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Abstract

Let (X,F) be a hypergraph. The Maker-Breaker game on (X,F) is a combi-
natorial game between two players, Maker and Breaker. The players take turns
claiming vertices from X that have not yet been claimed. Maker wins if she man-
ages to claim all vertices of some hyperedge F ∈ F . Breaker wins if he claims at
least one vertex in every hyperedge.

Rahman and Watson proved in 2021 that, even when only Maker-Breaker games
on 6-uniform hypergraphs are considered, the decision problem of determining which
player has a winning strategy is PSPACE-complete. They also showed that the
problem is NL-hard when considering hypergraphs of rank 5.

In this paper, we improve the latter result by showing that deciding who wins
Maker-Breaker games on 5-uniform hypergraphs is still a PSPACE-complete prob-
lem. We achieve this by polynomial transformation from the problem of solving
the generalized geography game on bipartite digraphs with vertex degrees 3 or less,
which is known to be PSPACE-complete.

Mathematics Subject Classifications: 05C57

1 Introduction

Maker-Breaker games were introduced by Chvátal and Erdős [1] as a kind of two-player
positional game played on a hypergraph. It was shown by Schaefer [2] that, given perfect
play by both players, determining who wins a Maker-Breaker game is a PSPACE-complete
problem even when restricted to hypergraphs of rank 11 (i.e. each hyperedge contains
11 vertices or less). Rahman and Watson [3] later improved this result to rank 6 and
additionally showed that solving Maker-Breaker games of rank 5 is NL-hard.

Maker-Breaker games are also related to a class of two-player satisfiability games
played on boolean formulas, where the players take turns assigning values to variables.
One player has the goal of making the formula true and the other tries to falsify it. In
particular, Maker-Breaker games correspond to formulas that are in CNF and that are
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positive (i.e. all literals in clauses are unnegated). Rahman and Watson showed in [4]
that without the restriction of positivity, these games are PSPACE-complete to solve
even when restricted to formulas where each clause has at most 5 literals.

In this paper, we improve these results by showing that the problem of solving Maker-
Breaker games on hypergraphs of rank 5 is PSPACE-complete. To achieve this result,
we use a reduction from a restricted version of Generalized Geography, which was shown
to be PSPACE-complete by Sipser and Liechtenstein [5]. We will then use an argument
by Rahman and Watson [3] to further strengthen this result to 5-uniform hypergraphs
(i.e. each hyperedge contains exactly 5 vertices).

2 Preliminaries

Let X be a finite vertex set and F ⊆ P(X). Then, (X,F) is a hypergraph and maxF∈F |F |
is its rank. Let t ∈ {m, b}. The Maker-Breaker game (X,F , t) is a combinatorial game
between two players, Maker and Breaker. In the context of a Maker-Breaker game, we
call the elements of X squares and the elements of F winning combinations.

The game is played like this: The players take turns claiming a square from X that
has not yet been claimed. Maker goes first if t = m and Breaker goes first if t = b. Maker
wins if she manages to claim all squares of some winning combination F ∈ F . The game
ends with Breaker winning if all squares are claimed and Maker has not won, i.e. Breaker
has claimed at least one square from every F ∈ F .

Note 1. We use the term “square” to refer to the vertices of hypergraphs on which Maker-
Breaker games are played. Going forward, the word “vertex” will instead be reserved for
the vertices of the digraphs on which the generalized geography game is played.

If Maker has a winning strategy in the Maker-Breaker game (X,F ,m), we say that
(X,F) is Maker’s win, otherwise it is Breaker’s win. It is well-known folklore that if a
hypergraph has multiple separate connected components, it is Maker’s win if and only
if one of the components is Maker’s win. Therefore, we will only consider connected
hypergraphs.

Let (X,F) be a hypergraph, XM , XB ⊆ X two disjoint sets of squares, and t ∈ {m, b}.
The position P = (X,F , XM , XB, t) describes a gameplay state of a Maker-Breaker game
on (X,F) where Maker has claimed the squares in XM and Breaker has claimed the
squares in XB. If t = m, it is Maker’s turn in P . Otherwise, it is Breaker’s turn. In P ,
any winning combination F ∈ F with XB ∩ F 6= ∅ is no longer useful to Maker. We call
such combinations broken in P .

One of the most useful qualities of Maker-Breaker games is that positions of
larger Maker-Breaker games can be reduced to smaller Maker-Breaker games. Given
P = (X,F , XM , XB, t), we can quickly construct a new Maker-Breaker game (XP ,FP , t)
that has the same gameplay as P by letting XP := X \ (XM ∪ XB) and letting
FP := {F \ XM | F ∈ F not broken in P}. We call (XP ,FP , t) the game that P re-
duces to.

This principle allows us to solve Maker-Breaker games where Maker goes first by
solving games where Breaker goes first and vice versa. For each possible starting move,
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solve the game that the resulting position reduces to. This means that all results we
achieve do not only apply to Maker-Breaker games of the form (X,F ,m) as defined
above, but also to games of the form (X,F , b).

Let (X,F , b) be a Maker-Breaker game in which it is Breaker’s turn. If F contains
a winning combination p of size one, we say that in (X,F , b), Maker is threatening mate
in one. This means that Breaker will lose unless he claims p. Similarly, if F contains
two combinations {p, q} and {p, r} where p, q, and r are pairwise distinct, we say that in
(X,F , b), Maker is threatening mate in two. Here, Breaker will lose unless he claims p, q
or r.

Example 2. Consider the Maker-Breaker version of Tic-Tac-Toe. Written formally, it is:

({1, . . . , 9}, {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9}, {1, 5, 9}, {3, 5, 7}},m)

The position after Maker claims 1, Breaker responds with 5, and Maker claims 9 reduces
to the Maker-Breaker game ({1, 2, 4, 6, 7, 8}, {{2, 3}, {7, 8}, {4, 7}, {3, 6}}, b).

M 2 3

4 B 6

7 8 M

In that game, Maker is threatening mate in two in two places at the same time: 2, 3, 6
and 4, 7, 8. Since these two sets of squares are disjoint, Breaker cannot stop both threats.

Let (X,F) be a hypergraph. A pairing C on X is a collection of pairwise disjoint
two-element subsets of X. We call the elements of C pairs. We define the squares covered
by C as

⋃
c∈C c. For each F ∈ F , if there exists c ∈ C with c ⊆ F , we say that C blocks

F .
Given a pairing C, we can construct a pairing strategy for Breaker in the Maker-

Breaker game (X,F , t). It goes as follows: Breaker responds to Maker claiming a square
p in one of two ways: If a pair {p, q} ∈ C exists and q is unclaimed, claim q. If that is
not the case, he can claim any unclaimed square. If t = b, Breaker’s first move can also
be chosen arbitrarily.

By following this strategy, Breaker ensures that Maker cannot ever claim both squares
of any pair c ∈ C. This also means that if C blocks a winning combination F , Maker
cannot win by claiming all squares in F . If C blocks every winning combination in F ,
its pairing strategy is a winning strategy for Breaker and we call C a complete pairing of
(X,F). Any Maker-Breaker game played on a hypergraph that admits a complete pairing
is Breaker’s win (see Lemma 6 in [6]).

Example 3. Let (Xn,Fn) := ({1, 2, . . . , n−1, n}, {{1, 2, 3}, {2, 3, 4}, . . . , {n−2, n−1, n}})
be a hypergraph. Then, Cn := {{i, i + 1} | i ∈ Xn \ {n}, i odd} is a complete pairing of
(Xn,Fn) because every winning combination F ∈ Fn is of the form {k − 1, k, k + 1} for
some k ∈ Xn \ {1, n}, and either {k − 1, k} or {k, k + 1} is contained in Cn. As a result,
(Xn,Fn,m) is Breaker’s win.
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3 Generalized Geography

The game Geography is a word game in which two players take turns naming geographical
places. The starting word is fixed. For each place named, its first letter must be the same
as the last letter of the previous word. The players may not repeat words. If a player
cannot think of a valid word, they lose the game.

Example 4. Alice and Bob agree to play Geography only with the names of countries.
They choose the starting word “Luxembourg”. Alice goes first and has to say “Luxem-
bourg”, to which Bob answers “Germany”. Alice must now say “Yemen” as it is the only
country starting with a “y”. Bob replies with “Norway” and Alice loses the game as she
has no valid moves.

Geography can be generalized to a combinatorial game given by a weakly connected
digraph G = (V,A) and a starting vertex s ∈ V . The set of vertices corresponds to the
set of allowed words, and each edge (v, w) signifies that w starts with the same letter v
ends in. An instance (G, s) of Generalized Geography is therefore played as follows:

Alice begins by marking the designated starting vertex s. Then, starting with Bob,
the two players alternate taking turns marking a previously unmarked vertex. It must be
one that has an incoming edge from the previously marked vertex. The game ends when
a player cannot make a legal move; that player loses the game.

Note 5. Given a digraph (V,A) and a vertex v ∈ V , we let δ+(v) be the set of outgoing
edges of v and δ−(v) be the set of incoming edges of v. Also, we let δ(v) := δ−(v)∪ δ+(v)
be the set of all edges incident to v.

Lemma 6. The problem of deciding who wins an instance (G, s) of Generalized Geography
is PSPACE-complete even if we only consider the case where:

1. G is planar and bipartite.

2. Each vertex v ∈ V (G) fulfills |δ(v)| 6 3.

3. Each vertex v ∈ V (G) \ {s} fulfills |δ+(v)| ∈ {1, 2} and |δ−(v)| ∈ {1, 2}.

4. For the starting vertex s, we have |δ+(s)| ∈ {1, 2} and |δ−(s)| = 0.

This lemma was proven in [5] by reduction from the true quantified boolean formula
decision problem (TQBF). Even though points 3 and 4 were not explicitly stated, it is easy
to verify that the constructed digraph (see Figure 1 in [5]) always has those properties.
All these properties, besides planarity, will be very useful when constructing our Maker-
Breaker game later.

Corollary 7. The problem from Lemma 6 remains PSPACE-complete even if we change
point 4 such that it requires s to have out-degree exactly 1.
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Proof. Let (G, s) be an instance of Generalized Geography that fulfills the properties in
Lemma 6, but where s has out-degree 2. Let (s, v) and (s, w) be the two outgoing edges
of s. We can add two new vertices x1, x2 and replace the edges (s, v) and (s, w) with the
edges (s, x1), (x1, x2), (x2, v) and (x2, w). We call this new graph G+.

𝑠
𝑣

𝑤
𝑠

𝑥1 𝑥2 𝑣

𝑤

Doing so does not break planarity or 2-colorability. At the start of the game (G+, s),
marking s, x1, and x2 is forced. The game state after these three vertices are marked in
(G+, s) is completely identical to the state of the game (G, s) after s is marked.

We call an instance (G, s) of Generalized Geography convertible if it fulfills the re-
quirements from Lemma 6 and Corollary 7. Given one such instance, a nice consequence
of the 2-colorability of G is that when playing Generalized Geography, the color of the
most recently marked vertex v indicates whose turn it currently is.

Because G is weakly connected, choosing one of two colors for a single vertex yields a
unique 2-coloring of G. Let VA t VB = V (G) be the unique 2-coloring of G with s ∈ VB.
As every edge runs between vertices of different colors, the color of the most recently
marked vertex changes every turn. This means that if the most recently marked vertex v
has the same color as s, i.e. v ∈ VB, it is Bob’s turn. If v ∈ VA, it is Alice’s turn. Also, if
a vertex in VA is marked, the player marking that vertex is Bob, and if a vertex in VB is
marked, it must be marked by Alice.

4 Constructing the associated Maker-Breaker game

Let G = (V,A) and s ∈ V such that (G, s) is a convertible instance of Generalized
Geography. Again, let VA t VB = V be the bipartition of V such that s ∈ VB. We can
now partition the vertices of G into six classes:

• Vertices in VA with in-degree 1 and out-degree 2 are in the class M1,2.

• Vertices in VA with in-degree 2 and out-degree 1 are in the class M2,1

• Vertices in VB with in-degree 1 and out-degree 2 are in the class B1,2.

• Vertices in VB with in-degree 2 and out-degree 1 are in the class B2,1.

• Vertices with in-degree 1 and out-degree 1 are in the class N1,1.

• The vertex s ∈ VB with in-degree 0 and out-degree 1 is in its own class B0,1.

From (G, s), we construct a Maker-Breaker game by first creating a separate hyper-
graph H(v) = (X(v),F(v)) for each vertex v ∈ V , Then, for each edge e = (u,w) ∈ A,
we identify a pair of squares in X(u) with a pair of squares in X(w).

More specifically, for each v ∈ V , let H(v) = (X(v),F(v)) be a copy of the hypergraph
in Table 1, column 3 of the row according to the class of v. Within this hypergraph, for
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each edge e ∈ δ(v), two squares of X(v) are named pe and qe, respectively. These squares
are called input squares of H(v) if e ∈ δ−(v) and they are called output squares of H(v)
if e ∈ δ+(v). Input squares are drawn with a red border in Table 1 and output squares
are drawn with a green border. All other squares in X(v) are called interior squares of
H(v) and are drawn with a blue border.

Class of v δ(v) in G Hypergraph H(v) = (X(v),F(v)) Regular Play

v ∈M1,2

𝑎

𝑏 𝑐

𝑝𝑎 𝑞𝑎

𝑥2𝑥1

𝑥3 𝑥4

𝑥5

𝑝𝑏 𝑝𝑐

𝑞𝑏
𝑞𝑐

If Maker chooses b:
x1 → x2 → pb → x3
→ qb → x5

If Maker chooses c:
x2 → x1 → pc → x4
→ qc → x5

v ∈ B1,2

𝑎

𝑏 𝑐

𝑞𝑏 𝑥4
𝑞𝑐

𝑝𝑏 𝑥1 𝑝𝑐

𝑥2 𝑥3𝑝𝑎 𝑞𝑎 If Breaker chooses b:
x1 → x3 → pb → x2
→ qb → x4

If Breaker chooses c:
x1 → x2 → pc → x3
→ qc → x4

v ∈M2,1

𝑎 𝑏

𝑐 𝑝𝑐 𝑞𝑐𝑥2

𝑥1

𝑥3

𝑝𝑎 𝑝𝑏

𝑞𝑎 𝑞𝑏

If we enter through a:
pc → x1 → qc → x2

If we enter through b:
qc → x1 → pc → x3

v ∈ B2,1

𝑎 𝑏

𝑐 𝑝𝑐 𝑞𝑐

𝑥1

𝑥2

𝑝𝑎 𝑝𝑏
𝑞𝑎 𝑞𝑏

If we enter through a:
pc → x1 → qc → x2

If we enter through b:
qc → x1 → pc → x2

v ∈ N1,1
𝑏𝑎 𝑞𝑏𝑝𝑏𝑝𝑎𝑞𝑎𝑥1 𝑥2 pb → x1 → qb → x2

v ∈ B0,1
𝑎 𝑞𝑎𝑝𝑎𝑥1 𝑥2 pa → x1 → qa → x2

Table 1: This table describes how we handle each class of vertex. For a detailed explana-
tion, see below. In column 3, squares outlined in red, green, and blue are input squares,
output squares and interior squares of H(v), respectively. The hyperedge colors have no
special meaning and are just for visual clarity.
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Let e = (u,w) ∈ A be an edge. Then, H(u) contains pe and qe as output squares
and H(w) contains pe and qe as input squares. We understand this pair of squares to be
shared between H(u) and H(w), connecting the two hypergraphs. We call pe and qe the
joint squares of e. On the other hand, interior squares x ∈ X(v) of a hypergraph H(v)
are not shared and are therefore not contained in any other X(w), w 6= v.

Let X :=
⋃

v∈V X(v) and F :=
⋃

v∈V F(v). Then, (X,F ,m) is the associated Maker-
Breaker game to (G, s).

In Table 1, we describe how each class of vertex is handled during the construction of
the associated Maker-Breaker game and during regular play. In column 2, we name the
edges in δ(v). In column 3, we present the hypergraph H(v). In column 4, we describe
the order in which squares are claimed during regular play.

For each v ∈ V , we call the pairing {{pe, qe} | e ∈ δ(v)} on H(v) its joint pairing.
We observe that, if v 6= s, it is a complete pairing of the hypergraph H(v). This also
means that {{pe, qe} | e ∈ A) is a pairing on X and it blocks all winning combinations in
F \ F(s).

Let P = (X,F , XM , XB, t) be a position of the associated Maker-Breaker and v ∈ V .
Then, we define XP (v) := XP ∩X(v), FP (v) := {F \XM | F ∈ F(v) not broken in P}.
We can imagine the hypergraph (XP (v),FP (v)) as (XP ,FP ) restricted to H(v).

5 Regular Play

Let (G, s) be a convertible instance of Generalized Geography, and let (X,F ,m) be its
associated Maker-Breaker game. Let V (G) = VA t VB be the unique bipartition of V (G)
such that s ∈ VB.

For each vertex class, column 4 of Table 1 shows its regular play sequences. For vertices
in M1,2 and B1,2, there are two sequences because a choice is given to Maker or Breaker,
respectively. For vertices in M2,1 and B2,1 there are two sequences because there are two
possible incoming edges. Otherwise, there is only one sequence.

We can now formally describe regular play in (X,F ,m). The game begins with s being
what we call the active vertex. As long as there is an active vertex v, its class determines
what happens next.

Case 1: v ∈M1,2 ∪B1,2

If v ∈ M1,2, Maker chooses one of the two lines of play given in Table 1, row 1,
column 4. If v ∈ B1,2, Breaker chooses one of the two lines of play given in Table 1,
row 2, column 4. Maker and Breaker play according to that line of play. Once these
moves have been made, Maker will have claimed both joint squares of an outgoing edge
e of v. Which edge that is, depends on the chosen line of play. The next active vertex is
w, where e = (v, w).
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Case 2: v ∈ N1,1 ∪B0,1

Maker and Breaker follow the line of play in column 4 of the corresponding row in
Table 1. Maker claims both joint squares of the edge (v, w) leaving v. The next active
vertex is w.

Case 3: v ∈M2,1 ∪B2,1

Here, v has two incoming edges, a and b. Let e ∈ {a, b} be the edge that connects the
previously active vertex to v, and let c = (v, w) be the outgoing edge of v.

• If v is active for the first time, depending on whether e = a or e = b, Maker and
Breaker follow the first or second line of play in Table 1, column 4 of v’s class. Then,
Maker will have claimed both joint squares of c. The next active vertex is w.

• If v was active once already, the class of v determines who will end up winning the
game. The moment v becomes active, it is Maker’s turn and the squares pe, qe, pc,
and qc are already claimed by Maker. There is a winning combination F ∈ F(v)
that contains all these squares plus an interior square x. If v ∈M2,1, x is unclaimed.
In that case, Maker claims x and wins immediately. If v ∈ B2,1, x is already claimed
by Breaker. In this case, there ceases to be an active vertex.

Once there is no active vertex anymore, regular play entails Maker claiming arbitrary
squares and Breaker following the winning strategy provided to him via Lemma 8.

Lemma 8. If Maker and Breaker follow regular play in (X,F ,m), and there ceases to be
an active vertex because some v ∈ B2,1 became active for a second time, that position is
Breaker’s win.

To prove this Lemma, we need to first establish some invariants that hold while there
is an active vertex during regular play.

Lemma 9 (Invariants of regular play). Let P be a position that occurs during regular play
in (X,F ,m) while there is an active vertex v.

1. If it is Maker’s turn in P , she will claim an interior square or an output square of
H(v). If it is Breaker’s turn, he will claim an interior square of H(v).

2. For each vertex w that was never active, and every square p ∈ X(w), one of these
holds:

• The square p is unclaimed in P .

• We have (v, w) ∈ A, p is a joint square of that edge, and it is claimed by
Maker.

3. For each vertex u 6= v that was active previously, if u /∈ M2,1, we have FP (u) = ∅.
In other words, as a result of regular play, every winning combination F ∈ F(u) is
broken in P .
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4. For each vertex u 6= v that was active previously, if u ∈ M2,1, u has two incoming
edges. Let e′ be the one that does not connect u to the vertex that was active
immediately before it. Then, we have (XP (u),FP (u)) = ({pe′ , qe′ , x}, {{pe′ , qe′ , x}}).

Proof of the invariants. Invariant 1 can be verified by simply checking each of the regular
play sequences in Table 1, column 4. Invariant 2 is a natural consequence of invariant 1.

The fact that invariant 3 holds for u = s can be seen simply by checking Table 1. For
u 6= s, let u′ be the vertex that was active immediately before u. Invariant 2 now tells us
that when u became active, the joint squares of (u′, u) were the only claimed squares in
X(u). Using this knowledge, we can use the table to confirm that the invariant 3 holds
after each regular play sequence in H(u) with u ∈M1,2 ∪B1,2 ∪B2,1 ∪N1,1.

Invariant 4 can be proven similarly: While v ∈ M2,1 is active for the first time,
regular play leaves the two input squares pe′ , qe′ and one interior square x of H(v) un-
claimed. There is a winning combination consisting of those three squares and the
two output squares. The position after Maker claims the output squares reduces to
({pe′ , qe′ , x}, {{pe′ , qe′ , x}}).

Proof of Lemma 8. Let P be a position that occurs after v ∈ B2,1 becomes active for a
second time during regular play. Let C = {{pe, qe} | e ∈ A with {pe, qe} ⊆ XP}. We want
to show that C is a complete pairing of (XP ,FP ). It is obviously a pairing.

To show the pairing is complete, consider an arbitrary F ′ ∈ FP , and let u ∈ V be a
vertex such that F ′ ∈ FP (u). If u was active at some point, u ∈ M2,1 must hold because
otherwise, FP (u) = ∅ as per invariant 3. But then, invariant 4 gives us that F ′ must have
the form {pe, qe, x} for some edge e, so C blocks F ′.

If u was never active (which implies u 6= s), we know that (v, u) /∈ A. Otherwise,
u would have become active immediately after v was active for the first time. Paired
with invariant 2, this means that all squares in X(u) are unclaimed in P . Therefore, C
contains the joint pairing of H(u). Since u 6= s, we know C blocks F ′.

Theorem 10. If both players play perfectly while having to follow regular play in
(X,F ,m), the outcome of that game is a victory for Maker if and only if (G, s) is Alice’s
win.

Proof. First, we change the rules of Generalized Geography slightly. Marking a vertex
more than once is no longer illegal. However, if a player marks an already marked vertex,
that player loses the game. This change does not impact whether a given instance of
Generalized Geography is Alice’s win or Bob’s win; we merely replaced a game loss from
having no available legal moves with a game loss from having to mark an already marked
vertex. We introduce these revised rules to more closely align the gameplay of (G, s) with
regular play in (X,F ,m).

We want to show that while there is an active vertex, regular play in (X,F ,m) is
essentially identical to the gameplay in (G, s) under revised rules. Alice is Maker, and
Bob is Breaker. A vertex being most recently marked in (G, s) is equivalent to it being
active in regular play. The games start out in the same way: s must be marked first in
(G, s), and it is the first active vertex during regular play.
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In (G, s), under revised rules, a player gets to make a choice if and only if it is their
turn and the most recently marked vertex has more than one outgoing edge. During
regular play of (X,F ,m), as long as there is an active vertex v, a player gets to make a
choice if v ∈M1,2∪B1,2. These are exactly the vertices with more than one outgoing edge.
The players who make the choices are identical as well: Maker or Alice gets to choose if
v ∈ VA and Breaker or Bob gets to choose if v ∈ VB.

In regular play, the winner is determined when a vertex v becomes active for a second
time. If v ∈ VA, Maker wins by completing a winning combination, and if v ∈ VB, Breaker
has a winning pairing strategy as per Lemma 8. In (G, s), under revised rules, the player
who marks v for a second time loses the game. We know from the 2-colorability of G
and from s ∈ VB that vertices in VA are always marked by Bob and vertices in VB are
always marked by Alice. This means that the two games are decided under the same
circumstances and with the same winners. If Alice wins (G, s), Maker wins (X,F ,m),
and vice versa.

All of this combined means that the gameplay in (G, s) is essentially identical to the
gameplay during regular play in its associated Maker-Breaker game.

6 Irregular Play

In this section, we show that when playing the Maker-Breaker game (X,F ,m) associated
with (G, s), as long as there is an active vertex v, it is not beneficial for either player to
violate the constraints set by regular play. Proving this is much easier for Breaker than
for Maker.

Lemma 11. Let v ∈ V (G) and let P be a position that occurs during regular play of
(X,F ,m) while v is the active vertex and it is Breaker’s turn. Then, if Breaker deviates
from regular play, the resulting position is Maker’s win.

Proof. By examining the regular play sequences in Table 1, we notice that unless regular
play in P specifically gives Breaker a choice, in (XP (v),FP (v)), Maker is always threat-
ening mate in one. In each of these cases, the move that prevents Maker from winning
next turn is also the move that Breaker would make under regular play. This means that
deviating from regular play allows Maker to win immediately.

In the case where Breaker has a choice, we have v ∈ B1,2 and Maker has made one
move since v became active. Here, FP (v) contains the winning combinations {pb, x2},
{x2, x3} and {x3, pc}. This means that Maker is threatening mate in two in two places.
The only way to stop both threats is to claim either x2 or x3. These are exactly the two
choices Breaker has under regular play, so not following regular play causes the game to
be Maker’s win.

To demonstrate that Maker also loses if she decides to deviate from regular play, we
will prove that if she does so, Breaker always has a reply creating a position that admits
a complete pairing. We will construct this complete pairing out of smaller ones.
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Let P = (X,F , XM , XB, t) be a position and v ∈ V . Then, a pairing C(v) on
(XP (v),FP (v)) is called a puzzle piece pairing of (XP (v),FP (v)) if it has these traits:

1. It is a complete pairing of (XP (v),FP (v)).

2. For each edge e ∈ δ(v), if pe ∈ XP (v) and qe ∈ XP (v), then {pe, qe} ∈ C(v).

3. For each edge e ∈ δ+(v), if pe /∈ XP (v) or qe /∈ XP (v), then C(v) covers neither pe
nor qe.

Lemma 12. Let v ∈ V \ {s} and p ∈ X(v). Let P = (X,F , XM , XB,m) such that
XM ∩X(v) = p and XB ∩X(v) = ∅. Then, there exists a puzzle piece pairing C(v, p) of
(XP (v),FP (v)).

Proof. We call the squares in X(v) by their names in Table 1, column 3.

Case 1: p is an interior square of H(v)

If p is an interior square, we know that the joint pairing {{pe, qe} | e ∈ δ(v)} is a
complete pairing of (XP (v),FP(v)), and it is also a puzzle piece pairing.

Case 2: p is an input square of H(v), belonging to e′ ∈ δ−(v)

Let q be the other joint square of e′. We know that C∗ := {{pe, qe} | e ∈ δ(v) \ {e′}}
should be a subset of C(v, p) to fulfill trait 2 of puzzle piece pairings.

If v ∈ B1,2 ∪ B2,1 ∪M2,1 ∪ N1,1, we choose C(v, p) = C∗ ∪ {q, x1}. If v ∈ M1,2, we
choose C(v, p) = C∗ ∪ {q, x1} ∪ {x2, x4}.

Case 3: p is an output square of H(v), belonging to e′ ∈ δ+(v)

Again, C∗ := {{pe, qe} | e ∈ δ(v) \ {e′}} should be a subset of C(v, p). If we have
v ∈ B2,1 ∪ M2,1 ∪ N1,1, then C∗ is already a complete pairing of (XP (v),FP (v)). If
v ∈ B1,2, let C(v, p) = C∗ ∪ {x1, x4}. If v ∈ M1,2, we let C(v, p) = C∗ ∪ {x1, x5} if e′ = b
and C(v, p) = C∗ ∪ {x2, x5} if e′ = c.

As we can see, in every case, there is a puzzle piece pairing of (XP (v),FP (v)).

Lemma 13. Let P = (X,F , XM , XB,m) be a position of (X,F). If, for each v ∈ V , the
hypergraph (XP (v),FP (v)) admits a puzzle piece pairing C(v), then C :=

⋃
v∈V C(v) is a

complete pairing of (XP ,FP ).

Proof. To show that C is a pairing, we must demonstrate that no square in XP is in more
than one pair of C. This is automatically true for all interior squares since they can only
occur in one of the puzzle piece pairings. Let therefore p ∈ XP be a joint square of an edge
(v, w). If pe and qe are both unclaimed in P , we have {pe, qe} ∈ C(v) and {pe, qe} ∈ C(w).
If only p is unclaimed, then we know that C(v) does not cover p. In either case, there is
only a single pair in C that contains p.

To show that C is complete, let F ∈ FP , and let u ∈ V be the vertex such that
F ∈ FP (u). Then, since puzzle piece pairings are complete, C(u) blocks F , so C does
too.
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Lemma 14. Let v ∈ V (G) and let P = (X,F , XM , XB,m) be a position that occurs
during regular play of (X,F) while v is the active vertex and it is Maker’s turn. Then, if
Maker deviates from regular play, the resulting position is Breaker’s win.

Proof. Within this proof, we refer to the square(s) that Maker could have played if she
followed regular play in P as the regular play square(s).

Let (XP ,FP ) be the game P reduces to and let p ∈ XP be any square besides the
regular play square(s). We want to show that there exists a reply q ∈ XP \ {p} such that
the resulting position P ′ := (X,F , XM ∪ {p}, XB ∪ {q},m) admits a complete pairing C.

Class of v
Since v became active, Maker has claimed. . .

. . . no squares. . . . one square. . . . two squares.

v ∈M1,2
⋆

v ∈ B1,2

⋆⋆ ⋆⋆

v ∈M2,1

v ∈ B2,1

v ∈ N1,1 ∪B0,1

Table 2: The possibilities for what (XP (v),FP (v)) can look like. Input squares, output
squares, and interior squares are red, green, and blue, respectively. The regular play
squares are denoted by a circle shape instead of a square shape.

The choice of q depends on which of these 10 forms the hypergraph (XP (v),FP (v))
takes.

• If (XP (v),FP (v)) takes any form besides those marked with a ? or ?? in the bottom
right corner of the cell, we always let q be the regular play square.

• If (XP (v),FP (v)) takes the form marked with ?, we similarly let q be one of the
two regular play squares. If p shares a winning combination with one of them but
not the other, we choose q as the regular play square that does share a winning
combination with p. Otherwise, both options for q are equally viable.

• If (XP (v),FP (v)) takes one of the forms marked with ?? (implying v ∈ B1,2), let e′

be the outgoing edge where {pe′ , qe′} does not contain the regular play square. Here,
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it might be the case that Maker claims a joint square of e′, i.e. p ∈ {pe′ , qe′}. If so,
we say that Maker tried to subvert Breaker’s decision and we let q be the interior
square of H(v) that is unclaimed in P and shares a winning combination with p′e
and q′e (in Table 1, row 2 it is called x4). If, on the other hand, p /∈ {pe′ , qe′}, we
simply let q be the regular play square.

Let (XP ′ ,FP ′) be the game that P ′ reduces to. To show that a complete pairing C
of (XP ′ ,FP ′) exists, we will use Lemma 13. This means that we try to find puzzle piece
pairings of (XP ′(w),FP ′(w)) for each w ∈ V . There are five categories that w can fall
into.

Category 1: w has been active before v was, and w /∈M2,1

We know from invariant 3 for regular play that FP (w) = ∅. It follows that FP ′(w) = ∅,
so {{pe, qe} | e ∈ δ(v) with pe, qe ∈ XP ′} is a puzzle piece pairing of (XP ′(w),FP ′(w)).

Category 2: w has been active before v was, and w ∈M2,1

We know from invariant 4 for regular play that (XP (w),FP (w)) takes the form
({pe, qe, x}, {{pe, qe, x}}) for some edge e ∈ δ−(w) and some interior square x of H(w). If
q ∈ {pe, qe}, then ∅ is a puzzle piece pairing of (XP ′(w),FP ′(w)). If p is one of these three
squares and q is not, then {XP (w) \ {p}} is a puzzle piece pairing of (XP ′(w),FP ′(w)).

Category 3: w was never active, and XP (w) = X(w)

If p ∈ XP (w), we know from Lemma 12 that a puzzle piece pairing C(w, p) exists
in (XP ′(w),FP ′(w)). Otherwise, the joint pairing of H(w) is a puzzle piece pairing of
(XP ′(w),FP ′(w)) after removing all pairs that contain q.

Category 4: w was never active, but XP (w) 6= X(w)

Then, we know from invariant 2 for regular play that e = (v, w) ∈ A and that
XP (w) = X(w) \ {x} for some x ∈ {pe, qe}. If Maker tried to subvert Breaker’s deci-
sion, since x is already claimed, we must be in the rightmost column of Table 2. We know
that p, q /∈ X(w). Then, Lemma 12 tells us that a puzzle piece pairing C(w, x) exists in
(XP ′(w),FP ′(w)).

If not, we chose q to be the regular play square, which is the joint square of e that
is not x. If p /∈ X(w), we remove the pair {x, q} from the joint pairing of H(w). If
p ∈ X(w), we remove {x, q} from C(w, p) as provided by Lemma 12. Either way, we
obtain a puzzle piece pairing of (XP ′(w),FP ′(w)).

Category 5: w = v

If (XP (v),FP (v)) takes a form besides the ones marked with ? or ??, FP ′(v) is either
empty or contains one winning combination. That winning combination contains three or
four squares, depending on p. Here, we can find a puzzle piece pairing of (XP ′(v),FP ′(v))
similarly to how we did in category 2.
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If (XP (v),FP (v)) takes the form marked with ?, let q′ 6= q be the regular play square we
didn’t choose for q. Then, XP (v) contains three squares that share a winning combination
with q′ but not q, and which therefore must be unclaimed: An interior square x and two
joint squares pe, qe of some edge e ∈ δ+(v). Therefore, we have XP ′(v) ⊇ {pe, qe, x, q′}.
Looking at the remaining winning combinations, we see that {{pe, qe}, {x, q′}} is a puzzle
piece pairing of (XP ′(v),FP ′(v)).

If (XP (v),FP (v)) takes one of the two forms marked with ?? and Maker did not try
to subvert Breaker’s decision, we have XP ′(v) ⊇ {pe′ , qe′} and FP ′(v) = {{pe′ , qe′}} for
some e′ ∈ δ+(v). Here, {pe′ , qe′} is a puzzle piece pairing of that hypergraph.

If Maker did try to subvert Breaker’s decision, FP ′(v) is either empty (if we are in
the rightmost column of Table 2) or, if we are in the middle column, it contains a win-
ning combination of the form {x, pe}, where x is the interior square that is not q and
e is the outgoing edge that contains the regular play square. Only in this case does
(XP ′(v),FP ′(v)) not admit a puzzle piece pairing, but it does admit the complete pairing
{{x, pe}}.

As we have seen, a puzzle piece pairing of (XP ′(w),FP ′(w)) always exists for w 6= v,
and it exists for w = v in all cases but one. Unless we are in that case, the existence of a
complete pairing of (XP ′ ,FP ′) follows immediately from Lemma 13.

If we are in that case, we construct our complete pairing as follows: Let e = (v, w′)
be the edge for which pe is the regular play square. For all w /∈ {v, w′}, let C(w) be the
puzzle piece pairing given above. For the vertex w′, we know that it falls in category
1, 2, or 3, and p /∈ X(w′). If it falls into category 1, let C(w′) = ∅. If it falls into
category 2, let C(w′) = {{qe, x′}}, where x′ is the one interior square in XP ′(w′). If
it falls into category 3, let C(w′) be the puzzle piece pairing C(w′, pe) obtained from
Lemma 12. Finally, let C(v) = {{pe, x}}, where x is the one interior square of XP ′(v).
Then,

⋃
w∈V C(w) is a complete pairing of (XP ′ ,FP ′).

7 PSPACE-completeness

We can now put the pieces together and prove the result we have been working towards.

Theorem 15. Determining the winner of a Maker-Breaker game is a PSPACE-complete
decision problem even if we only allow games played on hypergraphs of rank 5.

Proof. Let (G, s) be a convertible instance of Generalized Geography, and (X,F ,m) its
associated Maker-Breaker game. Combining Lemma 11 with Lemma 14 yields that one
way for Maker and Breaker to play perfectly in (X,F ,m) is to follow regular play. As a
result, (X,F ,m) is Maker’s win if and only if it is also Maker’s win when only perfect
play is allowed. Adding Lemma 10, we obtain the result that (G, s) is Alice’s win if and
only if (X,F ,m) is Maker’s win.

Since (X,F ,m) can be constructed in linear time with respect to the size of G, we
obtain a polynomial transformation from the problem of solving convertible instances of
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generalized geography to the problem of solving rank-5 Maker-Breaker games. Given
Corollary 7, this means that the latter problem is PSPACE-hard.

Solving general Maker-Breaker games is a problem in PSPACE [2]. Hence, solving
rank-5 Maker-Breaker games is a PSPACE-complete problem.

Corollary 16. Determining the winner of a Maker-Breaker game is a PSPACE-complete
decision problem even if we only allow games played on 5-uniform hypergraphs.

Proof. Let (G, s) be a convertible instance of Generalized Geography, and (X,F ,m) its
associated Maker-Breaker game. In the proof of Corollary 17 in [3], it was demonstrated
how a hyperedge F ∈ F of size n can be replaced by two hyperedges F1, F2 of size n+ 1
without changing the winner of the Maker-Breaker game. We can use that method until
all hyperedges have exactly size 5. The amount of edges we add scales only linearly with
the size of V (G), so the time complexity of constructing the associated Maker-Breaker
game remains the same.

8 Conclusion

By polynomial transformation from the problem of determining the winner of a special
case of Generalized Geography, we could show that the problem of solving Maker-Breaker
games on 5-uniform hypergraphs is also PSPACE-complete.

An argument from Byskov (Theorem 3 in [7]) shows that we can reduce k-uniform
Maker-Breaker games to Maker-Maker games on hypergraphs of rank k + 1. It achieves
this by adding two new squares d1 and d2, adding d1 to all winning combinations and
then adding the new winning combination {d1, d2}. Using a (k + 1)-uniform structure
instead of {d1, d2}, which nonetheless forces Breaker to respond immediately, and then
becomes useless to both players, we can adapt this argument to show that k-uniform
Maker-Breaker games reduce to (k + 1)-uniform Maker-Maker games.

As a result, we now also know that 6-uniform Maker-Maker games are PSPACE-
complete. While a recent preprint by Galliot and Sénizergues [8] shows that Maker-Maker
games of rank 4 are PSPACE-complete, the Maker-Maker convention has no known re-
duction from rank k hypergraphs to k-uniform hypergraphs, so for now, these are separate
results.

In [9], it was shown that the problem of solving Maker-Breaker games on hypergraphs
of rank 3 or lower can be solved in polynomial time. We are therefore faced with an obvious
open problem: the complexity of solving Maker-Breaker games on hypergraphs of rank 4.
However, a very recent preprint [10] demonstrates how the construction in this paper can
be adapted in such a way as to produce a 4-uniform hypergraph instead of a 5-uniform
one. This would mean that 4-uniform Maker-Breaker games are also PSPACE-complete,
closing that gap.
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