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Abstract

In this article, we establish new results on the probabilistic parking model (in-
troduced by Durmić, Han, Harris, Ribeiro, and Yin) with m cars and n parking
spots and probability parameter p ∈ [0, 1]. For any m ⩽ n and p ∈ [0, 1], we study
the parking preference of the last car, denoted am, and determine the conditional
distribution of am and compute its expected value. We show that both formulas
depict explicit dependence on the probability parameter p. We study the case where
m = cn for some 0 < c < 1 and investigate the asymptotic behavior and show that
the presence of “extra spots” on the street significantly affects the rate at which the
conditional distribution of am converges to the uniform distribution on [n]. Even
for small ε = 1 − c, an ε-proportion of extra spots reduces the convergence rate
from 1/

√
n to 1/n when p ̸= 1/2. Additionally, we examine how the convergence

rate depends on c, while keeping n and p fixed. We establish that as c approaches
zero, the total variation distance between the conditional distribution of am and
the uniform distribution on [n] decreases at least linearly in c.

Mathematics Subject Classifications: 05A19, 60C05, 05A16

1 Introduction

A parking function of length n ∈ N = {1, 2, 3, . . .} is a tuple (a1, a2, . . . , an) ∈ [n]n, where
[n] = {1, 2, . . . , n}, such that its nondecreasing rearrangement (b1, b2, . . . , bn) satisfies
bi ⩽ i for all i ∈ n. As their name indicates, parking functions, introduced in the literature
by Konheim andWeiss [29], can also be described via the following parking process: There
are n cars in queue to enter a one-way street with n parking spots numbered in sequence
from 1 to n. Car i has a parking preference ai ∈ [n], and we collect these preferences in
a preference list α = (a1, a2, . . . , an) ∈ [n]n. Each car enters the street and proceeds to
their preferred parking spot, parking there if the spot is unoccupied. If a car finds their
preferred spot occupied, then they continue down the street parking in the next available
spot, if such a spot exists. Given the preference list α, if all cars are able to park within
the n parking spots on the street under this classical parking protocol, then we say that
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the preference list α is a parking function of length n. We let PFn denote the set of all
parking functions of length n and recall that |PFn| = (n+ 1)n−1; for a proof see [29].

There are many generalizations of parking functions, and they often arise via changes
to the cars, to their preferences, or to the parking protocol involved. Such generalizations
include having more spots than cars, cars having varying lengths (parking sequences
and assortments), cars having an interval or subset of preferences (interval and subset
parking functions), cars being able to first seek for parking backwards when finding their
preference occupied (vacillating and k-Naples parking functions), or cars being bumped
out of their preference by a later car in the queue (MVP parking functions) [2, 4, 8, 10, 11,
12, 13, 14, 20, 21, 25, 34]. Parking functions are also well-connected to numerous areas of
mathematics and make appearances in the study of: diagonal harmonics, ideal states in
the Tower of Hanoi game, the QuickSort algorithm, Boolean intervals in the weak order
on the symmetric group, facets of the permutohedron, and computing volumes of flow
polytopes [3, 6, 17, 19, 20, 22, 23, 26, 27, 31, 35, 36]. We point the interested reader to
the work of Yan [38] providing a survey of parking function results, and that of Carlson,
Christensen, Harris, Jones, and Ramos Rodŕıguez [9] with many open problems related
to parking functions.

Although parking functions and their generalizations are well-studied, there has been
less work done on considering probabilistic parking protocols, see [18, 24, 37]. In [18],
we investigate the following probabilistic scenario for parking n cars on a one-way street
with n spots: Fix p ∈ [0, 1] and consider a coin which flips to heads with probability p
and tails with probability 1− p. Our probabilistic parking protocol proceeds as follows:
If a car arrives at its preferred spot and finds it unoccupied it parks there. If instead the
spot is occupied, then the driver tosses the biased coin. If the coin lands on heads, with
probability p, the driver continues moving forward in the street. However, if the coin
lands on tails, with probability 1 − p, the car moves backwards and tries to find an un-
occupied parking spot. With this probabilistic parking function protocol, we determined
the likelihood that a preference list α ∈ [n]n is a parking function. We also explored the
properties of parking functions α, demonstrating the effect of the parameter p on the
parking protocol.

Motivated by that initial work [18], the following natural questions arise: What if
we are parking m ⩽ n cars on a one-way street with n spots? How do parking statistics
depend on the probabilistic parameter p in this more general case? What new implications
arise based on the change to the number of cars? We answer these questions here and
we summarize our findings below, but first we set some notation and make some initial
remarks.

For m ⩽ n, it is customary to let PFm,n denote the set of (m,n)-parking functions
which are the preference lists (a1, a2, . . . , am) ∈ [n]m for m cars parking on a one-way
street with n parking spots, that under the classical parking protocol allow all cars to
park. Konheim and Weiss [29] establish that |PFm,n| = (n−m+1)(n+1)m−1. Due to the
probabilistic nature of our parking model, in our setting, if p ∈ (0, 1), then all α ∈ [n]m

have a positive probability of allowing all of the cars to park, and hence, of being an
(m,n)-parking function. In the extreme cases where p = 0 or 1, the probabilistic parking
protocol reduces to the deterministic classical parking protocol. Thus, throughout we
write α ∈ PFm,n to depict the situation that m cars with a uniformly chosen preference
list α park on n spots. In [18, Theorem 2], using circular symmetry ideas, we establish
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that the likelihood that a preference list α ∈ [n]m is a parking function does not depend on
p, which is why the parameter does not arise in the notation PFm,n. Parking m ⩽ n cars
instead of n cars on n spots opens up many new possibilities, and as such, the results in
this paper and their proofs are more complicated than the special case of m = n which we
explored in [18]. Hence, our contributions delve deeper and advance our understanding
of the implications of the probabilistic model.

We now give an overview of our results.

1. As in [18], we focus on the parking preference of the last car am and explore its
statistical properties. In Theorem 7 we give the conditional distribution of am, in
Theorem 10 we calculate its expected value, and in Theorem 17 we study the rate
of convergence of the conditional distribution of am to the uniform distribution on
[n]. These results are valid for any m ⩽ n and p ∈ [0, 1].

2. An important feature of the probabilistic parking model is the parking symmetry :
Havingm cars enter the street from left to right with preference list α = (a1, . . . , am)
parking under protocol with parameter p depicts the same scenario as havingm cars
enter the street from right to left with preference list α′ = (n+1−a1, . . . , n+1−am)
parking under protocol with parameter 1− p. This feature plays a key role in our
results for am (cf. Remarks 9 and 11).

3. In Propositions 12 and 18, we specialize to the situation when m = cn for some
0 < c < 1 and study the asymptotics. The striking effect of the “extra spots” on the
rate of convergence of the conditional distribution of am to the uniform distribution
on [n] is quite evident. Even for small ε = 1− c, the presence of an ε proportion of
extra spots decreases the order of the rate of converge to the uniform distribution
when p ̸= 1/2 from 1/

√
n to 1/n (cf. [18, Theorem 6]). The sharp contrasting

behaviors are reflected in Remark 14 and more visually in Figure 1. Proposition 19
takes a different perspective and analyzes the convergence rate as a function of c,
when n and p are treated as fixed parameters. We show that as a function of c, the
total variation distance between the conditional distribution of am and the uniform
distribution on [n] decreases to zero at least linearly in c, when c goes to zero (cf.
Figure 2).

2 Key combinatorial and probabilistic results

In this section, we present some combinatorial and probabilistic results that are used
in the convergence rate analysis in Section 3. Our investigations in this section rely on
a combinatorial construction which we term a parking function multi-shuffle and Abel’s
multinomial theorem. These concepts were first discussed in Diaconis and Hicks [16]
and later extended in Kenyon and Yin [28] and further in Yin [39]. Some asymptotic
expansion formulas also prove useful. We provide some background on these concepts
first before diving into our main formulas.

2.1 Background concepts

Our first result is quite magical. In [18], it was established that for the probabilistic one-
way parking situation involving m cars and n spots, the probabilities of being a parking

the electronic journal of combinatorics 32(4) (2025), #P4.39 3



function, over the set of all preference lists, add up in a way so that the dependence on p
is canceled and there is invariance to the forward probability p for the randomly selected
list. For ease of reference, we restate the result below.

Theorem 1 (Theorem 2 in [18]). Consider the preference list α ∈ [n]m, chosen uniformly
at random. Then

P(α ∈ PFm,n | α ∈ [n]m) =
(n−m+ 1)(n+ 1)m−1

nm
. (2.1)

We now illustrate the concept of a parking function multi-shuffle through an example.
The multi-shuffle construction allows us to compute the number of parking functions
PFm,n where the parking preferences of ℓ ⩽ m cars are arbitrarily specified. Alternatively,
we can think that ℓ spots are already taken along a one-way street with n parking spots,
and we want to count the possible preferences for the remaining m − ℓ cars so that
they can all successfully park. In the parking function literature, the set of successful
preference sequences of the m− ℓ cars that enter the street later is referred to as parking
completions for τ = (τ1, . . . , τℓ) where the entries of τ denote the ℓ spots that are taken
previously, arranged in increasing order. This combinatorial construction plays a key role
in the proof of Theorem 7. For more on parking completions we point the interested
reader to [1] and [40].

Definition 2. Take n−m ⩽ ℓ ⩽ n any integer. Let k = (k1, . . . , kℓ) ∈ [n]ℓ be in (strictly)
increasing order. We say that a1, . . . , an−ℓ is a parking function multi-shuffle of ℓ+1 park-
ing functions α1 ∈ PFk1−1,k1−1, α2 ∈ PFk2−k1−1,k2−k1−1, . . . , αℓ ∈ PFkℓ−kℓ−1−1,kℓ−kℓ−1−1,
and αℓ+1 ∈ PFn−kℓ,n−kℓ if a1, . . . , an−ℓ is any permutation of the union of the ℓ+ 1 words
α1, α2+(k1, . . . , k1), . . . , αℓ+1+(kℓ, . . . , kℓ) (some words might be empty), where we allow
for permuting the entries in each word.

Example 3. Take m = 8, n = 10, k1 = 4, k2 = 5, k3 = 6, and k4 = 8. Take
α1 = (2, 1, 2) ∈ PF3,3, α2 = ∅, α3 = ∅, α4 = (1) ∈ PF1,1, and α5 = (2, 1) ∈ PF2,2. Then
(2, 7, 2, 9, 10, 1) is a multi-shuffle of the five words (2, 1, 2), ∅, ∅, (7), and (10, 9). Note
that the entries of some of the words are also permuted within.

Next we present a transcription of the famous generalization of the multinomial theo-
rem as introduced by Abel. The following Abel’s multinomial theorem plays an essential
role in our theoretical derivations later.

Theorem 4 (Abel’s multinomial theorem, derived from Pitman [32] and Riordan [33]).
Let

An(x1, . . . , xm; p1, . . . , pm) =
∑
s

(
n

s

) m∏
j=1

(xj + sj)
sj+pj , (2.2)

where s = (s1, . . . , sm) and
∑m

i=1 si = n. Then

An(x1, . . . , xi, . . . , xj, . . . , xm; p1, . . . , pi, . . . , pj, . . . , pm)

= An(x1, . . . , xj, . . . , xi, . . . , xm; p1, . . . , pj, . . . , pi, . . . , pm). (2.3)
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Also

An(x1, . . . , xm; p1, . . . , pm)

=
m∑
i=1

An−1(x1, . . . , xi−1, xi + 1, xi+1, . . . , xm; p1, . . . , pi−1, pi + 1, pi+1, . . . , pm). (2.4)

Further

An(x1, . . . , xm; p1, . . . , pm) =
n∑

i=0

(
n

i

)
i!(x1 + i)An−i(x1 + i, x2, . . . , xm; p1 − 1, p2, . . . , pm).

(2.5)
Moreover, the following special instances hold via the basic recurrences listed above:

An(x1, . . . , xm;−1, . . . ,−1) = (x1 · · ·xm)−1(x1 + · · ·+ xm)(x1 + · · ·+ xm + n)n−1 (2.6)

and
An(x1, . . . , xm;−1, . . . ,−1, 0) = (x1 · · ·xm)−1xm(x1 + · · ·+ xm + n)n. (2.7)

Lastly, we introduce a core technical lemma which incorporates ideas from large de-
viations. This lemma will aid in the asymptotic calculations in Section 2.2. The proof of
the lemma primarily follows the work in Blackwell and Hodges [7].

Lemma 5. Take 0 < c < 1. Let X1, X2, . . . be iid Poisson(1) random variables. Then

P(X1 + · · ·+Xn ⩽ nc) =
exp (−n (c log c− c+ 1))√

2πnc(1− c)

(
1− 1

n

(
1

12c
+

c

(1− c)2

))(
1 +O

(
n−2

))
.

(2.8)

Proof. Let
ϕ(t) = E(etX1) = exp

(
et − 1

)
(2.9)

be the moment generating function of Poisson(1), and ψ(c, t) = e−ctϕ(t). There exists a
unique t∗(c) = log c which minimizes ψ(c, t) with respect to t. Write

m(c) = ψ(c, t∗(c)) = exp(−c log c+ c− 1), (2.10)

whose exponent coincides with the negative of the Cramér rate function for Poisson(1).
We construct auxiliary iid random variables Y1, Y2, . . . such that Y1 and X1 have the same
range, and for k = 0, 1, . . . ,

P(Y1 = k) =
1

m(c)
P(X1 = k) exp(t∗(c) · (k − c)) = e−c c

k

k!
, (2.11)

i.e. Y1, Y2, . . . are iid Poisson(c) random variables. Using iid-ness, this further gives, for
all admissible integers n and k ⩽ nc,

P(X1 + · · ·+Xn = nc− k) = (m(c))nekt
∗(c)P(Y1 + · · ·+ Yn = nc− k). (2.12)

Recall that an integer-valued random variable U with characteristic function η may be
alternatively expressed as

P(U = u) =
1

2π

∫ π

−π

e−ituη(t)dt. (2.13)
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Therefore, as n→∞, we have that the

P(X1 + · · ·+Xn ⩽ nc) ∼ (m(c))n

2π

∫ π

−π

1

1− zeit
ψn(t)dt, (2.14)

where z = et
∗(c) = c and ψ(t) is the characteristic function of Y1 − c.

We compute the central moments of Y1:

µ2 = c, µ3 = c, µ4 = 3c2 + c. (2.15)

It follows that

µ4

µ2
2

− 3− 5µ2
3

3µ3
2

= − 2

3c
(2.16)

and

−z µ3

µ2
+ z 1+z

1−z

(1− z)µ2

=
2c

(1− c)2
. (2.17)

The conclusion then follows from applying precise large deviation asymptotic estimation
as in Bahadur and Rao [5] and Blackwell and Hodges [7], but adapted to the left tail.
See also Dembo and Zeitouni [15, Theorem 3.7.4] for a summary statement.

Remark 6. The asymptotic precision in the above Lemma 5 may be sharpened if we keep
more terms in the expansion.

2.2 Main formulas

We are now ready to provide explicit formulas which show how the parking statistic
am, the parking preference of the last car, depends on p. In Theorem 7 we give the
distribution of am and in Theorem 10 we calculate its expected value. Both formulas
depict explicit p dependence. Theorems 7 and 10 are extensions of the corresponding
results in [18], where the probabilistic scenario of parking n cars on a one-way street with
n spots are investigated. Parking m ⩽ n cars instead of n cars on n spots opens up many
new possibilities, and as such, the current results and their proofs are more complicated
than the special situation explored in [18]. After proving these initial results, we then
specialize to the situation when m = cn for some 0 < c < 1 and study the asymptotics in
Proposition 12. In particular, we establish some sharp contrasting behavior (cf. Remark
14).

Theorem 7. Consider the preference list α = (a1, a2, . . . , am) ∈ [n]m, chosen uniformly
at random. Then given that α ∈ PFm,n, we have

P(am = j | α ∈ PFm,n) =
n−m+ 2

(n−m+ 1)(n+ 1)
− 1

(n+ 1)m−1
·

·
[
p

m−1∑
s=n−j+1

(
m− 1

s

)
(n− s)m−s−2(s+ 1)s−1 + (1− p)

m−1∑
s=j

(
m− 1

s

)
(n− s)m−s−2(s+ 1)s−1

]
,

(2.18)

where am denotes the parking preference of the last car.
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Remark 8. In (2.18), when the lower index of summation is larger than the upper index
we interpret the sum as zero by convention.

Remark 9. Note the parking symmetry as observed in the introduction: P(am = j|α ∈
PFm,n) under protocol with parameter p equals P(am = n + 1 − j|α ∈ PFm,n) under
protocol with parameter 1− p.

Proof of Theorem 7. Before the mth car enters, cars 1, . . . ,m − 1 have all parked along
the one-way street with n spots, leaving n −m + 1 open spots for the mth car to park
in. Let ki for i = 1, . . . , n −m + 1 represent these spots, so that 0 =: k0 < k1 < · · · <
kn−m+1 < kn−m+2 := n + 1. Since a car cannot jump over an empty spot, the parking
protocol implies that (a1, . . . , am−1) corresponds to a parking function multi-shuffle of
n − m + 2 parking functions. In other words, (a1, . . . , am−1) may be decomposed into
n−m+2 disjoint non-interacting segments (some segments might be empty), with each
segment a parking function of length (ki − ki−1 − 1) after translation. The open spot ki
where i = 1, . . . , n−m + 1 could be either the same as j, the preference of the last car,
in which case the car parks directly. Or, ki could be bigger than or less than j, in which
case where the last car parks depends on the outcome of the biased coin flip as it will
dictate the car to go forward or backward. Note that when j < k1 (resp. j > kn−m+1)
only the forward (resp. backward) movement of the last car will result in a successful
parking scenario, whereas for all other j’s, the last car will always be able to park as
there are open spots both behind and ahead of this car. Using Theorem 1, we have

P(am = j | α ∈ PFm,n) =
1

(n−m+ 1)(n+ 1)m−1
·

·
[ ∑
k1,...,kn−m+1

(
m− 1

k1 − k0 − 1, . . . , kn−m+2 − kn−m+1 − 1

) n−m+2∏
i=1

(ki − ki−1)
ki−ki−1−2

− p
j−1∑

k=n−m+1

(n−m+ 1)

(
m− 1

n− k

)
km−n+k−2(n− k + 1)n−k−1

− (1− p)
m∑

k=j+1

(n−m+ 1)

(
m− 1

k − 1

)
kk−2(n− k + 1)m−k−1

]
. (2.19)

The first summation accounts for all possible locations of the empty spots k1, . . . , kn−m+1

and all possible movement of the last car (assuming that it always parks). The middle
summation accounts for j > kn−m+1 and the last car moves forward (thus failing to park)
and the last summation accounts for j < k1 and the last car moves backward (thus failing
to park). We also note that implicitly the first empty spot k1 ⩽ m and the last empty
spot kn−m+1 ⩾ n−m+1. For the last empty spot kn−m+1, there are m−n+ kn−m+1− 1
cars and kn−m+1 − 1 spots to its left and n − kn−m+1 cars and n − kn−m+1 spots to its
right. Similarly, for the first empty spot k1, there are k1 − 1 cars and k1 − 1 spots to its
left and m−k1 cars and n−k1 spots to its right. The multinomial coefficients come from
the parking function multi-shuffle construction and the other multiplicative factors come
from (2.1).

To simplify (2.19), we set s = (k1−k0−1, . . . , kn−m+2−kn−m+1−1) with
∑n−m+2

i=1 si =
m− 1. By Abel’s multinomial identity (2.6), the first summation reduces to

Am−1(1, . . . , 1;−1, . . . ,−1) = (n−m+ 2)(n+ 1)m−2.
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We further set s = n− k in the middle summation and s = k− 1 in the last summation.
Together this gives

P(am = j | α ∈ PFm,n) =
n−m+ 2

(n−m+ 1)(n+ 1)
− 1

(n+ 1)m−1
·

·
[
p

m−1∑
s=n−j+1

(
m− 1

s

)
(n− s)m−s−2(s+ 1)s−1 + (1− p)

m−1∑
s=j

(
m− 1

s

)
(n− s)m−s−2(s+ 1)s−1

]
.

We now give the expected value for the preference of the last car.

Theorem 10. For preference list α ∈ [n]m chosen uniformly at random, we have

E(am | α ∈ PFm,n) =
n+ 2p

2
−
(
p− 1

2

)
en+1(m− 1)! P(Z ⩽ m− 1)

(n+ 1)m−1
, (2.20)

where Z is a Poisson random variable with parameter λ = n + 1. Alternatively, the
identity in (2.20) can be written as

E(am | α ∈ PFm,n) =
n+ 2p

2
−
(
p− 1

2

)
en+1Γ(m,n+ 1)

(n+ 1)m−1
,

where Γ(s, x) is the upper incomplete gamma function

Γ(s, x) =

∫ ∞

x

ts−1e−tdt.

Remark 11. From the parking symmetry described in the introduction, the sum of
E(am | α ∈ PFm,n) under protocol with parameter p and E(am | α ∈ PFm,n) under
protocol with parameter 1− p is n+ 1.
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Proof of Theorem 10. By Theorem 7,

E(am | α ∈ PFm,n) =
n∑

j=1

jP(am = j | α ∈ PFm,n)

=
n(n−m+ 2)

2(n−m+ 1)
− 1

(n+ 1)m−1

n∑
j=1

j
[
p

m−1∑
s=n−j+1

(
m− 1

s

)
(n− s)m−s−2(s+ 1)s−1

+ (1− p)
m−1∑
s=j

(
m− 1

s

)
(n− s)m−s−2(s+ 1)s−1

]
=
n(n−m+ 2)

2(n−m+ 1)
− 1

(n+ 1)m−1

m−1∑
s=0

(
m−1
s

)
(n−s)m−s−2(s+1)s−1

[
p

n∑
j=n−s+1

j + (1− p)
s∑

j=1

j
]

=
n(n−m+ 2)

2(n−m+ 1)
− 1

2(n+ 1)m−1

[
m−1∑
s=0

(
m− 1

s

)
(n− s)m−s−2(s+ 1)s−1·

· [(2p− 1)(n− s)(s+ 1) + (n+ 2p)(s+ 1)− 2p(n+ 1)]

]
(2.21)

=
n(n−m+ 2)

2(n−m+ 1)
− 1

2(n+ 1)m−1

[
(2p− 1)Am−1(n−m+ 1, 1; 0, 0)

+ (n+ 2p)Am−1(n−m+ 1, 1;−1, 0)− 2p(n+ 1)Am−1(n−m+ 1, 1;−1,−1)
]
,

(2.22)

where Abel’s binomial theorem is used multiple times from (2.21) to (2.22).
Using (2.6) yields

Am−1(n−m+ 1, 1;−1,−1) = n−m+ 2

n−m+ 1
(n+ 1)m−2, (2.23)

and using (2.7) yields

Am−1(n−m+ 1, 1;−1, 0) = 1

n−m+ 1
(n+ 1)m−1. (2.24)

Further note that by (2.5) and (2.7), we have that

Am−1(n−m+ 1, 1; 0, 0) =
m−1∑
s=0

(
m− 1

s

)
(n+ 1)s(m− s− 1)! = (m− 1)!

m−1∑
s=0

(n+ 1)s

s!
.

(2.25)

We recognize that

e−(n+1)

m−1∑
s=0

(n+ 1)s

s!
(2.26)

equals the probability that a Poisson random variable Z with parameter λ = n+1 is less
than or equal to m− 1. Substituting (2.26) into (2.25) gives

Am−1(n−m+ 1, 1; 0, 0) = en+1(m− 1)! P(Z ⩽ m− 1). (2.27)
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Substituting (2.23), (2.24), and (2.27) back into (2.22) yields

E(am | α ∈ PFm,n) =
n(n−m+ 2)

2(n−m+ 1)
− (2p− 1)en+1(m− 1)! P(Z ⩽ m− 1)

2(n+ 1)m−1

− n+ 2p

2(n−m+ 1)
+
p(n−m+ 2)

n−m+ 1
.

(2.28)

To finish the proof, observe that in (2.28), we have that

n(n−m+ 2)

2(n−m+ 1)
− n+ 2p

2(n−m+ 1)
+
p(n−m+ 2)

n−m+ 1
=
n+ 2p

2
.

We now provide an asymptotic result for the expected value of the preference of the
last car.

Proposition 12. Take m and n large with m = cn for some 0 < c < 1. For preference
list α ∈ [n]m chosen uniformly at random, we have

E(am | α ∈ PFm,n) =
n+ 1

2
− (2p− 1)

c

2(1− c)
− 1

n
(2p− 1)

c2 − c− 1

2(1− c)3
+O

(
n−2
)
. (2.29)

Remark 13. The lower order correction terms from (n+1)/2 for E(am | α ∈ PFm,n) vanish
completely under protocol with parameter p = 1/2, and E(am | α ∈ PFm,n) = (n + 1)/2
exactly.

Remark 14. Recall that in [18, Theorem 4], it was derived that for m = n,

E(an | α ∈ PFn,n) =
n+ 1

2
− (2p− 1)

[√2π
4

n1/2 − 7

6

]
+ o(1). (2.30)

As c→ 1, the correction terms in (2.29) blow up, contributing to the different asymptotic
orders between the generic situation m = cn with 0 < c < 1, described by (2.29), and
the special situation m = n, described by (2.30).

Proof of Proposition 12. The proof follows from Theorem 10 and a careful asymptotic
analysis of the Poisson term (2.27). We provide two approaches that offer different
perspectives.

First approach. Notice that from Stirling’s formula,

(m− 1)! ∼
√
2π(m− 1)e−(m−1)(m− 1)m−1

[
1 +

1

12(m− 1)

]
. (2.31)

We also recall that

e−(n+1)

m−1∑
s=0

(n+ 1)s

s!
(2.32)

equals the probability that the sum of n+ 1 iid Poisson(1) random variables is less than
or equal to m− 1, and is asymptotic to

e−(n+1)e(m−1)

(
m−1
n+1

)−(m−1)√
2π(m− 1)

(
1− m−1

n+1

) (1− 1

n

(
1

12c
+

c

(1− c)2

)
+O

(
n−2
))

= e−(n+1)e(m−1)

(
m−1
n+1

)−(m−1)√
2π(m− 1) (1− c)

(
1− 1

n

(
1

12c
+

c

(1− c)2
+
c+ 1

1− c

)
+O

(
n−2
))
(2.33)
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from the large deviation expansion in Lemma 5 where we substitute n ← n + 1 and
nc← m− 1 in the statement of the lemma. Dividing by (n + 1)m−1 and simplifying we
get

1

(n+ 1)m−1
Am−1(n−m+ 1, 1; 0, 0) =

1

1− c

(
1 +

1

n

c2 − c− 1

(1− c)2
+O

(
n−2
))

. (2.34)

Second approach. We write

Am−1(n−m+ 1, 1; 0, 0) =
m−1∑
s=0

(
m− 1

s

)
(n− s)m−s−1(s+ 1)s

= nm−1

m−1∑
s=0

(ce−c)s

s!
(s+ 1)s

(
1− s(s+ 1)

2cn
+
s(s+ 1)

n
− s2c

2n
+O

(
n−2
))

, (2.35)

where we use(
m− 1

s

)
(n− s)m−s−1 =

(m− 1) · · · (m− s)
nss!

nm−1
(
1− s

n

)m−s−1

followed by Taylor expansion.
The tree function F (z) =

∑∞
s=0

zs

s!
(s+1)s−1 is related to the Lambert W function via

F (z) = −W (−z)/z, and satisfies F (ce−c) = ec. The function G(z) =
∑∞

s=0
zs

s!
(s + 1)s is

further related to the tree function F (z) via G(z) = zF ′(z) + F (z). By the chain rule,
G(z) and its first and second derivatives respectively satisfy

G(ce−c) =
ec

1− c
, G′(ce−c) =

2− c
(1− c)3

e2c, and G′′(ce−c) =
2c2 − 8c+ 9

(1− c)5
e3c.

We recognize that (2.35) converges to

nm−1

(
∞∑
s=0

(ce−c)s

s!
(s+ 1)s

(
1 +

1

n
(As+Bs2) +O

(
n−2
)))

, (2.36)

where A = − 1
2c
+1 and B = − 1

2c
+1− c

2
. Using G(z) with z = ce−c, (2.36) can be written

as

nm−1

(
G(z) +

1

n

(
AzG′(z) +B(z2G′′(z) + zG′(z))

)
+O

(
n−2
))

. (2.37)

Dividing (2.35) by

(n+ 1)m−1 = nm−1ec
(
1− 1

n
− c

2n
+O

(
n−2
))

and simplifying we get

1

(n+ 1)m−1
Am−1(n−m+ 1, 1; 0, 0) =

1

1− c

(
1 +

1

n

c2 − c− 1

(1− c)2
+O

(
n−2
))

. (2.38)

Combining the above, (2.22) becomes

E(am | α ∈ PFm,n) =
n+ 2p

2
−
(
p− 1

2

)
1

1− c

(
1 +

1

n

c2 − c− 1

(1− c)2
+O

(
n−2
))

=
n+ 1

2
− (2p− 1)

c

2(1− c)
− 1

n
(2p− 1)

c2 − c− 1

2(1− c)3
+O

(
n−2
)
.
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3 Convergence rates

In this section, we measure how close the conditional distribution of am (investigated in
Theorem 10 and Proposition 12) is to the uniform distribution on [n], which we denote by
Unin. Throughout this section, the notion of distance used is the total variation distance.
We recall that for two probability distributions P and Q over [n], their total variation
distance (TV) is given by

∥P −Q∥TV :=
1

2

n∑
j=1

|P (j)−Q(j)|. (3.1)

To simplify the notation, we write

Qm,n,p( · ) = P(am = · | α ∈ PFm,n), (3.2)

where the conditional probability P is under parking protocol with parameter p. We
begin by establishing a result that is useful for handling the total variation distance
between Qm,n,p and Unin. In words, Proposition 15 tells us that establishing bounds for
∥Qm,n,p − Unin∥TV can be reduced to the classical case p = 1.

Proposition 15. For all m,n ∈ N with m ⩽ n and p ∈ [0, 1], the following bounds hold:

|2p− 1|∥Qm,n,1 − Unin∥TV ⩽ ∥Qm,n,p − Unin∥TV ⩽ ∥Qm,n,1 − Unin∥TV.

Proof. Theorem 7 implies that for any m,n ∈ N and p ∈ [0, 1], Qm,n,p is a convex
combination of Qm,n,1 and Qm,n,0, so

Qm,n,p = (1− p)Qm,n,0 + pQm,n,1.

Also, Qm,n,1(j) = Qm,n,0(n + 1 − j) for any j ∈ [n] (see Remark 9). The proof then
parallels that of [18, Proposition 24].

In order to identify the lower bound for the total variation distance, the following
alternative version of the total variation distance is instrumental.

Proposition 16 (Proposition 4.5 in Levin and Peres [30]). Let P and Q be two probability
distributions over [n], then

∥P −Q∥TV =
1

2
sup

{
n∑

j=1

f(j)P (j)−
n∑

j=1

f(j)Q(j) : max
j
|f(j)| ⩽ 1

}
. (3.3)

We are now ready to state the main theorem of this section.

Theorem 17. For any m ⩽ n and p ∈ [0, 1], the following inequalities hold:

∥Qm,n,p − Unin∥TV ⩽
m− 1

(n+ 1)(n−m+ 1)
,

and

∥Qm,n,p − Unin∥TV ⩾
|2p− 1|

4n

∣∣∣∣1− en+1(m− 1)! P(Z ⩽ m− 1)

(n+ 1)m−1

∣∣∣∣ ,
where Z obeys a Poisson distribution with parameter λ = n+1. Additionally, for p = 1/2,
we have

∥Qm,n,1/2 − Unin∥TV ⩾
1

2

∣∣∣∣ nm−2

2(n+ 1)m−1
− 1

2(n+ 1)

[
1 +

n− 2m+ 2

n(n−m+ 1)

]∣∣∣∣ .
the electronic journal of combinatorics 32(4) (2025), #P4.39 12



Before presenting the proof of Theorem 17, we discuss an important and interesting
consequence of the theorem, which we summarize in the following result.

Proposition 18. Take m = cn for some 0 < c < 1. Then for all p ∈ [0, 1],

∥Qm,n,p − Unin∥TV = Θ

(
1

n

)
.

Proposition 18 depicts the striking effect of the “extra spots” on the rate of conver-
gence of Qm,n,p to the uniform distribution Unin. In [18, Theorem 6], the authors establish
that when m = n and p ̸= 1/2, the correct order of the rate of convergence is 1/

√
n,

while in Proposition 18, this rate of convergence is shown to be 1/n. Our result thus
illustrates the strong impact of having fewer cars than spots (m < n) on the preference
distribution. Even for small ε = 1 − c, the presence of an ε proportion of extra spots
changes the order of the rate of converge to the uniform distribution completely when
p ̸= 1/2. The histograms in Figure 1 provide an illustration of this discussion.

Notice that in the case of m < n, the parking preference distribution of the last car
(left plot in Figure 1) is quite close to the uniform distribution over [n]. Whereas, in the
case of m = n, more mass is placed at the head of the distribution (right plot in Figure
1). This is expected since, as explained above, the convergence of Qm,n,p to the uniform
distribution Unin in the generic situation p ̸= 1/2 is faster when there are more spots
than cars (convergence rate decreases from 1/n to 1/

√
n).

(a) n = 100,m = 20 and p = 0.7 (b) n = m = 100 and p = 0.7

Figure 1: The conditional distribution Qm,n,p of am (parking preference of the last car)
in 100, 000 samples of preference lists of size n = 100 chosen uniformly at random. Here
the forward-moving probability p = 0.7. The left plot is for m = 20 cars and the right
plot is for m = 100 cars.

We proceed to show how Proposition 18 follows from Theorem 17.
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Proof of Proposition 18. Notice that by Theorem 17, with m = cn, we have that for all
p ∈ [0, 1],

∥Qm,n,p − Unin∥TV ⩽
cn− 1

(n+ 1)[(1− c)n+ 1]
∼ c

(1− c)n
. (3.4)

This allows us to conclude that our upper bound for the total variation distance is asymp-
totic to c/ ((1− c)n).

For the lower bound, for p ̸= 1/2, Theorem 17 gives

∥Qm,n,p − Unin∥TV ⩾
|2p− 1|

4n

∣∣∣∣1− en+1(cn− 1)! P(Z ⩽ cn− 1)

(n+ 1)cn−1

∣∣∣∣ , (3.5)

where Z is a Poisson random variable with parameter λ = n+1, or equivalently, Z is the
sum of n+ 1 independent Poisson random variables with parameter λ = 1. Thus, by the
first approach in the proof of Proposition 12 (cf. in particular (2.34)), we have that

∥Qm,n,p − Unin∥TV ≳
|2p− 1|

4n

∣∣∣∣1− 1

1− c

∣∣∣∣ , (3.6)

which guarantees a lower bound asymptotic to (|2p− 1|c) / (4(1− c)n) for the total vari-
ation distance when p ̸= 1/2.

Lastly, for the case p = 1/2, we use the second part of Theorem 17, which gives that

∥Qm,n,1/2 − Unin∥TV ⩾
1

2

∣∣∣∣ ncn−2

2(n+ 1)cn−1
− 1

2(n+ 1)

[
1 +

(1− 2c)n+ 2

n[(1− c)n+ 1]

]∣∣∣∣ . (3.7)

Notice that ncn−2/ (2(n+ 1)cn−1) ∼ e−c/(2n), whereas

((1− 2c)n+ 2) / (n((1− c)n+ 1)) ∼ (1− 2c)/ ((1− c)n) ,

which combined ensures a lower bound of the desired asymptotic order for the total
variation distance when p = 1/2.

We now present the proof of Theorem 17.

Proof of Theorem 17. We establish the lower bound first and then the upper bound.

Lower bound, p ̸= 1/2. By Propositions 15 and 16, it is enough to find a suitable lower
bound for the case p = 1 using test functions. Let f be a function over [n] defined as
f(j) = j/n. Then by Proposition 16,

∥Qm,n,1 − Unin∥TV ⩾
1

2

n∑
j=1

[
j

n
Qm,n,1(j)−

j

n2

]
=

E(am | α ∈ PFm,n)

2n
− n+ 1

4n
,

where the conditional expectation E is under parking protocol with p = 1. By taking
g(j) = −j/n and applying Proposition 16 again, we further conclude that

∥Qm,n,1 − Unin∥TV ⩾

∣∣∣∣n+ 1

4n
− E(am | α ∈ PFm,n)

2n

∣∣∣∣ . (3.8)
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By Theorem 10 with p = 1, we have that

E(am | α ∈ PFm,n)

2n
=
n+ 2

4n
− en+1(m− 1)! P(Z ⩽ m− 1)

4n(n+ 1)m−1
, (3.9)

where Z is a Poisson random variable with λ = n + 1. Substituting (3.9) into (3.8), we
obtain

∥Qm,n,1 − Unin∥TV ⩾

∣∣∣∣14 +
1

4n
− 1

4
− 1

2n
+
en+1(m− 1)! P(Z ⩽ m− 1)

4n(n+ 1)m−1

∣∣∣∣
=

∣∣∣∣en+1(m− 1)! P(Z ⩽ m− 1)

4n(n+ 1)m−1
− 1

4n

∣∣∣∣ .
Finally, Proposition 15 implies that

∥Qm,n,p − Unin∥TV ⩾ |2p− 1|∥Qm,n,1 − Unin∥TV,

which shows the desired lower bound.

Lower bound, p = 1/2. Notice that the previous lower bound is 0 when p = 1/2. For
this reason, we handle the case p = 1/2 separately. We adopt a direct approach. By the
definition of the total variation distance given in (3.1), we have that

∥Qm,n,1/2 − Unin∥TV ⩾
1

2

∣∣∣∣Qm,n,1/2(1)−
1

n

∣∣∣∣ . (3.10)

On the other hand, by Theorem 7 with j = 1, we have that

Qm,n,1/2(1) =
n−m+ 2

(n−m+ 1)(n+ 1)
− 1

2(n+ 1)m−1
·
m−1∑
s=1

(
m− 1

s

)
(n− s)m−s−2(s+ 1)s−1

=
n−m+ 2

(n−m+ 1)(n+ 1)
− Am−1(n−m+ 1, 1;−1,−1)

2(n+ 1)m−1
+

nm−2

2(n+ 1)m−1
, (3.11)

where in the second equality we add and subtract 1
2(n+1)m−1

(
m−1
0

)
nm−21−1 on the right-

hand side. Now recall that, by (2.6),

Am−1(n−m+ 1, 1;−1,−1) = n−m+ 2

n−m+ 1
(n+ 1)m−2. (3.12)

Substituting (3.12) into (3.11) we obtain

Qm,n,1/2(1) =
n−m+ 2

(n−m+ 1)(n+ 1)
− (n−m+ 2)

2(n+ 1)(n−m+ 1)
+

nm−2

2(n+ 1)m−1
. (3.13)

Substituting (3.13) into the right-hand side of (3.10) gives us

∥Qm,n,1/2 − Unin∥TV

⩾
1

2

∣∣∣∣ n−m+ 2

(n−m+ 1)(n+ 1)
− (n−m+ 2)

2(n+ 1)(n−m+ 1)
+

nm−2

2(n+ 1)m−1
− 1

n

∣∣∣∣
=

1

2

∣∣∣∣ nm−2

2(n+ 1)m−1
− 1

2(n+ 1)

[
1 +

n− 2m+ 2

n(n−m+ 1)

]∣∣∣∣ ,
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which concludes this part of the proof.

Upper bound. By Proposition 15, it is enough to consider the case p = 1. By the definition
of the total variation distance given in (3.1), we have that

∥Qm,n,1 − Unin∥TV =
1

2

n∑
j=1

∣∣∣∣Qm,n,1(j)−
1

n

∣∣∣∣ . (3.14)

By Theorem 7 with p = 1, we have that for any j ∈ [n],

Qm,n,1(j) =
n−m+ 2

(n−m+ 1)(n+ 1)
− 1

(n+ 1)m−1

[ m−1∑
s=n−j+1

(
m− 1

s

)
(n− s)m−s−2(s+ 1)s−1

]
.

(3.15)

Using the fact that

n−m+ 2

(n−m+ 1)(n+ 1)
− 1

n
=

1

(n−m+ 1)(n+ 1)
− 1

(n+ 1)n

along with (3.15), we have that (3.14) satisfies

∥Qm,n,1 − Unin∥TV =
1

2

n∑
j=1

∣∣∣ 1

(n−m+ 1)(n+ 1)
− 1

(n+ 1)n

− 1

(n+ 1)m−1

[ m−1∑
s=n−j+1

(
m− 1

s

)
(n− s)m−s−2(s+ 1)s−1

]∣∣∣
⩽

m− 1

2(n+ 1)(n−m+ 1)

+
1

2(n+ 1)m−1

n∑
j=1

m−1∑
s=n−j+1

(
m− 1

s

)
(n− s)m−s−2(s+ 1)s−1.

(3.16)

Now, interchanging the summands in (3.16) and applying (2.6) and (2.7) gives us

n∑
j=1

m−1∑
s=n−j+1

(
m− 1

s

)
(n− s)m−s−2(s+ 1)s−1

=
m−1∑
s=0

(
m− 1

s

)
(n− s)m−s−2(s+ 1)s−1s

= Am−1(n−m+ 1, 1;−1, 0)− Am−1(n−m+ 1, 1;−1,−1)

=
(n+ 1)m−1

n−m+ 1
− (n−m+ 2)(n+ 1)m−2

n−m+ 1

=
(m− 1)(n+ 1)m−2

n−m+ 1
. (3.17)
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Substituting (3.17) into (3.16) yields

∥Qm,n,1−Unin∥TV ⩽
m− 1

2(n+ 1)(n−m+ 1)
+

m− 1

2(n+ 1)(n−m+ 1)
=

m− 1

(n+ 1)(n−m+ 1)
,

(3.18)
which is enough to conclude the proof.

Proposition 18 characterizes the convergence of Qcn,n,p to the uniform distribution
Unin when the number of cars, m, is a proportion of the number of spots, n. In what
follows, we analyze the behavior of ∥Qcn,n,p − Unin∥TV as a function of c, when n and
p are treated as fixed parameters. More specifically, we analyze how c may speed up or
slow down the convergence of Qcn,n,p to the uniform distribution Unin.

Figure 2: The total variation distance ∥Qcn,n,p−Unin∥TV as a function of c. Here n = 100,
m = cn, p = 1, and c ranges from 0.1 to 0.99.

Proposition 19. Take m = cn for some 0 < c < 1. Then,

sup
n⩾1

sup
p∈[0,1]

∥Qcn,n,p − Unin∥TV ⩽ 1− (1− c)e3c/5.

Remark 20. Here the coefficient 3/5 may be further relaxed. All we need is a lower bound
of n log(1 + 1/n) for all n ⩾ 1.

Remark 21. For readers who are interested in investigating the dependence of ∥Qcn,n,p −
Unin∥TV as a function of c, we refer to our R package on GitHub: https://github.com/
rbribeiro/parking-functions/. This R package provides a set of functions to simulate
and analyze parking behavior under varying probabilistic preferences.
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On the surface, Proposition 19 above may seem like a weaker version of Proposition
18, however, the two propositions are different in spirit. Proposition 19 gives an upper
bound on the function c 7→ ∥Qcn,n,p − Unin∥TV, regardless of the values of n and p. In
words, Proposition 19 states that, as a function of c, the total variation distance decreases
to zero at least linearly in c, when c goes to zero.

Proof of Proposition 19. By Proposition 15, it is enough to establish the result for the
particular case p = 1. For notational convenience, we write P( · ) as a shorthand for
P( · | α ∈ [n]m) and let A be the following event

A := {α ∈ PFm,n}.

Since am is uniformly distributed over [n] under P, we have that for any j ∈ [n],

1

n
= P(am = j) = P(am = j | A)P(A) + P(am = j | Ac)P(Ac)

= Qm,n,1(j)P(A) + P(am = j | Ac)(1− P(A)),
(3.19)

which implies that for any j ∈ [n],

Qm,n,1(j)−
1

n
= Qm,n,1(j)(1− P(A))− P(am = j | Ac)(1− P(A))

= [Qm,n,1(j)− P(am = j | Ac)] (1− P(A)).
(3.20)

Let Q̃m,n,1( · ) be P(am = · | Ac) and recall the definition of the total variation distance
given in (3.1). By (3.20), we have that

∥Qm,n,1 − Unin∥TV = (1− P(A))∥Qm,n,1 − Q̃m,n,1∥TV. (3.21)

On the other hand, by Theorem 1, we have that

P(A) =
(n−m+ 1)(n+ 1)m−1

nm
=

(1− c)n+ 1

n+ 1

(
1 +

1

n

)cn

⩾ (1− c)e3c/5,

which proves the result, since ∥Qm,n,1 − Q̃m,n,1∥TV ⩽ 1.
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