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Abstract

We investigate possible list extensions of generalised majority edge colourings of
graphs and provide several results concerning these. Given a graph G = (V,E), a
list assignment L : E → 2C and some level of majority tolerance α ∈ (0, 1), an α-
majority L-colouring of G is a colouring ω : E → C from the given lists such that for
every v ∈ V and each c ∈ C, the number of edges coloured c which are incident with
v does not exceed α · d(v). We present a simple argument implying that for every
integer k 󰃍 2, each graph with minimum degree δ 󰃍 2k2−2k admits a 1/k-majority
L-colouring from any assignment of lists of size k + 1. This almost matches the
best result in a non-list setting and solves a conjecture posed for the basic majority
edge colourings, i.e. for k = 2, from lists. We further discuss restrictions which
permit obtaining corresponding results in a more general setting, i.e. for diversified
α = α(c) majority tolerances for distinct colours c ∈ C. Consider a list assignment
L : E → 2C with

󰁓
c∈L(e) α(c) 󰃍 1 + ε for each edge e, and suppose that α(c) 󰃍 a

for every c or |L(e)| 󰃑 ℓ for all edges e, where a ∈ (0, 1), ε > 0, ℓ ∈ N are any given
constants. Then we in particular show that there exists an α-majority L-colouring
of G from any such list assignment, provided that δ(G) = Ω(a−1ε−2 ln(aε)−1) or
δ = Ω(ℓ2ε−2), respectively. We also strengthen these bounds within a setting where
each edge is associated to a list of colours with a fixed vector of majority tolerances,
applicable also in a general non-list case.
Mathematics Subject Classifications: 05C15

1 Introduction

A majority colouring of a graph G = (V,E) is an assignment ω : V → C such that
at most half the vertices adjacent with any given v ∈ V are coloured c(v). Research
devoted to majority colourings, though under different terminology, dates back to a classic
result of Lovász [17], who observed in 1966 that every graph is majority 2-colourable, or
more generally, 1/k-majority k-colourable, where only 1/kth fraction of neighbours of
every given vertex may have its colour assigned. This concept was further developed in
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particular in concern to intriguing problems regarding infinite graphs, see e.g. [8, 10, 14,
20]. The term ‘majority colouring ’ was later introduced by Kreutzer, Oum, Seymour, van
der Zypen and Wood [16] in the environment of vertex-colourings of digraphs, where each
vertex was allowed to have at most half the out-neighbours in its own colour. In [16] it
was in particular proven that every digraph admits such a 4-colouring, and conjectured
that 3 colours should always be enough. See [4, 5, 6, 12, 15, 16] for various extensions of
this concept and a list of corresponding results.

In [9] a number of similar problems and questions were raised in the context of edge
colourings. These are also somewhat related with other concepts, investigated e.g. in [1,
3], and have a slightly different nature than their counterparts in the vertex setting.
Consider a graph G = (V,E) and a vertex v ∈ V . By dG(v) or simply d(v) we denote
the degree of v in G. Given any F ⊆ E, we moreover denote by F (v) the set of all
edges belonging to F which are incident with the vertex v, and set dF (v) := |F (v)|. Let
ω : E → C be an edge colouring of G. Denote by Ec the set of edges of G coloured c. The
colouring c is said to be a majority edge colouring of G if for every colour c ∈ C, each vertex
v ∈ V is incident with at most 0.5d(v) edges coloured c, i.e. dEc(v) 󰃑 0.5d(v). Note that
unlike in the case of colouring vertices, such an edge colouring does not exist (regardless
of the size of C) for some graphs, in particular for graphs having a vertex of degree 1. On
the other hand, in [9] it was proven that any graph with minimum degree δ 󰃍 2 admits
a majority edge 4-colouring, whereas a majority edge 3-colouring is admissible for any
graph with δ 󰃍 4 (an alternative proof of the latter fact may be found in [19]). Many
efforts within research on generalisations of majority edge colourings are thus devoted
to establishing which minimum degrees guarantee the existence of such colourings (with
a given number of colours). Consider an integer k 󰃍 2. We say that ω : E → C is
a 1/k-majority edge colouring if dEc(v) 󰃑 (1/k)d(v) for every v ∈ V and c ∈ C. Note
such a colouring cannot exist if a graph has a vertex with degree smaller than k or if we
strive to use less than k colours. Moreover, it is straightforward to notice that there are
graphs with arbitrarily large minimum degrees which do not admit a 1/k-majority edge
k-colouring, it suffices if these have a vertex with degree indivisible by k.

Theorem 1 ([9]). For every integer k 󰃍 2 there exists δ(k) = O(k3 log k) such that every
graph G with minimum degree δ 󰃍 δ(k) is 1

k
-majority edge (k + 1)-colourable.

Let us remark that the authors of Theorem 1 do not specify the order of δ(k) within
the theorem itself, only mention that it can be derived from the calculations within their
probabilistic argument. Nevertheless, the lower bound in Theorem 1 occurred to be rather
far from optimal, in view of the following result.

Theorem 2 ([19]). For every integer k 󰃍 2, if a graph G has minimum degree δ 󰃍 2k2,
then G is 1

k
-majority edge (k + 1)-colourable.

This settled the right order of magnitude for the optimal minimum value of δ(k),
introduced in Theorem 1, as witnesses the following observation.

Observation 3 ([19]). For every k 󰃍 2 there exists a graph G with minimum degree
δ = k2 − 1 which is not 1

k
-majority edge (k + 1)-colourable.
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Theorem 2 was also strengthened for k 󰃍 3 to the following form (see Theorem 14
in [19] for a slightly stronger result, which implies the one below).

Corollary 4 ([19]). For every integer k 󰃍 2, if a graph G has minimum degree δ 󰃍
7
4
k2 + 1

2
k, then G has a 1

k
-majority edge (k + 1)-colouring.

It was also conjectured that the following holds true. Note that in view of Observa-
tion 3, we cannot expect anything more.

Conjecture 5 ([19]). For every integer k 󰃍 2, if a graph G has minimum degree δ 󰃍 k2,
then G is 1

k
-majority edge (k + 1)-colourable.

Conjecture 5 was confirmed for k = 2 in [9], as mentioned above, and for k = 3, 4
in [19]. The corresponding problem was also entirely solved (for all k) in the case of
bipartite graphs [19].

A list variant of majority edge colourings was first considered by Kalinowski, Pilśniak
and Stawiski in [14], whose major matter of concern were infinite graphs. We shall focus
on the finite setting, though. Let G = (V,E) be a graph. Given a set of colours C, we
call L : E → 2C an ℓ-list assignment if |L(e)| = ℓ for every e ∈ E. An L-colouring is an
assignment ω : E → C such that ω(e) ∈ L(e) for every edge e ∈ E.

Theorem 6 ([14]). Let G be a graph of arbitrary order and without pendant edges. Then
there is a majority edge L-colouring for any 4-list assignment L.

It was however conjectured that the following strengthening of Theorem 6 should hold.

Conjecture 7. Every graph with minimum degree at least 4 admits a majority edge
colouring from lists of size 3.

Note this would be a direct generalization of the mentioned result from [9] concerning
the non-list setting. In the next section we provide an argument confirming Conjecture 7
(in the finite case), see Theorem 9. We actually prove the corresponding result in general
for all k 󰃍 2 and graphs with minimum degree δ = Ω(k2), which settles the order of
magnitude in this problem, due to Observation 3. It is worth mentioning here that the
original probabilistic proof of Theorem 1 could be modified towards the discussed list
setting. This would however guarantee a result corresponding to the one presented in the
next section, but with a much worse bound: δ = Ω(k3 log k) (with also an inferior, larger
multiplicative constant than the one in Theorem 1).

In the third section we observe that our result from Theorem 9 extends to a slightly
more general setting, where every vertex may be incident with αd(v) monochromatic
edges, where α is any fixed real number, called a tolerance. Next, in Section 4, we dis-
cuss reasonable boundaries of possible further extensions of our list setting, in particular
towards admitting diversified tolerances for distinct colours around every vertex. The fol-
lowing section is devoted to a resulting most general model admitting ‘reasonable results’.
We exploit the probabilistic method in that and in the following section, which in turn
contains an improvement of the previous results in the general model with an additional

the electronic journal of combinatorics 32(4) (2025), #P4.38 3



restriction, boiling down to unifying multisets of tolerances represented in each list. This
in particular implies certain best known bounds within a non-list setting with diversified
tolerances. We close the paper with a section containing concluding remarks and several
conjectures.

2 1/k-majority list edge colourings

In this section we strengthen and extend in Theorem 9 the result from Theorem 2 to the
list setting. We provide a straightforward proof, based on the famous Galvin’s theorem
confirming the List Colouring Conjecture for bipartite graphs. Denote by χ′

l(G) the list
chromatic index of a graph G.

Theorem 8 (Galvin’s theorem, [11]). For every bipartite graph G, χ′
l(G) = χ′(G) =

∆(G).

We shall also exploit an operation of vertex splitting, which is a rather standard
technique in the environment of majority edge colourings, cf. [9, 19] for its previous
applications. Let us remark, that unless stated otherwise, by a graph we shall always
mean a finite simple graph.

Theorem 9. For every integer k 󰃍 2, each graph G with minimum degree δ 󰃍 2k2 − 2k
has a 1/k-majority edge colouring from lists of size k + 1.

Proof. Let G = (V,E) be a graph with minimum degree δ 󰃍 2k2 − 2k. We first split
every vertex into vertices with degrees at most 2(k+1). More precisely, given any vertex
v of G, its degree can be written as d(v) = 2(k + 1)(s − 1) + i where i ∈ [2k + 2], i.e.
s = ⌈d(v)/(2k + 2)⌉. Let us partition the neighbourhood of v in G into s disjoint sets
N1, . . . , Ns such that |N1| = i and |Nj| = 2(k + 1) for j 󰃍 2. Let G′ be a graph such
that V (G′) = (V 󰄀 {v}) ∪ {v1, . . . , vs} and E(G′) = E(G − v) ∪

󰁖s
i=1{uvi : u ∈ Ni},

where v1, . . . , vs are new vertices, which can be thought of as copies of v resulting from
its splitting. Note that this operation yields a natural bijection between the edges of
G and the edges of G′. Let G be a graph constructed from G by applying the above
operation to all vertices of G, one after another. If G contains a vertex of odd degree, we
take an isomorphic copy G

′ of G and join by an edge every vertex v of odd degree in G
with its corresponding vertex in G

′. (If any extra edges were added in this way, assign to
them arbitrary lists of size k + 1). We denote the final resulting graph by G∗. Note that
∆(G∗) = 2(k + 1).

As all vertices of G∗ have even degrees, we can find an Euler tour in each component of
G∗. By giving each of those tours an orientation we obtain a directed graph D such that
the in-degree and out-degree of every vertex is at most k+1. From the directed graph D
we construct a bipartite graph H = (V1 ∪ V2, EH) such that V1, V2 are copies of V (G∗),
say V1 = {v′ : v ∈ V (G∗)}, V2 = {v′′ : v ∈ V (G∗)}, and we include an edge v′w′′ in EH if
and only if (v, w) is an arc in D. The bipartite graph constructed this way has maximum
degree at most k+1, which is equal to the size of lists on every edge (inherited from G∗).
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Hence, by Galvin’s theorem, we can find a proper edge colouring of H such that every
edge receives a colour from its list. Let us colour every edge uv of G∗, represented by
(u, v) in its orientation (D), by the colour of u′v′′ in H. Since the edge colouring of H
is proper and every vertex v of G∗ is represented by its two copies in H, then v can be
incident with at most 2 edges coloured the same in G∗. The same holds for the original
copy of G, which is a subgraph of G∗. Thus, exploiting the bijection between the edge
set of G and G, we obtain a colouring ω of G from the given lists such that every vertex
v ∈ V of degree d(v) = 2(k + 1)(s− 1) + i with i ∈ [2k + 2], i.e. represented by s copies
in G, can be incident with at most 2s = 2⌈d(v)/(2k + 2)⌉ edges coloured the same. In
fact, in the case when d(v) ≡ 1 (mod 2k + 2), then the first copy of v in G has degree 1,
and thus is incident with at most one edge in any given colour, so overall such v can be
incident with at most 2s− 1 = 2⌈d(v)/(2k + 2)⌉ − 1 edges coloured the same. We claim
that the obtained ω is a 1/k-majority edge colouring of G. Let v be any vertex of G.
We need to prove that at most ⌊d(v)

k
⌋ edges incident with v can be monochromatic. We

consider two cases.

Case 1.
󰁭
d(v)
k

󰁮
= 2t. Let d(v) = 2kt + i, i ∈ {0, . . . , k − 1}. By our construction, it is

enough if 2⌈d(v)/(2k + 2)⌉ 󰃑 2t, which holds for d(v) 󰃑 2t(k + 1). This is equivalent to
i 󰃑 2t, which is true if t 󰃍 k−1

2
. Since δ(G) 󰃍 2k2 − 2k, we have t 󰃍 k− 1, and hence, the

inequality holds.

Case 2.
󰁭
d(v)
k

󰁮
= 2t+1. Let d(v) = 2kt+k+ i, i ∈ {0, . . . , k−1}. By our construction, it

is enough if 2⌈d(v)/(2k+2)⌉ 󰃑 2t or 2⌈d(v)/(2k+2)⌉ 󰃑 2(t+1) for d(v) ≡ 1 (mod 2k+2).
This holds for d(v) 󰃑 2t(k + 1) + 1, which is equivalent to k + i 󰃑 2t+ 1. This is in turn
fulfilled if t 󰃍 k − 1. Since δ(G) 󰃍 2k2 − 2k, the smallest degree of v such that

󰁭
d(v)
k

󰁮
is

odd is d(v) = 2k2 − k. Hence, t 󰃍 k − 1 and the desired inequality holds.

As mentioned, the special case of k = 2 within Theorem 9 confirms Conjecture 7 for
finite graphs.

3 Arbitrary uniform tolerance of all colours

Suppose now that instead of admitting 1/kth fraction of incident edges in one colour,
every vertex v accepts at most αd(v) such monochromatic edges, where α may be any
fixed real number in (0, 1); we shall call it tolerance. Formally, for every graph G = (V,E),
we say that ω : E → C is an α-majority edge colouring if dEc(v) 󰃑 αd(v) for every v ∈ V
and c ∈ C. Such generalisation of majority edge colourings was proposed already in [9],
but it was not considered further except for α of the form 1/k for some integer k 󰃍 2 (i.e.
1/k-majority edge colourings). We note here that the same approach as the one used to
prove Theorem 9 yields the following result.
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Theorem 10. For any integer ℓ 󰃍 2 and α ∈ (0, 1) such that αℓ > 1, if a graph G has a
minimum degree δ 󰃍 2ℓ−2

αℓ−1
, then G has an α-majority edge colouring from lists of size ℓ.

Proof. We use a similar idea as in the proof of Theorem 9. Let G be a graph with
minimum degree δ 󰃍 2ℓ−2

αℓ−1
, where ℓ is an integer, α ∈ (0, 1) and αℓ > 1. For every vertex

v of G we can write its degree as d(v) = 2ℓ(s − 1) + i, where i ∈ [2ℓ]. Let us partition
the neighbourhood of v into s disjoint sets N1, . . . , Ns such that |N1| = i and |Nj| = 2ℓ
for j 󰃍 2. We then construct the graph G∗ and the bipartite graph H as described in the
proof of Theorem 9. As in that proof the proper colouring of H yields a colouring ω of
G from the given lists such that for every vertex v, the number of monochromatic edges
incident with v cannot exceed 2⌈d(v)/(2ℓ)⌉ or 2⌈d(v)/(2ℓ)⌉−1 if d(v) ≡ 1 (mod 2ℓ). This
value is thus not greater than

d(v) + 2ℓ− 2

ℓ
= αd(v)

1 + 2ℓ−2
d(v)

αℓ
󰃑 αd(v)

1 + 2ℓ−2
δ

αℓ
󰃑 αd(v),

which means that ω is an α-majority edge colouring of G.

Note that e.g. for ℓ = k + 1 and α = 1/k, we obtain δ 󰃍 2k2 in Theorem 10, which is
almost as good as the bound for δ in Theorem 9.

4 Potential further extensions of the list setting

Let us further consider a possibly most general setting in a list variant of the edge majority
problem. Let G = (V,E) be a graph, C be a set of colours and suppose every edge e of G
is endowed with a list of colours, i.e., let L : E → 2C be given. Assume further that we
are given a majority tolerance function, i.e., a function τ : V × C → (0, 1). A colouring
ω : E → C is said to be a τ -majority L-colouring of G if ω(e) ∈ L(e) for every e ∈ E and
for every vertex v ∈ V and each colour c ∈ C,

dEc(v) 󰃑 τ(v, c)d(v), (1)

i.e. no colour c can be assigned to a larger fraction of the edges incident with v than
the majority tolerance function admits (for the given v and c). Note we do not admit
τ(v, c) = 0, as the corresponding colour c would be useless, nor τ(v, c) = 1, as then c
would be always admissible (at least from the point of view of one end of an edge in
whose list c would appear, but by the end of this section, we shall argue that in fact
we should assume symmetrical points of view for both of the ends of an edge, or more
generally – for all vertices).

In order to have any chance for existence of a τ -majority L-colouring, we must impose
some minimal assumptions concerning the list assignment. In particular, we must assume
that for every edge e and v ∈ e,

󰁓
c∈L(e) τ(v, c) 󰃍 1. Otherwise we could assign to all edges

incident with v the same fixed list of colours which does not obey this assumption, whence
preventing the existence of a desirable τ -majority L-colouring. In fact, since dEc(v) must
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be an integer for every colour c, which we do not require from τ(v, c)d(v), we should
assume that 󰁛

c∈L(e)

τ(v, c) 󰃍 1 + ε (2)

for some ε > 0. (Even if we assumed that τ(v, c)d(v) must be an integer, then e.g. if G is
a d-regular graph with χ′(G) = d+1 and L(e) = C = [d] for all e ∈ E, while τ ≡ 1/d, i.e.󰁓

c∈L(e) τ(v, c) = 1, then a τ -majority L-colouring would not exist.) It however occurs
that such assumptions are not sufficient, and do not admit proving a result resembling
the ones in Theorems 9 or 10, yielding a lower bound for δ(G) which implies that G is
appropriately colourable from any suitable lists, even if we allow ε to be an arbitrarily
large constant or restrict our attention to bipartite graphs exclusively.

Observation 11. For all fixed ε, δ > 0, there exist a bipartite graph G = (V,E) with
minimum degree at least δ, a list assignment L : E → 2C and a majority tolerance
function τ : V × C → (0, 1) satisfying (2) for every edge e ∈ E and v ∈ e for which there
is no τ -majority L-colouring of G.

Proof. Fix ε, δ > 0. Choose any positive integer r 󰃍 1 + ε and a small constant β > 0
such that

rβ < 0.5. (3)

Let G = (V,E) be a complete bipartite graph Kn,n with n 󰃍 δ, where A,B ⊆ V are the
two maximal independent sets of G (sets of bipartition). Set L(e) = [2r] for every edge
e ∈ E and let for every (v, c) ∈ V × C:

τ(v, c) :=

󰀝
β if (v, c) ∈ (A× [r]) or (v, c) ∈ (B × [r + 1, 2r])

1− β if (v, c) ∈ (A× [r + 1, 2r]) or (v, c) ∈ (B × [r])
.

Note (2) is fulfilled for every edge e = uv ∈ E. Suppose ω is a τ -majority L-colouring of
G. Denote by F all edges e ∈ E with ω(e) ∈ [r] and set F = E 󰄀 F . Then, by (1), (3)
and the definition of τ ,

0.5n2 > nrβn =
󰁛

v∈A

󰁛

c∈[r]

βd(v) 󰃍
󰁛

v∈A

󰁛

c∈[r]

dEc(v) =
󰁛

v∈A

dF (v) = |F |

= |E|− |F | = |E|−
󰁛

v∈B

dF (v) = |E|−
󰁛

v∈B

󰁛

c∈[r+1,2r]

dEc(v)

󰃍 |E|−
󰁛

v∈B

󰁛

c∈[r+1,2r]

βd(v) = n2 − nrβn = (1− rβ)n2 > 0.5n2,

a contradiction.

This observation, and many other examples, suggest we must adopt an assumption
that for any fixed colour c ∈ C, different vertices have the same tolerance for c, i.e. a
tolerance should be a function related with colours exclusively (the same for every vertex).
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Finally, one should introduce one more constraint to tie up a sensible model. In
particular, it seems reasonable to assume some lower bound on the value of the tolerance
function. Otherwise, for a given graph G with any maximum degree ∆ one could set
a constant tolerance function equal e.g. 0.5/∆ and assign to every edge a list with
sufficiently many colours so that (2) holds. However, as (0.5/∆)d(v) < 1 for every vertex
v of G, assigning any colour to arbitrary edge of G would result in breaching (1). In the
following section we investigate such a potentially most general rational model. We also
discuss there that the last assumption above may potentially be replaced by a slightly
less intuitive constraint on a limited number of elements in every list.

5 General setting with diversified tolerances

We first specify and formalize the analysed general model. To that end we introduce a
new notation, in order to avoid potential confusion.

Let G = (V,E) be a graph and C be a set of colours. Consider a list assignment
L : E → 2C and so-called tolerance function of L, i.e. any α : C → (0, 1). Denote by
min(α) := minc′∈C α(c′) the minimal tolerance of α. If for every edge e of G:

󰁛

c∈L(e)

α(c) 󰃍 1 + ε (4)

for some ε > 0, then L is called an ε-excessive list assignment of G. A colouring ω : E → C
is said to be an α-majority L-colouring of G if ω(e) ∈ L(e) for every e ∈ E and for each
vertex v ∈ V and any colour c ∈ C,

dEc(v) 󰃑 α(c)d(v). (5)

We shall prove that for any fixed ε > 0 and a ∈ (0, 1) there is δ0 such that every graph G
with minimum degree δ 󰃍 δ0 admits an α-majority L-colouring of G from any ε-excessive
list assignment L with a tolerance function α satisfying min(α) 󰃍 a, cf. Theorem 15. Its
proof shall be probabilistic. In order to simplify our calculations and facilitate usage of
a symmetric version of the Lovász Local Lemma, rather than its more unwieldy general
form, we shall again use a variant of a preliminary splitting vertices argument. For clarity
of presentation of the main proof, we single out this initial preparatory step in the form
of the following observation.

Observation 12. For every fixed ε > 0, a ∈ (0, 1) and an integer δ0 > 0, in order to prove
that for every graph G with minimum degree δ(G) 󰃍 δ0, any ε-excessive list assignment
L of G and every tolerance function α of L with min(α) 󰃍 a, there is an α-majority
L-colouring of G, it is enough to prove this statement for graphs G with all vertex degrees
in [δ0, 2δ0 − 1].

Proof. Let G be a graph with minimum degree δ(G) not smaller than δ0 (which satisfies
all graphs with degrees in [δ0, 2δ0 − 1]) and let L be any ε-excessive list assignment of G
with tolerance function α such that min(α) 󰃍 a. Let v be a vertex of G, i.e. dG(v) 󰃍 δ0.
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Similarly as in the proofs of Theorems 9 and 10, we may split v by first partitioning the
neighbourhood of v into N1, . . . , Ns with δ0 󰃑 |Ni| 󰃑 2δ0−1, and then associating each Ni

as a neighbourhood to a new copy of v, say vi (and deleting v itself). This operation yields
a bijection between the edges of G and the edges of the resulting graph. After processing
and possibly splitting all vertices of G, we end up with a graph G = (V ,E) with all vertex
degrees in [δ0, 2δ0 − 1], naturally inheriting the ε-excessive list assignment from G, due to
the mentioned bijection between the edges of G and G. By our assumption, there is an
α-majority colouring of G from these lists, i.e. such that for every given colour c and a
copy vi in G of any vertex v of G, we have dEc

(vi) 󰃑 α(c)dG(vi). Therefore, if v was split
into s copies, then the bijectively mapped edge colouring from E to E fulfils:

dEc(v) =
s󰁛

i=1

dEc
(vi) 󰃑

s󰁛

i=1

α(c)dG(vi) = α(c)
s󰁛

i=1

dG(vi) = α(c)dG(v).

Therefore, the resulting L-colouring of G is an α-majority colouring.

Let us also recall two standard tools applicable within the probabilistic method, see
e.g. [2] and [13], respectively.

Lemma 13 (Lovász Local Lemma). Let Ω be a finite family of events in any probability
space. Suppose that every event A ∈ Ω is mutually independent of a set of all the other
events in Ω but at most D, and that Pr(A) 󰃑 p for each A ∈ Ω. If

ep(D + 1) 󰃑 1,

then Pr
󰀃󰁗

A∈Ω A
󰀄
> 0.

Lemma 14 (Chernoff Bound). Let X =
󰁓n

i=1 Xi, where Xi = 1 with probability pi,
Xi = 0 with probability 1− pi and all Xi are independent. Then, for every 0 < t 󰃑 E(X),

Pr (X > E(X) + t) < exp

󰀕
− t2

3E(X)

󰀖
.

One may easily verify that the Chernoff Bound above is also applicable in the case
when only an upper bound for E(X) is known, say E(X) 󰃑 σ, whence Lemma 14 implies
that Pr(X > σ + t) < exp(−t2/(3σ)) for every 0 < t 󰃑 σ.

We shall now prove the theorem aforementioned at the beginning of this section. In
order to provide a relatively uncomplicated formula for δ0, we impose some mild assump-
tions on ε, that is we prove the theorem for ε only slightly below 1, i.e. ε 󰃑 0.9. Note at
the same time that δ0 derived from Theorem 15 for ε = 0.9 shall be the more sufficient
for larger values of ε, by formulation of our problem itself.

Theorem 15. For every fixed ε ∈ (0, 0.9], a ∈ (0, 1), for every graph G with minimum
degree δ 󰃍 ⌈626a−1ε−2 ln(aε)−1⌉ and each ε-excessive list assignment L of G associated
with any tolerance function α of L with min(α) 󰃍 a, there is an α-majority L-colouring
of G.
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Proof. Let us fix ε ∈ (0, 0.9], a ∈ (0, 1). Set

δ0 =
󰀉
626a−1ε−2 ln(aε)−1

󰀊
. (6)

By Observation 12 we may assume that G = (V,E) is a graph with minimum degree
δ 󰃍 δ0 and maximum degree ∆ 󰃑 2δ0−1. Fix any ε-excessive list assignment L : E → 2C

of G and a tolerance function α : C → (0, 1) of L with min(α) 󰃍 a.
From each list L(e) we first remove some colours, if necessary, so that afterwards (4)

still holds and:
|L(e)| 󰃑

󰀛
1 + ε

a

󰀜
<

1 + ε+ a

a
. (7)

For each resulting list L(e) independently we shall randomly choose one of its colour, with
probability for each colour c proportional to the value of the tolerance function: α(c), and
show that with positive probability the resulting edge colouring meets our requirements.
Formally, for every edge e ∈ E we define below a random variable Xe accountable for
prescribing a colour to e. For the sake of symmetrization of notation, we extend its
natural domain (sample space) of L(e) to entire C (prescribing probability 0 to colours
outside L(e)). Thus, for every e ∈ E and c ∈ C, the variable Xe takes value c with
probability:

pe,c :=

󰀫
α(c)󰁓

c′∈L(e) α(c
′) if c ∈ L(e)

0 if c /∈ L(e)
. (8)

For each e ∈ E and c ∈ C, we further define the binary random variable Ye,c taking value
1 if Xe = c, and 0 otherwise. Note that since L is ε-excessive, i.e. (4) holds, then by (8),
we obtain that:

Pr (Ye,c = 1) = pe,c 󰃑
α(c)

1 + ε
. (9)

Denote by Lv the set of all colours appearing in lists incident with a vertex v, i.e., Lv =󰁖
e∈E(v) L(e). For every c ∈ Lv we finally define the following random variable:

Zv,c =
󰁛

e∈E(v)

Ye,c.

Note that all random variables Ye,c in the sum above are independent, thus the Chernoff
Bound applies to Zv,c. Note also that Zv,c represents the number of edges incident with v
which are coloured c within our random edge colouring. In order to prove that the colour-
ing meets our expectations it is thus sufficient to prove that (with positive probability)
for no v ∈ V and c ∈ Lv the following event occurs:

Av,c : Zv,c > α(c)d(v).

By (9),

E (Zv,c) =
󰁛

e∈E(v)

E (Ye,c) =
󰁛

e∈E(v)

pe,c 󰃑
α(c)d(v)

1 + ε
.
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Thus, by the Chernoff Bound,

Pr (Av,c) = Pr

󰀕
Zv,c >

α(c)d(v)

1 + ε
+

εα(c)d(v)

1 + ε

󰀖

󰃑 exp

󰀕
−ε2α(c)d(v)

3(1 + ε)

󰀖

󰃑 exp

󰀕
− ε2ad(v)

3(1 + ε)

󰀖
. (10)

Set
b =

ε2a

3(1 + ε)
, γ = 626a−1ε−2 ln(aε)−1,

hence
γ 󰃑 ⌈γ⌉ = δ0 󰃑 δ 󰃑 d(v) (11)

for every vertex v ∈ V . Consider the function

f(x) =
2e(1 + ε+ a)

a
x2e−bx (12)

and note that f ′(x) = 2e(1+ε+a)
a

xe−bx(2− bx), and hence f is decreasing for x 󰃍 2
b
, while

γ =
626 ln(aε)−1

3(1 + ε)b
>

626 ln(0.9)−1

5.7b
>

2

b
.

Therefore, f is decreasing for x 󰃍 γ. Hence, for every such x:

f(x) 󰃑 f(γ) =
2e(1 + ε+ a)

a
6262a−2ε−4 ln2(aε)−1e−

626 ln(aε)−1

3(1+ε)

󰃑 2e(1 + ε+ a)6262(aε)−4 ln2(aε)−1(aε)
626

3(1+ε)

󰃑 5.8e6262 ln2(aε)−1(aε)
626
5.7

−4

󰃑 5.8e6262 ln2(0.9)−10.9
626
5.7

−4 < 1, (13)

where the last weak inequality above follows by the fact that f1(x) = ln2 x−1 · x 626
5.7

−4 is
increasing for x between 0 and exp(− 2

626
5.7

−4
) > 0.9. Let us aggregate all Av,c related with

a given vertex v within a single undesirable event:

Bv : therere exist c ∈ Lv for which Zv,c > α(c)d(v).

By (10), (7), (12), (13) and (11),

Pr(Bv) 󰃑 |Lv| exp
󰀕
− ε2ad(v)

3(1 + ε)

󰀖
< d(v)

1 + ε+ a

a
e−b·d(v)

=
f(d(v))

2e · d(v) <
1

2e · d(v) 󰃑 1

2e · δ0
. (14)
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Denote p = (2e · δ0)−1, hence by (14), Pr(Bv) < p for every v ∈ V . Since every event Bv

is mutually independent of all but at most D = d(v) 󰃑 2δ0 − 1 other events Bv′ , by the
Lovász Local Lemma, there is a choice of colours from the lists so that none of the events
Bv, v ∈ V , holds.

As mentioned earlier, instead of imposing a lower bound for the tolerance function
α, one may analyse a somewhat related condition where we admit a limited number of
elements in each list. In such a case, the following result may be derived from Theorem
9.

Let ℓ 󰃍 2 be an integer and let ε > 0. We say that a graph G is (ℓ, ε)-majority
edge-choosable if for each tolerance function α : C → (0, 1) and every collection of lists
such that |L(e)| 󰃑 ℓ and

󰁓
c∈L(e) α(c) 󰃍 1+ε for every edge e of G, there is an α-majority

L-colouring of G.

Theorem 16. For any integer ℓ 󰃍 2 and any real number ε > 0, there exists an integer
δ(ℓ,ε) such that for every graph G with minimum degree δ 󰃍 δ(ℓ,ε), each tolerance function
α : C → (0, 1) and every ε-excessive list assignment L of G such that |L(e)| 󰃑 ℓ for
every edge e of G, there is an α-majority L-colouring of G. It is sufficient to let δ(ℓ,ε) =
2
󰀉
ℓ
ε

󰀊2 − 2
󰀉
ℓ
ε

󰀊
.

Proof. Consider a graph G = (V,E). Fix α : C → (0, 1) and L : E → 2C such that
|L(e)| 󰃑 ℓ and

󰁓
c∈L(e) α(c) 󰃍 1 + ε for every edge e ∈ E. Set k := ⌈ℓ/ε⌉. To every

edge e of G we assign a modified list of colours L′(e) constructed of L(e) as follows. For
every colour c ∈ C we replace c with s = ⌊kα(c)⌋ copies of c, say c1, . . . , cs, and we set
α′(ci) = 1/k for each i ∈ [s]. Then,

s󰁛

i=1

α′(ci) =
s

k
> α(c)− 1

k
. (15)

Note also that if G has an α′-majority L′-colouring ω′, then it yields an α-majority L-
colouring ω of G where we associate a colour c to every edge e with any copy ci of c
assigned by ω′. Indeed, it is enough to observe that for every vertex v and a colour c
with s = ⌊kα(c)⌋, the number of edges in E(v) coloured c by ω can be expressed by the
following sum related with frequencies of the copies of c under ω′:

dc(v) =
s󰁛

i=1

dci(v) 󰃑
s󰁛

i=1

α′(ci)d(v) = s
1

k
d(v) 󰃑 α(c)d(v).

On the other hand, by (15), for each e ∈ E,
󰁛

c∈L(e)

α(c)−
󰁛

c′∈L′(e)

α′(c′) <
ℓ

k
󰃑 ε,

hence
󰁓

c′∈L′(e) α
′(c′) > 1. Consequently, as α′(c′) = 1

k
for c′ ∈ L′(e), every L′(e) must be

of size at least k+ 1. Thus, by Theorem 9 we obtain that if δ(G) 󰃍 2k2 − 2k, then G has
a 1/k-majority edge colouring from the lists L′(e), e ∈ E, which simply is an α′-majority
L′-colouring, guaranteeing the existence of a desired ω.
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Now, going back to our initial setting, with min(α) 󰃍 a, similarly as within the proof
of Theorem 15, one may always remove some excessive colours from each L(e) to assure
that |L(e)| 󰃑 ⌈1+ε

a
⌉ for every edge e. Thus, Theorem 16 implies an upper bound (for

the optimal value of a threshold value of δ) of the form O((aε)−2) (for a bounded ε, e.g.,
ε 󰃑 0.9), which is in general worse than the bound of order O(a−1ε−2 ln(aε)−1), stemming
from Theorem 15, with respect to a, though slightly better in terms of ε. However, relating
such a bound with ℓ, rather than a, might be frequently quite beneficial, e.g. when only a
few colours in the lists have very small tolerance, while the majority have large (whence
ℓ may be very small compared to a−1).

In the following section we analyse one more special model of lists assignment, where
we impose the same vector of tolerances of colours in each list. It occurs that in such a
setting, one may provide a bound of order O(ℓε−2 ln(ℓε)−1), which is not a function of
the less preferred parameter a, and is better from the discussed bound from Theorem 16
with respect to ℓ (at a miniscule cost in view of ε). At the same time, it provides a better
multiplicative constant than the one resulting from Theorem 15, and is applicable within
a general non-list setting, cf. Section 7.

6 Uniform edge vector of tolerances

Suppose we want to symmetrize our setting slightly by imposing a relatively natural
restriction (usually adapted for regular list colourings, where the lists are typically uniform
with respect to their structure, in particular sizes). Namely, we still admit different lists
of colours associated to distinct edges, whereas every colour may also have a different
tolerance associated. However, we shall require that each list consists in the same number
of colours of every given type, where two colours are considered the same type if they have
the same tolerance. Note this holds in particular in a general non-list setting of majority
colourings, with different tolerances permissible for distinct colours; more comments on
this issue are included in the last section.

Let G = (V,E) be a graph and let Λ = (α1,α2, . . . ,αℓ) be a vector of real numbers
(not necessarily pairwise distinct) such that αi ∈ (0, 1) for each i and

󰁛

i∈[ℓ]

αi = 1 + ε (16)

for some ε > 0. We call such Λ an ε-excessive tolerance vector. Let C be a set of colours
and α : C → (0, 1) be a function assigning to every colour from C some weight αi from the
vector Λ; we call it a Λ-tolerance function. For every edge e of G let L(e) = (c1, . . . , cℓ)
be a list of colours such that ci ∈ C and α(ci) = αi for i ∈ [ℓ]. We call such list a Λ-list.
A Λ-list assignment of G is an L : E → 2C such that L(e) is a Λ-list for every e ∈ E.

To investigate this setting we shall apply a probabilistic approach similar to the one
used within the proof of Theorem 15, that is, we shall randomly choose colours from
the lists with probabilities (nonlinearly) proportional to their tolerances. We shall be
able to introduce at least two important optimising refinements to our reasoning, though.
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One of these relies on a technical lemma concerning conditions implying maximisation of
probability of a certain type of events, see Lemma 19 below.

Before we present this lemma, we first formulate a rather obvious auxiliary observation,
which states that the sum of a fixed number of consecutive elements from any specific
row of Pascal’s triangle is the larger the more central the set of these elements is. We
also include the proof of this observation, for the sake of completeness. For technical
reasons we admit within the following observations binomial coefficients

󰀃
n
m

󰀄
with m < 0

or m > n, which by definition equal 0.

Observation 17. For any positive integer z and integers a, b, c, d with b− a = d− c 󰃍 0
and |a+b

2
− z

2
| 󰃍 | c+d

2
− z

2
|,

b󰁛

i=a

󰀕
z

i

󰀖
󰃑

d󰁛

i=c

󰀕
z

i

󰀖
. (17)

Proof. We shall use the following straightforward claim on integers k, k′.

Claim 18. If
󰀃
z
k

󰀄
󰃑

󰀃
z
k′

󰀄
, k 󰃑 z

2
and k 󰃑 k′, then

󰀃
z

k−1

󰀄
󰃑

󰀃
z

k′+1

󰀄
.

We may assume [a, b] and [c, d] are disjoint, as the common summands on both sides
of (17) do not influence the inequality, while removing them results in modified values of
a, b, c, d, still fulfilling all assumptions of the observation. We may further assume that
a 󰃑 c. (If this is not the case, it suffices to exchange every

󰀃
z
x

󰀄
with

󰀃
z

z−x

󰀄
in (17).)

Hence, b 󰃑 z
2

and b < c 󰃑 z − b, where the weak inequalities follow by the observation’s
assumptions on a more central localisation of [c, d] than [a, b] with respect to [0, z]. Thus,󰀃
z
b

󰀄
󰃑

󰀃
z
c

󰀄
. Consequently, by Claim 18,

󰀃
z

b−1

󰀄
󰃑

󰀃
z

c+1

󰀄
(where b− 1 󰃑 z

2
and b− 1 < c+ 1).

By analogous repeated applications of Claim 18, we likewise obtain that
󰀃

z
b−j

󰀄
󰃑

󰀃
z

c+j

󰀄
for

j ∈ [0, b− a], and hence (17) follows.

Lemma 19. Let Λ = (α1,α2, . . . ,αℓ) be an ε-excessive tolerance vector and let L : E → 2C

be a Λ-list assignment of a graph G = (V,E), whereas α : C → (0, 1) is the corresponding
Λ-tolerance function. Let v ∈ V be a fixed vertex with E(v) = {e1, e2, . . . , ed} and let
p1, . . . , pℓ 󰃍 0 be constants such that

󰁓
i∈[ℓ] pi = 1, pi < αi for i ∈ [ℓ] and pi = pj

whenever αi = αj. Suppose that for each e ∈ E we independently choose a colour from
its list L(e) = (c1, c2, . . . , cℓ) at random where each colour ci is drawn with probability pi.
Then the probability that for some colour c ∈ C we have dEc(v) > α(c)d for the fixed v is
the largest in the case when all lists L(e1), L(e2), . . . , L(ed) are the same.

Proof. Fix any G = (V,E), Λ = (α1, . . . ,αℓ), α : C → (0, 1) and pi, i ∈ [ℓ] consistent with
the lemma’s assumptions. Let L1, . . . , Ld be any Λ-lists associated to pairwise distinct
edges e1, . . . , ed, resp., incident with a vertex v of degree d in G. We call L = {L1, . . . , Ld}
a Λ-family of v. Let

󰁖
L =

󰁖
i∈[d] Li = {a1, . . . , an} ⊆ C denote the set of all colours

represented within L; note n 󰃍 ℓ. Let further #ai denote the number of occurrences of the
colour ai in the lists in L. Then by W (L) = (w1, . . . , wn) we denote the nonincreasingly
sorted vector of #ai, i ∈ [n], and call it the vector of colour occurrences in L.
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Let us introduce an order in the set of all possible Λ-families of v (including colours
from C) consistent with the lexicographic order within the set of the corresponding vectors
of colour occurrences. To be precise, for any given Λ-families L1,L2 of v with W (L1) =
(w1, . . . , wn), W (L2) = (u1, . . . , un) (if these vectors are not equal length, we append
zeroes to the shorter one to match their lengths), we assume L1 ≺ L2 if for some i we
have wi < ui and wj = uj for all j < i. Hence, ‘≺’ defines a strict partial order, while
every maximal element with respect to ≺ in the set of all possible Λ-families of v consists
in uniform lists associated to all edges in E(v) (i.e. with exactly the same L associated
to every edge incident with v, where L is any Λ-list).

In order to prove the lemma it is thus sufficient to show that for any Λ-family L of v
which is not a maximal element with respect to ≺, there exists a Λ-family L′ of v such
that L ≺ L′ and the probability that for some colour c ∈ C we have dEc(v) > α(c)d when
colours incident with v are chosen from the lists in L does not decrease if these colours
are chosen from the lists in L′ instead.

Suppose then that L = {L1, . . . , Ld} is a non-maximal Λ-family L of v. Set
󰁖

L =
{a1, . . . , an} and let as be the least frequently appearing colour in L, i.e. #as = mini(#ai).
Since L is not maximal, we have 1 󰃑 #as < d. Thus, as must appear in some list, say Li1

and not appear in some other list, say Li2 in L. However, as Li1 , Li2 are Λ-lists, where
Λ = (α1, . . . ,αℓ) is fixed, both of the lists must contain the same number of colours a with
α(a) = α(as). Therefore, there must exist at ∈ Li2 with α(at) = α(as) such that at /∈ Li1 .
Let Is−t be the set of all indices i ∈ [d] such that as ∈ Li and at /∈ Li, hence in particular,
i1 ∈ Is−t.

Let L′ = {L′
1, . . . , L

′
d} be defined by setting:

L′
i =

󰀝
Li ∪ {at}󰄀 {as}, if i ∈ Is−t,
Li, otherwise.

(18)

Note that L′ is a Λ-family of v and, by the choice of as, L ≺ L′. Denote the following
event:

A : there exists c ∈ C such that dEc(v) > α(c)d.

We shall show that the probability that A occurs does not decrease when colours incident
with v are drawn from lists in L′ instead of L, thus finishing the proof. For the sake of
clarity, we shall use the notation Pr1 to denote the probability in the setting when the
colours are chosen from lists in L′, and the notation Pr0 in the case when the colours are
drawn from lists in L. We shall thus show that

Pr0(A) 󰃑 Pr1(A). (19)

Note we may bijectively couple each colouring of E(v), say ωv chosen from L with a
colouring ω′

v chosen from L′, by recolouring to at each edge ei with i ∈ Is−t which is
coloured as under ωv. Note moreover that as α(at) = α(as), then the probability of
choosing as from such a list Li is the same as the probability of choosing at from the
corresponding list L′

i (while all colour choices are independent). Thus, the colourings
ωv,ω

′
v shall be chosen with the same probabilities, i.e. Pr0(ωv) = Pr1(ω

′
v).
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Let AJ be an event such that for some colour c ∈ C, the number of times the colour
c was chosen from the given lists Lk (or L′

k) with indices k ∈ J is greater than α(c)d.
In particular, A[d] = A. Let Is,t be a set of all indices k such that as ∈ Lk or at ∈ Lk

(or equivalently: as ∈ L′
k or at ∈ L′

k). Let I denote the (random) set of indices such
that k ∈ I iff the colour chosen from the list Lk (or L′

k, through the mentioned bijective
coupling) is either as or at, thus I ⊆ Is,t.

By the law of total probability, for i ∈ {0, 1}:

Pri(A) =
󰁛

I′⊆Is,t

Pri(I = I ′) ·Pri(A|I = I ′).

Let us fix any I ′ ⊆ Is,t. Note that by the bijective coupling and comments above, Pr0(I =
I ′) = Pr1(I = I ′). In order to show (19) it thus suffices to prove that

Pr0(A|I = I ′) 󰃑 Pr1(A|I = I ′). (20)

Note that for i ∈ {0, 1}:

Pri(A|I = I ′) = Pri(A[d]󰄀I′ |I = I ′) +Pri(A[d]󰄀I′ ∩ A|I = I ′). (21)

Note further that no edge ei with i ∈ [d]󰄀 I ′ can have colour as or at assigned, given that
I = I ′. However, apart from as and at, the lists in L and L′ coincide. Thus,

Pr0(A[d]󰄀I′ |I = I ′) = Pr1(A[d]󰄀I′ |I = I ′). (22)

Furthermore, given that I = I ′, the set of colours chosen from the lists with indices in
[d]󰄀I ′ is disjoint from the set of colours picked from the lists with indices in I ′. Therefore,
for i ∈ {0, 1}:

Pri(A[d]󰄀I′ ∩ A|I = I ′) = Pri(A[d]󰄀I′ ∩ AI′ |I = I ′)

= Pri(A[d]󰄀I′ |I = I ′) ·Pri(AI′ |I = I ′), (23)

where the last equality follows by the fact that choices of colours for distinct edges are
independent. Since the lists in L and L′ coincide apart from as and at, we have

Pr0(A[d]󰄀I′ |I = I ′) = Pr1(A[d]󰄀I′ |I = I ′). (24)

By (21), (22), (23) and (24), in order to show (20) (hence also (19)), it suffices to
prove that

Pr0(AI′ |I = I ′) 󰃑 Pr1(AI′ |I = I ′). (25)

Since the probabilities of choosing as and at from any given list including these colours
are the same, and hence (provided that I = I ′), any attainable choice of {as, at}-colouring
of the edges in E ′ := {ei : i ∈ I ′} from the lists in L or L′ is equally probable, in order
to prove (25), it suffices to show that the number of {as, at}-colourings of E ′ for which
dE′

as
(v) > α(as)d or dE′

at
(v) > α(as)d from appropriate lists in L′ is not smaller than from
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the corresponding lists in L. Denote the set of all such colourings from L′ by Ω′, and the
set of all such colourings from L by Ω.

Set r = ⌊α(as)d + 1⌋, hence r > α(as)d. Let us denote cardinalities of three subsets
partitioning the set of all lists Li with i ∈ I ′:

x = |{Li : i ∈ I ′, Li ∩ {as, at} = {at}}| (26)
y = |{Li : i ∈ I ′, Li ∩ {as, at} = {as}}| (27)
z = |{Li : i ∈ I ′, Li ∩ {as, at} = {as, at}}| (28)

Thus, by (18),

x+ y = |{L′
i : i ∈ I ′, L′

i ∩ {as, at} = {at}}| (29)
z = |{L′

i : i ∈ I ′, L′
i ∩ {as, at} = {as, at}}| (30)

(Note that by construction, none of the lists L′
i with i ∈ I ′ contains as but does not

contain at.) Note that if x + y + z 󰃑 r − 1 or x + y 󰃍 r, then trivially, respectively,
Pr0(AI′ |I = I ′) = 0 or Pr1(AI′ |I = I ′) = 1. Analogously, if x + y + z 󰃍 2r − 1, then
Pr1(AI′ |I = I ′) = 1, as any {as, at}-colouring of E ′ must repeat at least r times the
colour as or the colour at then. In all these cases, (25) holds. We may therefore assume
that

x+ y + z 󰃍 r, x+ y 󰃑 r − 1, x+ y + z 󰃑 2r − 2. (31)

Note also that if y+z 󰃑 r−1, then dE′
as
(v) 󰃑 r−1 for every admissible {as, at}-colouring

of E ′ (from L or L′). Thus, Ω and Ω′ may only include colourings with dE′
at
(v) 󰃍 r,

hence by (26) – (30), |Ω′| 󰃍 |Ω|, since x + y 󰃍 x. Similarly, if x + z 󰃑 r − 1, then
we shall always have dE′

at
(v) 󰃑 r − 1 while picking colours (as or at) from L. On the

other hand, each {as, at}-colouring of E ′ from L which results in dEas
(v) 󰃍 r naturally

maps bijectively (by mutually interchanging the choices of colours as and at from the lists
corresponding to z, and changing from as to at the colours of all edges corresponding to
y) to an {as, at}-colouring of E ′ from L′ resulting in dEat

(v) 󰃍 r. This again implies that
|Ω′| 󰃍 |Ω|. Therefore, we may assume that

y + z 󰃍 r and x+ z 󰃍 r. (32)

Note that by the third inequality in (31), it is not possible that dE′
as
(v) 󰃍 r and at

the same time dE′
at
(v) 󰃍 r.

Moreover, by (32), the number of colourings in Ω with dE′
at
(v) 󰃍 r equals:

󰀕
z

r − x

󰀖
+

󰀕
z

r − x+ 1

󰀖
+ · · ·+

󰀕
z

z

󰀖
, (33)

while in the case of dE′
as
(v) 󰃍 r, exactly:
󰀕

z

r − y

󰀖
+

󰀕
z

r − y + 1

󰀖
+ · · ·+

󰀕
z

z

󰀖
. (34)
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Analogously, by (31), the number of colourings in Ω′ with dE′
at
(v) 󰃍 r equals:

󰀕
z

r − x− y

󰀖
+

󰀕
z

r − x− y + 1

󰀖
+ · · ·+

󰀕
z

z

󰀖
(35)

while in the case of dE′
as
(v) 󰃍 r,

󰀕
z

r

󰀖
+

󰀕
z

r + 1

󰀖
+ · · ·+

󰀕
z

z

󰀖
(36)

(which we interpret as 0 if z 󰃑 r − 1, abusing slightly the use of
󰀃
z
z

󰀄
in (36) above).

Thus, by (33), (34), (35) and (36), in order to show that |Ω′| 󰃍 |Ω| it suffices to prove
that: 󰀕

z

r − y

󰀖
+ · · ·+

󰀕
z

r − 1

󰀖
󰃑

󰀕
z

r − x− y

󰀖
+ · · ·+

󰀕
z

r − x− 1

󰀖
(37)

(where some summands on the left-hand side might be equal 0, if z 󰃑 r−2). Note that the
sums on both sides of the inequality above include y summands each. Moreover, by (31),
(r−y)+(r−1)

2
− z

2
> x

2
, and hence, | (r−x−y)+(r−x−1)

2
− z

2
| = | (r−y)+(r−1)

2
− z

2
−x| < | (r−y)+(r−1)

2
− z

2
|.

Thus, inequality (37) follows by Observation 17.

Theorem 20. For every fixed ε ∈ (0, 0.9] and an integer ℓ 󰃍 2, for every ε-excessive
tolerance vector Λ = (α1,α2, . . . ,αℓ) and any graph G with a Λ-list assignment L together
with the corresponding Λ-tolerance function α, if δ(G) 󰃍 ⌈109ℓε−2 ln(ℓε−1)⌉, then there is
an α-majority L-colouring of G.

Proof. Let us fix ε ∈ (0, 0.9] and an integer ℓ 󰃍 2. Set

δ1 =
󰀉
109ℓε−2 ln(ℓε−1)

󰀊
. (38)

Analogously as argued within Observation 12 on vertex splitting, we may assume that
G = (V,E) is a graph with minimum degree δ 󰃍 δ1 and maximum degree ∆ 󰃑 2δ1−1. Fix
any ε-excessive tolerance vector Λ = (α1,α2, . . . ,αℓ) and a Λ-list assignment L : E → 2C

together with the corresponding Λ-tolerance function α : C → (0, 1).
For the sake of optimisation and possibly more importantly in order to avoid depen-

dence of δ1 on min(α), we shall choose parameters within our random approach more
carefully than in the proof of Theorem 15. Let us first define an auxiliary function
h : (0, 1) → (0.5, 1),

h(x) =

√
1 + 8x− 1

4x
. (39)

It is straightforward to verify that h is decreasing in (0, 1). Thus,

λ := h(0.9) 󰃑 h(ε). (40)

Let us set
µ =

λ2ε2

3ℓ
. (41)
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In our randomised construction we shall disregard colours with very small tolerance.
Without loss of generality we may assume these correspond to entries at the end of the
tolerance vector Λ. More precisely, let us assume that for some ℓ′ 󰃑 ℓ:

αi 󰃍 6µ if and only if i ∈ [ℓ′]. (42)

Note that by (41), the sum of small tolerances in Λ is limited:
󰁛

i∈[ℓ]󰄀[ℓ′]

αi < ℓ · 6µ 󰃑 2λ2ε2. (43)

Hence, by (43), (40), (39) and (16)

ε′ := ε− 2λ2ε2 󰃍 ε(1− 2λ2 · 0.9) > 0, (44)
󰁛

i∈[ℓ′]

αi 󰃍 1 + ε′. (45)

Note also that by (44), (40) and (39),

ε′ = ε− 2λ2ε2 󰃍 ε− 2(h(ε))2ε2 = ε− 2 + 8ε− 2
√
1 + 8ε

8

=

√
1 + 8ε− 1

4ε
· ε = h(ε) · ε 󰃍 λε. (46)

For every i ∈ [ℓ′], let now βi be a real number such that

αi = βi +
󰁳

3µ
󰁳

βi, (47)

note that
0 < βi < αi. (48)

Moreover, note that by (42), for βi = 3µ, we would get that βi+
√
3µ

√
βi 󰃑 αi for i ∈ [ℓ′].

Therefore, as x+
√
3µ

√
x is an increasing function, we must have that

βi 󰃍 3µ (49)

for i ∈ [ℓ′]. Set
B =

󰁛

i∈[ℓ′]

βi. (50)

By (45), (47), concavity of
√
x, (41), (44) and (46),

1 + ε′ 󰃑
󰁛

i∈[ℓ′]

αi =
󰁛

i∈[ℓ′]

βi +
󰁳

3µ
󰁛

i∈[ℓ′]

󰁳
βi

= B + ℓ′
󰁳

3µ
1

ℓ′

󰁛

i∈[ℓ′]

󰁳
βi 󰃑 B + ℓ′

󰁳
3µ

󰁶󰁓
i∈[ℓ′] βi

ℓ′

= B +
√
ℓ′
λε√
ℓ

√
B 󰃑 B + λε

√
B 󰃑 B + ε′

√
B.
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Consequently,
B 󰃍 1. (51)

For every i ∈ [ℓ′], we set:

pi :=
βi

B
. (52)

By (48), (51), (50) and (52),

0 < pi < αi,󰁓
i∈[ℓ′] pi = 1.

Let Xe be a random variable accountable for prescribing a colour to any given edge
e ∈ E. Suppose L(e) = (c1, c2, . . . , cℓ). Then, for every c ∈ C, the variable Xe takes
value c with probability pi if c = ci and i ∈ [ℓ′] (and 0 otherwise). Let C ′ ⊆ C denote
the colours with non-zero probability of being chosen. For each e ∈ E and c ∈ C ′, we
further define the binary random variable Ye,c taking value 1 if Xe = c, and 0 otherwise.
Denote by Lv the set of all colours from C ′ appearing in lists incident with a vertex v,
i.e., Lv = C ′ ∩ (

󰁖
e∈E(v) L(e)). For every c ∈ Lv we finally again define a random variable:

Zv,c =
󰁛

e∈E(v)

Ye,c,

representing the number of edges incident with v which are coloured c within our random
edge colouring. Note that all random variables Ye,c in the sum defining such Zv,c are
independent. For v ∈ V and c ∈ Lv let us denote events:

Av,c : Zv,c > α(c)d(v).

Bv : therere exist c′ ∈ Lv for which Zv,c′ > α(c′)d(v).

We first want to bound the probability of Bv from the above. By Observation 19, we
may thus assume that all edges e ∈ E(v) have prescribed exactly the same list, say
L(e) = (c1, c2, . . . , cℓ). Hence,

|Lv| = ℓ′. (53)

For every ci ∈ Lv, by (52) and (51), we have:

E (Zv,ci) =
󰁛

e∈E(v)

E (Ye,ci) =
󰁛

e∈E(v)

pi = d(v)pi 󰃑 βid(v).

Thus, by (47) and the Chernoff Bound (applicable due to (49)),

Pr (Av,ci) = Pr (Zv,ci > αid(v))

= Pr
󰀓
Zv,ci > d(v)βi + d(v)

󰁳
3µ

󰁳
βi

󰀔
󰃑 e−d(v)µ. (54)

Therefore, by (54) and (53),

Pr (Bv) 󰃑 ℓ′e−d(v)µ 󰃑 ℓe−d(v)µ. (55)
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Set
γ1 = 109ℓε−2 ln(ℓε−1), (56)

hence
γ1 󰃑 ⌈γ1⌉ = δ1 󰃑 δ 󰃑 d(v) (57)

for every vertex v ∈ V . Consider the function

g(x) = 2eℓxe−µx (58)

and note that g′(x) = 2eℓe−µx(1−µx), and hence g is decreasing for x 󰃍 1
µ
, while by (41),

(56), (40) and (39),

γ1 =
109

3
λ2 ln(ℓε−1)

1

µ
󰃍 109

3
0.52 ln(2 · 0.9−1)

1

µ
>

1

µ
.

Therefore, g is decreasing for x 󰃍 γ1. Hence, for every such x, by (58), (41), (40) and (39),

g(x) 󰃑 g(γ1) = 2eℓ109ℓε−2 ln(ℓε−1)e−
109λ2

3
ln(ℓε−1)

= 218e(ℓε−1)2−
109λ2

3 ln(ℓε−1)

󰃑 218e(2 · 0.9−1)2−
109λ2

3 ln(2 · 0.9−1) < 1, (59)

where the last weak inequality above follows by the fact that g1(x) = x2− 109λ2

3 ln x is
decreasing for x at least exp(−(2− 109λ2

3
)−1) < 2 · 0.9−1. By (55), (58), (59) and (57),

Pr(Bv) 󰃑
g(d(v))

2e · d(v) <
1

2e · d(v) 󰃑 1

2e · δ1
. (60)

Hence, for p = (2e · δ1)−1, by (60), Pr(Bv) < p for every v ∈ V . Since every event Bv is
mutually independent of all but at most D = d(v) 󰃑 ∆ 󰃑 2δ1 − 1 other events Bv′ , by
the Lovász Local Lemma, there is a choice of colours from the lists so that none of the
events Bv, v ∈ V , holds.

Note that Theorem 20 applied to 1/k-majority edge colourings from arbitrary lists of
length k + 1 yields a lower bound of order k3 log k for δ. This matches the bound which
could be derived from [9] in such a setting, although the result in Theorem 20 concerns a
significantly more capacious concept of majority colourings and a much wider spectrum
of list assignments with diversified colour tolerances.

7 Concluding remarks

There are several directions towards which we may further develop our research and
results. In particular, using rather standard arguments based on compactness, one may
extend selected theorems from the current paper towards an infinite setting, see e.g. [14]
for exemplary instances of such reasonings. We omit details here, and only just state one
such possible extension.
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Theorem 21. For every integer k 󰃍 2, each finite and infinite graph G with minimum
degree δ 󰃍 2k2 − 2k has a 1/k-majority edge colouring from lists of size k + 1.

Note that the special case of k = 2 of this theorem confirms Conjecture 7 in full length.
In order to simplify our further discussion though, let us focus our attention back on

finite graphs. Note that for any ε-excessive tolerance vector Λ = (α1,α2, . . . ,αℓ) and a
Λ-list assignment L of a graph G together with the corresponding Λ-tolerance function α
such that min(α) 󰃍 a, we have ℓ 󰃑 (1 + ε)/a. Consequently, the lower bound for δ(G)
guaranteeing the existence of an α-majority L-colouring of G stemming from Theorem 20,
and expressed in terms of ε and a (through substituting ℓ with (1 + ε)/a) is better with
respect to the multiplicative constant than the one in Theorem 15 (for ε ∈ (0, 0.9]).

In fact the mentioned multiplicative constants in Theorems 15 and 20 can be signifi-
cantly reduced for smaller admissible values of ε, e.g. ε 󰃑 0.1, which either way seems a
more typical setting for our problems. Improvements of the bounds in these theorems can
also be obtained in the environment of regular graphs. This subclass of graphs admits
also a strong improvement of Theorem 9, which implies confirmation of Conjecture 5 in
the following special case.

Observation 22. Let k 󰃍 2 be an integer. If G is a d-regular graph with d 󰃍 k2− k such
that ⌊d/k⌋ is even, then G has a 1/k-majority edge colouring from any lists of size k+1.

Proof. This observation follows directly by the proof of Theorem 9. Since G has only
vertices of degree d and ⌊d/k⌋ is even, only constraints following from Case 1 of the
mentioned proof must be respected, and these boil down to the inequality t 󰃍 k−1

2
, where

⌊d/k⌋ = 2t, which is fulfilled for d 󰃍 k2 − k.

This observation supports a direct strengthening of Conjecture 5 towards the list
setting, which we dare to pose below.

Conjecture 23. For every integer k 󰃍 2, if a graph G has minimum degree δ(G) 󰃍 k2,
then G has a 1/k-majority edge colouring from any lists of size k + 1.

In a general setting the corresponding lower bounds for δ(G) in Theorems 15 and 16
are of the forms O(a−1ε−2 ln(a−1ε−1)), O(ℓ2ε−2), while in the case of uniform vector of
tolerances, i.e. within Theorem 20, of the form O(ℓε−2 ln(ℓε−1)). We however expect the
following should hold true.

Conjecture 24. There is a function δ2 : N×(0,+∞) ∋ (ℓ, ε) → R such that δ2 = O(ℓε−1)
and for any fixed (ℓ, ε) ∈ N × (0,+∞) and every graph G with the minimum degree
δ(G) 󰃍 δ2(ℓ, ε), any ε-excessive list assignment L of G associated with arbitrary tolerance
function α and containing exclusively list of lengths at most ℓ, i.e. with |L(e)| 󰃑 ℓ for
every e ∈ E(G), there is an α-majority L-colouring of G.

Conjecture 25. There is a function δ3 : (0, 1) × (0,+∞) ∋ (a, ε) → R such that δ3 =
O(a−1ε−1) and for any fixed (a, ε) ∈ (0, 1)×(0,+∞) and every graph G with the minimum
degree δ(G) 󰃍 δ3(a, ε), any ε-excessive list assignment L of G and every tolerance function
α of L with min(α) 󰃍 a, there is an α-majority L-colouring of G.
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If not in general, it would be interesting to prove these conjectures for uniform vectors
of tolerances or for their direct non-list counterparts, which we formalise separately below.

Let G = (V,E) be a graph and C be a set of colours. Consider a tolerance function
α : C → (0, 1). As before, we denote min(α) := minc′∈C α(c′). We call α an ε-excessive
tolerance function if

󰁓
c∈C α(c) 󰃍 1 + ε for some ε > 0. A colouring ω : E → C is said

to be an α-majority C-colouring of G if for each vertex v ∈ V and any colour c ∈ C,
dEc(v) 󰃑 α(c)d(v).

Conjecture 26. There is a function δ4 : N×(0,+∞) ∋ (ℓ, ε) → R such that δ4 = O(ℓε−1)
and for any fixed (ℓ, ε) ∈ N × (0,+∞) and every graph G with the minimum degree
δ(G) 󰃍 δ4(ℓ, ε) and any ε-excessive tolerance function α : C → (0, 1) with |C| 󰃑 ℓ there
is an α-majority C-colouring of G.

Conjecture 27. There is a function δ5 : (0, 1) × (0,+∞) ∋ (a, ε) → R such that
δ5 = O(a−1ε−1) and for any fixed (a, ε) ∈ (0, 1) × (0,+∞) and every graph G with
the minimum degree δ(G) 󰃍 δ5(a, ε) and any ε-excessive tolerance function α : C → (0, 1)
with min(α) 󰃍 a, there is an α-majority C-colouring of G.

Still the best known results in such a non-list setting with diversified tolerances for
distinct colours follow from Theorem 16 and Theorem 20, whose usefulness gets more
prominent in this setting, where it is applicable and yields a better result than Theorem 15.
Pushing down the bounds for δ(G) which stem from these theorems, and possibly proving
Conjectures 26 or 27 seems to require developing new tools and approaches, though.
A minor support of our suspicion that the non-list setting should be easier to handle
is included in Corollary 29 below, which almost literally extends Observation 22 to all
regular graphs (in a non-list setting), thus confirming Conjecture 5 in such a case. It
however follows directly by results concerning so-called defective colourings. An edge
colouring with defect d or a d-frugal edge colouring of a graph G is a colouring of the
edges of G such that each vertex is incident with at most d edges of the same colour.
The minimum k such that G has an edge colouring with defect d using k colours is the
d-defective chromatic index of G and is denoted by χ′

d(G).

Theorem 28 ([1]). For every d 󰃍 1 and any graph G with maximum degree ∆, χ′
d(G) ∈󰀋

⌈∆
d
⌉, ⌈∆+1

d
⌉
󰀌
.

Corollary 29. If G is an r-regular graph with r 󰃍 k2, then G has a 1/k-majority edge
colouring with k + 1 colours.

Proof. Since G is r-regular, every vertex allows ⌊r/k⌋ incident edges of the same colour.
Hence, 1/k-majority edge colouring of G is equivalent to its edge colouring with defect
⌊r/k⌋. Let r = kt+ i, where 0 󰃑 i < k (hence, t 󰃍 k). Then ⌊r/k⌋ = t. By Theorem 28,
such a colouring can thus be constructed by means of at most

󰀛
r + 1

t

󰀜
=

󰀛
kt+ i+ 1

t

󰀜
= k +

󰀛
i+ 1

t

󰀜
󰃑 k +

󰀛
k

t

󰀜
= k + 1

colours.
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Let us finally note that the method used in Theorem 9 provides surprisingly strong
implications within a non-list setting. Suppose we are interested in a kind of equitable
edge colourings of graphs, i.e. such colourings within which each colour is assigned to
almost the same number of edges incident with any given vertex. More precisely, consider
an edge k-colouring of a graph G = (V,E), i.e. an assignment ω : E → [k]. By a
k-discrepancy of G, we understand the following minimum over all k-colourings ω of G:

Dk(G) = min
ω

max
v∈V

max
1󰃑i<j󰃑k

|dEi
(v)− dEj

(v)|.

For k = 2 this represents a classic discrepancy of a hypergraph with vertex set E and
edge set {E(v) : v ∈ V }, c.f. [18, 21] or e.g. [7] for more recent results in a wider setting.
Note that a triangle implies that D2(G) can be at least 2. It occurs that this value is
always attainable for every graph and each k.

Observation 30. For every graph G and each positive integer k, Dk(G) 󰃑 2.

Proof. This observation follows by yet one more application of the vertex splitting tech-
nique, similar as utilized within the proofs of Theorems 9, 10 and Observation 12. For
every given G and k, it suffices to split every vertex v of degree d(v) to s = ⌈d(v)/(2k)⌉
copies so that s − 1 ones of these copies have degree exactly 2k and the remaining one
has degree at most 2k. The resulting G is then, exactly as in the proof of Theorems 9,
made use to define the corresponding bipartite graph H of maximum degree at most k.
We then colour the edges of H properly with k colours. This colouring is then bijectively
reflected through G to G, as in the mentioned proof. As every vertex of degree k in H
was incident with exactly one edge in each colour, then the counterpart of such a vertex,
of degree 2k in G got incident with exactly two edges in each colour. Consequently, every
vertex v in G, whose all s = ⌈d(v)/(2k)⌉, except possibly one, copies in G were of degree
2k, must be incident with 2(s − 1), 2(s − 1) + 1 or 2(s − 1) + 2 edges in each of the k
colours. Thus, the result follows.

We leave open a problem of determining for which graphs G and which integers k, we
have Dk(G) 󰃑 1.
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