1

2
−µ)n,

there are Z,Z ′ ∈ {A,B} such that |NGc(x)∩Z| 󰃍 n/8 and |NGc′ (x)∩Z ′| 󰃍 n/8. Choose
y ∈ NGc(x) ∩ Z and y′ ∈ NGc′ (x) ∩ Z ′. This gives the path yxy′ using the given colours
c, c′. We find such paths for every x ∈ Vbad, each time using unused vertices, which is
possible since there are at least n/8 choices for each vertex and only 2r 󰃑 6

√
δn are used

in total, and using all of the 3δn colours of Cbad among the 2r colours used in total.
Next, we connect the paths of P into a single short rainbow path P . We start with two

arbitrary paths P1, P2 in P , with endpoints y1, y
′
1 and y2, y

′
2 respectively. Note that each of

these endpoints is not in Vbad and is therefore Gi-good for at least |C ( )|−
√
δn−2r 󰃍 ηn/2
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unused colours i ∈ C ( ). Thus we can choose distinct unused colours j1, j2 ∈ C ( ) such
that y′1 is Gj1-good and y2 is Gj2-good. Without loss of generality, we have the following
two cases:

Case 1 : y′1 ∈ AGj1
and y2 ∈ AGj2

. Choose a common neighbour y ∈ NGj1
(y′1)∩NGj2

(y2)∩B
that avoids P1, P2. There are at least n/3 choices for y since y′1 is missing at most εn
neighbours in Bj1 in the graph Gj1 and |Bj1\B| 󰃑 |Vbad|+|Bj1△B1| 󰃑 4

√
δn, and similarly

for y2 and Gj2 . Let P12 := P1y
′
1yy2P2 with colour set col(P ) = col(P1)∪ {j1, j2}∪ col(P2).

Case 2 : y′1 ∈ AGj1
and y2 ∈ BGj2

. Choose an unused colour j3 ∈ C ( ), for which there
are at least ηn/2 choices. Choose a vertex y ∈ NGj1

(y′1) ∩ BGj3
that avoids P1, P2; there

are at least n/3 choices. Choose a common neighbour z ∈ NGj3
(y) ∩NGj2

(y2) ∩A that is
distinct from y′1 and avoids P1, P2; there are at least n/3 choices. Let P12 := P1y

′
1yzy2P2

with colour set col(P ) = col(P1) ∪ {j1, j2, j3} ∪ col(P2).

By considering P12, P3 and so on, we can find a rainbow path P12...r that includes
every path in P . For this, we need to argue that we can always choose unused vertices
and colours; this is indeed true since in the first step there are at least n/3 choices for
any vertex and at least ηn/2 choices for any colour, and at most 3r < ηn/4 vertices and
colours are used in total. We have |V (P12...r)| 󰃑 6r.

Using very similar arguments, we can extend the path by at most one vertex and
colour in C ( ) so that its endpoints are in A and B. Since they do not lie in Vbad, there
are many choices of unused colour for c, c′ to satisfy (iii). The final path has length at
most 6r+1 󰃑 19

√
δn. To achieve (iv), we simply remove F from Cbad and choose not to

use F at any step, which does not affect any of the above estimates. □

The next lemma shows that some additional assumptions guarantee a short rainbow
path that not only covers bad vertices and colours, but also balances A1 and B1. These
assumptions are that almost every graph is (ε, )-extremal, and moreover both parts A1, B1

contain many internal edges from these graphs.

Lemma 35. Suppose that (†) holds, and

|C ( )| 󰃑 ηn and e
G( )

(A1) 󰃍 30ηn3 and e
G( )

(B1) 󰃍 30ηn3.

Then G contains a rainbow path P with endpoints x, y such that the following holds:
(i) Vbad ⊆ V (P ) and Cbad ∪ C ( ) ⊆ col(P );
(ii) |V (P )| 󰃑 4ηn;
(iii) |A1 \ V (P )| = |B1 \ V (P )|;
(iv) x, y /∈ Vbad and there are distinct c, c′ ∈ C ( ) \ col(P ) such that x ∈ Ac ∩ A1 and

y ∈ Bc′ ∩B1.

Proof. We have that |C ( )| = m−|C ( )| 󰃍 (1−2η)n. Thus Lemma 34 applied with F := ∅
implies that G contains a rainbow path 󰁨P with endpoints 󰁨x, 󰁨y such that Vbad ⊆ V ( 󰁨P ),

Cbad ⊆ col( 󰁨P ), |V ( 󰁨P )| 󰃑 19
√
δn, and 󰁨x, 󰁨y /∈ Vbad and 󰁨x ∈ A1 and 󰁨y ∈ B1 ∩ Bc for some

c ∈ C ( ) \ col( 󰁨P ).
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Without loss of generality, suppose that |A1 \ V ( 󰁨P )| − |B1 \ V ( 󰁨P )| := 󰁨t 󰃍 0. Next

we greedily extend 󰁨P to a path whose colour set contains C ( ). Write {a1, . . . , ar} for
the collection of unused colours in C ( ) and let a0, ar+1 be distinct unused colours in
C ( ), for which 󰁨x ∈ Aa0 , of which there are at least ηn/2 choices because 󰁨x /∈ Vbad.
Choose an unused vertex y0 ∈ NGa0

(󰁨x,B1 ∩ Ba1). There are at least n/3 choices since
|Ba0 △ (B1 ∩ Ba1)| 󰃑 2δn by (†) and dGa0

(󰁨x,Ba0) 󰃍 (1
2
− 2ε)n = |Ba0 | − εn because

a0 ∈ C ( ) and 󰁨x ∈ Aa0 . Now, given i ∈ [r] and yi−1 ∈ Bai , we can choose an unused
vertex yi ∈ NGai

(y, B1 ∩Bai+1
); again there are at least n/3 choices since {ai, ai+1} ∈ [m]

and (†) implies |Bai△(B1∩Bai+1
)| 󰃑 2δn, and ai ∈ C ( ) implies dGai

(y, Bai) 󰃍 (1
2
−2ε)n =

|Bai |− εn. Thus we can obtain the rainbow path 󰁨xy0y1 . . . yr using colours a0, a1, . . . , ar,
and with yr ∈ B1 ∩Bar+1 .

Let P1 = 󰁨y 󰁨P󰁨xy0y1y1 . . . yr be the final rainbow path obtained by concatenation with
󰁨P and let A := A1 \ V (P1) and B := B1 \ V (P1). It satisfies (i) and has |V (P1)| 󰃑
|V ( 󰁨P )|+ |C ( )|+ 1 󰃑 2ηn, and also ||A|− |B|| 󰃑 2ηn. It has endpoints 󰁨y ∈ B1 ∩Bc and
󰁨z := yr ∈ Bb where b := ar+1 ∈ C ( ). Also, |A1 \ V (P1)|− |B1 \ V (P1)| := t 󰃍 󰁨t+ 1 󰃍 1.
After removing used colours, we have

󰁓
i∈C ( )

eGi
(A) 󰃍 20ηn3 and

󰁓
i∈C ( )

eGi
(B) 󰃍 20ηn3

since we consumed at most 2ηn vertices from A1 ∪B1 and at most 2ηn colours from C ( )
in building P1. For each vertex pair uv ∈

󰀃
V
2

󰀄
, define

c(uv) := {i ∈ C ( ) : uv ∈ E(Gi)} and D := {uv : u, v ∈ A and c(uv) 󰃍 10ηn}.

Then we have 20ηn3 󰃑 |D|n+n2 · 10ηn and thus |D| 󰃍 10ηn2. It follows that D contains
a subgraph D′ with minimum degree at least 10ηn.

Let z ∈ NGb
(󰁨z, V (D′)) be an unused vertex. Such a z exists since b ∈ C ( ) and

󰁨z ∈ Bb imply that dGb
(󰁨z, Ab) 󰃍 (1

2
− 2ε)n and |V (D′) ∩ Ab| 󰃍 |V (D′)| − |A △ Ab| 󰃍

10ηn − 2ηn − δn 󰃍 7ηn which is larger than the 2ηn vertices used so far. Greedily
construct a path of unused vertices inside D′ starting at z, ending at some w ∈ Bc′ ∩ B1

where c′ ∈ C ( ) is unused, and consisting of t vertices. Greedily assign unused colours
from the lists guaranteed by the definition of D. The path P obtained by concatenating
this rainbow path with P1 has endpoints 󰁨y, w and has all of the required properties. □

The final lemma of this section combines the previous ones to find a transversal Hamil-
ton cycle in three cases. The proof proceeds by using Lemma 34 or 35 to find a short
rainbow path covering bad vertices and colours, and then covering the remaining vertices
with three long paths guaranteed by Lemma 33.

Lemma 36. Suppose that (†) holds, along with one of the following:

either (i) |C ( )| < ηn and min
󰁱
e
G( )

(A1), e
G( )

(B1)
󰁲
󰃍 30ηn3;

or (ii) |C ( )| 󰃍 ηn and max
󰁱
e
G( )

(A1), e
G( )

(B1)
󰁲
󰃍 30ηn3;

or (iii) |C ( )| 󰃍 ηn and |C ( )| 󰃍 ηn and Gn
∼= Kn.

Then G contains a transversal Hamilton cycle.
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Proof. Suppose that (i) holds. By Lemma 35, there is a rainbow path P with endpoints
x ∈ Ac and y ∈ Bc′ where c, c

′ ∈ C ( ) \ col(P ) are distinct, A := [n] \ (col(P )∪ {c, c′}) ⊆
C ( ) and |A| = |B| 󰃍 (1

2
− 4η)n where Z := Z1 \ V (P ) for Z ∈ {A,B}. So

|A | = n− |col(P )|− 2 = |A|+ |B|+ |V (P )|− |col(P )|− 2 = |A|+ |B|− 1.

Let A− := NGc′ (y, A) and B+ := NGc(x,B). By Lemma 33 there is a rainbow path P ′

with colour set A starting at some x′ ∈ A− and ending at some y′ ∈ B+. Concatenating
this with P using the connecting edges yx′ of colour c′ and y′x of colour c, we obtain a
transversal Hamilton cycle, proving Case (i).

Thus it remains to consider Cases (ii) and (iii). In Case (ii), set F := ∅ and in
Case (iii), set F := {n}. In both cases, we have |C ( )| 󰃍 ηn. Indeed, in Case (ii), each
colour has at most n2 edges and we have either e

G( )
(A1) 󰃍 30ηn3 or e

G( )
(B1) 󰃍 30ηn3,

so this implies that |C ( )| 󰃍 30ηn3/n2 > ηn. Thus we can apply Lemma 34 with F
to obtain a rainbow path P with endpoints x, y /∈ Vbad such that Vbad ⊆ V (P ) and
Cbad \ F ⊆ col(P ) and |V (P )| 󰃑 19

√
δn, and F ∩ (col(P ) ∪ {c, c′} = ∅, and x ∈ A1 ∩Ac

and y ∈ B1 ∩Bc′ for some colours c, c′ ∈ C ( ). Let Z := Z1 \ V (P ) for Z ∈ {A,B}.
In the next step, we proceed differently in each case. In Case (ii), by symmetry, we

assume that e
G( )

(A1) 󰃍 30ηn3. Let D := {uv : u, v ∈ A and c(uv) 󰃍 10ηn} as defined in

the proof of Lemma 35 where c(uv) := {i ∈ C ( ) : uv ∈ E(Gi)}. There is a subgraph D′

of D with minimum degree at least 10ηn. In Case (iii), let D′ be an arbitrary clique of
size 10ηn inside A.

We resume a unified approach for both cases. Let c1, c2 ∈ C ( ) be distinct unused
colours. Let A (H) := C (H) \ (col(P ) ∪ {c, c′, c1, c2}) for H ∈ { , }. We have

|A|+ |B|− 3 = n− |V (P )|− 3 = n− |col(P )|− 4 = |A ( )|+ |A ( )|

and ||A|− |B|| 󰃑 5δn. Choose partitions A = A0 ∪ A1 and A1 = A10 ∪ A11, and B =
B0 ∪B1 and B1 = B10 ∪B11 such that

0 󰃑 |A0|− |B0| 󰃑 1, |A ( )| = |A0|+ |B0|− 1 and δ(D′[V (D′) ∩ A0]) 󰃍 η2n,

and a partition A ( ) = CA ∪ CB with

0 󰃑 |A10|−|A11|, |B10|−|B11| 󰃑 1, |CA| = |A10|+|A11|−1 and |CB| = |B10|+|B11|−1.

The only non-trivial part of this is the assertion about D′ which holds since |A0| 󰃍
|C ( )|/3 󰃍 ηn/3, and we could take e.g. a random partition and appeal to a Chernoff
bound. Let

G0 = (Gi[A
0, B0] : i ∈ A ( )) and GZ = (Gi[Z

10, Z11] : i ∈ CZ) for Z ∈ {A,B}.

Lemma 33 with W = Z implies that there is a rainbow path PA inside GA with colour set
CA and a rainbow path PB inside GB with colour set CB such that PA starts at some yA ∈
NGc′ (y)∩A

10 and ends at some y′A ∈ Ac1∩A1, and PB starts at some yB ∈ NGc(x)∩B10 and
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Figure 2: Finding a transversal Hamilton cycle in Lemma 36(ii) and (iii). Here, |A10| −
|A11| = 1 and |B10| − |B11| = 0. On the left, |A0| − |B0| = 0, while on the right,
|A0|− |B0| = 1.

ends at some y′B ∈ Bc2∩B1. (For example, to find PA, we take (W
∗, Z∗) = (A10, A11).) To

complete the proof, it suffices to find a rainbow path P ′ in G0 with colour set A ( ), with
startpoint u1 ∈ B0 where c1 ∈ L(u1y

′
A), and endpoint u2 ∈ A0 where c2 ∈ L(u2y

′
B). Then

xPyyAPAy
′
Au1P

′u2y
′
BPByBx with colours col(P ), c′, col(PA), c1, col(P

′), c2, col(PB), c is a
transversal Hamilton cycle in G.

Suppose first that |A ( )| is odd. Then |A0| = |B0| and Lemma 33 with (W ∗, Z∗) =
(B0, A0), t = 0, W− = NGc1

(y′A) ∩ B0 and T+ = NGc2
(y′B) ∩ A0 immediately implies the

existence of the required path between u1 ∈ W− and u2 ∈ T+ (see the left-hand side of
Figure 2).

Suppose secondly that |A ( )| is even. So |A0| = |B0| + 1. Choose a colour c3 ∈
A ( ) and v2 ∈ Ac3 ∩ A0 which is a vertex of D′. Then choose u2 ∈ NGc2

(y′B) ∩ A0

which is a neighbour of v2 in D′. These choices are both possible since there are at
least η2n such neighbours in D′ of which at most 2δn are forbidden due to the Gc2

neighbourhood condition. In Case (ii), assign an unused colour c4 ∈ A ( ) to u2v2 using
the large guaranteed colour lists. In Case (iii), assign the colour c4 := n to u2v2. In both
cases, u2v2 ∈ Gc4 .

Now let G0′ = (Gi[A
0 \ {u2, v2}, B0] : i ∈ A ( ) \ {c3, c4}). By Lemma 33 with

(W ∗, Z∗) = (B0, A0 \ {u2, v2}) and t = 1, there is a rainbow path P ′′ inside G0′ with
startpoint u1 ∈ NGc1

(y′A) ∩ B0 and endpoint v1 ∈ NGc3
(v2) ∩ B0 using colour set A ( ) \

{c3, c4}. We set P ′ := u1P
′′v1v2u2, using col(P ′′), c3, c4 in that order (see the right-hand

side of Figure 2). This completes the proof. □
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7 Proofs of Theorems 4 and 5

Finally, we can put all the ingredients together to prove our two main theorems on stability
for transversal Hamilton cycles and paths.

Proof of Theorems 4 and 5. Let κ > 0 and assume that κ < 1 or the theorems are both
vacuous. Choose additional parameters n, µ,α, γ, ε, δ, η such that n ∈ N and

0 < 1/n ≪ µ,α ≪ γ, ε ≪ δ ≪ η ≪ κ < 1

such that the conclusions of Lemma 15 and Lemmas 31–36 hold. Let n′ ∈ {n − 1, n}
and let G = (G1, . . . , Gn′) be a graph collection on a common vertex set V of size n with
δ(G) 󰃍 (1

2
− µ)n.

If n′ = n − 1, let Gn := Kn and J := (G1, . . . , Gn). If n′ = n, let J := G. Suppose
that J does not contain a transversal Hamilton cycle. Then Lemma 31 implies that J is
not (γ,α, ε, δ)-stable. Thus, without loss of generality, for every colour i ∈ [(1− γ)n], the
graph Gi is not α-nice and hence is ε-extremal with characteristic partition (Ai, Bi, Ci),
and e(Cε,δ

J ) < δn2. We may further assume that 1 is the colour of minimum degree in

the cross graph Cε,δ
J , and [(1 − γ)n] \ NCε,δ

J
(1) = [m]. Let Cbad := [m + 1, n] be the set

of excluded colours and thus |Cbad| 󰃑 γn + 2δn 󰃑 3δn. It follows from Lemma 15 that
e
J( )

(A1, B1) 󰃑 εn3. For every i ∈ [m], Gi and G1 are not δ-crossing and hence we can

swap the labels of Ai and Bi if necessary to get that |A1 △ Ai|, |B1 △ Bi| 󰃑 δn. That is,
J satisfies (†). We use the same notation defined after (†).

Suppose that one of the following hold.
(i) |C ( )| 󰃑 ηn and either e

J( )
(A1) 󰃑 30ηn3 or e

J( )
(B1) 󰃑 30ηn3; or

(ii) |C ( )| 󰃍 ηn and e
J( )

(A1) + e
J( )

(B1) 󰃑 60ηn3; or

(iii) Gn = Kn and |C ( )| < ηn 󰃑 |C ( )|.
We claim that in these cases, J is κ-close to, respectively,
(i) a half-split graph collection;
(ii) Hb

a where a = |C ( )| and b = |C ( )| ± 1 is odd;
(iii) H0

n.
Indeed, for (i), we can remove at most 30ηn3 edges so that some Z1 ∈ {A1, B1} has no
J( )-edges, and delete all edges in graphs in J( )∪Cbad by removing at most ηn3 + 3δn3

edges. Finally, edit at most 2δn3 edges to increase |Z1| by less than εn so it has size
⌊n/2⌋ + 1 and make (Z1, Z1) complete in every graph in J( ). The resulting graph
collection is half-split and in total we have made 31ηn3 + 5δn3 < κn3 edits. For (ii),
we can edit at most 3δn3 + εn3 + 60ηn3 edges so that for every i ∈ Cbad the graph Gi

becomes a copy of whose parts contain A1, B1; eGi
(A1, B1) = 0 for all Gi ∈ J( ); and

e
J( )

(A1) + e
J( )

(B1) = 0. A further at most δn3 edits will make J isomorphic to Hb
a

where a = |C ( )| and b = |C ( )| ± 1 is odd. Thus we make at most 61ηn3 < κηn3 edits
in total. For (iii), we can make at most 2ηn3 + 2δn3 < κn3 edits to make J isomorphic
to H0

n. This proves the claim.
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Now we prove Theorem 4. Here, J = G. Lemma 36 implies that, if |C ( )| < ηn,
then (i) holds, while if |C ( )| 󰃍 ηn, then (ii) holds. This completes the proof of the
theorem.

Finally, we prove Theorem 5. Here, n′ = n−1 and J = G∪{Kn}, so G does not have
a transversal Hamilton path if and only if J does not have a transversal Hamilton cycle.
Lemma 36 implies that, if |C ( )| < ηn, then (i) holds, while if |C ( )| 󰃍 ηn, then (iii)
holds (and (ii) also holds in this case). This completes the proof of the theorem. □

8 Concluding remarks

In this paper, we proved Theorem 4 that any collection of n almost-Dirac graphs on the
same large set of n vertices either has a transversal Hamilton cycle, or is close to one
of several types of collection which do not contain a transversal Hamilton cycle. We
proved Theorem 5, an analogue for Hamilton paths, characterising collections of n − 1
almost-Dirac graphs without transversal Hamilton paths.

We proved these theorems in a unified manner, combining the regularity-blow-up
method and absorption method for transversals. We believe that our method can be
utilised to characterise stability for other spanning transversal embedding problems. It
provides some hope for proving exact results: i.e. determining the best possible transversal
minimum degree threshold. Indeed, while the transversal minimum degree thresholds for
Hamilton cycles and perfect matchings are known by the results of Joos and Kim [16],
exact results are commonly proved by first proving stability by showing that any graph
without the required subgraph H and almost the conjectured minimum degree must have
a specific structure. Then, an extremal analysis is conducted to show that there cannot
be any imperfections in this structure. Given the literature on classical embedding, it
seems unlikely that a short ‘elementary’ argument (i.e. without using any machinery) of
the type used by Joos and Kim can be used to find exact thresholds for many of the
natural graphs H in which we are interested. In particular, we think the ideas developed
here may be useful in resolving the following conjecture, a transversal analogue of the
Hanjal-Szemerédi theorem [14], which would indeed generalise this theorem.

Conjecture 37 (Transversal Hajnal-Szemerédi [8]). Let k 󰃍 2 be an integer and let n be
a sufficiently large multiple of k. Let G = (G1, G2, . . . , Gn

k (
k
2)
) be a graph collection on a

common vertex set of size n. Suppose δ(G) 󰃍 (1 − 1
k
)n. Then G contains a transversal

copy of a Kk-factor.

As mentioned, the case k = 2 of perfect matchings was proved by Joos and Kim in [16],
and the asymptotic version of this conjecture was proved independently in [8] and [21].
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