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Abstract

We revisit the Rédei-Berge symmetric function UD for digraphs D, a specializa-
tion of Chow’s path-cycle symmetric function. Through the lens of matrix algebra,
we consolidate and expand on the work of Chow, Grinberg and Stanley, and Lass
concerning the resolution of UD in the power sum and Schur bases. Along the way
we also revisit various results on Hamiltonian paths in digraphs.

Mathematics Subject Classifications: 05E05, 05C20, 05C45

1 Introduction

Let D be a digraph on vertex set [n] := {1, 2, . . . , n} and let π = π1 · · · πn ∈ Sn, where
here πi is the image π(i) of i under π. An index i ∈ [n − 1] is said to be a D-descent of
π if (πi, πi+1) is a directed edge of D. Let DesD(π) denote the set of all D-descents of π.
The Rédei-Berge symmetric function of D is defined by

UD :=
∑
π∈Sn

FDesD(π), (1)

where the expansion is in terms of the fundamental quasisymmetric functions

FI :=
∑

16i16···6in
ij < ij+1 for j ∈ I

zi1zi2 · · · zin , I ⊆ [n− 1].

The series UD first appears in the work of Chow [3], where it manifests as a spe-
cialization of his path-cycle symmetric function; this connection will be further detailed
below.
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More recently, UD was studied (and named) by Grinberg and Stanley [12], who demon-
strated its connection to well-known results of Rédei and Berge concerning the number of
Hamiltonian paths in digraphs. For instance, they rederive the classic theorem of Rédei
[18] that every tournament D has an odd number of directed Hamiltonian paths, and
extend this to new relations on the number of such paths modulo 4.

In this article, we re-prove results of Chow [3], and Grinberg and Stanley [12], on
expansions of UD in terms of classic symmetric functions. Along the way we rederive
formulas for Hamiltonian paths in digraphs that coalesce results of Goulden and Jackson
[7], Grinberg and Stanley [12], Wiseman [25], and others. This is done by unifying the
theory from these articles into an overarching matrix algebra framework. The majority
of these results hinge on Theorem 10, which explicitly writes UD in terms of symmetric
functions that depend on the entries of the adjacency matrix of D and its complement.
Theorem 10 is ultimately a re-framing of work due to Lass [15] using the algebra of set
functions (fonctions d’ensembles). Indeed, our use of the linear coefficient operator Ln,
which is critical to our main theory (see Section 3), is equivalent to Lass’ formalism.

The article is structured as follows: We begin in Section 2 by viewing walks and paths
in digraphs through the lens of matrix algebra. Therein we provide proofs of classic results
on Hamiltonian paths and cycles in digraphs via their directed adjacency matrices. In
turn, these results support Section 3 which is dedicated to symmetric function expansions
of UD. We recover the power sum expansions of Grinberg and Stanley [12], determine
general expansions for UD in the Schur function basis, and recover positivity results in
both these bases. We then show how to lift this theory to the full Chow path-cycle
symmetric function.

2 The Algebra of Walks and Paths

2.1 Preliminaries

We begin with algebraic preliminaries. For f ∈ Q[[x1, . . . , xn]] and I = {i1, i2, . . . , ik} ⊆
[n], we use the notation LI f to denote the coefficient of xi1xi2 · · ·xik in f . In the particular
case that I = [n], we abbreviate LI by Ln. For I ⊆ [n], we denote the complement [n]\I
by Ic, with n understood from context. The group of permutations on I is denoted SI ,
or simply Sn when I = [n].

Let A be an n×n matrix whose (i, j)-entry is denoted Ai,j. Recall that the permanent
per(A) and determinant det(A) of A are defined by

per(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i), det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ai,σ(i),

where sgn(σ) is the sign of the permutation σ. We denote by A[S] the principal submatrix
of A whose rows and columns are indexed by S ⊆ [n], and let X = diag(x1, . . . , xn).
The following well-known relations between the permanent and determinant are used
throughout:

LS det(I +XA) = detA[S] and LS det(I −XA)−1 = perA[S], (2)

the electronic journal of combinatorics 32(4) (2025), #P4.43 2



Note that the latter of these is a special case of MacMahon’s Master Theorem (see [8,
Section 1.2.11] and also Lemma 8, below).

Now recall that if A is n ×m and B is m × n, then Sylvester’s determinant identity
states that

det(In + AB) = det(Im +BA). (3)

We will make particular use of the special case m = 1, which gives

det(In + uvT ) = 1 + vTu (4)

for column vectors u,v. We will also make central use of Jacobi’s Identity, which states
that

det exp(A) = exp tr(A) (5)

where exp(A) =
∑

k>0
Ak

k!
. These formulae hold for matrices over the appropriate com-

mutative rings; see, e.g., [8, Section 1.1.10].

2.2 Walks and Paths in Digraphs

A digraph D consists of a finite set of vertices V together with a set E ⊆ V × V of
directed edges (u, v). Note this definition forbids parallel edges. The complement of D,
denoted D, is the digraph on V that has a directed edge (u, v) precisely when (u, v) is not
a directed edge in D. The opposite of D, denoted Dop, is the digraph that has a directed
edge (u, v) precisely when (v, u) is a directed edge in D. If V ′ ⊆ V , then the subgraph of
D induced by V ′, denoted D[V ′], has vertices V ′ and edges E ′ = E ∩ (V ′ × V ′).

We will work exclusively with digraphs on vertex set [n], for some n, or induced
subgraphs thereof. The reader should assume from hereon that every digraph under
consideration is of this type. In particular, the parameter n will universally denote the
number of vertices in an ambient digraph.

The adjacency matrix of a digraph D on [n] is the matrix A(D) ∈ {0, 1}n×n whose
(i, j) entry is 1 if and only if (vi, vj) is a directed edge in D. For brevity we will write A,A
and Aop for A(D), A(D) and A(Dop), respectively, whenever D is implicit. Evidently we
have A = 11T − A, where 1 = [1, 1, . . . , 1]T is the n-dimensional all-ones column vector.
Moreover it is immediate that Aop = AT .

A walk of length k > 0 in D is a sequence w = (i0, . . . , ik) of vertices such that
(ij, ij+1) is a directed edge in D for all 0 6 j < k. We say w is a path in D if all its
vertices i0, i1, . . . , ik are distinct. A cycle in D is an equivalence class of walks of the form
(i0, i1, . . . , ik, i0), where i0, . . . , ik are distinct, and two such walks are equivalent if one is
a cyclic shift of the other. A cycle cover of D is a set of vertex-disjoint cycles where each
vertex appears in exactly one cycle.

We often will need to refer to cycles in digraphs that are compatible with cycles in
permutations. Let D be a digraph on V ⊆ [n] and let π ∈ SV be a permutation on V .
Then a cycle (i0 i1 · · · ik) in the disjoint cycle decomposition of σ is said to be a D-cycle
if (i0, i1, . . . , ik, i0) is a cycle in D.
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A convenient way to keep track of walks in D is through its walk generating function.
Let γ0(D) = 1 and, for any k > 0, let γk+1(D) be the polynomial in indeterminates
x1, x2, . . . , xn given by

γk+1(D) :=
∑

(i0,i1,...,ik)
a walk in D

xi0xi1 · · ·xik .

That is, γk+1(D) accounts for walks of length k, which are those containing k+ 1 vertices
(counted with multiplicity). The walk generating function of D is then the series WD(z)
in Q[x1, x2, . . . , xn][[z]] defined by

WD(z) =
∑
k>0

γk(D)zk.

The role of the indeterminates xi in WD(z) is left implicit for brevity. Evidently, WD(z)
involves only those xi for which i is a vertex of D. In particular, if D is a digraph on [n]
and V ⊆ [n], then WD[V ](z) is therefore obtained from WD(z) by setting xj = 0 for all
j /∈ V .

If D is a digraph on [n] then we can express WD(z) in a compact form by using its
adjacency matrix A and the diagonal matrix X = diag(x1, x2, . . . , xn). An easy induction
reveals that the (i, j) entry of (XA)kX is the generating series for walks of length k in
D from vertex i to vertex j. Thus γk+1(D) is the sum of all entries of this matrix, i.e.
γk+1(D) = 1T (XA)kX1. Letting x = [x1, . . . , xn]T , we consequently have

WD(z) = 1 + 1T

(
z
∑
k>0

(XA)kzk

)
x = 1 + z1T (I − zXA)−1x. (6)

The following reformulation of this identity provides a compact expression for WD(z) that
is fundamental to our developments. An equivalent observation was made in [20].

Lemma 1. Let D be a digraph on [n] with adjacency matrix A. Then

WD(z) =
det(I + zXA)

det(I − zXA)
.

Consequently we have WD(z) = (WD(−z))−1, and when D is acyclic WD(z) = det(I +
zXA).

Proof. We have

det(I + zXA) = det(I + zX(11T − A))

= det(I − zXA+ zx1T )

= det(I − zXA) det(I + z(I − zXA)−1x1T )

= det(I − zXA)(1 + z1T (I − zXA)−1x),
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where the final equality comes from Sylvester’s identity (4) applied to the pair u =
z(I − zXA)−1x and v = 1. From Equation (6) we then get

WD(z) = 1 + z1T (I − zXA)−1x =
det(I + zXA)

det(I − zXA)
.

It immediately follows that WD(z) = (WD(−z))−1. Finally, if D is acyclic then we can
relabel its vertices so as to make A strictly upper triangular (i.e. topologically ordered),
which gives det(I − zXA) = 1 and thus WD(z) = det(I + zXA).

Recall a path of length n−1 in a digraph D on [n] is said to be Hamiltonian, meaning
it encounters every vertex in D. For convenience we also consider the empty digraph on
zero vertices to have a single Hamiltonian path. The number of Hamiltonian paths in
D is denoted ham(D). We now observe that Lemma 1 yields a permanent-determinant
formula for this statistic.

Proposition 2. The number of Hamiltonian paths in a digraph D on [n] is given by

ham(D) =
∑
S⊆[n]

detA[S] · perA[Sc].

Proof. From the definition of WD(z) we have ham(D) = LnWD(1). By Lemma 1 this is

Ln det(I +XA) det(I −XA)−1 =
∑
S⊆[n]

LS det(I +XA) · LSc det(I −XA)−1,

and the result follows from Equation (2).

It is clear from definition that for σ ∈ Sn the product
∏n

i=1Ai,σ(i) equals 1 if every cycle
in the disjoint cycle decomposition of σ is aD-cycle, and equals 0 otherwise. Consequently,
per(A) is the number of cycle covers of D. We can therefore use Proposition 2 to recover
the following result of Wiseman [25].

Corollary 3. [25, Theorem 2.1] Suppose D is an acyclic digraph. Then the number of
Hamiltonian paths in D is equal to the number of cycle covers of D.

Proof. Since D is acyclic, detA[S] = 0 for S 6= ∅, so by Proposition 2, ham(D) = per(A).
The result follows.

The following result of Berge is immediate from Proposition 2 upon observing that
det(M) ≡ per(M) (mod 2) for any integer matrix M .

Corollary 4. [1, Section 10.1] For any digraph D we have ham(D) ≡ ham(D) (mod 2).

Not all digraphs have Hamiltonian paths, but certain classes are known to have at
least one. For instance, a classic result of Rédei [18] establishes that any tournament has
an odd number of Hamiltonian paths. Recall that a digraph D is a tournament if for every
pair of distinct vertices i, j, exactly one of (i, j) and (j, i) is a directed edge (and (i, i) is
not an edge for any i). Here we offer a different proof of Rédei’s result using Lemma 1.
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Theorem 5. [18] If D is a tournament on [n] then ham(D) is odd.

Proof. As before we write ham(D) = LnWD(1). Since D is a tournament we have A =
AT + I and thus

det(I +XA) = det(I +X(AT + I)) = det(I + (AT + I)X) = det(I +XA+X),

the middle equality by Sylvester’s Identity (3). We are concerned only with the parity
of LnWD(1), so we now work over the quotient ring F2[x1, . . . , xn]/〈x21, · · · , x2n〉 in which
X2 = 0 and XA = −XA. From this, Lemma 1 gives

WD(1) = det(I +XA+X) det(I −XA)−1 = det(I −XA+X) det(I −XA)−1

= det(I +X(I −XA)−1)

= det(I +X(I +XA+ (XA)2 + · · · ))
= det(I +X),

the last equality since X2 = 0. This yields LnWD(1) = 1, completing the proof.

Proposition 2 is similar to known expressions due to Goulden and Jackson [7] and
Liu [16] for the number of Hamiltonian cycles in a digraph D. (Recall that a cycle in
D is said to be Hamiltonian if it encounters every vertex; the empty digraph having no
Hamiltonian cycles, and a digraph on one vertex having a Hamiltonian cycle if and only
if it contains a loop.) Although peripheral to our study, we pause here to show how these
results can be derived from similar matrix analyses. Part (a) of following proposition
appears as [7, Theorem 4.1], and is proven there using Lagrangian methods. It also
appears in [23]. Part (b) is trivially equivalent to Theorem 2 of [16], where it is derived
via the Matrix-Tree Theorem.

Proposition 6. Let D be a digraph on [n]. For any i ∈ [n], the number of Hamiltonian
cycles in D is given by the following equivalent expressions:

(a)
∑

S⊆[n]\{i}

(−1)|S| detA[S] · perA[Sc].

(b)
1

n

∑
S⊆[n]

(−1)|S||Sc| detA[S] · perA[Sc].

Proof. Let ham◦(D) denote the number of Hamiltonian cycles in D. The (i, i)-entry of
(XA)k is the generating function for walks of length k in D that start and end with i. So
let us set

H := I +XA+ (XA)2 + (XA)3 + · · · = (I −XA)−1 =
adj(I −XA)

det(I −XA)
,

where adj(·) denotes the adjugate, i.e. classical adjoint. Then for any i ∈ [n] we have

ham◦(D) = LnHii = Ln cofii(I −XA) det(I −XA)−1

=
∑
S⊆[n]

LS cofii(I −XA) LSc det(I −XA)−1,
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where cofii is the (i, i)-cofactor. Expression (a) immediately follows using Equation (2).
Averaging (a) over all i ∈ [n] then yields (b) as follows:

1

n

n∑
i=1

∑
S⊆[n]\{i}

(−1)|S| detA[S] · perA[Sc] =
1

n

∑
S⊆[n]

∑
i/∈S

(−1)|S| detA[S] · perA[Sc]

=
1

n

∑
S⊆[n]

(−1)|S||Sc| detA[S] · perA[Sc].

We note that Proposition 2 can be derived from Proposition 6(a) by applying the latter
to the digraph D′ that is obtained from D by adding a new vertex 0 and a directed edge to
and from every vertex in D. The number of Hamiltonian cycles in D′ is then the number
of Hamiltonian paths in D. The reduction from A(D′) to A(D) can be accomplished via
Schur complementation.

3 Symmetric Function Expansions

3.1 Preliminaries

We use standard notation for partitions of integers, symmetric functions, and represen-
tation theory of the symmetric group, as introduced in Macdonald [17]. We remind the
reader of a few key constructs and auxiliary definitions.

Throughout, we work in the ring of symmetric functions Λz = Q[[z1, z2, . . .]]
S in the

indeterminates z = (z1, z2, . . .). For a partition λ, we let rλ! := r1!r2! · · · , where ri
is the number of parts of λ equal to i. In addition to the usual symmetric functions
mλ, eλ, hλ, pλ, sλ, we employ the augmented monomial symmetric functions defined by
m̃λ := rλ!mλ. For f in one of the families {mλ, eλ, hλ, pλ, sλ, m̃λ}, we denote by fcyc(σ) the
symmetric function fλ where λ = (λ1, λ2, . . . , λ`) is the cycle type of σ. For example, if
σ = (1 6 5)(2)(3 4)(7 9)(8) ∈ S9 then pcyc(σ) = p3p

2
2p

2
1.

Let Hz(t), Ez(t), Pz(t) ∈ Λz[[t]] be the ordinary generating series in t for {hi}i>0, {ei}i>0

and {pi+1}i>0 respectively. One can readily see that

Hz(t) =
∑
j>0

hjt
j =

∏
i>1

1

1− zit
, Ez(t) =

∑
j>0

ejt
j =

∏
i>1

(1 + zit). (7)

Furthermore, one can check that Pz(t) = d
dt

logHz(t) and by Equation (7), Pz(−t) =
d
dt

logEz(t). By integrating then exponentiating we get

Hz(t) = exp

(∑
i>1

pi
ti

i

)
, Ez(t) = exp

(∑
i>1

(−1)i−1pi
ti

i

)
. (8)

The fundamental involution ω : Λz → Λz is the algebra homomorphism defined on the gen-
erating set {en}n>1 by ω(en) = hn for each n. From Equation (7) we see

∑n
i=0(−1)ieihn−i =

0 for n > 0 and from this ω(hn) = en for all n.
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We see that (7) and (8) can be used to express one class of symmetric functions in terms
of another. We present a few additional such relations pertinent to our discussion. Recall
that given a partition λ = (λ1, λ2, . . . , λ`), its conjugate is the partition λT = (λT1 , λ

T
2 , . . .)

where λTi is the number of indices j for which λj > i. For instance, if λ = (4, 3, 2, 2, 1)
then λT = (5, 4, 2, 1). The classical Jacobi-Trudi identities express the Schur function sλ
in terms of homogeneous and elementary symmetric functions as follows:

sλ = det[hλi−i+j] = det[eλTi −i+j]. (9)

Here, hk = 0 (similarly ek = 0) if k < 0. The Cauchy identity asserts that in Q[[y, z]] we
have ∑

λ`n

hλ(y)mλ(z) =
∑
λ`n

sλ(y)sλ(z) (10)

Furthermore it is well-known that hλ =
∑

µKµ,λsµ where the coefficients Kµ,λ are non-
negative integers (the so-called Kostka numbers). Yet another classic result shows that if
µ ` n then

pµ =
∑
λ`n

χλ(µ) · sλ, (11)

where χλ(µ) is the evaluation of the irreducible character χλ of Sn indexed by λ evaluated
at any permutation whose cycle type is given by µ.

The characters of representations of Sn show up in another useful context for us.
Given an n × n matrix A and a partition λ ` n, the immanant of A indexed by λ is
the multilinear expression Immλ(A) =

∑
σ∈Sn χ

λ(σ)
∏n

i=1Ai,σ(i). When λ = (n) ` n then
χλ is the trivial character given by χλ(σ) = 1 for all σ ∈ Sn so Immλ(A) = per(A).
Similarly when λ = (1, 1, . . . , 1) then χλ is the sign character given by χλ(σ) = sgn(σ) for
all σ ∈ Sn so Immλ(A) = det(A).

In our study we will be concerned with when symmetric functions expand with non-
negative coefficients with respect to a given basis. We say f ∈ Λz is p-positive if it can
be written as a nonnegative linear combination of power sum symmetric functions. We
say f is Schur-positive if it can be written as a nonnegative linear combination of Schur
functions.

3.2 Path-Cycle and Rédei-Berge Symmetric Functions

Let D be a digraph on I ⊆ [n]. A path-cycle cover of D is a spanning subgraph of D
comprised of a vertex-disjoint union of paths and cycles. Such a subgraph S induces
partitions path(S) and cycle(S) whose union is a partition of |I| whose parts are the sizes
(i.e. the number of vertices) in their respective paths and cycles. We say S is a path cover
(respectively, cycle cover) of D if it contains only paths (resp. cycles).

In [3], Chow defines the path-cycle symmetric function of D by

ΞD(z,y) =
∑
S

m̃path(S)(z) pcycle(S)(y),
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3

1
2

3
D D

Figure 1: A digraph with D and its complement D.

where the sum extends over all path-cycle covers S of D. For example, let D be the
digraph on vertex set [3] with edge set {(1, 1), (1, 3), (3, 2)}. Both D and its complement
D are displayed in Figure 1, and for these we have

ΞD(z,y) = m̃13 + 2m̃21 + m̃3 + m̃12p1 + m̃2p1

ΞD(z,y) = m̃13 + 4m̃21 + 3m̃3 + m̃1p
2
1 + 3m̃2p1 + 2m̃12p1 + p1p2 + m̃1p2 + p3

where the m̃′s and p′s are in Λz and Λy respectively. For instance, in ΞD, the 4m̃21

accounts for the four path covers {12, 3}, {21, 3}, {23, 1}, {31, 2} whereas 3m̃2p1 accounts
for the path-cycle covers {12, 33}, {21, 33}, {31, 22}.

It is easy to verify that UD is the following evaluation of ΞD, as given by Chow.

Proposition 7. [3, Proposition 7] For a digraph D on [n] we have UD = ΞD(z, 0). That
is,

UD =
∑
S

m̃path(S) =
∑
P

z
|P1|
1 z

|P2|
2 · · ·

where the first sum extends over all path covers S of D, and the second over all sequences
P = (P1, P2, . . .) of vertex-disjoint (possibly empty) paths that cover D.

So for instance, for the digraph D in Figure 1 and its complement,

UD = m̃13 + 4m̃21 + 3m̃3, UD = m̃13 + 2m̃21 + m̃3 (12)

We can express these in terms of power sum symmetric functions as follows:

UD = p13 + p21 + p3, UD = p13 − p21 + p3 (13)

Proposition 7 together with Lemma 1 will allow us to expand UD in terms of power
sum symmetric functions in Theorem 10. To start, we need the following lemma.

Lemma 8. For an n× n matrix A and I ⊆ [n], we have

(a) LI detHz(XA) =
∑
σ∈SI

pcyc(σ)
∏
i∈I

Ai,σ(i),

(b) LI detEz(XA) =
∑
σ∈SI

pcyc(σ) sgn(σ)
∏
i∈I

Ai,σ(i).
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Proof. By Jacobi’s identity (5) and Equation (8) we have

detHz(XA) = det exp

(∑
k

1

k
pk(XA)k

)
= exp

(∑
k

1

k
pk tr(XA)k

)
. (14)

The computation of LI detHz(XA) is unaffected by setting x2j = 0 for j ∈ I and xj = 0
for j 6∈ I. (More formally, we are passing to the quotient by the ideal generated by
{x2i : i ∈ I} ∪ {xj : j /∈ I}.)

Under these reductions we have

1

k
tr(XA)k =

1

k

∑
distinct
j1,...,jk∈I

xj1Aj1,j2 · xj2Aj2,j3 · · · xjkAjk,j1 =
∑
J⊆I
|J |=k

∑
σ∈CJ

∏
j∈J

xjAj,σ(j),

where CJ denotes the set of full cycles on J (i.e. σ ∈ SJ composed of a single cycle).
From Equation (14), this gives

detHz(XA) = exp

 ∑
∅(J⊆I

p|J |
∑
σ∈CJ

∏
j∈J

xjAj,σ(j)


=
∏
∅(J⊆I

exp

(
p|J |

∑
σ∈CJ

∏
j∈J

xjAj,σ(j)

)
.

Since exp(u) = 1 + u when u2 = 0, it follows that

LI detHz(XA) = LI
∏
∅(J⊆I

(
1 + p|J |

∑
σ∈CJ

∏
j∈J

xjAj,σ(j)

)

=
∑

∅(J1,J2,...,Jk⊆I
J1∪J2∪···∪Jk=I

k∏
s=1

p|Js| ∑
σ∈CJs

∏
j∈Js

Aj,σ(j)

 .

Identity (a) now comes by considering the disjoint cycle decomposition of a given σ ∈
SI . Statement (b) can be derived similarly, with sgn(σ) coming from the contribution
(−1)k−1pk for each k-cycle in the disjoint cycle decomposition of σ.

Observe that Equation (2) is recovered from Lemma 8 by setting I = S and z =
(1, 0, 0, . . .). Similarly, setting zi = 1 for 1 6 i 6 α and zi = 0 for i > α yields an analogue
of Equation (2) for the α-permanent ; see [5, 24].

Corollary 9. Let D be a digraph on [n] with adjacency matrix A and let I ⊆ [n]. Then

LI detHz(XA) =
∑
S

pcycle(S),

where the sum extends over all cycle covers S of the subgraph D[I] induced by I.
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Proof. Apply Lemma 8(a), noting that
∏

iAi,σ(i) is 1 if all cycles of σ are D[I]-cycles and
0 otherwise.

We now expand UD in terms of power sum symmetric functions.

Theorem 10. Let D be a digraph on [n]. The following are equivalent expressions for
UD:

(a) UD = Ln detHz(XA) · detEz(XA),

(b) UD = Ln exp
(∑

k

1

k
pk
(

tr(XA)k + (−1)k−1 tr(XA)k
))

,

(c) UD =
∑
I⊆[n]

( ∑
σ∈SIc

pcyc(σ)
∏
i∈Ic

Ai,σ(i)

)(∑
τ∈SI

pcyc(τ) sgn(τ)
∏
i∈I

Ai,τ(i)

)
.

Proof. Since WD(z) is the generating series for walks in D, Proposition 7 implies

UD = LnWD(z1)WD(z2) · · · .

From this and Lemma 1 we get

UD = Ln
∏
i

det(I + ziXA)

det(I − ziXA)
(15)

= Ln det
∏
i

(I − ziXA)−1 · det
∏
i

(I + ziXA)

= Ln detHz(XA) detEz(XA),

where the final equality is due to Equation (7). Now (b) follows from Equation (14) in
the proof of Lemma 8 (and its analogue for Ez(XA)) and (c) follows immediately from
(a) by the same lemma.

For example, recall the digraph D from Figure 1. We see that

A =

1 0 1
0 0 0
0 1 0

 , A =

0 1 0
1 1 1
1 0 1

 .

Thus the only non-zero contributions to the sum in Theorem 10(c) occur when I = {1}
or I = ∅. When I = {1} the contribution comes from τ = (1), σ = (2)(3), and the
contribution itself is pcyc((1)(2)(3)) = p13 . When I = ∅, there is one contribution from
each of σ = (12)(3) and σ = (123), namely p21 and p3, respectively. Altogether we find
UD = p31 + p21 + p3, in accord with Equation (13).

Chow [3] and independently Grinberg and Stanley [12] show that the fundamental
involution ω acts on UD by mapping it to UD, as can be observed, for example, in Equa-
tion (13). We now see that this follows directly from Theorem 10.
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Proposition 11. For a digraph D on [n], UD = ω(UD).

Proof. This follows directly from Theorem 10(a) and the observation that

ω(detHz(XA) detEz(XA)) = detωHz(XA) detωEz(XA)

= detEz(XA) detHz(XA).

Grujić and Stojadinović [13] give a related result showing that UDop = UD.

Proposition 12. [13, Proposition 4.8] For a digraph D on [n], UDop = UD.

Proof. The result follows from Theorem 10(c) by observing that a cycle (i0, i1, . . . , ik, i0)
is in D (respectively, D) if and only if the cycle (i0, ik, ik−1, . . . , i1, i0) is in Dop (resp. D

op
).

This can also be seen directly from Proposition 7, since path covers of Dop are evidently
obtained by reversing the paths in covers of D.

3.3 Power Sum Expansions

We now apply Theorem 10 to recover several theorems from the literature on the expansion
of UD in the power sum basis. We particularly investigate digraphs D for which UD is p-
positive, and interpret their coefficients combinatorially where possible. For convenience
we borrow the following nomenclature from [12].

Definition 13. [12] We let SI(D) (respectively SI(D,D)) denote the set of permutations
in SI whose nontrivial cycles are all D-cycles (respectively all D-cycles or D-cycles). We
simply write S(D) and S(D,D) for S[n](D) and S[n](D,D) respectively.

The following theorem of Grinberg and Stanley gives an explicit expansion of UD in
terms of power sum symmetric functions.

Corollary 14. [12, Theorem 1.3] Let D be a digraph on [n]. For σ ∈ Sn, define

φ(σ) :=
∑

γ∈Cycs(σ)
γ a D-cycle

(`(γ)− 1),

where Cycs(σ) denotes the set of cycles in the disjoint cycle decomposition of σ and `(γ)
is the length of γ ∈ Cycs(σ). Then

UD =
∑

σ∈S(D,D)

(−1)φ(σ)pcyc(σ).

Proof. By Theorem 10(c),

UD =
∑
I⊆[n]

∑
(σ,τ)∈SIc×SI

pcyc(σ)pcyc(τ) sgn(τ)
∏
i∈Ic

Ai,σ(i)
∏
i∈I

Ai,τ(i).

The non-zero summands in this expression come from pairs (σ, τ) ∈ SIc ×SI for which
every cycle in σ is a D-cycle and every cycle in τ is a D-cycle. The contribution to the
sum from such a pair is pcyc(σ)pcyc(τ) sgn(τ) = pcyc(ρ) sgn(τ) where ρ is the permutation in
Sn obtained by concatenating σ and τ . Finally, sgn(τ) is precisely (−1)φ(ρ) and the result
follows.
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As an example, consider the digraph D in Figure 1. There are exactly three permu-
tations in S(D,D), namely

σ = (1)(2)(3) σ′ = (12)(3) σ′′ = (123).

Note that σ has one D-cycle (of length 1), whereas σ′ and σ′′ have no D-cycles. Therefore,
φ(σ) = φ(σ′) = φ(σ′′) = 0. We deduce then that UD = p13 + p21 + p3, in agreement with
Equation (13).

When D is acyclic, UD has the following compact form. This is the so-called symmetric
function determinant of A as coined by Stanley in [21, Exercise 123].

Corollary 15. Let D be an acyclic digraph on [n]. Then

UD =
∑
σ∈Sn

pcyc(σ)

n∏
i=1

Ai,σ(i).

In particular, UD is p-positive.

Proof. If D is acyclic then in Theorem 10(c) we have pcyc(τ) sgn(τ)
∏

i∈I Ai,τ(i) = 0 for
I 6= ∅. This leaves the desired sum.

Example 16. Let
⋃k
i=1 Vi be a partition of [n] and consider the digraph D on [n] with

edge set
⋃
i>j Vi × Vj. Then D is acyclic, so by Corollary 15 we have

UD =
∑
σ∈Sn

pcyc(σ)

n∏
i=1

Ai,σ(i) =
∑

(σ1,...,σk)∈SV1×···×SVk

pcyc(σ1) · · · pcyc(σk)

because for any σ ∈ Sn the product
∏n

i=1Ai,σ(i) is nonzero if and only if each cycle in σ
is individually contained completely in one of the sets Vi.

Observe in this case we can write UD very simply in terms of complete symmetric
functions. Using the well-known identity m!hm =

∑
σ∈Sm pcyc(σ), we find that

UD =
k∏
i=1

∑
σ∈SVi

pcyc(σ) = (λ1!λ2! · · · )hλ,

where λ is the partition of n obtained from rearranging |V1|, . . . , |Vk| in nonincreasing
order.

If the vertices of an acyclic digraph are labeled in topological order (meaning they are
listed so that if (u, v) is a directed edge then u is listed before v) then we recover, from
Corollary 15, the following expansion of UD that was conjectured by Stanley and proved
by Gessel; see [21, Exercise 120c]. After some unpacking, our approach is effectively
equivalent to Gessel’s.

Recall that a record of a permutation σ ∈ Sn is an index r ∈ [n] such that σ(r) > σ(i)
for all i < r. If r1 < · · · < rj are the records of σ, then the record partition of σ is
the partition of n whose parts are the differences {r2 − r1, r3 − r2, . . . , (n+ 1)− rj}. For
example, σ = 325641 ∈ S6 has records {1, 3, 4} and record partition (3, 2, 1).
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Corollary 17. Suppose D is a digraph on [n] such that i > j for every directed edge (i, j).
Then

UD =
∑
σ∈Sn

DesD(σ)=∅

prp(σ)

where rp(σ) is the record partition of σ.

Proof. Evidently D is acyclic, so Corollary 15 gives UD =
∑

σ∈Sn pcyc(σ)
∏n

i=1Ai,σ(i). The

only nonvanishing summands are pcyc(σ) for permutations σ whose cycles are all D-cycles.
Now transform any such σ into the following linear form σ′: Write each cycle of σ with
largest element first, and then concatenate the cycles in ascending order of greatest ele-
ment. For example, σ = (1 4 6)(2 3)(5) becomes σ′ = 325641. (The mapping σ → σ′ is a
restriction of Foata’s fundamental bijection.) Then cyc(σ) = rp(σ′), and each consecutive
pair (σ′j, σ

′
j+1) is either of the form (i, σ(i)) for some i or satisfies σ′j < σ′j+1. In particular,

each (σ′j, σ
′
j+1) is a directed edge of D, so DesD(σ′) = ∅.

Finally, we have the following result of Grinberg and Stanley which ensures p-positivity
of UD when D has no 2-cycles.

Corollary 18. [12, Theorem 1.41] Suppose D is a digraph on [n] and has no 2-cycles.
Then UD is p-positive.

Proof. Recalling that, working in the ring whereX2 = 0 (which we can do by Theorem 10),
the quantities tr(XA)k and tr(XA)k enumerate the k-cycles in D and D, respectively
(both with multiplicity k). Suppose D has no 2-cycles. If arc (u, v) appears in D then
the reverse arc (v, u) appears in D. Thus reversing any k-cycle in D yields a k-cycle in D.
In particular, tr(XA)k contains all the terms of tr(XA)k, so all coefficients of tr(XA)k +
(−1)k−1 tr(XA)k are nonnegative. Hence UD is p-positive by Theorem 10(b).

3.4 Tournaments

Grinberg and Stanley [12] expand UD when D is a tournament, showing not only that
UD is p-positive in this case, but that UD ∈ Z[p1, 2p3, 2p5, 2p7, . . . ]. We can recover this
theorem directly from Theorem 10.

Corollary 19. [12, Theorem 1.39] Let D be a tournament on [n] and for σ ∈ Sn let ψ(σ)
be the number of nontrivial cycles of σ. Then

UD =
∑

σ∈S(D)
all cycles of σ have odd length

2ψ(σ)pcyc(σ)

Proof. Recall that Theorem 10(b) gives

UD = Ln exp
(∑

k

1

k
pk
(

tr(XA)k + (−1)k−1 tr(XA)k
))
.
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We again proceed in the quotient ring Λz[[x1, . . . , xn]]/〈x21, . . . , x2n〉, in which we claim

tr(XA)k =

{
trX if k = 1

tr(XA)k otherwise.

Indeed, A has all ones on the diagonal because D has no loops, so tr(XA) = trX. Since
D is a tournament, Dop is simply D with its loops removed. Thus any D-cycle is the
reversal of a non-loop D-cycle, and vice-versa. When k > 1, loops contribute to neither
tr(XA)k nor tr(XA)k (since X2 = 0), and so in this case we have tr(XA)k = tr(XA)k.

We are left with

UD = Ln exp
(
p1 trX

)
exp

( ∑
odd k > 1

1

k
(2pk) tr(XA)k

)
= Ln

∏
i

(1 + p1xi) · detHz(XA)
∣∣∣
p1→0, p2i→0, p2i+1→2p2i+1

=
∑
I⊆[n]

p
n−|I|
1 · LI detHz(XA)

∣∣∣
p1→0, p2i→0, p2i+1→2p2i+1

But by Lemma 8, for I ⊆ [n] we have

LI detHz(XA) =
∑
σ∈SI

pcyc(σ)
∏
i∈I

Ai,σ(i) =
∑
σ∈SI

every cycle in σ is a D-cycle

pcyc(σ)

and the result follows.

It was observed in [12] that Corollary 19 specifies to the following expression for the
number of Hamiltonian paths in the complement of a tournament:

Corollary 20. [12, Theorem 1.39 & Lemma 6.5] For a tournament D on [n],

ham(D) =
∑

σ∈S(D)
all cycles of σ have odd length

2ψ(σ).

Proof. From (15) we see that setting z1 = 1 and zi = 0 for i > 1 transforms UD into
LnWD(1), which is precisely ham(D). Evidently these transformations are equivalent to
mapping pi → 1 for all i, and the result follows from Corollary 19.

3.5 Schur Function Expansions

We now explore the expansion of UD in the Schur function basis. A motivating question is
determining conditions on D that ensure UD is Schur positive. For instance, we see that
the digraphs in Example 16 are all Schur positive. Indeed for such a digraph D, if the
partition of the vertex set is V1, V2, . . . , Vk with |Vi| = λi, and we set λ to be the partition
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of n with the λi’s listed in weakly decreasing order, then UD =
(∏k

i=1 λi!
)∑

µKµ,λsµ

where Kµ,λ are the Kostka numbers which are known to be nonnegative. However, UD
may fail to be Schur positive even if D is acyclic. For example, consider the digraph D on
vertices {1, 2, 3, 4} with directed edges {(4, 3), (3, 2), (3, 1)}. Then D is acyclic (in fact, a
directed tree), and one can calculate that

UD = 10s(4) + 4s(3,1) − 2s(2,2) + 2s(2,1,1).

We begin our investigation by developing two general expressions concerning the res-
olution of UD in the Schur basis. The first of these identifies the coefficient of sλ in UD as
a Jacobi-Trudi determinant.

For any digraph D on [n], and for any k > 0, let

ξk+1(D) :=
∑

(i0,i1,...,ik)
a path in D

xi0xi1 · · ·xik ∈ Q[x1, . . . , xn]

be the generating polynomial for paths of length k in D. Further set ξ0(D) = 1 and take
ξk(D) = 0 for k < 0. Note that ξk+1(D) is obtained from γk+1(D) by setting x2i = 0 for
all i. Finally, for λ = (λ1, λ2, . . .) ` n, define Pλ(D) to be the n× n Jacobi-Trudi matrix
whose (i, j)-th entry is ξλi−i+j(D).

Proposition 21. Let D be any digraph on [n]. Then

[sλ]UD = Ln detPλ(D) = Ln detPλT (D).

Proof. We have

UD = Ln
∏
i>1

WD(zi) = Ln
∏
i>1

(∑
k>0

ξk(D)zki

)
= Ln

∑
λ`n

hλ(y)mλ(z)

∣∣∣∣∣
hi(y)→ξi(D)

,

with the the last equality holding since
∏

i>1

∑
k>0 hk(y)zki =

∑
λ`n hλ(y)mλ(z). The

Cauchy identity (10) then gives

UD = Ln
∑
λ`n

sλ(y)sλ(z)
∣∣∣
hi(y)→ξi(D)

,

and the first expression for [sλ] UD follows by the Jacobi-Trudi formula (9). Since WD(z) =
(WD(−z))−1, the identification hi(y) → ξi(D) is equivalent to ei(y) → ξi(D), so the
second expression follows similarly.

For example, returning to the digraph D in Figure 1 we have

ξ1(D) = x1 + x2 + x3, ξ2(D) = x1x3 + x3x2, ξ3(D) = x1x3x2,

the electronic journal of combinatorics 32(4) (2025), #P4.43 16



with ξ0(D) = 1 and ξk(D) = 0 for k > 3. Proposition 21 then gives

UD = L3

detP(3)︷ ︸︸ ︷∣∣∣∣∣∣
ξ3 0 0
0 1 ξ1
0 0 1

∣∣∣∣∣∣ ·s(13) + L3

detP(2,1)︷ ︸︸ ︷∣∣∣∣∣∣
ξ2 ξ3 0
1 ξ1 ξ2
0 0 1

∣∣∣∣∣∣ ·s(2,1) + L3

detP(13)︷ ︸︸ ︷∣∣∣∣∣∣
ξ1 ξ2 ξ3
1 ξ1 ξ2
0 1 ξ1

∣∣∣∣∣∣ ·s(3)
= s(13) + s(2,1) + 3s(3),

in agreement with (12) and (13).
We can also see using Theorem 10 that UD can be written in the Schur basis with

coefficients expressed in terms of immanants of submatrices of A and A and Littlewood-
Richardson coefficients cνλµ (see [21] for details).

Proposition 22. For any digraph D on [n] we have

UD =
∑
ν`n

 ∑
I⊆[n]

λ`|Ic|, µ`|I|

ImmλA[Ic] · ImmµTA[I] · cνλµ

 sν

where {cνλµ} are Littlewood-Richardson coefficients defined by sλsµ =
∑

ν`|λ|+|µ| c
ν
λµsν.

Proof. If I ⊆ [n], µ is a partition of |I| and τ ∈ SI then χµ(τ) sgn(τ) = χµ
T
(τ). Using

Theorem 10(c) and Equation (11) we therefore get

UD =
∑
I⊆[n]

( ∑
σ∈SIc

pcyc(σ)
∏
i∈Ic

Ai,σ(i)

)(∑
τ∈SI

pcyc(τ) sgn(τ)
∏
i∈I

Ai,τ(i)

)

=
∑
I⊆[n]

∑
λ`|Ic|

( ∑
σ∈SIc

χλ(σ)
∏
i∈Ic

Ai,σ(i)

)
sλ

 ·
∑
µ`|I|

∑
τ∈SI

χµ(τ) sgn(τ)︸ ︷︷ ︸
χµT (τ)

∏
i∈I

Ai,τ(i)

 sµ


=
∑
I⊆[n]

∑
λ`|Ic|

ImmλA[Ic] · sλ

∑
µ`|I|

ImmµTA[I] · sµ

 .

The result follows.

The expression for UD in Proposition 22 simplifies when D is acyclic.

Proposition 23. Let D be an acyclic digraph on [n]. Then

UD =
∑
λ`n

Immλ(A) · sλ.
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Proof. From Corollary 15 and Equation (11), we have

UD =
∑
σ∈Sn

pcyc(σ)

n∏
i=1

Ai,σ(i) =
∑
σ∈Sn

∑
λ`n

χλ(σ)sλ

n∏
i=1

Ai,σ(i) =
∑
λ`n

(∑
σ∈Sn

χλ(σ)
n∏
i=1

Ai,σ(i)

)
sλ

and the equation follows.

Proposition 23 shows that for an acyclic digraph D on [n], UD is Schur positive if and
only if Immλ(A) is nonnegative for every λ ` n. By a well-known result of Stembridge [22],
all of these immanants are known to be nonnegative in the special case when A is totally
nonnegative (i.e. all minors of A are nonnegative). However, using [2, Theorem 2.1] one
can see that the tandem conditions of D being acyclic and A being totally nonnegative
are very restrictive. For instance, these conditions are satisfied in Example 16. The next
example describes more general instances when this happens, and relates to a celebrated
theorem on chromatic symmetric functions.

Example 24. Let P be a partial order on [n] and YP = {(i, j) : i >P j}. Then it
is known that UYP = Xinc(P ), the chromatic symmetric function of the incomparability
graph of P . One can use this to piece together the celebrated theorem of Gasharov [6]
that Xinc(P ) is Schur positive if P is (3 + 1)-free. Observe that YP is acyclic, so by

Proposition 23, Xinc(P ) =
∑

λ`n Immλ(A(YP ))sλ. Guay-Paquet [14] establishes that to
prove Schur positivity for (3 + 1)-free posets it is sufficient to prove it for unit interval
orders, that is posets that are (3 + 1)- and (2 + 2)-free. Now by Skandera and Reed [19,

Proposition 5] together with Brualdi [2, Theorem 2.2], A(YP )
T

is totally nonnegative and
hence A(YP ) is. We deduce again by Stembridge [22] that Xinc(P ) = UYP is Schur positive.

Remark 25. Comparing Propositions 21 and 23 we see that for an acyclic digraph D we
have

Immλ(A) = Ln det[γλi−i+j]

where γk := γk(D) is given by

γk = [zk]WD(z) = [zk] det(I − zXA)−1.

Similar computations show that the immanants of an arbitrary matrix M can be expressed
in the Jacobi-Trudi form Immλ(M) = Ln det[∆λi−i+j], where ∆k = [zk] det(I − zXM)−1.
See [9, Theorem 2.1].

We now investigate combinatorial features of the coefficients in the expansion of UD in
the Schur basis. We start by observing that there is a direct combinatorial interpretation
for the coefficient of sλ when λ is a hook shape, i.e. λ = (i, 1n−i) for some 1 6 i 6 n.

Proposition 26. Let D be a digraph on [n], 1 6 i 6 n, and λ be the hook partition
λ = (i, 1n−i). Then [sλ] UD is the number of permutations σ ∈ Sn such that DesD(σ) =
{i, i + 1, . . . , n − 1}. In particular, [s(1n)] UD is the number of Hamiltonian paths in D
and [s(n)] UD is the number of Hamiltonian paths in D.
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Proof. For a composition α = (α1, . . . , αk) |= n, define S(α) = {α1, α1 +α2, . . . , α1 + · · ·+
αk−1} ⊆ [n− 1]. Then

UD =
∑
α|=n

cαFS(α)

where cα is the number of permutations σ ∈ Sn with DesD(σ) = S(α). Since we know
UD is symmetric, [4, Theorem 15] implies that [sλ]UD = cλ for any hook partition λ ` n.
The result follows since λ = (i, 1n−i) has S(λ) = {i, i+ 1, . . . , n− 1}.

The following Schur expansion of UD when D = {(2, 1), (3, 2), . . . , (n, n− 1)} is given
in [21, Exercise 120] and was also observed by Chow for general directed Hamiltonian
paths D (see [3, Section 6]):

UD =
n∑
i=1

fi · s(i,1n−i).

Here, fi is the number of permutations in Si with no reverse successions: that is permu-
tations π ∈ Si with no index j such that πj+1 = πj − 1. Note that the coefficients agree
with Proposition 26. Indeed, according to that proposition, [s(i,1n−i)]UD is the number of
permutations in Sn with reverse successions precisely at positions {i, i + 1, . . . , n − 1}.
Now there is a bijection between such permutations σ and permutations in Si with no
reverse succession by sending σ to the standardization of σ1σ2 · · ·σi (and one can readily
see this is reversible).

Remark 27. Our proof of Proposition 26 relied on [4, Theorem 15], which states (in
part) that [sλ] f =

[
FS(λ)

]
f for any symmetric function f ∈ Λz and any hook partition

λ = (i, 1n−i). Grinberg [10] has pointed out the following alternative explanation for this
identity.

The Hall inner product on Λ (= Λz) is a restriction of a bilinear form 〈·, ·〉 between the
Hopf algebras NSym and QSym of noncommutative and quasisymmetric functions. The
ribbon basis {Rα} of NSym and fundamental basis {Fα} of QSym are dual with respect
to this pairing, and the canonical injection ι : Λ→ QSym and projection π : NSym→ Λ
are mutually adjoint. Since sλ = π(Rλ) for ribbon-shaped λ, we have

[sλ] f = 〈sλ, f〉 = 〈π (Rλ) , f〉 = 〈Rλ, ι (f)〉 =
[
FS(λ)

]
f.

See [11, Section 5.4] for details concerning the above assertions.

3.6 Extensions to the Chow Path-Cycle Symmetric Function

Several of our results regarding UD can be extended to Chow’s symmetric function ΞD(z,y).
We start by noting the action of the fundamental involution, which we now denote ωz to
emphasize that it is acting only on the z variables. The following result appeared as [3,
Theorem 1] and was reproved by Lass [15] using an approach equivalent to ours.

Theorem 28. [3, Theorem 1] For a digraph D on [n] we have

[ωz ΞD(z,−y)]z→(z,y) = ΞD(z,y),

where the operation z→ (z,y) replaces z with the union of variables z and y.
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Proof. Without loss of generality, assume D has vertex set [n]. Recall that ΞD(z,y) =∑
S m̃path(S)(z)pcycle(S)(y) where the sum is over all path-cycle covers of D. Notice that

for a given summand S, the vertices appearing in the parts of path(S) are complementary
to those appearing in the parts of cycle(S). From this we see that

ΞD(z,y) =
∑
S

m̃path(S)(z)pcycle(S)(y)

=
∑
I⊆[n]

 ∑
S′ a path cover of D[I]

m̃path(S′)(z)

 ∑
S′′ a cycle cover of D[Ic]

pcycle(S′′)(y)


where D[I] and D[Ic] denote the subgraphs of D induced by I and Ic, respectively.

From Corollary 9, for any I ⊆ [n] we have∑
S′′ a cycle cover of D[Ic]

pcycle(S′′)(y) = LIc detHy(XA).

On the other hand, we have∑
S′ a path cover of D[I]

m̃path(S′)(z) = LIWD[I](z1)WD[I](z2) · · ·

As noted in Section 2.2, WD[I](z) is obtained from WD(z) by setting xj = 0 for j 6∈ I.
Thus we obtain

∑
S′ a path cover of D[I]

m̃path(S′)(z) = LI

(
WD(z1)WD(z2) · · ·

∣∣∣
xj=0, j 6∈I

)
= LIWD(z1)WD(z2) · · ·
= LI detHz(XA) detEz(XA), (16)

where the last line follows from Lemma 1 just as in the proof of Theorem 10(a). Altogether
this gives

ΞD(z,y) =
∑
I⊆[n]

LI detHz(XA) detEz(XA) · LIc detHy(XA)

= Ln detHz(XA)Ez(XA)Hy(XA)

= Ln detH(z,y)(XA)Ez(XA),

from which we obtain

[ωz ΞD(z,−y)]z→(z,y) = [ωz Ln det
(
Hz(XA)H−y(XA)Ez(XA)

)
]z→(z,y)

= Ln detE(z,y)(XA)H−y(XA)H(z,y)(XA)

= Ln detH(z,y)(XA)Ez(XA) = ΞD(z,y).
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In [3, Section 6], Chow also defines

Ξ̂D(z,y) =
∑
S

(−2)`(cycle(S))m̃path(S)(z,y) pcycle(S)(y)

where `(cycle(S)) is the number of cycles in S and the sum is over all path-cycle covers
S of D. The series Ξ̂ was introduced because of the following involutive property:

Theorem 29. [3, Section 6] For a digraph D on [n] we have,

ωz Ξ̂D(z,−y) = Ξ̂D(z,y).

Proof. Let I ⊆ [n]. Substituting z→ (−y,−y) in Corollary 9 yields∑
S a cycle cover of D[I]

(−2)`(cycle(S))pcycle(S)(y) = LI detHy(XA)−2,

whereas substituting z→ (z,y) in equation (16) gives∑
S′ a path cover of D[I]

m̃path(S′)(z,y) = LI detHz(XA)Hy(XA) detEz(XA)Ey(XA). (17)

There follows

Ξ̂D(z,y) = Ln
detHz(XA)Ez(XA)Ey(XA)

detHy(XA)
,

and consequently

ωz Ξ̂D(z,−y) = Ln
detEz(XA)Hz(XA)E−y(XA)

detH−y(XA)

= Ln
detEz(XA)Hz(XA)Ey(XA)

detHy(XA)

= Ξ̂D(z,y),

since H−y(t) = 1/Ey(t) and E−y(t) = 1/Hy(t).

Finally, we partially address a question of Grinberg and Stanley [12, Question 1.18]
by generalizing Corollary 14 to expand the Chow path-cycle symmetric function in terms
of power sums.

Theorem 30. Let D be a digraph on [n]. Then

ΞD(z,y) =
∑
I⊆[n]

∑
σ∈SI(D)
τ∈SIc (D)

sgn(σ) · pcyc(σ)(z) · pcyc(τ)(z,y).
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Proof. As seen in the proof of Theorem 28,

ΞD(z,y) = Ln detHz(XA)Ez(XA)Hy(XA)

= Ln detH(z,y)(XA)Ez(XA)

=
∑
I⊆[n]

LI detEz(XA) · LIc detH(z,y)(XA)

Now applying Lemma 8 we get

ΞD(z,y) =
∑
I⊆[n]

∑
σ∈SI
τ∈SIc

sgn(σ) · pcyc(σ)(z) · pcyc(τ)(z,y)
∏
i∈Ic

Ai,τ(i)
∏
j∈I

Aj,σ(j).

The result follows since the product over Ic and the product over I are non-zero in a given
summand if and only if σ ∈ SI(D) and τ ∈ SIc(D).
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