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Abstract

We say that a graph G is (k, `)-stable if removing k vertices from it reduces its
independence number by at most `. We say that G is tight (k, `)-stable if it is (k, `)-
stable and its independence number equals

⌊
n−k+1

2

⌋
+ `, the maximum possible,

where n is the vertex number of G. Answering a question of Dong and Wu, we show
that every tight (2, 0)-stable graph with odd vertex number must be an odd cycle.
Moreover, we show that for all k > 3, every tight (k, 0)-stable graph has at most
k + 6 vertices.

Mathematics Subject Classifications: 05C69

1 Introduction

The resilience of graph properties is a fundamental question in graph theory. Motivated
by studies on the Erdős–Rogers function, Dong and Wu [3] investigated the resilience of
graph independence number with respect to removing vertices. For a graph G = (V,E)
and vertices v1, . . . , vk ∈ V , we let G \ {v1, . . . , vk} denote the induced subgraph of G on
V \ {v1, . . . , vk}. For integers k > ` > 0, we say that G is (k, `)-stable if for any k vertices
v1, . . . , vk ∈ V , we have α(G \ {v1, . . . , vk}) > α(G)− `.

A result in [3] states that any (k, `)-stable graph G on n vertices satisfies

α(G) 6 bn− k + 1

2
c+ `.

A (k, `)-stable graph for which equality holds (i.e., α(G) = bn−k+1
2
c + `) is called tight

(k, `)-stable. When ` = 0, it is easily seen that every Kk+1 is tight (k, 0)-stable. When
` > 0, one can always obtain a tight (k, `)-stable graph by taking the disjoint union of a
tight (k− 1, `− 1)-stable graph with an isolated vertex. Starting with Kk−`+1, this yields
a tight (k, `)-stable graph on k + 1 vertices for any k > ` > 0.

Suppose n is any integer greater than k. Does an n-vertex (k, `)-stable graph always
exist? The answer is “yes” when (k, `) = (1, 0). Indeed, when n is even, any n-vertex
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balanced bipartite graph that contains a perfect matching is tight (1,0)-stable. When
n is odd, one can always take an (n − 1)-vertex tight (1, 0)-stable graph and add an
extra vertex adjacent to all its vertices, to form an n-vertex tight (1,0)-stable graph. In
general, by taking the disjoint union of a tight (1,0)-stable graph with ` isolated vertices,
we immediately obtain examples of tight (` + 1, `)-stable graphs for arbitrary ` on any
number of vertices n > `+ 1.

Going one step further, we consider the case where (k, `) = (2, 0). When n is even,
one can find multiple examples of n-vertex tight (2, 0)-stable graphs, such as a vertex-
disjoint union of two odd cycles, or an even subdivision of K4. (We say that G′ is an
even subdivision of G if we can obtain G′ from G by iteratively performing the following
two-step operation: (i) take edge uv ∈ E and two new vertices u′, v′ /∈ V ; (ii) replace V
by V ∪ {u′, v′} and E by (E \ {uv}) ∪ {uu′, u′v′, v′v}.) However, when n is odd, the only
example known so far is the n-cycle Cn.

Dong and Wu [3, Section 8] asked whether Cn is the only n-vertex tight (2, 0)-stable
graph when n is odd. We answer this question in the affirmative. Moreover, we will show
the following structural properties on tight (k, 0)-stable graphs for k = 1 and k = 2.

Theorem 1. Let G be a tight (k, 0)-stable graph on n vertices.

(a) If k = 1 and n is even, then G contains a perfect matching.

(b) If k = 1 and n is odd, then G has a spanning subgraph that is a vertex-disjoint union
of an odd cycle and a (possibly empty) matching.

(c) If k = 2 and n is odd, then G is an odd cycle.

(d) If k = 2 and n is even, then G has a spanning subgraph that is either a vertex-disjoint
union of two odd cycles, or an even subdivision of K4.

Remark 2. The authors of [3] conjectured that every tight (2,0)-stable graph is Hamilto-
nian. Here we point out that this is not the case, as every even subdivision of K4 is tight
(2,0)-stable, but not every such subdivision is Hamiltonian.

Note that for every k = 1, 2 and n > k, one can always find a tight (k, 0)-stable graph
with n vertices. We show that this becomes different for k > 3. In particular, a tight
(3, 0)-stable graph has at most 9 vertices.

Theorem 3. Let G be a tight (3, 0)-stable graph. Then G has a spanning subgraph that
is among the five graphs K4, K5, H7, T9, H9 as in Figure 1.

Observe that if G is tight (k, 0)-stable, then for any vertex v ∈ V , G \ {v} is tight
(k − 1, 0)-stable. Thus, Theorem 3 immediately gives the following.

Corollary 4. For all k > 3, any tight (k, 0)-stable graph has at most k + 6 vertices.

We will prove Theorem 1(a)–(c) in Section 2. Our proof of Theorem 1(d) and Theo-
rem 3 utilizes properties of α-critical graphs, which are graphs whose independence num-
ber is affected by any edge removal. In Section 3, we introduce the notion of α-criticality
and prove these parts. Finally, in Section 4, we discuss some remaining questions about
(k, `)-stable graphs.
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Figure 1: The five graphs listed in Theorem 3

2 Proof of Theorem 1(a)–(c)

We start by stating the following fact on (1,0)-stable graphs that was proved in [3]. For
completeness, we also include a proof of this result.

Lemma 5. Let G = (V,E) be a (1, 0)-stable graph, and let A ⊆ V be a maximum
independent set in G. Then there exists a matching of size |A| between A and V \ A.

Proof. It suffices to show that Hall’s condition holds from A to V \ A. For every subset
S ⊆ A, we use N(S) to denote the neighborhood of S in G, which is a subset of V \ A
as A is independent. By contradiction, suppose there exists Z ⊆ A such that Z 6= ∅ and
|N(Z)| < |Z|. Without loss of generality, we may assume that Z is minimal. Take any
z ∈ Z. Since α(G) = α(G \ {z}), there exists another maximum independent set A′ in G
that does not contain z.

Let X1 = Z ∩ A′ and X2 = Z \ A′. Define U = (A′ \ N(X2)) ∪ X2. Since A′ is
independent, X2 ⊆ Z ⊆ A is independent and A′ \N(X2) does not contain any neighbors
of X2, we know that U = (A′ \N(X2)) ∪X2 is independent.

Note that Z is a disjoint union of X1 and X2. Since X1 ⊆ A′ and A′ is independent, for
every a ∈ A′, we cannot have a ∈ N(X1), so a /∈ N(X2) if and only if a /∈ N(Z) \N(X1).
Hence we have U = (A′ \ (N(Z) \N(X1))) ∪X2. Since X2 and A′ are disjoint, this gives

|U | = |A′ \ (N(Z) \N(X1))|+ |X2|
> |A′| − |N(Z) \N(X1)|+ |X2|
= |A′| − |N(Z)|+ |N(X1)|+ |X2|.

Since z ∈ Z \A′, we have X1 ( Z, so |N(X1)| > |X1| by minimality of Z. Thus, we have

|U | > |A′| − |N(Z)|+ |X1|+ |X2| = |A′| − |N(Z)|+ |Z| > |A′|,

contradicting the fact that A′ is a maximum independent set in G.
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With Theorem 5, we can go ahead and prove Theorem 1(a)–(c).

Proof of Theorem 1(a). Suppose G = (V,E) is a tight (1, 0)-stable graph on n vertices,
with n even. Then α(G) =

⌊
n
2

⌋
= n

2
. Let A ⊆ V be a maximum independent set, so that

|A| = |V \ A| = n
2
. By Theorem 5, there exists a matching from A to V \ A, which is a

perfect matching in G.

Proof of Theorem 1(b). Suppose G = (V,E) is a tight (1, 0)-stable graph on n vertices,
with n odd. Then α(G) =

⌊
n
2

⌋
= n−1

2
. Let m = α(G) = n−1

2
and A ⊆ V be a maximum

independent set, so that |A| = m and |V \ A| = m + 1. By Theorem 5, there exists
a matching of size m from A to V \ A. Label V = {a1, . . . , am, b1, . . . , bm, c} such that
A = {a1, . . . , am}, and aibi ∈ E for every i ∈ [m]. Let B = {b1, . . . , bm}.

For every bi ∈ B, we say that bi has property (∗) if there exists {i1, . . . , is} ⊆ [m] such
that is = i, and c–ai1–bi1–. . . –ais–bis is a path in G. Consider the partition [m] = X ∪ Y
given by

X = {i ∈ [m] : bi has property (∗)},
Y = {i ∈ [m] : bi does not have property (∗)}.

Observe that there is no edge between {ai : i ∈ Y } and {bi : i ∈ X} ∪ {c}. If for some
i0 ∈ Y , ai0 is adjacent to some vertex in {bi : i ∈ X} ∪ {c}, then bi0 would have property
(∗), contradicting the definition of Y . Since {ai : i ∈ Y } ⊆ A is independent, to avoid
the independent set {ai : i ∈ Y } ∪ {bi : i ∈ X} ∪ {c} (as it has size m+ 1), there must be
some edge within {bi : i ∈ X} ∪ {c}. One can then check that no matter where this edge
occurs, it will create a spanning subgraph of G that is a vertex-disjoint union of one odd
cycle and a (possibly empty) matching (see Figure 2 for an illustration).
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Figure 2: Some canonical cases in Theorem 1(b)

Proof of Theorem 1(c). Suppose G = (V,E) is a tight (2, 0)-stable graph on n vertices,
with n odd. Then α(G) =

⌊
n−1
2

⌋
= n−1

2
=
⌊
n
2

⌋
. In particular, G is tight (1,0)-stable. By

Theorem 1(b), G has a spanning subgraph H that is a vertex-disjoint union of one odd
cycle and a (possibly empty) matching.

We first verify that H = Cn. By contradiction, suppose H is a vertex-disjoint union of
a nonempty matching e1, . . . , es and an odd cycle Cn−2s, with s > 1. Then every indepen-
dent set of size n−1

2
in G must include one vertex from each of e1, . . . , es. Thus, removing
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the two vertices in e1 will destroy all maximum independent sets in G, contradicting the
fact that G is (2,0)-stable. Hence H = Cn. If G 6= H, i.e., G is an odd cycle plus some
extra chords, then we can find another spanning subgraph H ′ of G that is a vertex-disjoint
union of a smaller odd cycle and a nonempty matching, which by the argument above
implies that G is not (2,0)-stable. Thus, we must have G = H = Cn.

3 Proof of Theorem 1(d) and Theorem 3

In this section, we prove Theorem 1(d) and Theorem 3. As mentioned earlier, we first
introduce the concept of α-critical graphs.

Definition 6. For graph G = (V,E) and edge uv ∈ E, we let G − uv denote the graph
whose vertex set is V and edge set is E \ {uv}.

Definition 7. We say that G = (V,E) is α-critical if for every edge uv ∈ E, we have
α(G− uv) > α(G).

We will utilize the following results, by Andrásfai [2] and Surányi [6], on connected
α-critical graphs with independence number close to n/2. A survey on these results can
be found at [5, Chapter 18]. A proof of Theorem 9 can also be found at [7].

Theorem 8 (Andrásfai). Let G = (V,E) be a connected α-critical graph with |V | =
2α(G) + 2. Then G is an even subdivision of K4.

Theorem 9 (Surányi). Let G = (V,E) be a connected α-critical graph with |V | = 2α(G)+
3 and minimum degree at least 3. Then G must be one of K5, H7, H9 or T9 as in
Theorem 3.

Proof of Theorem 1(d). Suppose G = (V,E) is a tight (2, 0)-stable graph on n vertices,
with n even. By a greedy removal of edges, we can obtain a spanning subgraph G′ of G,
such that α(G′) = α(G) = n/2− 1 and G′ is α-critical. Since G is (2,0)-stable, so is the
subgraph G′.

Let G1, . . . , Gt be the connected components of G′. For every i ∈ [t], since Gi is

(2,0)-stable, we have α(Gi) 6
⌊
|V (Gi)|−1

2

⌋
6 |V (Gi)|−1

2
. This gives

n

2
− 1 = α(G′) = α(G1) + · · ·+ α(Gt) 6

1

2
(|V (G1)|+ · · ·+ |V (Gt)| − t) =

n− t
2

,

so t 6 2.
If t = 1, then G′ is a connected α-critical graph with |V (G′)| = 2α(G′) + 2. By

Theorem 8, G′ is an even subdivision of K4.
If t = 2, then G′ is a vertex-disjoint union of G1 and G2, each of which has α(Gi) =

|V (Gi)|−1
2

. This implies that both G1 and G2 are tight (2,0)-stable graphs with odd vertex
number. By Theorem 1(c), G′ is a vertex-disjoint union of two odd cycles.

We now move on to prove Theorem 3.
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Proof of Theorem 3. Suppose G = (V,E) is a tight (3,0)-stable graph on n vertices.
If n is even, then α(G) =

⌊
n−2
2

⌋
= n

2
−1. Fix any vertex v ∈ V . Since G is (3,0)-stable,

G \ {v} is (2,0)-stable. Moreover, since α(G \ {v}) = n
2
− 1 =

⌊
(n−1)−1

2

⌋
, we know that

G \ {v} is tight (2,0)-stable. By Theorem 1(c), G \ {v} is an odd cycle. We therefore
know that G \ {v} is an odd cycle for every v ∈ V . The only graph that has this property
is the 4-vertex complete graph K4.

If n is odd, then α(G) =
⌊
n−2
2

⌋
= n−3

2
. Again, by a greedy removal of edges, we can

obtain a spanning subgraph G′ of G, such that α(G′) = α(G) = n−3
2

and G′ is α-critical.
Since G is (3,0)-stable, so is the subgraph G′. Let G1, . . . , Gt be the connected components

of G′. For every i ∈ [t], since Gi is (3,0)-stable, we have α(Gi) 6
⌊
|V (Gi)|−2

2

⌋
6 |V (Gi)|−2

2
.

This gives

n− 3

2
= α(G′) = α(G1) + · · ·+ α(Gt) 6

1

2
(|V (G1)|+ · · ·+ |V (Gt)| − 2t) =

n− 2t

2
,

so t = 1. Therefore, G′ is a connected α-critical graph with |V (G′)| = 2α(G′) + 3.
We further note that G′ has minimum degree at least 3. By contradiction, if G′ has

a vertex v of degree 6 2, then by removing v and its neighbors from G′, we are able to
remove at most 3 vertices from G′ and reduce its independence number, which means that
G′ is not (3,0)-stable. Hence G′ is a connected α-critical graph with |V (G′)| = 2α(G′) + 3
and minimum degree at least 3. By Theorem 9, G′ must be one of K5, H7, H9 or T9.

4 Further questions

In this work, we investigated the structure of n-vertex (k, 0)-stable graphs with indepen-
dence number α =

⌊
n−k+1

2

⌋
. Our results show that such graphs can be arbitrarily large

for k = 1, 2 but are very sharply bounded in size when k > 3. While the cliques Kk+1 and
Kk+2 are tight (k, 0)-stable, we do not know any other natural infinite family of graphs
Gk that is tight (k, 0)-stable for each k > 3. Thus, we ask the following.

Question 10. Does there exist a positive integer k0 such that, for all k > k0, the only
tight (k, 0)-stable graphs are Kk+1 and Kk+2?

Our proofs suggest that there might be some connections between tight (k, `)-stable
graphs – whose independence number is resilient under vertex removal, and α-critical
graphs – whose independence number is susceptible to edge removal. It would be inter-
esting to understand these connections further.

Recall that every (k, 0)-stable graph on n vertices has independence number at most
bn−k+1

2
c; Corollary 4 implies that for a fixed k, this upper bound cannot be attained for

sufficiently large n. In the opposite direction, Dong and Wu [3] constructed a sequence of
n-vertex (3, 0)-stable graphs with independence number n/2−O(

√
n). This was extended

by Alon [1] who showed that for every k > l > 0, there exists a sequence of n-vertex (k, `)-
stable graphs with independence number n/2− o(n). For k = 3, we ask whether we can
improve the O(

√
n) gap to a constant.
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Question 11. Does there exist c > 0 such that there is a sequence of (3, 0)-stable graphs
G, with vertex number n→∞ and α(G) > |V (G)|/2− c?

Remark 12. We remark that Questions 10 and 11 were both resolved in the recent paper
by Liu, Song, and Wang [4]. Question 10 was answered in the positive, while Question
11 was answered in the negative. The paper also made further progress in understanding
tight (k, `)-stable graphs for general `.
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[6] László Surányi, On line critical graphs, in Infinite and Finite Sets: Dedicated to
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