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Abstract

Let ιk(m, l) denote the total number of intervals of length m across all Dyck
paths of semilength k such that each interval contains precisely l falls. We give the

formula for ιk(m, l) and show that ιk(k, l) =
(
k
l

)2
. Motivated by this, we propose

two stronger variants of the wreath conjecture due to Baranyai for n = 2k + 1.

Mathematics Subject Classifications: 05A15, 05A19

1 Dyck paths and the main result

A Dyck path of semilength k (Dyck k-path for brevity) is a lattice path in Z2 that never
goes below the x-axis, starts at (0, 0), ends at (2k, 0), and with each step of the form either
(1, 1) – a rise –, or (1,−1) – a fall. We will denote the set of all Dyck k-paths by Dk. It is
well known that |Dk| = Ck, where Ck = 1

k+1

(
2k
k

)
is the k-th Catalan number. The Catalan

numbers appear in a great many combinatorial settings; the reader is referred to [9] for
an extensive compilation. Dyck paths have also been widely studied; see the works by
Deutsch [5] and by Blanco and Petersen [4] for a collection of statistics and other results
about them.

For D ∈ Dk and non-negative integers l 6 m 6 2k, we define ιD(m, l) as the number of
intervals of length m (that is, sequences of m consecutive steps) in D such that the interval
contains precisely l falls. For a non-negative integer k we define ιk(m, l) as

∑
D∈Dk

ιD(m, l).
Note that by considering reflections in the line x = k, we have ιk(m, l) = ιk(m,m− l).

Our main result is a formula for ιk(m, l). Note that in view of the paragraph above,
we can restrict our attention to the case 2l 6 m. We set

(
x
y

)
= 0 for integers x > 0 and

y < 0.

Theorem 1. Let l,m, k be three non-negative integers such that 2l 6 m 6 2k. Then

ιk(m, l) =
k+l−m∑
d=0

[(
m

l

)
−
(

m

l − d− 1

)][(
2k −m+ 1

k −m+ l − d

)
−
(

2k −m+ 1

k −m+ l − d− 1

)]
.
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A simple manipulation with the sum in Theorem 1 (see the beginning of the proof of
Corollary 2 for a demonstration in the case m = k) provides an alternative formula for
ιk(m, l) given by

ιk(m, l) =

(
m

l

)(
2k −m+ 1

k −m+ l

)
+

l−1∑
d′=0

(
m

d′

)[(
2k −m+ 1

k + 1− d′

)
−
(

2k −m+ 1

k − d′

)]
.

The formula becomes particularly elegant in the special case m = k.

Corollary 2. Let l 6 k be two non-negative integers. Then ιk(k, l) =
(
k
l

)2
.

We remark that using an analogous technique as in the proof of Corollary 2 in Section 3,
one can also obtain ιk(k + 1, l) =

(
k
l−1

)(
k
l

)
for 2l 6 k + 1. With a bit more effort, similar

lines of reasoning eventually yield ιk(k − 1, l) =
(
k+2
l+1

)(
k−1
l

)
−
(
k
l+1

)(
k−1
l−1

)
−
(
k
l−1

)(
k−1
l

)
for

2l 6 k − 1.

2 The wreath conjecture

Kirkman’s Schoolgirl problem from 1847 [7] gave rise to the question whether it is possible
to partition the k-uniform complete hypergraph on n vertices into perfect matchings (that
is, sets of hyperedges such that each vertex lies in exactly one of the hyperedges) whenever
k divides n. The positive answer was confirmed by Baranyai in 1974 [3]. At the end of
his paper, Baranyai posed a conjecture concerning a generalisation of his result.

This conjecture was originally stated in terms of ‘staircase matrices’. Later, Katona
[6] rephrased the conjecture in terms of ‘wreaths’; it is this notion that we adapt here.

Let k 6 n be two positive integers, and let g = gcd(n, k). We write Zn for the set of

integers modulo n and Z(k)
n for the set of subsets of Zn of size k. Given a permutation π

of Zn we define Fn,k,π ⊂ Z(k)
n , the (n, k, π)-wreath, as

{{π((i− 1)k + 1), π((i− 1)k + 2), . . . , π(ik)} | i ∈ Zn}.

It is easy to see that such a set has size n
g
.

A set F ⊂ Z(k)
n is called an (n, k)-wreath if it is an (n, k, π)-wreath for some permuta-

tion π of Zn. The conjecture due to Baranyai [3] and Katona [6] (who nicknamed it the
wreath conjecture) is as follows.

Conjecture 3 (The wreath conjecture). For any positive integers k 6 n there is a

decomposition of Z(k)
n into disjoint (n, k)-wreaths.

For example, for n = 5 and k = 3, the set Z(3)
5 can be decomposed into the following

two (5, 3)-wreaths: F5,3,π1 = {{0, 1, 2}, {1, 2, 3}, {2, 3, 4}, {3, 4, 0}, {4, 0, 1}} and F5,3,π2 =
{{0, 2, 4}, {2, 4, 1}, {4, 1, 3}, {1, 3, 0}, {3, 0, 2}}, where π1 = id and π2 = ( 0 1 2 3 4

0 2 4 1 3 ).
We remark that for n and k coprime, this conjecture coincides with a later one due to

Bailey and Stevens [2] concerning decompositions of complete k-uniform hypergraphs into
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tight Hamiltonian cycles. For more discussion of the case when n and k are not coprime,
the reader is referred to a parallel article by the authors [8].

Let us consider the wreath conjecture for n = 2k + 1. In this case we have g = 1, and
hence, after rearranging, we can write Fn,k,π = {{π(i+ 1), π(i+ 2), . . . , π(i+k)} | i ∈ Zn}.
Motivated by the fact that for n = 2k+1 the number of (n, k)-wreaths necessary to decom-

pose Z(k)
n coincides with the Catalan number Ck, we propose the following strengthening

of Conjecture 3.

Conjecture 4. Let k be a positive integer. There exists a set Π = {π1, π2, . . . , πCk
} of Ck

permutations of Z2k+1 with each permutation fixing 0 and a bijection ϕ : Π → Dk such
that

• Z(k)
2k+1 =

⋃Ck

i=1F2k+1,k,πi , and

• for any i and j, the j-th step of ϕ(πi) is a rise if and only if πi(j) ∈ {1, 2, . . . , k}.

We verified the conjectures using a computer for k 6 4. The bijections for k 6 3
can be seen in Figure 1. This conjecture is also motivated by Corollary 2 in view of the
following result.

Lemma 5. The equality ιk(k, l) =
(
k
l

)2
from Corollary 2 is a necessary condition for

Conjecture 4.

Proof. If Conjecture 4 holds, then to each interval I of length k of a Dyck k-path D we
can assign a set {π(s), π(s + 1), . . . , π(s + k − 1)}, where I starts at the s-th step of D
and π = ϕ−1(D).

By the first condition of Conjecture 4, this yields a bijection between intervals of length
k of Dyck k-paths and sets in Z(k)

2k+1 not containing 0. The second condition then implies

that intervals of length k with l falls are in bijection with sets in Z(k)
2k+1 without 0 and with

l elements from {k + 1, k + 2, . . . , 2k}. From the definition, there are ιk(k, l) intervals of

length k with l falls and there are
(
k
l

)2
sets in Z(k)

2k+1 without 0 and with l elements from
{k + 1, k + 2, . . . , 2k}. The result follows.

Our search through k 6 4 suggests that an even stronger statement may be true. To
state it, for a Dyck path D ∈ Dk, we will denote by D(R) the Dyck path obtained by
reflecting D in the line x = k.

Conjecture 6. Let k be a positive integer. There exists a set Π = {π1, π2, . . . , πCk
} of Ck

permutations of Z2k+1 with each permutation fixing 0 and a bijection ϕ : Π → Dk such
that

• Z(k)
2k+1 =

⋃Ck

i=1F2k+1,k,πi , and

• for any i and j, the j-th step of ϕ(πi) is a rise if and only if πi(j) ∈ {1, 2, . . . , k},
and

• for any Dyck k-path D and any j ∈ Z2k+1 we have ϕ−1(D)(j) +ϕ−1(D(R))(−j) = 0.

The bijections from Figure 1 all satisfy the stronger Conjecture 6.
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4 5 61 2 30 0 0

0 0

0 1 2 0 1 2 3 4 0 2 4 1 3

3 1 2 2 3 1

3 1 2 2 3 1

5 6 4 5 6 4

6 4 5 6 4 5

Figure 1: Examples of permutations which confirm Conjectures 4 and 6 for k 6 3.
Below each Dyck k-path the corresponding permutation π is written in the form
π(0), π(1), . . . , π(2k). The second conditions of the conjectures require numbers 1, 2, . . . , k
to lie below rises and numbers k + 1, k + 2, . . . , 2k below falls.

3 Proofs of Theorem 1 and Corollary 2

To simplify the calculations in the proofs later, we introduce some additional notation.
We call a lattice path a NE upper path if it never visits a point below the y = x diagonal
and each of its steps is either (0, 1) – a North step –, or (1, 0) – an East step. Instead of
working with Dyck k-paths as defined in Section 1, we will work with NE upper paths from
(0, 0) to (k, k). To observe that there is a bijection between these two families of paths,
consider a rotation of the plane by π

4
and an appropriate scaling. Under this bijection,

rises translate to North steps and falls translate to East steps.
The proof uses the following well-known generalisation of Catalan numbers counting

the number of NE upper paths between (x1, y1), (x2, y2) ∈ Z2. This number, which we

denote by P
(x2,y2)
(x1,y1)

, is nonzero if and only if x1 6 x2, y1 6 y2 and xi 6 yi for i ∈ {1, 2}.
Note that for j ∈ Z we have P

(x2,y2)
(x1,y1)

= P
(x2+j,y2+j)
(x1+j,y1+j)

.

Lemma 7. Let (x1, y1), (x2, y2) ∈ Z2 be such that x1 6 x2, y1 6 y2 and xi 6 yi for
i ∈ {1, 2}. Set δ = y1 − x1, α = y2 − y1 and β = x2 − x1. Then

P
(x2,y2)
(x1,y1)

=

(
α + β

β

)
−
(

α + β

β − δ − 1

)
.

We give a proof of this lemma to keep the paper self-contained. The proof is analogous
to André’s reflection principle [1].

Proof. There are
(
α+β
β

)
paths from (x1, y1) to (x2, y2) = (x1+β, y1+α) consisting of North

and East steps. We claim that the number of paths from (x1, y1) to (x2, y2) consisting of
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North and East steps which visit a point below the diagonal y = x is
(
α+β
β−δ−1

)
, which gives

the result.
To show this claim, we find a bijection between the paths from (x1, y1) to (x2, y2)

consisting of North and East steps which visit a point below the diagonal y = x and the
paths from (x1, y1) to (x1 + α+ δ + 1, y1 + β − δ − 1) consisting of North and East steps.

Given a path W of the first type, consider the step after which the path visits a point
below the diagonal y = x for the first time. Let this be the s-th step. From the (s+ 1)-st
step onward, we exchange North and East steps. The resulting path consists of β − δ− 1
North and α + δ + 1 East steps, i.e., it is a path of the second type.

Now consider a path W ′ of the second type. Recall that x1 6 y1, in other words,
(x1, y1) is not below the diagonal y = x. We also have y1 + β − δ− 1 = x2− 1 < y2 + 1 =
y1 + α + 1 = x1 + α + δ + 1, therefore (x1 + α + δ + 1, y1 + β − δ − 1) is below the
diagonal y = x. Therefore, there exists a step of W ′ after which W ′ visits a point below
the diagonal y = x for the first time. Analogously to before, exchange all North and East
steps after this step. The resulting path consists of α North and β East steps and visits
a point below the diagonal y = x, therefore is of the first type.

The maps from the previous two paragraphs are inverses to each other, and so describe
the desired bijection. See Figure 2 for an illustration.

(x1, y1)

(x2, y2) = (x1 + β, y1 + α)

(y1, y1) = (x1 + δ, y1)

(x1 + β, y1 + β − δ)

↔

(x1, y1) (y1, y1) = (x1 + δ, y1)

(x1 + α+ δ + 1, y1 + β − δ − 1)

(x1 + β − 1, y1 + β − δ − 1)

Figure 2: The bijection from Lemma 7 given by ‘flipping’ the section of the path after
the highlighted point.

Hence we have P
(x2,y2)
(x1,y1)

=
(
α+β
β

)
−
(
α+β
β−δ−1

)
, as claimed.

Equipped with this lemma, we move on to the proof of the main theorem.

Proof of Theorem 1. We consider all possible ‘starting points’ (i, i + d) of intervals of
length m which contain exactly l East steps. To obtain ιk(m, l), we sum over all such
starting points the number of NE upper paths which visit the starting point and have
exactly l East steps among the next m steps following this visit. Note that after these m
steps, any such NE upper path visits (i+ l, i+d+m− l). See Figure 3 for an illustration.

As both the starting point and the corresponding endpoint lie in the square [0, k]2,
we have i, d > 0 as well as i + l 6 k and i + d + m − l 6 k. Therefore i and d satisfy
0 6 d 6 k + l −m and 0 6 i 6 k + l −m− d.

In the identities below, first we use P
(x2,y2)
(x1,y1)

= P
(x2+j,y2+j)
(x1+j,y1+j)

and then simplify the sums:
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(0, 0)

(k, k)

(i, i+ d)

(i+ l, i+ d+m− l)

P
(i,i+d)
(0,0)

P
(i+l,i+d+m−l)
(i,i+d)

P
(k,k)
(i+l,i+d+m−l)

Figure 3: An illustration of NE upper paths whose interval of length m starting at (i, i+d)
contains exactly l East steps.

ιk(m, l) =
k+l−m∑
d=0

k+l−m−d∑
i=0

P
(i,i+d)
(0,0) P

(i+l,i+d+m−l)
(i,i+d) P

(k,k)
(i+l,i+d+m−l)

=
k+l−m∑
d=0

k+l−m−d∑
i=0

P
(i,i+d)
(0,0) P

(l,d+m−l)
(0,d) P

(k,k)
(i+l,i+d+m−l)

=
k+l−m∑
d=0

P
(l,d+m−l)
(0,d)

k+l−m−d∑
i=0

P
(i,i+d)
(0,0) P

(k,k)
(i+l,i+d+m−l).

Further simplification of this sum comes from the following claim.

Claim 8. For any d such that 0 6 d 6 k + l −m we have

k+l−m−d∑
i=0

P
(i,i+d)
(0,0) P

(k,k)
(i+l,i+d+m−l) =

(
2k −m+ 1

k −m+ l − d

)
−
(

2k −m+ 1

k −m+ l − d− 1

)
. (1)

Proof of Claim 8. Consider the pairs (W, i), where i ∈ {0, 1, . . . , k + l −m − d} and W
is a NE upper path from (l − k, d + m − l − k) to (0, d) which goes through the point

(−i,−i). Using P
(x2,y2)
(x1,y1)

= P
(x2+j,y2+j)
(x1+j,y1+j)

, observe that the number of distict pairs (W, i) is

precisely the left-hand side of equation (1). See Figure 4 for an illustration.
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P
(i,i+d)
(0,0)

P
(k,k)
(i+l,i+d+m−l)

(l − k, d+m− l − k)

(0, d)

(−i,−i)

Figure 4: An illustration of the left-hand side of equation (1).

Next, we claim that the pairs (W, i) are in bijection with NE upper paths from (l −
k − 1, d + m − l − k) to (0, d) which visit the diagonal y = x in at least one point. The
bijection is given as follows.

Given a pair (W, i), consider the sequence of k + l − m North and k − l East steps
corresponding to W . After the step at which W reaches (−i,−i), add an additional East
step. Denote by W ′ the path corresponding to the longer sequence of North and East
steps starting at (l − k − 1, d+m− l − k). Observe that W ′ consists of k + l −m North
steps and k − l + 1 East steps, never visits a point below the diagonal y = x but visits a
point on this diagonal. Moreover, the first visited point on this diagonal is (−i,−i).

On the other hand, let W ′ be a path from (l− k− 1, d+m− l− k) to (0, d) consisting
of North and East steps that never goes below the diagonal y = x but which visits this
diagonal in at least one point. Then there is a first point at which W ′ visits this diagonal;
let this point be (−i,−i). Consider the sequence of k+l−m North and k−l+1 East steps
corresponding to W ′. Remove the East step that leads to (−i,−i) to obtain a shorter
sequence of steps, and denote by W the corresponding path starting at (l−k, d+m−l−k).
Then (W, i) is a pair where i ∈ {0, 1, . . . , k + l−m− d} and W is a NE upper path from
(l − k, d+m− l − k) to (0, d) which goes through the point (−i,−i).

The maps from the previous two paragraphs are inverses to each other, and hence
describe the desired bijection, see Figure 5 for an illustration.

We thus obtain that the left-hand side of equation (1) counts the number of NE upper
paths from (l−k−1, d+m− l−k) to (0, d) which visit the diagonal y = x in at least one
point. Note that such paths are exactly the NE upper paths from (l−k−1, d+m− l−k)
to (0, d) which visit a point below the diagonal y = x + 1. The number of such paths is

P
(0,d)
(l−k−1,d+m−l−k) − P

(1,d)
(l−k,d+m−l−k).

If d > 0, we apply Lemma 7 twice to express this difference. If d = 0, we apply
Lemma 7 to the first term and observe that P

(1,0)
(l−k,m−l−k), which equals 0 by its definition,

can be written as
(
2k−m+1
k−l+1

)
−
(

2k−m+1
(k−l+1)−(m−2l)−1

)
. We get
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(W, i) W ′

(−i,−i)(−i,−i)

↔

(l − k, d+m− l − k)

(0, d) (0, d)

(l − k − 1, d+m− l − k)

Figure 5: The bijection from Claim 8. The additional step in W ′ is the East step leading
to (−i, i).

k+l−m−d∑
i=0

P
(i,i+d)
(0,0) P

(k,k)
(i+l,i+d+m−l) = P

(0,d)
(l−k−1,d+m−l−k) − P

(1,d)
(l−k,d+m−l−k)

=

[(
2k −m+ 1

k − l + 1

)
−
(

2k −m+ 1

(k − l + 1)− (d+m− 2l + 1)− 1

)]
−
[(

2k −m+ 1

k − l + 1

)
−
(

2k −m+ 1

(k − l + 1)− (d+m− 2l)− 1

)]
=

(
2k −m+ 1

k −m+ l − d

)
−
(

2k −m+ 1

k −m+ l − d− 1

)
.

This concludes the proof of Claim 8.

By applying Lemma 7 and Claim 8, we obtain

ιk(m, l) =
k+l−m∑
d=0

P
(l,d+m−l)
(0,d)

k+l−m−d∑
i=0

P
(i,i+d)
(0,0) P

(k,k)
(i+l,i+d+m−l)

=
k+l−m∑
d=0

[(
m

l

)
−
(

m

l − d− 1

)][(
2k −m+ 1

k −m+ l − d

)
−
(

2k −m+ 1

k −m+ l − d− 1

)]
,

completing our proof of Theorem 1.

The formula from Theorem 1 simplifies considerably when m = k.
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Proof of Corollary 2. Plugging m = k into Theorem 1 we obtain

ιk(k, l) =
l∑

d=0

[(
k

l

)
−
(

k

l − d− 1

)][(
k + 1

l − d

)
−
(

k + 1

l − d− 1

)]

=

(
k

l

) l∑
d=0

[(
k + 1

l − d

)
−
(

k + 1

l − d− 1

)]

−
l−1∑
d=0

(
k

l − d− 1

)[(
k + 1

l − d

)
−
(

k + 1

l − d− 1

)]
.

Noting that the second factor in the first term is a telescoping sum, we find that(
k

l

) l∑
d=0

[(
k + 1

l − d

)
−
(

k + 1

l − d− 1

)]
=

(
k

l

)(
k + 1

l

)
. (2)

To simplify the second term, first we expand the bracket and substitute d′ = l− d− 1
to get

l−1∑
d=0

(
k

l − d− 1

)[(
k + 1

l − d

)
−
(

k + 1

l − d− 1

)]
=

l−1∑
d′=0

(
k

d′

)(
k + 1

k − d′

)
−

l−1∑
d′=0

(
k + 1

d′

)(
k

k − d′

)
.

We now consider the task of choosing k objects out of 2k + 1 ordered objects. The
first sum counts the number of ways to do so in a way that at most l − 1 of the first k
objects are picked. The second sum counts the number of ways to do so in a way that at
most l− 1 of the first k + 1 objects are picked. Any choice of the second type is a choice
of the first type. The only choices of the first type that are not of the second type are
those which choose exactly l − 1 elements from the first k and also choose the (k + 1)-st
element (which means k − l elements are chosen from the last k elements).

We thus obtain

l−1∑
d=0

(
k

l − d− 1

)[(
k + 1

l − d

)
−
(

k + 1

l − d− 1

)]
=

(
k

l − 1

)(
k

k − l

)
=

(
k

l

)(
k

l − 1

)
. (3)

Equations (2) and (3) imply

ιk(k, l) =

(
k

l

)(
k + 1

l

)
−
(
k

l

)(
k

l − 1

)
=

(
k

l

)2

,

as claimed.
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4 Concluding remarks

The main open questions of interest are the conjectures from Section 2. As we have seen,
Corollary 2 provides support for the newly introduced Conjecture 4 and Conjecture 6. The
authors are also curious if the right-hand side of Theorem 1 could be simplified further in
other cases than those with m = k, k − 1, k + 1 already considered.
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[6] G. Katona. Rényi and the combinatorial search problems. Studia Sci. Math. Hungar,
26(2-3):363–378, 1991.

[7] T. P. Kirkman. On a problem in combinations. Cambridge and Dublin Mathematical
Journal, 2:191–204, 1847.

[8] J. Petr and P. Turek. The wreath matrix. arXiv:2501.07269, 2025.

[9] R. P. Stanley. Catalan Numbers. Cambridge University Press, 2015.

the electronic journal of combinatorics 32(4) (2025), #P4.44 10

https://arxiv.org/abs/2501.07269

	Dyck paths and the main result
	The wreath conjecture
	Proofs of Theorem 1 and Corollary 2
	Concluding remarks

