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Abstract

A fundamental result in the study of graph homomorphisms is Lovász’s theo-
rem that two graphs are isomorphic if and only if they admit the same number
of homomorphisms from every graph. Cai and Govorov capped a line of work ex-
tending Lovász’s result to more general types of graphs by showing that it holds
for graphs with vertex and edge weights from an arbitrary field of characteristic
zero. Counting graph homomorphisms is a counting constraint satisfaction problem
(#CSP) parameterized by a single constraint function of arity two. In this work, we
extend Lovász’s theorem to general #CSP by showing that any two sets F and G of
constraint functions are isomorphic if and only if they are #CSP-indistinguishable
– that is, the partition function value of any #CSP instance is unchanged when we
replace the functions in F with those in G. We give two very different proofs of
this result. First, we give a proof for complex-valued constraint functions using the
intertwiners of the automorphism group of a constraint function set, a concept from
the representation theory of compact groups, in the style of Mančinska and Rober-
son’s proof of the equivalence between quantum isomorphism and homomorphism
indistinguishability over planar graphs. Second, we demonstrate the power of the
simple Vandermonde interpolation technique of Cai and Govorov by extending it
to general #CSP, giving a constructive proof for constraint functions with entries
from any field of characteristic zero.

Mathematics Subject Classifications: 68R05, 05C60

1 Introduction

Graph homomorphisms A homomorphism from (unweighted, undirected) graph K
to graph X is a map from the vertex set of K to the vertex set of X which preserves adja-
cency: every edge of K is mapped to an edge of X. Since Lovász’s introduction of graph
homomorphisms [25], counting the number hom(K,X) of homomorphisms from K to X
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has emerged as a well-studied problem in combinatorics and theoretical computer science.
One can express hom(K,X) as the evaluation of a partition function, parameterized by
X, on K:

hom(K,X) =
∑

φ:V (K)→V (X)

∏
(u,v)∈E(K)

(AX)φ(u),φ(v), (1)

where AX is the adjacency matrix of X. The partition function perspective leads to exten-
sions of graph homomorphism to weighted and directed graphs, as well as a natural view
of graph homomorphism as a special case of counting constraint satisfaction problems, or
#CSP.

Counting complexity and #CSP Let F be a field of characteristic zero. A #CSP(F)
problem is parameterized by a set F of F-valued constraint functions on one or more inputs
from a finite domain V (F). That is, F ∈ F is a function V (F)n → F, where n is the
arity of F . The input to the problem is a #CSP instance, consisting of a multiset C of
constraints and set V of variables, with each constraint applying a constraint function in
F to a subset of V . The output is the value of the partition function, the sum over all
assignments V → V (F) of the product of the constraint evaluations (see Section 2 for
formal definitions). Letting F := {AX}, V (F) := V (X), V := V (K), and C := E(K),
with each edge-constraint applying AX to its two endpoints, one can see from the partition
function formulation of graph homomorphism (1) that counting homomorphisms from K
to X is the special case of #CSP(F) on instance K where F contains a single binary
(arity-2) constraint function AX .

Counting graph homomorphisms is a central problem in counting complexity, both
in its own right and as a special case of #CSP. Both settings have seen significant di-
chotomy theorems classifying the partition function as either tractable or #P-hard to
compute, depending on X or F , respectively. Graph homomorphism dichotomies have
been established for unweighted graphs [17], nonnegative-real-weighted graphs [5, 9], real-
weighted graphs [20], and complex-weighted graphs [10]. For #CSP, dichomies have been
established for sets of 0-1 valued constraint functions [6, 18], nonnegative-real-valued con-
straint functions [11], and complex-valued constraint functions [8].

Extending the notion of graph isomorphism, say two constraint functions F and G
of the same arity n are isomorphic if there is a bijection σ : V (F ) → V (G) such that
F (x1, . . . , xn) = G(σ(x1), . . . , σ(xn)) for all x1, . . . , xn ∈ V (F ). Two sets F and G of
constraint functions are isomorphic (F ∼= G) if there is a bijection ξ : F → G such
that there is a common isomorphism between each F ∈ F and the corresponding G =
ξ(F ) ∈ G. Some similar concepts exist: Böhler et al. [2, 3] study “constraint isomorphism”
between Boolean #CSP instances (rather than constraint functions), involving permuting
variables (rather than domain elements). One can also view an n-ary constraint function
F as a tensor in (FV (F ))⊗n; from this perspective the notion of tensor isomorphism [22]
is a relaxation of constraint function isomorphism from a bijection V (F ) → V (G) to an
invertible linear transformations FV (F ) → FV (G).

Homomorphism indistinguishablity. The notion of graph homomorphism naturally
extends to directed edge-weighted graphs X by using the weighted adjacency matrix AX
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in (1). Lovász, Freedman, and Schrijver [19, 26, 27] studied the problem of counting
homomorphisms to graphs with a real weight assigned to each edge and a nonnegative
real weight assigned to each vertex. Lovász [26] extended to these weighted graphs his
result, proved forty years prior [25], that two graphs X and Y are isomorphic if and
only if they are homomorphism-indistinguishable, meaning hom(K,X) = hom(K,Y ) for
every graph K. Throughout this paper, we will refer to such generalizations of Lovász’s
original theorem as “homomorphism indistinguishability theorems”. Lovász’s proof for
real-weighted graphs [26] used graph algebras of formal C-linear combinations of k-labeled
graphs (which we generalize to k-labeled #CSP instances in Definition 4). Still using k-
labeled graphs, but applying invariant theory and algebraic geometry, Schrijver [31] proved
a homomorphism indistinguishability theorem for graphs with complex edge weights but
without vertex weights. Using similar techniques, Regts [29] proved a homomorphism
indistinguishability theorem for graphs with arbitrary vertex and edge weights, provided
that no nonempty subset of vertex weights sums to zero. Finally, Cai and Govorov [12]
extended the previous results to graphs with any vertex and edge weights from a field F
of characteristic 0, and provide a counterexample to the existence of such a theorem for
graphs with weights from any field of nonzero characteristic. Cai and Govorov overcame
the algebraic approaches’ technical difficulties of vertex weights summing to 0 by applying
a simple, direct Vandermonde interpolation technique, dependent only on the fact that
a Vandermonde matrix with distinct roots is nonsingular. It is remarkable that such a
simple tool unifies all previous homomorphism indistinguishability theorems; in Section 4
we further demonstrate its power by using it to extend Cai and Govorov’s results to
#CSP.

Another line of work uses invariance of homomorphism counts from restricted classes
of graphs – rather than homomorphisms to expanded classes as above – to characterize
relaxations of graph isomorphism. Dvořák [16] (see also [27]) showed that homomorphism
count from 2-degenerate graphs suffices to determine a graph up to isomorphism, and that
homomorphism count from graphs of treewidth at most k determines graphs up to their
k-degree refinements, but not up to isomorphism. Dell, Grohe, and Rattan [15] showed
that two graphs admit the same number of homomorphisms from all graphs of treewidth
at most k if and only if they are indistinguishable by the k-dimensional Weisfeiler-Leman
algorithm. Grohe, Rattan, and Seppelt [24] characterize homomorphism indistinguisha-
bility over graphs of bounded pathwidth and treedepth in terms of relaxations of linear
systems defining isomorphism (see also [23, 30]).

Mančinska and Roberson [28] showed that two graphs are quantum isomorphic, an ab-
stract relaxation of isomorphism, if and only if they are homomorphism-indistinguishable
over all planar graphs. Their proof uses quantum permutation groups, in particular the
quantum automorphism group of a graph, analogous to the classical automorphism group.
A key component of the proof is Woronowicz’s Tannaka-Krein duality [32], which implies
that every quantum permutation group, a highly abstract object, is uniquely determined
by its much more concrete intertwiner space. A ‘classical’ version of Tannaka-Krein dual-
ity (Theorem 18) similarly applies to the intertwiner space of the classical automorphism
group of a graph, or, more generally, of a set of constraint functions. Using this, we
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in Section 3 give a classical intertwiner-based proof of our main result Theorem 8 – the
same result as proved via Vandermonde interpolation in Section 4, but restricted to sets
of constraint functions over C, rather than general fields. Our proof, carried out in the
Holant framework from counting complexity (see Section 3.1 below for the definition of
Holant) parallels an extension by Cai and Young [13] of Mančinska and Roberson’s orig-
inal ‘quantum’ result from graph homomorphism to #CSP. The present work is, to our
knowledge, the first application of such representation-theoretic techniques to prove a
‘classical’ indistinguishability theorem. Then Young [34], building on an earlier version of
the present work [33], gave an intertwiner-based proof of another such theorem, stating
that real-valued F and G are equivalent up to orthogonal transformation (a relaxation of
isomorphism) if and only if F and G are Holant-indistinguishable. As #CSP is a special
case of Holant, the result of [34] implies the main result Theorem 8 of this work for F = R.
The proof in [34] follows the high-level structure of our intertwiner proof in Section 3,
but with several constructions and results, including the automorphism group Aut(F), its
intertwiner space CAut(F), and the decomposition of a signature grid into building-block
gadgets and the resulting combinatorial characterization of CAut(F) (Theorem 21), relaxed
from permutations and #CSP to orthogonal transformations and Holant.

Our results Extending the notion of homomorphism-indistinguishablity, say F and G
are #CSP-indistinguishable if the partition function value of every #CSP(F) instance is
preserved when we replace every constraint function in F with the corresponding function
in G. The main result of this work is the following theorem.

Theorem (Theorem 8, informal). For a field F of characteristic 0, sets F and G of F-valued
constraint functions are isomorphic if and only if F and G are #CSP-indistinguishable.

Bulatov et al. [4, Theorem 4 and Remark 5] show that the problem of computing the
partition function of a #CSP(F) instance reduces to computing the partition function
of a (much larger) #CSP(F ′) instance, where F ′ is a set of binary (arity-2) constraint
functions. This reduction is isomorphism-preserving – that is, if F ∼= G, then the cor-
responding binary F ′ ∼= G ′. Hence, to prove Theorem 8 it suffices to extend Cai and
Govorov’s homomorphism indistinguishability theorem from a single binary constraint
function (i.e. graph homomorphism) to a set of binary constraint functions. However,
hypothetical proofs of an indistinguishability theorem for a set of binary constraint func-
tions would extend quite naturally to the interpolation proof presented below for a set
of arbitrary-arity constraint functions. Furthermore, the #CSP instances constructed
by our proof are much smaller, simpler and more uniform than those produced by the
reduction in [4], which is important because these #CSP instances serve as witnesses
for constraint function nonisomorphism, and can be enumerated to make complexity di-
chotomies effective (see below). Thus we choose to use our interpolation technique to
tackle the arbitrary-arity case directly.

We prove Theorem 8 in the intertwiner space style of Mančinska and Roberson [28] in
Section 3 (for F = C), and in the Vandermonde interpolation style of Cai and Govorov
[12] in Section 4. The two proofs have distinct advantages. The intertwiner proof has a
short, clean, combinatorial presentation that avoids the detailed notation of interpolation
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and the technical graph algebra calculations of [19, 26, 27, 31, 21], while proving general-
izations, such as Theorem 21, of the latter group’s intermediate results. It also makes no
distinction between finite and infinite constraint function sets (interpolation only directly
applies to finite sets, but we use the fact that the space of possible isomorphisms is finite to
extend the interpolation proof to sets of arbitrary cardinality in Theorem 34) and demon-
strates a natural application of the powerful representation-theoretic tools of intertwiner
spaces and Tannaka-Krein duality to #CSP and Holant theory; as noted above, Young
[34] later used relaxed versions of these tools to prove an indistinguishability theorem for
general Holant, a setting which does not admit Vandermonde interpolation.

On the other hand, the interpolation proof, in addition to supporting any field of
characteristic zero, actually proves a more general result (Theorem 34) applying to k-
labeled #CSP instances. It is also constructive (see Section 4.5): if F and G are finite
and not isomorphic, then the proof provides a finite, explicit list of #CSP instances which
must contain an instance on which F and G are distinguishable. Cai and Govorov use
their constructive interpolation proof to make the graph homomorphism dichotomy of
Cai, Chen, and Lu [10] effective, meaning there is an algorithm that decides whether the
problem is #P-hard (i.e. the dichotomy is decidable) and, if so, constructs a reduction
from a #P-hard problem, rather than simply asserting such a reduction exists. Notably,
the current complex-weighted #CSP dichotomy [8] is not even known to be decidable; our
constructive proof could similarly play a role in a decidable or effective #CSP dichotomy.

2 Preliminaries

For n ∈ N, write [n] = {0, 1, . . . , n− 1}. Throughout, we abbreviate tuples (x0, . . . , xn−1)
by boldface letter x. For sets A and B, AB denotes the set of functions from B to A.
For a set B with an implicit linear order and ab ∈ A for every b ∈ B, (ab)b∈B denotes
a tuple of elements of A indexed and ordered by B. Let Sq be the symmetric group of
permutations on [q].

Throughout, let F be a field of characteristic 0. The following simple proposition
follows from the fact that a square Vandermonde matrix with distinct rows is always
nonsingular.

Proposition 1 ([12, Lemma 4.1]). Let I be a finite index set, and ai, bi ∈ F for all i ∈ I.
Let I =

⊔
`∈[s] I` be the partition of I into equivalence classes defined by relation ∼, where

i ∼ i′ iff bi = bi′. If ∑
i∈I

aib
j
i = 0

for every choice of j ∈ [|I|], then
∑

i∈I` ai = 0 for every ` ∈ [s].

2.1 Counting Constraint Satisfaction Problems

Any function F : V (F )nF → F on nF > 1 variables taking values in V (F ) is a constraint
function with domain V (F ) and arity nF . When nF = 2, one can view F as a |V (F )| ×
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|V (F )| matrix with entries in F, the adjacency matrix of an F-weighted graph [12]. It is
assumed that all constraint functions in a set F have the same domain, denoted V (F)
(V stands for ‘vertices’, terminology inherited from the weighted graph special case).

Definition 2 (#CSP, Z). A #CSP problem #CSP(F) is parameterized by a set F of
constraint functions. A #CSP(F) instance K = (V,C) is defined by a set V of variables
and a multiset C of constraints. Each constraint (F, v1, . . . , vnF ) consists of a constraint
function F ∈ F and an ordered tuple of variables to which F is applied.

The partition function Z, on input #CSP(F) instance K = (V,C), outputs

Z(K) =
∑

φ:V→V (F)

∏
(F,v1,...,vnF )∈C

F (φ(v1), . . . , φ(vnF )).

Definition 3 (Similar, KF→G). Constraint function sets F and G are similar if there is
a bijection from F to G such that every F ∈ F has the same arity as its image G ∈ G.
Call F and its image G corresponding constraint functions, denoted F ! G.

For similar constraint function sets F and G and any #CSP(F) instance K, de-
fine a #CSP(G) instance KF→G by replacing each constraint (F, v1, . . . , vnF ) of K with
(G, v1, . . . , vnF ), for G! F .

The next definition generalizes k-labeled graphs [19, 26, 12].

Definition 4 (k-labeled #CSP instance (product), PLI[F ; k], PLIsimp[F ; k]). A
#CSP instance K = (V,C) is k-labeled if |V | > k and k distinct variables are labeled by
[k]. Define the product K1K2 of two k-labeled #CSP(F) instances K1 = (V1, C1), K2 =
(V2, C2) as follows. For i ∈ [k], let ui ∈ V1, vi ∈ V2 be the variables labeled i in V1 and V2,
respectively. Define a new variable set V by starting with V1 t V2, then for each i ∈ [k]
merging ui and vi into a new variable wi, and label wi by i. Then define a new constraint
multiset C by starting with C1tC2 (multiset union), and for every i ∈ [k] replacing every
occurrence of ui or vi in each constraint with wi. Then take K1K2 = (V,C).

Define PLI[F ; k] to be the set of k-labeled #CSP(F) instances. Let Uk = (V,∅) ∈
PLI[F ; k], where V contains exactly k variables (all labeled). The k-labeled instance
product is commutative and associative and has identity Uk, so PLI[F ; k] forms a commu-
tative monoid under this product. Let PLIsimp[F ; k] denote the submonoid of PLI[F ; k]
consisting of simple instances – those where the variables in any constraint c ∈ C are
distinct and the multiplicity of every constraint in C is 1 up to permutation of the order
of its variables.

Definition 5 (Zψ). For K = (V,C) ∈ PLI[F ; k] and a map ψ : [k] → V (F) fixing, or
pinning, the values of the labeled variables, define

Zψ(K) =
∑

φ:V→V (F) extends ψ

∏
(F,v1,...,vnF )∈C

F (φ(v1), . . . , φ(vnF )),

where φ extends ψ means φ assigns value ψ(i) to the variable labeled i.
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The k-labeled instance product K1K2 merges the labeled variables, and the unlabeled
variables of K1 and K2 both still appear in constraints from K1 and K2. The unlabeled
variables of K1 take values independently of the unlabeled variables of K2 (i.e. they
appear in no constraints with each other). Hence the k-labeled instance product induces
an entrywise product on the Z(·) maps:

Zψ(K1K2) = Zψ(K1)Zψ(K2). (2)

Definition 6 (#CSP-indistinguishable). For pinning maps ϕ : [k]→ V (F) and ψ : [k]→
V (G), say (F , ϕ) and (G, ψ) are #CSP-indistinguishable if Zϕ(K) = Zψ(KF→G) for every
K ∈ PLI[F ; k].

If k = 0, simply say that F and G are #CSP-indistinguishable.
Say (F , ϕ) and (G, ψ) are simple-#CSP-indistinguishable if Zϕ(K) = Zψ(KF→G) for

every K ∈ PLIsimp[F ; k].

Definition 7 (∼=, Aut). Let F,G be constraint functions of common arity n and |V (F)| =
|V (G)|. A bijection σ : V (F ) → V (G) is a isomorphism from F to G if F (x) = G(σ(x))
for all x ∈ V (F )n, where σ(x) = (σ(x0), . . . , σ(xn−1)).

Say similar constraint function sets F and G are isomorphic (F ∼= G) if there is a
single σ : V (F)→ V (G) which is an isomorphism between every pair F 3 F ! G ∈ G.

For ϕ : [k]→ V (F) and ψ : [k]→ V (G), say (F , ϕ) ∼= (G, ψ) if there is an isomorphism
σ : V (F)→ V (G) satisfying ψ = σ ◦ ϕ.

Define Aut(F) to be the group of all isomorphisms from F to itself.

We emphasize that every corresponding pair of functions in F and G must be iso-
morphic via the same σ. If F ∼= G, then, since an isomorphism is just a relabeling of
the domain elements, F and G are #CSP-indistinguishable. Our main theorem is the
converse of this fact, a generalization of the fact that graphs X ∼= Y iff X and Y are
homomorphism-indistinguishable:

Theorem 8. Let F be a field of characteristic 0, and let F and G be similar F-valued
constraint function sets. Then F ∼= G if and only if F and G are #CSP-indistinguishable.

3 The Intertwiner Proof

In this section, we prove Theorem 8 for F = C.
The following construction ‘flattens’ a constraint function into a matrix.

Definition 9 (Fm,d, f). For an n-ary constraint function F ∈ F[q]n on domain [q] and

any m, d > 0,m+ d = n, define the matrix Fm,d ∈ Fqm×qd by

(Fm,d)x,y = F (x0, . . . , xm−1, yd−1, . . . , y0)

for x ∈ [q]m and y ∈ [q]d (and using the standard bijection between [qm] and [q]m).
Abbreviate f := F n,0 ∈ Fqn , called the signature vector of F .

Note that the bits of the column index of Fm,d are reversed. This is done so that the
definition matches Definition 11 of a gadget signature matrix below.
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3.1 Holant Problems and Gadgets

The proof is carried out in the Holant framework, a generalization of #CSP. See the book
by Cai and Chen [7] for an introduction to Holant theory. Like a #CSP problem, a Holant
problem Holant(F) is is parameterized by a set F of constraint functions, called signature
functions or signatures. The input to Holant(F) is a signature grid Ω, which consists of
an underlying multigraph with vertex set V and edge set E, along with an assignment
of a signature Fv ∈ F to each vertex v ∈ V , where Fv has arity deg(v). The edges E(v)
incident to v are given an order and serve as the input variables to Fv, taking values in
V (F). The output on input Ω is

HolantΩ(F) =
∑

σ:E→V (F)

∏
v∈V

Fv(σ|E(v)), (3)

where Fv(σ|E(v)) is the evaluation of Fv on the ordered tuple σ|E(v), the restriction of σ
to E(v). For example, consider the signature set EO = {EOn | n > 1} with V (EO) =
[2] = {0, 1}, and EOn is the n-ary signature taking value 1 when exactly one of its inputs
is 1 (and the rest are 0), and taking value 0 otherwise. Then HolantΩ(EO) counts the
number of perfect matchings in the underlying multigraph of Ω. For another example,
consider the signature set NEQ = {6=n| n > 1} on domain V (NEQ) = [q], where 6=n is
the n-ary signature taking value 1 when its n inputs are distinct, and 0 otherwise. Then
HolantΩ(NEQ) counts the number of proper edge-q-colorings of Ω.

For sets F and G of signatures define the problem Holant(F | G), which takes as input
a signature grid with a bipartite underlying multigraph with bipartition V = V1∪V2 such
that the vertices in V1 and V2 are assigned signatures from F and G, respectively.

Definition 10 (En, E
m,d, EQ). Define the n-ary equality constraint function En ∈

{0, 1}[q]n by En(x1, . . . , xn) = 1 if x1 = . . . = xn, and 0 otherwise, for x1, . . . , xn ∈ [q] (we
suppress the dependence on q, which will be clear from context). Write Em,d := (En)m,d,
as we must have m+ d = n. Define EQ = {En | n > 1}.

Let F be a set of constraint functions. To each #CSP(F) instance K = (V,C) we
associate a biparite signature grid ΩK in the context of Holant(F | EQ), constructed as
follows. For each variable v ∈ V , create a vertex uv – called an equality vertex – assigned
Env , where nv is the total number of appearances of v in the constraints in C. Then, for
every constraint c = (F, v1, . . . , vnF ) ∈ C, create a vertex wc assigned F , called a constraint
vertex, adjacent to the equality vertices uv1 , . . . , uvnF (ordering the edges incident to wc
accordingly). Any edge assignment σ must assign all edges incident to an equality vertex
the same value (or else the term corresponding to σ is 0), so we can view σ as #CSP
variable assignment. Hence Z(K) = HolantΩK (F | EQ).

Definition 11 (Gadget, M(K), GF(m,d), GF). A gadget is a Holant signature grid
equipped with an ordered set of dangling edges (edges with only one endpoint), defin-
ing external variables. Let GF(m, d) be the collection of all gadgets in the context
of Holant(F | EQ) with m left dangling edges `0, . . . , `m−1 and d right dangling edges
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r0, . . . , rd−1, drawn on the left and right of the gadget, respectively, from top to bottom.
We assume all dangling edges are incident to equality vertices. Let GF =

⋃
m,dGF(m, d).

For K ∈ GF(m, d), with V (F) = [q], define the signature matrix M(K) ∈ Cqm×qd

of K by, for x ∈ [q]m and y ∈ [q]d, letting M(K)x,y be the Holant value of K when its
m left and d right dangling edges are fixed to x0, . . . , xm−1 ∈ [q] and y0, . . . , yd−1 ∈ [q],
respectively.

Definition 12 (Gadget ◦,⊗, †). Define the following operations on gadgets (see Fig-
ure 1).

• Given K ∈ GF(j,m),L ∈ GF(m, d), construct K ◦L ∈ GF(j, d) by placing L to the
right of K, and merging the ith right dangling edge of K with the ith left dangling
edge of L, for i ∈ [m]. If composition makes vertices assigned Ea, Eb ∈ EQ adjacent,
contract the edge between them and assign the resulting merged vertex Ea+b−2 (to
preserve bipartiteness). This does not change the Holant value.

• For gadgets K ∈ GF(m1, d1),L ∈ GF(m2, d2), construct K⊗L ∈ GF(m1 +m2, d1 +
d2) by taking the disjoint union of the multigraphs underlying K and L, placing K
above L.

• For K ∈ GF(m, d), construct K† ∈ GF(d,m) by reflecting the underlying multigraph
of K horizontally, and replacing every signature F with its entrywise conjugate F .

It is well known (see e.g. [7, Section 1.3]) that M(K1 ◦K2) = M(K1) ◦ M(K2),
M(K1⊗K2) = M(K1) ⊗ M(K2), and M(K†) = M(K)† – that is, the gadget opera-
tions ◦,⊗, † induce the matrix operations composition, Kronecker product, and conjugate
transpose, respectively.

An (m+d)-labeled #CSP(F) instanceK ∈ PLI[F ;m+d] corresponds to a gadget K ∈
GF(m, d) with dangling edges incident to the equality vertices constructed from the labeled
variables. For a map ψ : [m + d] → V (F) assigning values x0, . . . , xm−1, y0, . . . , yd−1 ∈
V (F) to the labeled variables, we have M(K)x,y = Zψ(K), because giving an equality
vertex input x along a dangling edge forces its incident edges to take value x, pinning the
corresponding variable to x.

Definition 13 (Em,d, I, F). For m, d > 0, let Em,d be the gadget consisting of a single
vertex, assigned Em+d, with m left and d right dangling edges. Define I := E1,1.

For an n-ary signature F , let F be the gadget consisting of a degree-n vertex assigned
F , adjacent to n degree-2 vertices assigned E2, each of which is incident to a left dangling
edge. See Figure 2 for illustrations.

Ignoring (i.e. treating as edges) vertices assigned E2 has no effect on the Holant value.
In particular, the ith input to the gadget F equals the ith input to the signature F , so

M(Em,d) = Em,d and M(F) = f

(recall that f = F nF ,0 is the signature vector of F ). If we pivot the last d left dangling
edges of F to the right, preserving their cyclic order around the central vertex, the resulting
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K

L

K ◦ L

K⊗ L

L†

Figure 1: Gadgets K ∈ GF(3, 2) and L ∈ GF(2, 1), and their composition K ◦L ∈
GF(3, 1), tensor product K⊗L ∈ GF(5, 3), and transpose L† ∈ GF(1, 2). Equality and
constraint vertices are drawn as circles and squares, respectively.

gadget in GF(nF −d, d) has signature matrix F nF−d,d (this is the purpose of reversing the
right indices in Definition 9, as the top-down order of the d pivoted edges is reversed).

Definition 14 (Sσ, S, S). For permutation σ ∈ Sk, let Sσ ∈ G(k, k) be the gadget
formed from I⊗k by permuting the dangling ends of the right dangling edges according
to σ – that is, the ith left dangling edge is incident to the same E2 vertex as the σ(i)th
right dangling edge (see Figure 3). Given left inputs x ∈ [q]k and right inputs y ∈ [q]k,
Sσ evaluates to evaluates to 1 if xi = yσ(i) for all i ∈ [k], and evaluates to 0 otherwise.

Abbreviate S := S(1 2) and let S be the 4-ary signature of S (so S2,2 = M(S)). See
Figure 2.

F

F

E5

E2,3 S

Figure 2: Basic gadgets E2,3, F (for 5-ary F ), and S.

We will compose Sσ with other gadgets to permute their dangling edges. As noted
above, ignoring E2 vertices does not affect the Holant value; hence we can view Sσ as a
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gadget composed solely of two-sided dangling edges. Analogously to generating the braid
group by crossing adjacent strands, we can construct any Sσ using only I and S. Let
〈M〉◦,⊗,† denote the closure of a set M of gadgets or signature matrices under ◦,⊗, †.

Proposition 15. For any k > 2 and σ ∈ Sk, we have Sσ ∈ 〈I,S〉◦,⊗,†.

Proof. Decompose σ into adjacent transpositions as σ = (a1 a1+1)(a2 a2+1) . . . (as as+1).
Then, since S swaps the position of adjacent dangling edges, we have (see Figure 3)

Sσ =©s
i=1(I⊗ai−1⊗S⊗ I⊗k−ai−1).

= ◦ ◦ ◦

S(1 3)(2 4) I⊗S⊗ I S⊗ I⊗2 I⊗2⊗S I⊗S⊗ I

Figure 3: Illustrating the decomposition of Sσ given by Proposition 15, with σ =
(1 3)(2 4) = (2 3)(1 2)(3 4)(2 3).

The next theorem is an extension of [28, Theorem 8.4] from the setting of unweighted
graph homomorphism (where F contains a single binary symmetric 0-1 valued constraint
function) to any set of real-valued constraint functions.

Theorem 16. For any R-valued constraint function set F ,

GF = 〈E1,0,E1,2,S, {F | F ∈ F}〉◦,⊗,†.

If F is C-valued, then GF ⊂ 〈E1,0,E1,2,S, {F | F ∈ F}〉◦,⊗,†.

Proof. Observe that GF is closed under ⊗ and, for real-valued F , under †. By definition,
all dangling edges of gadgets in F are incident to equality vertices, and ◦ preserves bi-
partiteness by contracting the edges between adjacent equality vertices. Therefore GF is
also closed under ◦, giving the ⊃ inclusion. To show the ⊂ inclusion, first observe that
by chaining copies of E1,2, we can construct any Em,d. Formally, I = E1,2 ◦(E1,2)†,

Em,d =©m−2
i=0 (E2,1⊗ I⊗i) ◦©d−2

i=0 (E1,2⊗ I⊗i)

for any m, d > 2, and Em,d = Em,1 ◦ ©d−2
i=0 (E1,2⊗ I⊗i) for m ∈ {0, 1}, d > 2. Also

E0,0 = E0,1 ◦E1,0. Thus we obtain the following recontextualization of [28, Lemma 3.18]):

Em,d ∈ 〈E1,2,E1,0〉◦,⊗,† for all m, d > 0. (4)
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Consider a Holant(F | EQ) gadget K ∈ GF(M,D). We will construct K from the
basic gadgets (see Figure 4). Suppose K contains r equality vertices, which we denote
e1, . . . , er in arbitrary order, and s constraint vertices, denoted c1, . . . , cs in arbitrary
order, with cj assigned signature Fj ∈ F . For i ∈ [r], suppose vertex ei is incident to
mi left and di right dangling edges in K, respectively, and has degree mi + di + ti. Let
T =

∑r
i=1 ti =

∑s
j=1 deg(cj). We also have M =

∑r
i=1mi and D =

∑r
i=1 di, because by

assumption all dangling edges are incident to equality vertices. Let K0 =
⊗r

i=1 Emi,di+ti ∈
GF(M,D + T ) and identify ei with the vertex in Emi,di+ti . By the bipartite structure of
K, for all k ∈ [arity(F1)] = [deg(c1)], the kth input to c1 is incident to some equality
vertex eik . Identifying c1 with the vertex in F1 (and inserting the dummy E2 vertices),
there is a permutation σ1 ∈ SD+T such that, in the gadget

K1 = K0 ◦Sσ1 ◦(F1⊗ I⊗D+T−arity(F1)) ∈ GF(M,D + T − arity(F1)),

the kth input to c1 is merged with the proper edge incident to eik for every k ∈ [arity(F1)].
Similarly, for each j ∈ [s], let σj ∈ SD+T−

∑j−1
`=1 arity(F`)

be the permutation that matches

cj’s incident edges with the proper equality vertices. Then

Ks = K0 ◦©s
j=1

(
Sσj ◦

(
Fj ⊗ I⊗D+T−

∑j
`=1 arity(F`)

))
∈ GF(M,D),

is a gadget with the same internal structure as K. Finally, there exist τ ∈ SM and
υ ∈ SD that order the left and right dangling edges properly: K = Sτ ◦Ks ◦Sυ. By
Proposition 15 and (4), K ∈ 〈E1,0,E1,2,S, {F | F ∈ F}〉◦,⊗,†.

F2

F1

E3

E4

E3

= ◦ ◦ ◦

F1

◦ ◦

F2

K S(1 2)(3)

E1,2⊗E0,3⊗E2,2

S(1 4 5 6 3)(2)(7)

F1⊗ I⊗4

S(1 2 3 4)

F2⊗ I⊗2

Figure 4: Illustrating the Theorem 16 decomposition of a K ∈ G(3, 2). We draw dangling
edges thinner than internal edges, and use circles for equality vertices and squares for
constraint vertices. A diamond on an edge marks this edge as the first input to the
incident constraint vertex, and inputs proceed counterclockwise.

The ⊃ inclusion of Theorem 16 does not hold for complex-valued F , because such F
are in general not closed under entrywise conjugation, a by-product of the † operator.
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However, the real-valued case suffices to prove the below Theorem 21 even for complex-
valued F .

3.2 Intertwiner Spaces

Let H be a subgroup of the group Oq of (real) q × q orthogonal matrices. The (m, d)-
intertwiner space of H is

CH(m, d) = {M ∈ Cqm ×Cqd | ∀A ∈ H : A⊗mM = MA⊗d}.

Define CH =
⋃
m,dCH(m, d) to be the set of all intertwiners of H.

We will identify σ ∈ Sq with the associated permutation matrix Pσ ∈ {0, 1}q×q. With
this perspective, we consider subgroups H ⊂ Sq ⊂ Oq. If Pσ is a q×q permutation matrix,
then, for a vector v ∈ Cqn ∼= C[q]n , P⊗nσ v is the vector obtained by permuting the entries
of v according to the natural action of σ on [q]n ∼= [qn] – that is, for x ∈ [q]n,

(P⊗nσ v)x = vσ(x) = v(σ(x1),...,σ(xn)).

Hence, if x,y ∈ [q]n are in the same orbit of the action of H, then every (n, 0)-intertwiner
takes equal values on x and y. Conversely, if x,y are not in the same orbit, then the
(n, 0) intertwiner which is 1 on the orbit containing x and 0 elsewhere separates x and y.
Therefore we have

Proposition 17. Let H ⊂ Sq. Then

vx = vy for every v ∈ CH(n, 0) if and only if there exists a σ ∈ H such that σ(x) = y .

It is well-known (see e.g. [1, Proposition 1.2]) – and can be verified directly – that
for any H ⊂ Oq, CH is a symmetric tensor category with duals, meaning each CH(m, d)
is a vector space over C and CH is closed under ◦,⊗, † and satisfies I = E1,1 ∈ CH(1, 1),
E2,0 ∈ CH(2, 0), and S2,2 ∈ CH(2, 2).

The next theorem is a classical version of Woronowicz’s Tannaka-Krein duality [32],
expressed in this form by Banica and Speicher [1, Theorem 1.3]. It is the key result
underlying our first proof of Theorem 8.

Theorem 18. The mapping H 7→ CH induces an inclusion-reversing bijection between
(compact) subgroups H ⊂ Oq and symmetric tensor categories with duals.

Let 〈M〉+,◦,⊗,† denote the closure of a set M of signature matrices under ◦,⊗, †, and
C-linear combinations of matrices with matching dimensions. The following well-known
result, stated in this form by Chassaniol [14], characterizes the intertwiners of Sq.

Proposition 19. CSq = 〈E1,0, E1,2, S2,2〉+,◦,⊗,†.

Proof. First observe that 〈E1,0, E1,2, S2,2〉+,◦,⊗,† is a symmetric tensor category with du-
als (it contains E1,1 and E2,0 by the proof of Theorem 16). Hence, by Theorem 18,
〈E1,0, E1,2, S2,2〉+,◦,⊗,† = CH for some H ⊂ Oq. It follows from direct calculation that
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a matrix A ∈ Cq×q satisfies AE1,0 = E1,0 and E0,1 = E0,1A iff every row and column
of A sums to 1 (E1,0 and E0,1 = (E1,0)† are all-ones column and row vectors), and
A⊗2E2,1 = E2,1A and AE1,2 = E1,2A⊗2 iff the products of distinct entries in the same row
or column of A is 0. These conditions are equivalent to A being a permutation matrix.
Thus E1,0, E1,2 ∈ CSq , so 〈E1,0, E1,2, S2,2〉+,◦,⊗,† ⊂ CSq , and every A ∈ H is a permutation
matrix, so H ⊂ Sq, which implies 〈E1,0, E1,2, S2,2〉+,◦,⊗,† = CH ⊃ CSq .

Banica and Speicher [1, Theorem 1.10] classify CSq as the set of linear combinations of
matrices of partition categories, or, in our terminology, signature matrices of G∅ gadgets
(gadgets composed of only signatures in EQ). Using this characterization, Proposition 19
also follows directly from Theorem 16 with F = ∅. The next lemma generalizes Proposi-
tion 19 to nonempty F . It is an extension of [14, Proposition 3.5] from graphs to arbitrary
complex-valued signature sets. Assume V (F) = [q], so Aut(F) ⊂ Sq.

Lemma 20. CAut(F) = 〈E1,0, E1,2, S2,2, {f | F ∈ F}〉+,◦,⊗,†.

Proof. By Proposition 19, 〈E1,0, E1,2, S2,2, {f | F ∈ F}〉+,◦,⊗,† ⊃ CSq , so, by Theorem 18,
〈E1,0, E1,2, S2,2, {f | F ∈ F}〉+,◦,⊗,† = CH for some H ⊂ Sq. By definition, σ ∈ Aut(F) if

and only if P
⊗ arity(F )
σ f = f for every F ∈ F . Therefore each f ∈ CAut(F)(arity(F ), 0), so

CH ⊂ CAut(F), and H ⊂ Aut(F), so CH ⊃ CAut(F).

Define an (m, d)-quantum F-gadget to be a formal C-linear combination of gadgets
in GF(m, d). In the context of counting homomorphisms to graph X (equivalently,
#CSP({AX})), an (m, d)-quantum {AX}-gadget is equivalent to an (m+d)-labeled quan-
tum graph [19, 26, 27]. Let QF(m, d) be the set of all (m, d)-quantum F -gadgets. Extend
the signature matrix function M linearly to QF(m, d). Observe that, for a fixed (m, d),
the set on the RHS of Theorem 20 is the span of the signature matrices of the gadgets in
the set on the RHS of Theorem 16. Therefore

CAut(F)(m, d) = {M(Q) | Q ∈ QF(m, d)} for any set F of R-valued constraint functions.
(5)

Since equality in Theorem 16 only holds for R-valued F , we do not immediately obtain (5)
for C-valued F . However, the #CSP setting admits, via the k-labeled instance product,
the construction of arbitrary entrywise products of signatures (recall (2)), which, as we
will see again in Section 4, enables Vandermonde interpolation (see also [24, Lemma 2.3]).
Here, we use interpolation to extend (5) to the complex-valued case, as in the proof of
[13, Lemma 19] (credited to an anonymous reviewer). This technique only applies to sets
of binary constraint functions in the planar setting of [13], but here violating planarity is
not an issue.

Theorem 21. CAut(F)(m, d) = {M(Q) | Q ∈ QF(m, d)} for any set F of C-valued
constraint functions.

Proof. Let F ∈ F ∩C[q]n . For i > 0, construct an n-labeled #CSP(F ) instance Ki con-
sisting of n labeled variables v0, . . . , vn−1 and i copies of the constraint (F, v0, . . . , vn−1).
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Let Ki ∈ GF(n, 0) be the corresponding n-ary gadget. Then M(Ki) = f •i, the ith entry-
wise power of the signature vector f ∈ Cqn of F (and f •0 is the all-ones vector). Choose
p rows of the matrix

[
f •0 f •1 . . . f •p−1

]
whose second entries are the p distinct entries

b0, . . . , bp−1 of f . If some linear combination of these rows with coefficients a0, . . . , ap−1

equals zero, then, by Proposition 1, each a0 = . . . = ap−1 = 0. Therefore these p rows are
linearly independent, so the vectors {f •i}p−1

i=0 are linearly independent.
For any λ ∈ R, define Fλ ∈ {0, 1}[q]n by

Fλ(x) =

{
1 F (x) = λ

0 otherwise
,

and let Fλ have signature vector fλ. The vector space 〈f •0, . . . f •p−1〉+ ⊂ 〈fλ | λ ∈ C〉+, a
space of dimension p, so, since {f •i}p−1

i=0 are linearly independent, the reverse inclusion also
holds: 〈f •0, . . . f •p−1〉+ = 〈fλ | λ ∈ C〉+. Therefore each Fλ is quantum-gadget realizable,
as each F •i is gadget-realizable, so

{M(Q) | Q ∈ QF(m, d)} = {M(Q) | Q ∈ Q{Fλ|F∈F ,λ∈C}(m, d)}. (6)

By the ⊂ inclusion of Theorem 16, each f •i ∈ 〈E1,0, E1,2, S2,2, {f | F ∈ F}〉◦,⊗,† as well,
so, similarly,

CAut(F) = 〈E1,0, E1,2, S2,2, {f | F ∈ F}〉◦,⊗,†
= 〈E1,0, E1,2, S2,2, {fλ | F ∈ F , λ ∈ C}〉◦,⊗,† = CAut({Fλ|F∈F ,λ∈C}) (7)

(with the first and third equalities using Theorem 20). Now, applying (5) to the R-valued
set {Fλ | F ∈ F , λ ∈ C}, along with (6) and (7), gives

CAut(F) = CAut({Fλ|F∈F ,λ∈C}) = {M(Q) | Q ∈ Q{Fλ|F∈F ,λ∈C}(m, d)}
= {M(Q) | Q ∈ QF(m, d)}.

Theorem 21 is an extension of [28, Theorem 8.5] and, in view of Proposition 17 and
the equivalence between (m, d)-quantum {AX}-gadgets and (m + d)-labeled quantum
graphs, [26, Lemma 2.5] from graph homomorphism to #CSP. The next result similarly
generalizes [26, Lemma 2.4]. It is also a version of Theorem 34 (proved by interpolation
below) restricted to F = G.

Lemma 22. Let k > 0 and ϕ, ψ : [k] → V (F). If Zϕ(K) = Zψ(K) for every K ∈
PLI[F ; k], then (F , ϕ) ∼= (F , ψ).

Proof. View K as a gadget K ∈ GF(k, 0). Write ϕ([k]) := (ϕ(0), . . . , ϕ(k − 1)) ∈ V (F)k.
Then, by assumption, for every K ∈ GF(k, 0),

(M(K))ϕ([k]) = Zϕ(K) = Zψ(K) = (M(K))ψ([k]).

Thus (M(Q))ϕ([k]) = (M(Q))ψ([k]) for every Q ∈ QF(k, 0), so vϕ([k]) = vψ([k]) for every
v ∈ CAut(F)(k, 0) by Theorem 21. Then, by Proposition 17, there is a σ ∈ Aut(F)
satisfying σ(ϕ([k])) = ψ([k]). In other words, σ ◦ ϕ = ψ.
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Definition 23 (⊕). Let F ∈ FV (F )n , G ∈ FV (G)n be constraint functions of arity n > 2.
Define the direct sum F ⊕G ∈ F(V (G)tV (F ))n of F and G by, for x ∈ (V (F ) t V (G))n,

(F ⊕G)(x) =


F (x) x ∈ V (F )n

G(x) x ∈ V (G)n

0 otherwise.

For similar F and G, define F ⊕G = {F⊕G | F 3 F ! G ∈ G} on domain V (F)tV (G).

For n = 2, F ⊕ G is the adjacency matrix of the disjoint union of the F-weighted
graphs with adjacency matrices F and G.

Definition 24 (∼,≈, connected constraint function). For a constraint function set F ,
define an equivalence relation ≈ on V (F) as the transitive closure of the relation ∼, where
y ∼ z if there is an F ∈ F and a tuple x ∈ V (F )arity(F ) containing y and z such that
F (x) 6= 0. Say F is connected if ≈ has exactly one equivalence class, and is disconnected
otherwise.

For I ⊂ V (F), define F |I := {F |I : F ∈ F}, where F |I ∈ CIarity(F )

is the subtensor
of F induced by I. If I, J ⊂ V (F) are distinct equivalence classes of ≈ (‘connected
components’) and σ ∈ Aut(F) satisfies σ(i) = j for some i ∈ I and j ∈ J , it follows
that σ is an isomorphism between F |I and F |J . In particular, if F and G are connected,
then V (F) and V (G) are the two equivalence classes of V (F ⊕G), so if there is a σ ∈
Aut(F ⊕G) mapping some x ∈ V (F) to some y ∈ V (G), then F ∼= G. For n = 2
and symmetric F and G, the above statements are all equivalent to the corresponding
well-known facts about graphs.

We now have all the tools needed to prove Theorem 8 for F = C.

Theorem 25. let F and G be similar C-valued constraint function sets. Then F ∼= G if
and only if F and G are #CSP-indistinguishable.

Proof. We only need the (⇐=) direction. Suppose F and G are #CSP-indistinguishable.
Let 0F and 0G be new domain elements. For each F ∈ F , G ∈ G of arity n > 2, define
constraint functions F ′ and G′ on V (F ′) := V (F) ∪ {0F} and V (G ′) := V (G) ∪ {0G},
respectively, by

F ′(x) =

{
F (x) x ∈ V (F)n

1 otherwise
, G′(x) =

{
G(x) x ∈ V (G)n

1 otherwise

for x ∈ V (F ′)n and x ∈ V (G ′)n, respectively. In other words, if any entry of x is 0F , then
F ′(x) = 1, and similarly for G′. For unary F ∈ F , G ∈ G, define binary F ′ and G′ by

F ′(x, y) =


F (x) x = y ∈ V (F)

1 x = 0F or y = 0F

0 otherwise

, G′(x, y) =


G(x) x = y ∈ V (G)

1 x = 0G or y = 0G

0 otherwise
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for x, y ∈ V (F ′) and x, y ∈ V (G ′), respectively. The arity increase is necessary because
connectivity only makes sense for constraint functions with arity at least two. Now let
F ′ = {F ′ | F ∈ F} and G ′ = {G′ | G ∈ G}.

LetK = (V,C) ∈ PLI[F ′⊕G ′; 1] be a 1-labeled #CSP(F ′⊕G ′) instance, with labeled
variable v0 ∈ V . We will show that

Z07→0F (K) = Z0 7→0G(K). (8)

If K is not connected (i.e. the underlying graph of the Holant(F | EQ) signature grid
corresponding to K is not connected), then the components of K that do not contain v0

contribute the same value to the partition regardless of the assignment to v0. Hence, to
establish (8), we may assume K is connected. Therefore, if φ : V → V (F ′⊕G ′) satisfies
φ(v0) = 0F , then, since each F ′ ⊕ G′ evaluates to 0 unless all its inputs are in V (F ′) or
all its inputs are in V (G ′), we must have φ(V ) ⊂ V (F ′) for any φ contributing a nonzero
value to Z07→0F (K).

Any φ with φ(v0) = 0F maps some S ⊂ V to 0F , with v0 ∈ S. For a fixed S ⊂ V , the
remaining variables V \ S take all values in V (F ′) \ {0F} = V (F) as φ ranges over {φ |
φ−1(0F ) = S}. Additionally, any constraint containing a variable in S always evaluates
to 1, regardless of the assignments to the other variables. Construct a #CSP(F) instance
KFV \S from K as follows. First eliminate all variables in S and all constraints containing
any variable in S. Then, for each constraint applying F ′⊕G′, if F and G have arity > 1,
replace F ′ ⊕ G′ with F . If F and G are unary, then merge the two variables to which
the binary F ′ ⊕G′ is applied and replace the constraint with a constraint applying F to
the merged variable. Assuming all inputs to F ′ ⊕ G′ are in V (F), this variable merging
procedure does not change the value of the partition function, since by construction
F ′ ⊕G′ acts as the function (x, y) 7→ δxyFx. Now the total contribution to Z07→0F (K) of
the assignments φ satisfying φ−1(0F ) = S is Z(KFV \S). Thus

Z07→0F (K) =
∑

S⊂V,S3v0

Z(KFV \S).

A similar expression holds for Z07→0G(K), with the #CSP(G) instance KGV \S = (KFV \S)F→G
in place of KFV \S. So, by assumption,

Z07→0F (K) =
∑

S⊂V,S3v0

Z(KFV \S) =
∑

S⊂V,S3v0

Z(KGV \S) = Z07→0G(K),

proving (8). Now by Lemma 22 with k = 1, there is a σ ∈ Aut(F ′⊕G ′) satisfying
σ(0F ) = 0G. By construction, 0F and 0G satisfy 0F ∼ x for every x ∈ V (F ′) and 0G ∼ y
for every y ∈ V (G ′), so F ′ and G ′ are connected. Therefore σ |V (F ′) is an isomorphism
between F ′ and G ′. But σ(0F ) = 0G, so σ |V (F) is an isomorphism between F and
G (if F and G are unary, then σ |V (F) is really an isomorphism between the functions
(x, y) 7→ δxyFy and (x, y) 7→ δxyGy, but this implies an isomorphism between F and
G, since unary functions are isomorphic if and only if they have the same multiset of
entries).
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The proof of Theorem 25 is a ‘classical’ version of Cai and Young’s proof of [13, Lemma
14], and a generalization of Lovász’s proof of [26, Corollary 2.6], which is essentially
Theorem 8 restricted to real-weighted graph homomorphism. Both proofs use the idea
of adding a universal vertex to connect the graph/constraint function, since for weighted
such objects we cannot take the complement to assume connectedness.

4 The Interpolation Proof

4.1 Preliminaries

Here, we introduce some definitions specific to the interpolation proof. First, define a
domain-weighted #CSP problem.

Definition 26 (#CSP(F , α), Zψα ). The problem #CSP(F , α) is parameterized by a set
F of constraint functions and a vector α ∈ (F \{0})V (F) of domain weights. The partition
function Zψ

α , defined on #CSP(F) instances K = (V,C), is

Zψ
α (K) =

∑
φ:V→V (F) extends ψ

αφ
αψ

∏
(F,v1,...,vnF )∈C

F (φ(v1), . . . , φ(vnF )),

where
αφ =

∏
v∈V

αφ(v) and αψ =
∏
i∈[k]

αψ(i).

In particular, Zψ
1 = Zψ, where 1 is the all-ones vector. One can model domain weights

in the ordinary #CSP setting by applying a unary constraint function to each variable.
However, explicit domain weights will prove useful for removing twin domain elements in
Corollary 35, so we consider them separately.

Call (F , α, ϕ) and (G, β, ψ) (simple)-#CSP-indistinguishable if Zϕ
α (K) = Zψ

β (KF→G)

for every K ∈ PLI[F ; k] (resp. PLIsimp[F ; k]), and say σ is an isomorphism of (F , α, ϕ)
and (G, β, ψ) if σ is an isomorphism of (F , ϕ) and (G, ψ) and αi = βσ(i) for all i ∈ V (F).

For F = {Fj | j ∈ T} indexed by a possibly infinite set T , define the following set,
which represents all ‘configurations’ of the remaining arguments of an application of a
function in F when given a single distinguished argument at position r:

J (F) := {(j,x, r) | j ∈ T,x ∈ V (F)nj−1, r ∈ [nj]}, (9)

where nj is the arity of Fj ∈ F . If nj = 1 (Fj is unary), then say V (F)nj−1 = V (F)0 = {()}
(the set containing the empty tuple). For a length-n tuple x, index r ∈ [n+ 1] and any y,
define xr←↩ y as the length-n + 1 tuple (x0, . . . , xr−1, y, xr, . . . , xn−1) created by inserting
y at position r. Domain elements i, i′ ∈ V (F) are twins if

Fj
(
xr←↩ i

)
= Fj

(
xr←↩ i

′ )
for every (j,x, r) ∈ J (F).

If nj = 1 and x = (), then Fj (xr←↩ i) = Fj(i). If every F ∈ F is symmetric, meaning F
is invariant under permutations of the order of its inputs, then say F is symmetric, and
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i, i′ ∈ V (F) are twins if Fj(i,x) = Fj(i
′,x) for every j ∈ T and x ∈ V (F)nj−1, where

we abbreviate Fj(i,x) = Fj
(
x0←↩ i ). F is twin-free if no two domain elements are twins.

Equivalently, F is twin-free iff the tuples(
Fj
(

xr←↩ i
))

(j,x,r)∈J (F)

are pairwise distinct for i ∈ V (F). If F is symmetric, then F is twin free if and only if
the tuples (Fj(i,x))j∈T,x∈V (F)nj−1 are pairwise distinct for i ∈ V (F).

4.1.1 Vandermonde Interpolation

Next, we introduce the iterated Vandermonde interpolation lemma of Cai and Govorov
[12], which follows from iterated applications of Proposition 1.

Lemma 27 ([12, Corollary 4.2]). Let I and J be finite index sets, and ai, bi,j ∈ F for
all i ∈ I, j ∈ J . Further, let I =

⊔
`∈[s] I` be the partition of I into equivalence classes

defined by relation ∼, where i ∼ i′ iff bi,j = bi′,j for all j ∈ J . If∑
i∈I

ai
∏
j∈J

b
pj
i,j = 0

for all choices of (pj)j∈J where each 0 6 pj < |I|, then
∑

i∈I` ai = 0 for every ` ∈ [s].

In this work, I (and J) will often be the set of all m-tuples whose entries range over
a fixed finite set. In this case, we have the following corollary.

Corollary 28. Let I and J be finite index sets and m > 1. Let ai ∈ F for i ∈ Im and
bi,j ∈ F for i ∈ I, j ∈ J . Define ∼ as in Lemma 27. Let Im =

⊔
k∈[sm] I

(m)
k be a partition

of Im into equivalence classes defined by relation ∼m, where i ∼m i′ if ih ∼ i′h for all
h ∈ [m]. If ∑

i∈Im
ai

∏
j∈J,h∈[m]

b
ph,j
ih,j

= 0 (10)

for every choice of (ph,j)j∈J,h∈[m], where each 0 6 ph,j < |I|, then, for every k ∈ [sm],∑
i∈I(m)

k

ai = 0.

Proof. Apply induction on m. The case m = 1 is exactly Lemma 27. Otherwise, assume
Corollary 28 holds for m− 1 and any choice of a(i0,...,im−2) for each (i0, . . . , im−2) ∈ Im−1.
Separating the sum in (10) over im−1 gives

∑
im−1∈I

 ∑
(i0,...,im−2)∈Im−1

ai
∏

j∈J,h∈[m−1]

b
ph,j
ih,j

(∏
j∈J

b
pm−1,j

im−1,j

)
= 0. (11)
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Now apply Lemma 27 with i := im−1 and

aim−1 :=
∑

(i0,...,im−2)∈Im−1

ai
∏

j∈J,h∈[m−1]

b
ph,j
ih,j

and pj := pm−1,j.

For every ` ∈ [s] (with s and (I`)`∈[s] from Lemma 27), we obtain

0 =
∑

im−1∈I`

aim−1 =
∑

im−1∈I`

 ∑
(i0,...,im−2)∈Im−1

ai
∏

j∈J,h∈[m−1]

b
ph,j
ih,j


=

∑
(i0,...,im−2)∈Im−1

 ∑
im−1∈I`

ai

 ∏
j∈J,h∈[m−1]

b
ph,j
ih,j

.

Now, inductively applying Corollary 28 with, for each (i0, . . . , im−2) ∈ Im−1,

a(i0,...,im−2) :=
∑

im−1∈I`

ai,

we conclude that, for every k′ ∈ [sm−1],∑
(i0,...,im−2)∈I(m−1)

k′

∑
im−1∈I`

ai = 0. (12)

By definition, (i0, . . . , im−2) ∼m−1 (i′0, . . . , i
′
m−2) ∧ im−1 ∼ i′m−1 ⇐⇒ i ∼m i′. Hence,

for fixed k′ and `, the double sum in (12) is a sum over a single equivalence class I
(m)
k ,

and since (12) holds for every choice of k′ ∈ [sm−1] and ` ∈ [s], we obtain the desired∑
i∈I(m)

k
ai = 0 for every k ∈ [sm].

4.2 The Unary Case

First, we must separately address the case where F and G contain only unary constraint
functions, where Lemma 32 below does not apply. The proof uses simple versions of the
arguments we will apply throughout this section.

Lemma 29. Let (F , α) and (G, β) be finite similar domain-weighted sets of unary con-
straint functions with |V (F)| > |V (G)|. Assume F is twin-free. Let k > 0 and ϕ : [k]→
V (F) and ψ : [k]→ V (G). If (F , α, ϕ) and (G, β, ψ) are simple-#CSP-indistinguishable,
then |V (F)| = |V (G)| and (F , α, ϕ) ∼= (G, β, ψ).

Proof. Write F = {Fi | i ∈ [t]} and G = {Gi | i ∈ [t]}. For p ∈ [|V (F) t V (G)|]t,
let Kp ∈ PLIsimp[F ; k] be the instance with an unlabeled variable v, k unused labeled
variables, and pj copies of the constraint (Fj, v), for j ∈ [t]. Then Zϕ

α (Kp) = Zψ
β (Kp

F→G)
is equivalent to ∑

i∈V (F)

αi
∏
j∈[t]

Fj(i)
pj +

∑
i∈V (G)

(−βi)
∏
j∈[t]

Gj(i)
pj = 0. (13)
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Considering (13) for every p ∈ [|V (F) t V (G)|]t, we may apply Lemma 27 with I :=
V (F)t V (G), J := [t], ai := αi or βi, and bi,j := Fj(i) or Gj(i) for i ∈ V (F) or i ∈ V (G),
respectively. As F is twin-free, the tuples (bi,j)j∈[t] = (Fj(i))j∈[t] are distinct for distinct
i ∈ V (F). Therefore no equivalence class I` from Lemma 27 contains more than one
element of V (F). However, every αi 6= 0 by definition, so no equivalence class consists
of only a single element of V (F). Thus there is a function σ : V (F) → V (G) such
that i ∼ σ(i) – or equivalently ∀j ∈ [t] : Fj(i) = bi,j = bσ(i),j = Gj(σ(i)) – for every
i ∈ V (F). Furthermore, since no two elements of V (F) are in the same equivalence
class, σ is injective, hence bijective, as |V (F)| > |V (G)|. Therefore |V (F)| = |V (G)|, and
Lemma 27 concludes that αi − βσ(i) = 0 for every i ∈ V (F), so σ is an isomorphism of
(F , α) and (G, β).

Now, for every c ∈ [k] and F ∈ F , let KF,c ∈ PLIsimp[F ; k] be an instance with k
labeled variables, no unlabeled variables, and a single constrant applying F to the variable
labeled c. Then

F (ϕ(c)) = Zϕ
α (KF,c) = Zψ

β (KF,c
F→G) = G(ψ(c)) = F (σ−1(ψ(c))),

where G ! F . By twin-freeness of F , we conclude that ϕ(c) = σ−1(ψ(c)). Therefore
ψ = σ ◦ ϕ.

4.3 The Symmetric Ternary Case

For clarity of exposition, we first prove the key lemma for the special case in which all
constraint functions are symmetric and ternary.

Proposition 30. Let F = {Fj | j ∈ [t]} and G = {Gj | j ∈ [t]} be finite similar constraint
function sets with |V (F)| > |V (G)| such that every F ∈ F and G ∈ G are symmetric and
have arity 3, and assume F is twin-free. Let α, β be the domain weights associated with
F and G, respectively.

Let θ : [2k]→ V (F) and ψ : [2k]→ V (G) for k > 0, and for every x, y ∈ V (F), let

Ixy = {a ∈ [k] | (θ(a), θ(a+ k)) = (x, y)} ⊂ [k]

Assume θ is well-balanced – that is, for every x, y ∈ V (F), |Ixy| > 2|V (F)|3. If Zθ
α(K) =

Zψ
β (KF→G) for every K ∈ PLIsimp[F ; 2k], then |V (F)| = |V (G)| and (F , α, θ) ∼= (G, β, ψ).

Proof. By the pigeonhole principle, since |Ixy| > 2|V (F)|3 > 2|V (F)| · |V (G)|2 for every
x, y ∈ V (F), there exists a function s : V (F)2 → V (G)2 such that for every x, y ∈ V (F),
the set

Jxy := Ixy ∩ {a ∈ [k] | (ψ(a), ψ(a+ k)) = s(x, y)}

satisfies |Jxy| > 2|V (F)|. Consider the variable set

V1 = {v, u0, . . . , u2k−1},
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where each u` is labeled `. For each choice of p = (pxyj)x,y∈V (F),j∈[t] ∈ [2|V (F)|]V (F)2×[t],
construct a 2k-labeled #CSP(F) instance Kp ∈ PLIsimp[F ; 2k] as follows. For each
x, y ∈ V (F) and j ∈ [t], choose an arbitrary Pxyj ⊂ Jxy with |Pxyj| = pxyj, and define

Cp(v) :=
⋃

x,y∈V (F)

⋃
j∈[t]

⋃
a∈Pxyj

(Fj, v, ua, ua+k). (14)

Then define Kp := (V1, C
p(v)). If a ∈ Pxyj ⊂ Jxy, then by definition (θ(a), θ(a + k)) =

(x, y) and (ψ(a), ψ(a + k)) = s(x, y). Hence the variables (ua, ua+k) take values (x, y)
and s(x, y) under θ and ψ, respectively, independent of the choice of a in Pxyj. Therefore

Zθ
α(Kp) = Zψ

β (Kp
F→G) is equivalent to∑

i∈V (F)

αi
∏

x,y∈V (F),j∈[t]

Fj(i, x, y)pxyj +
∑
i∈V (G)

(−βi)
∏

x,y∈V (G),j∈[t]

Gj(i, s(x, y))pxyj = 0, (15)

where we write Gj(i, s(x, y)) to mean Gj(i, s(x, y)0, s(x, y)1). The sums over i corre-
spond to the choice of assignment for the only free variable v in Kp and Kp

F→G, respec-
tively. Overall, the LHS of (15) is a sum over V (F) t V (G), with |V (F) t V (G)| =
|V (F)| + |V (G)| 6 2|V (F)|. By constructing Kp and considering (15) for every p ∈
[2|V (F)|]V (F)2×[t], we may apply Lemma 27 with

I := V (F) t V (G), J := V (F)2 × [t],

ai :=

{
αi i ∈ V (F)

−βi i ∈ V (G)
, bi,xyj :=

{
Fj(i, x, y) i ∈ V (F)

Gj(i, s(x, y)) i ∈ V (G)
.

Since F is twin-free, the tuples (Fj(i, x, y))x,y∈V (F),j∈[t] are pairwise distinct for i ∈ V (F).
Hence no equivalence class contains more than one element of V (F). However, every
αi 6= 0, so no equivalence class consists of only a single element of V (F). Thus there is a
function σ : V (F)→ V (G) such that i ∼ σ(i) for every i ∈ V (F) – that is,

(Fj(i, x, y))x,y∈V (F),j∈[t] = (Gj(σ(i), s(x, y)))x,y∈V (F),j∈[t] for every i ∈ V (F). (16)

Since no two elements of V (F) are in the same equivalence class, σ is injective, hence
bijective, as |V (F)| > |V (G)|. Therefore |V (F)| = |V (G)|, and Lemma 27 gives

αi = βσ(i) for i ∈ V (F). (17)

Next, we improve σ to an isomorphism between (F , α) and (G, β). Define another
family of #CSP(F) instances as follows. First, construct a 2k-labeled variable set

V2 := V1 ∪ {v′, v′′}

with two new variables v′, v′′. Fix F 3 F ! G ∈ G. For p,p′,p′′ ∈ [|V (F)|]V (F)2×[t],
define (recall (14))

CF,p,p′,p′′ = {(F, v, v′, v′′)} ∪ Cp(v) ∪ Cp′(v′) ∪ Cp′′(v′′),
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a set of constraints on V2, and define KF,p,p′,p′′ = (V2, C
F,p,p′,p′′) ∈ PLIsimp[F ; 2k]. Now

Zθ
α(KF,p,p′,p′′) = Zψ

β (KF,p,p′,p′′

F→G ) is equivalent to

0 =
∑

i,i′,i′′∈V (F)

αiαi′αi′′F (i, i′, i′′)

·
∏

x,y∈V (F),j∈[t]

Fj(i, x, y)pxyjFj(i
′, x, y)p

′
xyjFj(i

′′, x, y)p
′′
xyj

+
∑

i,i′,i′′∈V (G)

− βiβi′βi′′G(i, i′, i′′)

·
∏

x,y∈V (G),j∈[t]

Gj(i, s(x, y))pxyjGj(i
′, s(x, y))p

′
xyjGj(i

′′, s(x, y))p
′′
xyj

(where F ! G ∈ G). Applying (17) and (16) then gives

0 =
∑

i,i′,i′′∈V (F)

αiαi′αi′′
(
F (i, i′, i′′)−G(σ(i), σ(i′), σ(i′′))

)
·
∏
x,y,j

Fj(i, x, y)pxyjFj(i
′, x, y)p

′
xyjFj(i

′′, x, y)p
′′
xyj . (18)

Constructing KF,p,p′,p′′ and considering (18) for all choices of p,p′,p′′ ∈ [|V (F)|]V (F)2×[t],
we may apply Corollary 28 with

m := 3, J = V (F)2 × [t], ai,i′,i′′ := αiαi′αi′′
(
F (i, i′, i′′)−G(σ(i), σ(i′), σ(i′′))

)
,

bih,xyj := Fj(ih, x, y), p1,xyj := pxyj, p2,xyj := p′xyj, p3,xyj := p′′xyj.

Again, by twin-freeness, the tuples (Fj(i, x, y))xyj are pairwise distinct for i ∈ V (F), so,
for distinct (i, i′, i′′), the tuples

(Fj(i, x, y), Fj(i
′, x, y), Fj(i

′′, x, y))xyj

are distinct. Now Corollary 28 gives αiαi′αi′′(F (i, i′, i′′)−G(σ(i), σ(i′), σ(i′′))) = 0 for all
i, i′, i′′. Since each αi 6= 0 and our choice of F was arbitrary, this implies

F (i, i′, i′′) = G(σ(i), σ(i′), σ(i′′)) for every i, i′, i′′ ∈ V (F) and every pair F ! G. (19)

Combined with (17), (19) implies that σ is a isomorphism between (F , α) and (G, β).
To conclude that (F , α, θ) ∼= (G, β, ψ), it remains to show that ψ = σ ◦ θ. Again let

F 3 F ! G ∈ G. Define a third family of #CSP(F) instances. Define a 2k-labeled
variable set

V3 := V1 ∪ {v′} = V2 \ {v′′}.

Fix c ∈ [2k] and, for p,p′ ∈ [|V (F)|]V (F)2×[t], define the following set of constraints on V3:

CF,p,p′ := {(F, uc, v, v′)} ∪ Cp(v) ∪ Cp′(v′)
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and let KF,p,p′ = (V3, C
F,p,p′) ∈ PLIsimp[F ; 2k]. Now Zθ

α(KF,p,p′) = Zψ
β (KF,p,p′

F→G ) is
equivalent to

0 =
∑

i,i′∈V (F)

αiαi′F (θ(c), i, i′)
∏
x,y,j

Fj(i, x, y)pxyjFj(i
′, x, y)p

′
xyj

+
∑

i,i′∈V (G)

−βiβi′G(ψ(c), i, i′)
∏
x,y,j

Gj(i, s(x, y))pxyjGj(i
′, s(x, y))p

′
xyj .

Applying (17) and (16) then gives∑
i,i′∈V (F)

αiαi′
(
F (θ(c), i, i′)−G(ψ(c), σ(i), σ(i′))

) ∏
x,y,j

Fj(i, x, y)pxyjFj(i
′, x, y)p

′
xyj = 0.

As above, the tuples (Fj(i, x, y), Fj(i
′, x, y))xyj are distinct for distinct (i, i′), so by a similar

application of Corollary 28 with m := 2, we have F (θ(c), i, i′) = G(ψ(c), σ(i), σ(i′)) for all
i, i′ ∈ V (F). This holds for any pair F ! G, so, by (19),

Fj(θ(c), i, i
′) = Gj(ψ(c), σ(i), σ(i′)) = Fj(σ

−1(ψ(c)), i, i′)

for all i, i′ ∈ V (F) and j ∈ [t]. Since F is twin-free, we have θ(c) = σ−1(ψ(c)), hence
σ(θ(c)) = ψ(c). We chose c ∈ [2k] arbitrarily, so ψ = σ ◦ θ.

4.4 The General Case

We now extend Proposition 30 to general finite sets of arbitrary arity, non-necessarily-
symmetric constraint functions, containing at least one non-unary constraint function.

Definition 31. Let (F , α) be a domain-weighted constraint function set. Say θ : [k] →
V (F) is an isomorphism pinning for (F , α) if, for any similar domain-weighted constraint
function set (G, β) with |V (G)| 6 |V (F)| and any ψ : [k]→ V (G), if (F , α, θ) and (G, β, ψ)
are simple-#CSP-indistinguishable, then |V (F)| = |V (G)| and (F , α, θ) ∼= (G, β, ψ).

Lemma 32. Let F = {Fj | j ∈ [t]} be twin-free, with domain weights α. Let n =
maxj∈[t] nj be the maximum arity among all functions in F , and assume n > 2. Suppose
θ : [(n− 1)k]→ V (F), and for every x ∈ V (F)n−1, let

Ix = {a ∈ [k] | (θ(a+ dk))d∈[n−1] = x}.

If θ is well-balanced – that is, |Ix| > 2|V (F)|n for every x ∈ V (F)n−1 – then θ is an
isomorphism pinning for (F , α).

The proof of Lemma 32, deferred to Section A, requires more sophisticated indexing
but is not fundamentally different from the proof of Proposition 30. Instead of construct-
ing instances from one, three, or two tuples p indexed by V (F)2× [t] in the three steps of
the proof Proposition 30, we use one, n, and n− 1 tuples p indexed by J (F) (recall (9)),
respectively, where n is the maximum arity among the functions in F . This accounts for
possible asymmetry and distinct arities of functions in F .
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Now we remove the requirement that θ be well-balanced, which removes the require-
ment that k be large. The proof of the next theorem follows and generalizes the proof of
[12, Theorem 3.1].

Lemma 33. Let (F , α) and (G, β) be finite similar domain-weighted constraint function
sets with |V (F)| > |V (G)| and F twin-free. Let k > 0 and ϕ : [k]→ V (F) and ψ : [k]→
V (G). If (F , α, ϕ) and (G, β, ψ) are simple-#CSP-indistinguishable and there exist ` > k
and an extension Θ : [`] → V (F) of ϕ that is an isomorphism pinning of (F , α), then
|V (F)| = |V (G)| and (F , α, ϕ) ∼= (G, β, ψ).

Proof. First, if ` = k, then ϕ itself is an isomorphism pinning, and we are done. Otherwise,
assume ` > k. Let E(ϕ) = {Φ : [`]→ V (F) | Φ extends ϕ} and E(ψ) = {Ψ : [`]→ V (G) |
Ψ extends ψ} be the sets of all extensions of ϕ and ψ to [`], respectively. Define

A := {Φ ∈ E(ϕ) | ∃σ ∈ Aut(F , α) s.t. Φ = σ ◦Θ} and

B := {Ψ ∈ E(ψ) | ∃ isomorphism σ between (F , α) and (G, β) s.t. Ψ = σ ◦Θ}.
We will show B 6= ∅. As Θ is an isomorphism pinning of (F , α), if Φ ∈ E(ϕ) \ A,
then (F , α,Θ) and (F , α,Φ) are not simple-#CSP-indistinguishable, so there is a KΦ ∈
PLIsimp[F ; `] such that

ZΘ
α

(
KΦ
)
6= ZΦ

α

(
KΦ
)
. (20)

Similarly, if Ψ ∈ E(ψ) \B, then the triples (F , α,Θ) and (G, β,Ψ) are not simple-#CSP-
indistinguishable, so there is a KΨ ∈ PLIsimp[F ; `] such that

ZΘ
α

(
KΨ
)
6= ZΨ

β

(
KΨ
F→G

)
. (21)

Define the set
J := (E(ϕ) \ A) t (E(ψ) \B)

to index these nonisomorphism witnesses, and for every choice of q := (qΛ)Λ∈J ∈ [|E(ϕ)t
E(ψ)|]J = [|V (F)|`−k + |V (G)|`−k]J , define the `-labeled instance product

Kq :=
∏
Λ∈J

(KΛ)qΛ ∈ PLIsimp[F ; `].

Then, by multiplicativity (2),

ZΦ
α (Kq) =

∏
Λ∈J

(
ZΦ
α (KΛ)

)qΛ (22)

for any Φ ∈ E(ϕ). For any K ∈ PLIsimp[F ; `], define πk(K) ∈ PLIsimp[F ; k] by removing
the labels (but not the underlying variables) in [`] \ [k] from K ′. Then, for any K ∈
PLIsimp[F ; `],

∑
Φ∈E(ϕ)

 ∏
m∈[`]\[k]

αΦ(m)

ZΦ
α (K) = Zϕ

α (πk(K))

= Zψ
β (πk(K)F→G) =

∑
Ψ∈E(ψ)

 ∏
m∈[`]\[k]

βΨ(m)

ZΨ
β (KF→G), (23)
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where the second equality holds because the triples (F , α, ϕ) and (G, β, ψ) are simple-
#CSP-indistinguishable. Substituting K := Kq in (23) and applying (22), we obtain

0 =∑
Φ∈E(ϕ)

 ∏
m∈[`]\[k]

αΦ(m)

∏
Λ∈J

(
ZΦ
α (KΛ)

)qΛ +
∑

Ψ∈E(ψ)

− ∏
m∈[`]\[k]

βΨ(m)

∏
Λ∈J

(
ZΨ
β (KΛ

F→G)
)qΛ .
(24)

Considering (24) for every choice of q ∈ [|E(ϕ) tE(ψ)|]J , we may apply Lemma 27 with

I := E(ϕ) t E(ψ), ai :=

{∏
m∈[`]\[k] αΦ(m) i = Φ ∈ E(ϕ)

−
∏

m∈[`]\[k] βΨ(m) i = Ψ ∈ E(ψ)

bi,Λ :=

{
ZΦ
α (KΛ) i = Φ ∈ E(ϕ)

ZΨ
β (KΛ

F→G) i = Ψ ∈ E(ψ)
.

For every KΛ (indeed, for every K ∈ PLIsimp[F ; `]), any Φ ∈ A and Ψ ∈ B satisfy

bΦ,Λ = ZΦ
α (KΛ) = ZΘ

α (KΛ) = ZΨ
β (KF→G) = bΨ,Λ. (25)

Thus, when we apply Lemma 27, there is a single equivalence class containing AtB ⊂ I.
Furthermore, if Φ′ ∈ E(ϕ) \ A and Φ ∈ A, then, using (20) and (25) (with Λ := Φ′),

bΦ′,Φ′ = ZΦ′

α (KΦ′) 6= ZΘ
α (KΦ′) = bΦ,Φ′ .

Similarly, if Ψ′ ∈ E(ψ) \B and Ψ ∈ B, then, using (21) and (25),

bΨ′,Ψ′ = ZΨ′

β (KΨ′

F→G) 6= ZΘ
α (KΨ′) = bΨ,Ψ′

Therefore A tB constitutes an entire equivalence class. So, by Lemma 27,

∑
Φ∈A

 ∏
m∈[`]\[k]

αΦ(m)

−∑
Ψ∈B

 ∏
m∈[`]\[k]

βΨ(m)

 = 0. (26)

For any Φ ∈ A, there is a σ ∈ Aut(F , α) satisfying Φ = σ ◦ Θ. Then αΦ(m) = ασ(Θ(m)) =
αΘ(m), a value independent of the choice of Φ. So (26) becomes

|A|F
∏

m∈[`]\[k]

αΘ(m) =
∑
Ψ∈B

 ∏
m∈[`]\[k]

βΨ(m)

 , (27)

where |A|F is a sum of |A| copies of the multiplicative identity 1F ∈ F. Each αΘ(m) 6= 0
and, since F has nonzero characteristic and A 3 Θ (so |A| > 1) , |A|F 6= 0. Hence (27) is
nonzero, so B is nonempty. Any Ψ ∈ B extends ψ and gives an isomorphism σ between
(F , α) and (G, β) such that Ψ = σ ◦Θ. Since Θ itself extends ϕ, restricting Ψ = σ ◦Θ to
[k] gives ψ = σ ◦ ϕ, as desired.
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Now Lemmas 32 and 33 (and Lemma 29) combine to prove the following theorem for
finite F and G. Then we bootstrap the finite case to F and G of arbitrary cardinality.

Theorem 34. Let (F , α) and (G, β) be similar domain-weighted constraint function sets
with |V (F)| > |V (G)|, and F twin-free. Let k > 0 and ϕ : [k] → V (F) and ψ : [k] →
V (G). If (F , α, ϕ) and (G, β, ψ) are simple-#CSP-indistinguishable, then |V (F)| = |V (G)|
and (F , α, ϕ) ∼= (G, β, ψ).

Proof. First suppose F and G are finite. If all constraint functions in F and G are
unary, then apply Lemma 29. Otherwise, by Lemma 33, it suffices to find an extension
Θ : [`] → V (F) of ϕ that is an isomorphism pinning of (F , α). By choosing sufficiently
large ` (no larger than k+2(n−1)|V (F)|2n−1), we can always extend ϕ to a well-balanced
Θ, and, by Lemma 32, such a Θ is an isomorphism pinning of (F , α). This gives the desired
result for finite F and G.

Next, consider F and G with arbitrary cardinality. Define the finite set

Σ = {σ : V (F)→ V (G) | σ is a bijection and ψ = σ ◦ ϕ and αi = βσ(i) for all i ∈ V (F)}.

For any finite twin-free F ′ ⊂ F and corresponding G ′ ⊂ G, (F ′, α, ϕ) and (G ′, β, ψ) inherit
the simple-#CSP-indistinguishablity of (F , α, ϕ) and (G, β, ψ), so, by the finite case above,
there is a σ ∈ Σ that is an isomorphism of (F ′, α, ϕ) and (G ′, β, ψ). In particular, Σ is
nonempty. Suppose towards contradiction that there is no σ ∈ Σ that is an isomorphim
of the full sets F and G. Then, for every σ ∈ Σ, there is a pair F 3 Fσ ! Gσ ∈ G such
that σ is not an isomorphism of Fσ and Gσ. Define the finite, nonempty sets

F ′ = {Fσ | σ ∈ Σ} and G ′ = {Gσ | σ ∈ Σ}.

If F ′ is not twin-free, then, for each i, i′ ∈ V (F) that are twins for F ′, find an Fi,i′ ∈ F
such that there exist x and r for which Fi,i′(x

r←↩ i) 6= Fi,i′(x
r←↩ i′) (such an Fi,i′ must exist

because F is twin-free), and define

F ′′ = F ′ ∪{Fi,i′ | i, i′ ∈ V (F) are twins for F ′}.

Define G ′′ to be the subset of G corresponding to F ′′. As F ′′ and G ′′ are finite and F ′′ is
twin-free, by the finite case above, there is a σ0 ∈ Σ that is an isomorphism of F ′′ and
G ′′. In particular, since F ′′ 3 Fσ0 ! Gσ0 ∈ G ′′, σ0 is an isomorphism of Fσ0 and Gσ0 , a
contradiction.

Next, we introduce domain weights to unweighted constraint function sets to remove
the twin-free requirement. The proof of the next corollary generalizes the proof of [12,
Corollary 6.2].

Corollary 35. Let F and G be similar constraint function sets, and let k > 0, ϕ : [k]→
V (F), and ψ : [k]→ V (G). If (F , ϕ) and (G, ψ) are simple-#CSP-indistinguishable, then
|V (F)| = |V (G)| and there is an isomorphism σ from F to G such that ψ′ = σ ◦ϕ, where
ψ′(i) is a twin of ψ(i) for every i ∈ [k].
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Proof. Let I0, . . . , Is−1 be the partition of V (F) into equivalence classes under the twin

relation. Define the twin-contracted constraint function set F̃ with domain V (F̃) = [s]

by replacing each F ∈ F with F̃ defined by F̃ (y) := F (x) for arbitrary choices of xi ∈ Iyi
for i ∈ [nF ]. Introduce domain weights α defined by α` = |I`| for ` ∈ [s]. Define

ϕ̃ : [k] → V (F̃) by setting ϕ̃(m) = ` if ϕ(m) ∈ I`. Now F̃ is twin-free and (F , ϕ) and

(F̃ , α, ϕ̃) are #CSP-indistinguishable. Similarly partition V (G) into equivalence classes

J0, . . . , Js′−1 and define a twin-contracted (G̃, β, ψ̃). Then, since (F , ϕ) and (G, ψ) are

simple-#CSP-indistinguishable by assumption, (F̃ , α, ϕ̃) and (G̃, β, ψ̃) are simple-#CSP-

indistinguishable. As F̃ is now twin-free, we may apply Theorem 34 to conclude that
s = s′ and there is an isomorphism ξ from (F̃ , α) to (G̃, β) such that ψ̃ = ξ ◦ ϕ̃.

Define σ : V (F)→ V (G) as follows. For each ` ∈ [s] = V (F̃), ξ associates I` ⊂ V (F)
with Jξ(`) ⊂ V (G), and |I`| = α` = βξ(`) = |Jξ(`)|. Choose an arbitrary bijection between
I` and Jξ(`) and have σ map I` into Jξ(`) according to this bijection. This σ satisfies the
desired properties.

Finally, the k = 0 case of Corollary 35 is equivalent to Theorem 8, but slightly stronger
because it only assumes simple indistinguishablity:

Corollary 36. Let F and G be similar constraint function sets. Then F ∼= G if and only
if F and G are simple-#CSP-indistinguishable.

4.5 Constructiveness of the Interpolation Proof

For similar domain-weighted constraint function sets (F , α) and (G, β) with F twin-free
and |V (F)| > |V (G)|, and ϕ : [k] → V (F), ψ : [k] → V (G), Theorem 34 asserts that if
(F , α, ϕ) 6∼= (G, β, ψ), then there is some witness instance K ∈ PLIsimp[F ; k] such that
Zϕ
α (K) 6= Zψ

α (KF→G). If F and G are finite, then the proofs of Lemma 32 and Lemma 33
construct an explicit finite list of instances in PLIsimp[F ; k] guaranteed to contain such
a witness as follows (if F and G are infinite, then we cannot expect to produce such a list
in bounded time). The proof of Theorem 34 first extends ϕ to an isomorphism pinning
Θ with domain [`], where ` 6 k + 2(n − 1)|V (F)|2n−1 (n is the maximum arity among
functions in F). Then the proof of Lemma 33 shows that

Zϕ
α (πk(K

q)) = Zψ
β (πk(K

q)F→G) for every q ∈ [|V (F)|`−k + |V (G)|`−k]J

if and only if (F , α, ϕ) ∼= (G, β, ψ). Therefore, if (F , α, ϕ) 6∼= (G, β, ψ), then the finite set{
πk(K

q) | q ∈ [|V (F)|`−k + |V (G)|`−k]J
}

is guaranteed to contain a nonisomorphism witness. Constructing this set entails con-
structing the instances {KΛ | Λ ∈ J} composing Kq, which are defined existentially using
(20) and (21). The proof of Lemma 32 explicitly constructs a finite set to which each KΛ
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must belong: let

WΘ =
{
Kp | p = [2|V (F)|]J (F)

}
∪
{
KF,p(0),...,p(nF−1) | F ∈ F ,p(0), . . . ,p(nF−1) ∈ [|V (F)|]J (F)

}
∪
{
KF,p(0),...,p(nF−2) | F ∈ F ,p(0), . . . ,p(nF−2) ∈ [|V (F)|]J (F)

}
⊂ PLIsimp[F ; `]

be the (finite) set of all #CSP(F) instances whose constraint sets are defined in (28),
(32), and (36), the three steps of the proof of Lemma 32 (with θ := Θ in the statement of
Lemma 32). If Φ ∈ E(ϕ) \ A, then (F , α,Θ) 6∼= (F , α,Φ), so, by the proof of Lemma 32,
there is a KΦ = KΛ ∈ WΘ satisfying (20). Similarly, if Ψ ∈ E(ψ) \ B, then (F , α,Θ) 6∼=
(G, β,Ψ), so there is a KΨ = KΛ ∈ WΘ satisfying (21). Thus each Kq is composed of
instances in the explicitly constructed set WΘ.
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[19] Michael Freedman, László Lovász, and Alexander Schrijver. Reflection positivity,
rank connectivity, and homomorphism of graphs. Journal of the American Mathe-
matical Society, 20(1):37–51, April 2006. doi:10.1090/S0894-0347-06-00529-7.

[20] Leslie Ann Goldberg, Martin Grohe, Mark Jerrum, and Marc Thurley. A Complexity
Dichotomy for Partition Functions with Mixed Signs. SIAM J. Comput., 39(7):3336–
3402, January 2010. doi:10.1137/090757496.

[21] Andrew Goodall, Guus Regts, and Llúıs Vena. Matroid invariants and counting
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A Appendix

For convenince, we restate Lemma 32.

Lemma (Lemma 32). Let F = {Fj | j ∈ [t]} be twin-free, with domain weights α. Let
n = maxj∈[t] nj be the maximum arity among all functions in F , and assume n > 2.
Suppose θ : [(n− 1)k]→ V (F), and for every x ∈ V (F)n−1, let

Ix = {a ∈ [k] | (θ(a+ dk))d∈[n−1] = x}.

If θ is well-balanced – that is, |Ix| > 2|V (F)|n for every x ∈ V (F)n−1 – then θ is an
isomorphism pinning for (F , α).

Proof. Let (G, β) be similar to F with |V (G)| 6 |V (F)|, and suppose ψ : [(n − 1)k] →
V (G) satisfies Zθ

α(K) = Zψ
β (KF→G) for every K ∈ PLIsimp[F ; (n − 1)k]. Since each

|Ix| > 2|V (F)|n > 2|V (F)| · |V (G)|n−1, by the pigeonhole principle there exists a function
s : V (F)n−1 → V (G)n−1 such that for every x ∈ V (F)n−1, the set

Jx := Ix ∩ {a ∈ [k] | (ψ(a+ dk))d∈[n−1] = s(x)}

satisfies |Jx| > 2|V (F)|. For every x ∈ V (F)nj−1 with nj < n, choose an arbitrary
x′ ∈ V (F)n−1 extending x (i.e. such that x′d = xd for every d ∈ [nj − 1]) and define
Jx := Jx′ .

Consider the (n− 1)k-labeled variable set

V1 = {v} ∪ {u(d)
a }a∈[k],d∈[n−1],

where u
(d)
a is labeled a + dk. For each choice of p = (pj x r)(j,x,r)∈J (F) ∈ [2|V (F)|]J (F)

(recall (9)), construct a set Cp(v) of constraints on V1 as follows. Choose an arbitrary
Pj x r ⊂ Jx with |Pj x r| = pj x r for each (j,x, r) ∈ J (F) and define

Cp(v) =
⋃

(j,x,r)∈J (F)

⋃
a∈Pj x r

(
Fj,
(
u(d)
a

)r←↩ v
d∈[nj−1]

)
. (28)

Then define an (n− 1)k-labeled #CSP(F) instance Kp = (V1, C
p(v)) ∈ PLIsimp[F ; (n−

1)k]. If a ∈ Pj x r ⊂ Jx then θ(a + dk) = xd and ψ(a + dk) = s(x)d for all d ∈ [nj −
1]. Hence the variable u

(d)
a takes value xd and s(x)d under θ and ψ, respectively, for

d ∈ [nj − 1]. These values are independent of the choice of a within Pj x r. Therefore

Zθ
α(Kp) = Zψ

β (Kp
F→G) is equivalent to∑

i∈V (F)

αi
∏

(j,x,r)∈J (F)

Fj
(
xr←↩ i

)pj x r +
∑
i∈V (G)

(−βi)
∏

(j,x,r)∈J (F)

Gj

(
s(x)r←↩ i

)pj x r = 0. (29)

The sums over i correspond to the choice of assignment for the free variable v in Kp and
Kp
F→G, respectively. Overall, the LHS of (29) is a sum over V (F) t V (G), with |V (F) t
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V (G)| = |V (F)|+ |V (G)| 6 2|V (F)|. Therefore, by constructing Kp and considering (29)
for every choice of p ∈ [2|V (F)|]J (F), we may apply Lemma 27 with

I := V (F) t V (G), J := J (F), ai :=

{
αi i ∈ V (F)

−βi i ∈ V (G)
,

bi,j x r :=

{
Fj
(

xr←↩ i
)

i ∈ V (F)

Gj

(
s(x)r←↩ i

)
i ∈ V (G)

.

Since F is twin-free, the tuples
(
Fj
(
xr←↩ i

))
(j,x,r)∈J (F)

are pairwise distinct for i ∈ V (F).

Hence no equivalence class contains more than one element of V (F). However, every
αi 6= 0, so no equivalence class consists of only a single element of V (F). Thus there is a
function σ : V (F)→ V (G) such that i ∼ σ(i) for every i ∈ V (F) – that is,(

Fj
(
xr←↩ i

))
(j,x,r)∈J (F)

=
(
Gj

(
s(x)r←↩ σ(i)

))
(j,x,r)∈J (F)

for every i ∈ V (F). (30)

Since no two elements of V (F) are in the same equivalence class, σ is injective, hence
bijective, as |V (F)| > |V (G)|. Therefore |V (F)| = |V (G)|, and Lemma 27 gives

αi = βσ(i) for i ∈ V (F). (31)

Next, define another family of #CSP(F) instances as follows. Fix F 3 F ! G ∈ G
with common arity nF 6 n, and let

V2 := V1 \ {v} ∪ {vh | h ∈ [nF ]}.

For p(0), . . . ,p(nF−1) ∈ [|V (F)|]J (F), define the following set of constraints on V2 (recall
(28)):

CF,p(0),...,p(nF−1)

:= {(F, v0, . . . , vnF−1)} ∪
⋃

h∈[nF ]

Cp(h)

(vh). (32)

Define the labeled instance KF,p(0),...,p(nF−1)
:= (V2, C

F,p(0),...,p(nF−1)
) ∈ PLIsimp[F ; (n −

1)k]. Then the assumption Zθ
α

(
KF,p(0),...,p(nF−1))

= Zψ
β

(
KF,p(0),...,p(nF−1)

F→G
)

is equivalent to

0 =
∑

i∈V (F)nF

 ∏
h∈[nF ]

αih

F (i)
∏

(j,x,r)∈J (F),h∈[nF ]

Fj
(
xr←↩ ih

)p(h)
j x r

+
∑

i∈V (G)nF

− ∏
h∈[nF ]

βih

G(i)
∏

(j,x,r)∈J (F),h∈[nF ]

Gj

(
s(x)r←↩ ih

)p(h)
j x r ,

where the sums over i corresponds to the choice of assignment for the free variables
v0, . . . , vnF−1. Applying (31) and (30) then gives

∑
i∈V (F)nF

 ∏
h∈[nF ]

αih

(F (i)−G(σ(i))
) ∏

(j,x,r)∈J (F),h∈[nF ]

Fj
(

xr←↩ ih
)p(h)
j x r = 0. (33)
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Considering KF,p(0),...,p(nF−1)
and (33) for every p(0), . . . ,p(nF−1) ∈ [|V (F)|]J (F), we may

apply Corollary 28 with

m := nF , J = J (F), ai :=

 ∏
h∈[nF ]

αih

(F (i)−G(σ(i))
)
,

bi,j x r := Fj
(
xr←↩ i

)
, ph,j x r := p

(h)
j x r.

Again, by twin-freeness, the tuples
(
Fj
(

xr←↩ i
))

(j,x,r)∈J (F)
are distinct for distinct i ∈

V (F), so the larger tuples
(
Fj
(
xr←↩ ih

))
h∈[nF ],(j,x,r)∈J (F)

are distinct for distinct i ∈
V (F)nF . Corollary 28 asserts that, for all i ∈ V (F)nF , (

∏nF
h=1 αih) (F (i) − G(σ(i))) = 0.

Since each αi 6= 0 and our choice of F and G was arbitrary, this implies

F (i) = G(σ(i)) for every i ∈ V (F)nF and every pair F 3 F ! G ∈ G . (34)

Combined with (31), (34) implies that σ is a domain-weighted isomorphism of (F , α) and
(G, β).

It remains to show that ψ = σ ◦ θ. Again let F 3 F ! G ∈ G, with common arity
nF . Fix c ∈ [(n − 1)k]. If nF = 1, let K ∈ PLIsimp[F ; (n − 1)k] be an instance with no
unlabeled/free variables and a single constraint (F, vc), where vc is the variable labeled c.
Then

F (θ(c)) = Zθ
α(K) = Zψ

β (KF→G) = G(ψ(c)). (35)

Otherwise, if nF > 2, define a third family of #CSP(F) instances as follows. Define

V3 := V2 \ {vnF−1} = V1 ∪ {vh | h ∈ [nF − 1]}.

Write c = ac + dck (so that u
(dc)
ac is labeled c). Fix ρ ∈ [nF ]. For p(0), . . . ,p(nF−2) ∈

[|V (F)|]J (F), define the following set of constraints on V2:

CF,p(0),...,p(nF−2)

:= {(F, v0, . . . vρ−1, u
(dc)
ac , vρ, . . . , vnF−2)} ∪

⋃
h∈[nF−1]

Cp(h)

(vh). (36)

Define the instance KF,p(0),...,p(nF−2)
:= (V3, C

F,p(0),...,p(nF−2)
) ∈ PLIsimp[F ; (n− 1)k]. Now

the assumption Zθ
α

(
KF,p(0),...,p(nF−2))

= Zψ
β

(
KF,p(0),...,p(nF−2)

F→G
)

is equivalent to

0 =
∑

i∈V (F)nF−1

 ∏
h∈[nF−1]

αih

F
(
iρ←↩ θ(c)

) ∏
(j,x,r)∈J (F),h∈[nF−1]

Fj
(
xr←↩ ih

)p(h)
j x r

+
∑

i∈V (G)nF−1

− ∏
h∈[nF−1]

βih

G
(

iρ←↩ ψ(c)
) ∏

(j,x,r)∈J (F),h∈[nF−1]

Gj

(
s(x)r←↩ ih

)p(h)
j x r .
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Applying (31) and (30) gives

0 =
∑

i∈V (F)nF−1

 ∏
h∈[nF−1]

αih

(F( iρ←↩ θ(c)
)
−G

(
σ(i)ρ←↩ ψ(c)

))
·

∏
(j,x,r)∈J (F),h∈[nF−1]

Fj
(

xr←↩ ih
)p(h)
j x r .

As above,
(
Fj
(
xr←↩ ih

))
h∈[nF−1],(j,x,r)∈J (F)

are distinct for distinct i ∈ V (F)nF−1. Hence

by a similar application of Corollary 28 with m := nF − 1, we have F
(
iρ←↩ θ(c)

)
=

G
(
σ(i)ρ←↩ ψ(c)

)
for all i ∈ V (F)nF−1. This holds for any pair F ! G (with unary F and

G handled by (35)) and any ρ ∈ [nF ]. Hence, for all (j, i, ρ) ∈ J (F),

Fj
(
iρ←θ(c)

)
= Gj

(
σ(i)ρ←ψ(c)

)
= Fj

(
iρ←σ

−1(ψ(c))
)
,

where the second equality is (34). Since F is twin-free, we have θ(c) = σ−1(ψ(c)), hence
σ(θ(c)) = ψ(c). We chose c ∈ [(n− 1)k] arbitrarily, so ψ = σ ◦ θ.
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