Structure of Tight (k,0)-Stable Graphs

Dingding Dong^a Sammy Luo^b

Submitted: Jan 19, 2025; Accepted: Oct 23, 2025; Published: Nov 14, 2025 © The authors. Released under the CC BY license (International 4.0).

Abstract

We say that a graph G is (k,ℓ) -stable if removing k vertices from it reduces its independence number by at most ℓ . We say that G is tight (k,ℓ) -stable if it is (k,ℓ) -stable and its independence number equals $\left\lfloor \frac{n-k+1}{2} \right\rfloor + \ell$, the maximum possible, where n is the vertex number of G. Answering a question of Dong and Wu, we show that every tight (2,0)-stable graph with odd vertex number must be an odd cycle. Moreover, we show that for all $k \geq 3$, every tight (k,0)-stable graph has at most k+6 vertices.

Mathematics Subject Classifications: 05C69

1 Introduction

The resilience of graph properties is a fundamental question in graph theory. Motivated by studies on the Erdős–Rogers function, Dong and Wu [3] investigated the resilience of graph independence number with respect to removing vertices. For a graph G = (V, E) and vertices $v_1, \ldots, v_k \in V$, we let $G \setminus \{v_1, \ldots, v_k\}$ denote the induced subgraph of G on $V \setminus \{v_1, \ldots, v_k\}$. For integers $k > \ell \geqslant 0$, we say that G is (k, ℓ) -stable if for any k vertices $v_1, \ldots, v_k \in V$, we have $\alpha(G \setminus \{v_1, \ldots, v_k\}) \geqslant \alpha(G) - \ell$.

A result in [3] states that any (k, ℓ) -stable graph G on n vertices satisfies

$$\alpha(G) \leqslant \lfloor \frac{n-k+1}{2} \rfloor + \ell.$$

A (k,ℓ) -stable graph for which equality holds (i.e., $\alpha(G) = \lfloor \frac{n-k+1}{2} \rfloor + \ell$) is called *tight* (k,ℓ) -stable. When $\ell = 0$, it is easily seen that every K_{k+1} is tight (k,0)-stable. When $\ell > 0$, one can always obtain a tight (k,ℓ) -stable graph by taking the disjoint union of a tight $(k-1,\ell-1)$ -stable graph with an isolated vertex. Starting with $K_{k-\ell+1}$, this yields a tight (k,ℓ) -stable graph on k+1 vertices for any $k>\ell \geqslant 0$.

Suppose n is any integer greater than k. Does an n-vertex (k, ℓ) -stable graph always exist? The answer is "yes" when $(k, \ell) = (1, 0)$. Indeed, when n is even, any n-vertex

^aDepartment of Mathematics, Harvard University, Cambridge, MA, USA (ddong@math.harvard.edu).

^bDepartment of Mathematics, MIT, Cambridge, CA, USA (sammyluo@mit.edu).

balanced bipartite graph that contains a perfect matching is tight (1,0)-stable. When n is odd, one can always take an (n-1)-vertex tight (1,0)-stable graph and add an extra vertex adjacent to all its vertices, to form an n-vertex tight (1,0)-stable graph. In general, by taking the disjoint union of a tight (1,0)-stable graph with ℓ isolated vertices, we immediately obtain examples of tight $(\ell+1,\ell)$ -stable graphs for arbitrary ℓ on any number of vertices $n > \ell+1$.

Going one step further, we consider the case where $(k, \ell) = (2, 0)$. When n is even, one can find multiple examples of n-vertex tight (2, 0)-stable graphs, such as a vertex-disjoint union of two odd cycles, or an even subdivision of K_4 . (We say that G' is an even subdivision of G if we can obtain G' from G by iteratively performing the following two-step operation: (i) take edge $uv \in E$ and two new vertices $u', v' \notin V$; (ii) replace V by $V \cup \{u', v'\}$ and E by $(E \setminus \{uv\}) \cup \{uu', u'v', v'v\}$.) However, when n is odd, the only example known so far is the n-cycle C_n .

Dong and Wu [3, Section 8] asked whether C_n is the only *n*-vertex tight (2,0)-stable graph when *n* is odd. We answer this question in the affirmative. Moreover, we will show the following structural properties on tight (k,0)-stable graphs for k=1 and k=2.

Theorem 1. Let G be a tight (k,0)-stable graph on n vertices.

- (a) If k = 1 and n is even, then G contains a perfect matching.
- (b) If k = 1 and n is odd, then G has a spanning subgraph that is a vertex-disjoint union of an odd cycle and a (possibly empty) matching.
- (c) If k = 2 and n is odd, then G is an odd cycle.
- (d) If k = 2 and n is even, then G has a spanning subgraph that is either a vertex-disjoint union of two odd cycles, or an even subdivision of K_4 .

Remark 2. The authors of [3] conjectured that every tight (2,0)-stable graph is Hamiltonian. Here we point out that this is not the case, as every even subdivision of K_4 is tight (2,0)-stable, but not every such subdivision is Hamiltonian.

Note that for every k = 1, 2 and n > k, one can always find a tight (k, 0)-stable graph with n vertices. We show that this becomes different for $k \ge 3$. In particular, a tight (3, 0)-stable graph has at most 9 vertices.

Theorem 3. Let G be a tight (3,0)-stable graph. Then G has a spanning subgraph that is among the five graphs K_4 , K_5 , H_7 , T_9 , H_9 as in Figure 1.

Observe that if G is tight (k,0)-stable, then for any vertex $v \in V$, $G \setminus \{v\}$ is tight (k-1,0)-stable. Thus, Theorem 3 immediately gives the following.

Corollary 4. For all $k \ge 3$, any tight (k, 0)-stable graph has at most k + 6 vertices.

We will prove Theorem 1(a)–(c) in Section 2. Our proof of Theorem 1(d) and Theorem 3 utilizes properties of α -critical graphs, which are graphs whose independence number is affected by any edge removal. In Section 3, we introduce the notion of α -criticality and prove these parts. Finally, in Section 4, we discuss some remaining questions about (k, ℓ) -stable graphs.

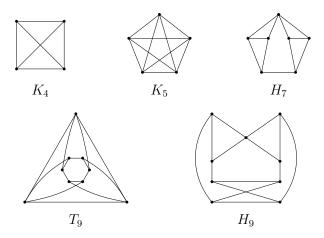


Figure 1: The five graphs listed in Theorem 3

2 Proof of Theorem 1(a)–(c)

We start by stating the following fact on (1,0)-stable graphs that was proved in [3]. For completeness, we also include a proof of this result.

Lemma 5. Let G = (V, E) be a (1, 0)-stable graph, and let $A \subseteq V$ be a maximum independent set in G. Then there exists a matching of size |A| between A and $V \setminus A$.

Proof. It suffices to show that Hall's condition holds from A to $V \setminus A$. For every subset $S \subseteq A$, we use N(S) to denote the neighborhood of S in G, which is a subset of $V \setminus A$ as A is independent. By contradiction, suppose there exists $Z \subseteq A$ such that $Z \neq \emptyset$ and |N(Z)| < |Z|. Without loss of generality, we may assume that Z is minimal. Take any $z \in Z$. Since $\alpha(G) = \alpha(G \setminus \{z\})$, there exists another maximum independent set A' in G that does not contain z.

Let $X_1 = Z \cap A'$ and $X_2 = Z \setminus A'$. Define $U = (A' \setminus N(X_2)) \cup X_2$. Since A' is independent, $X_2 \subseteq Z \subseteq A$ is independent and $A' \setminus N(X_2)$ does not contain any neighbors of X_2 , we know that $U = (A' \setminus N(X_2)) \cup X_2$ is independent.

Note that Z is a disjoint union of X_1 and X_2 . Since $X_1 \subseteq A'$ and A' is independent, for every $a \in A'$, we cannot have $a \in N(X_1)$, so $a \notin N(X_2)$ if and only if $a \notin N(Z) \setminus N(X_1)$. Hence we have $U = (A' \setminus (N(Z) \setminus N(X_1))) \cup X_2$. Since X_2 and A' are disjoint, this gives

$$|U| = |A' \setminus (N(Z) \setminus N(X_1))| + |X_2|$$

$$\geqslant |A'| - |N(Z) \setminus N(X_1)| + |X_2|$$

$$= |A'| - |N(Z)| + |N(X_1)| + |X_2|.$$

Since $z \in Z \setminus A'$, we have $X_1 \subsetneq Z$, so $|N(X_1)| \geqslant |X_1|$ by minimality of Z. Thus, we have

$$|U| \ge |A'| - |N(Z)| + |X_1| + |X_2| = |A'| - |N(Z)| + |Z| > |A'|,$$

contradicting the fact that A' is a maximum independent set in G.

With Theorem 5, we can go ahead and prove Theorem 1(a)-(c).

Proof of Theorem 1(a). Suppose G = (V, E) is a tight (1,0)-stable graph on n vertices, with n even. Then $\alpha(G) = \left\lfloor \frac{n}{2} \right\rfloor = \frac{n}{2}$. Let $A \subseteq V$ be a maximum independent set, so that $|A| = |V \setminus A| = \frac{n}{2}$. By Theorem 5, there exists a matching from A to $V \setminus A$, which is a perfect matching in G.

Proof of Theorem 1(b). Suppose G = (V, E) is a tight (1,0)-stable graph on n vertices, with n odd. Then $\alpha(G) = \left\lfloor \frac{n}{2} \right\rfloor = \frac{n-1}{2}$. Let $m = \alpha(G) = \frac{n-1}{2}$ and $A \subseteq V$ be a maximum independent set, so that |A| = m and $|V \setminus A| = m + 1$. By Theorem 5, there exists a matching of size m from A to $V \setminus A$. Label $V = \{a_1, \ldots, a_m, b_1, \ldots, b_m, c\}$ such that $A = \{a_1, \ldots, a_m\}$, and $a_ib_i \in E$ for every $i \in [m]$. Let $B = \{b_1, \ldots, b_m\}$.

For every $b_i \in B$, we say that b_i has property (*) if there exists $\{i_1, \ldots, i_s\} \subseteq [m]$ such that $i_s = i$, and $c-a_{i_1}-b_{i_1}-\ldots-a_{i_s}-b_{i_s}$ is a path in G. Consider the partition $[m] = X \cup Y$ given by

```
X = \{i \in [m] : b_i \text{ has property } (*)\},\

Y = \{i \in [m] : b_i \text{ does not have property } (*)\}.
```

Observe that there is no edge between $\{a_i : i \in Y\}$ and $\{b_i : i \in X\} \cup \{c\}$. If for some $i_0 \in Y$, a_{i_0} is adjacent to some vertex in $\{b_i : i \in X\} \cup \{c\}$, then b_{i_0} would have property (*), contradicting the definition of Y. Since $\{a_i : i \in Y\} \subseteq A$ is independent, to avoid the independent set $\{a_i : i \in Y\} \cup \{b_i : i \in X\} \cup \{c\}$ (as it has size m+1), there must be some edge within $\{b_i : i \in X\} \cup \{c\}$. One can then check that no matter where this edge occurs, it will create a spanning subgraph of G that is a vertex-disjoint union of one odd cycle and a (possibly empty) matching (see Figure 2 for an illustration).

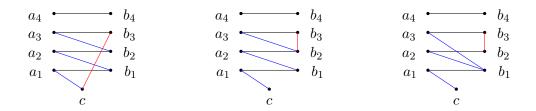


Figure 2: Some canonical cases in Theorem 1(b)

Proof of Theorem 1(c). Suppose G = (V, E) is a tight (2, 0)-stable graph on n vertices, with n odd. Then $\alpha(G) = \left\lfloor \frac{n-1}{2} \right\rfloor = \frac{n-1}{2} = \left\lfloor \frac{n}{2} \right\rfloor$. In particular, G is tight (1,0)-stable. By Theorem 1(b), G has a spanning subgraph H that is a vertex-disjoint union of one odd cycle and a (possibly empty) matching.

We first verify that $H = C_n$. By contradiction, suppose H is a vertex-disjoint union of a nonempty matching e_1, \ldots, e_s and an odd cycle C_{n-2s} , with $s \ge 1$. Then every independent set of size $\frac{n-1}{2}$ in G must include one vertex from each of e_1, \ldots, e_s . Thus, removing

the two vertices in e_1 will destroy all maximum independent sets in G, contradicting the fact that G is (2,0)-stable. Hence $H = C_n$. If $G \neq H$, i.e., G is an odd cycle plus some extra chords, then we can find another spanning subgraph H' of G that is a vertex-disjoint union of a smaller odd cycle and a nonempty matching, which by the argument above implies that G is not (2,0)-stable. Thus, we must have $G = H = C_n$.

3 Proof of Theorem 1(d) and Theorem 3

In this section, we prove Theorem 1(d) and Theorem 3. As mentioned earlier, we first introduce the concept of α -critical graphs.

Definition 6. For graph G = (V, E) and edge $uv \in E$, we let G - uv denote the graph whose vertex set is V and edge set is $E \setminus \{uv\}$.

Definition 7. We say that G = (V, E) is α -critical if for every edge $uv \in E$, we have $\alpha(G - uv) > \alpha(G)$.

We will utilize the following results, by Andrásfai [2] and Surányi [6], on connected α -critical graphs with independence number close to n/2. A survey on these results can be found at [5, Chapter 18]. A proof of Theorem 9 can also be found at [7].

Theorem 8 (Andrásfai). Let G = (V, E) be a connected α -critical graph with $|V| = 2\alpha(G) + 2$. Then G is an even subdivision of K_4 .

Theorem 9 (Surányi). Let G = (V, E) be a connected α -critical graph with $|V| = 2\alpha(G) + 3$ and minimum degree at least 3. Then G must be one of K_5 , H_7 , H_9 or T_9 as in Theorem 3.

Proof of Theorem 1(d). Suppose G = (V, E) is a tight (2, 0)-stable graph on n vertices, with n even. By a greedy removal of edges, we can obtain a spanning subgraph G' of G, such that $\alpha(G') = \alpha(G) = n/2 - 1$ and G' is α -critical. Since G is (2,0)-stable, so is the subgraph G'.

Let G_1, \ldots, G_t be the connected components of G'. For every $i \in [t]$, since G_i is (2,0)-stable, we have $\alpha(G_i) \leqslant \left| \frac{|V(G_i)|-1}{2} \right| \leqslant \frac{|V(G_i)|-1}{2}$. This gives

$$\frac{n}{2} - 1 = \alpha(G') = \alpha(G_1) + \dots + \alpha(G_t) \leqslant \frac{1}{2}(|V(G_1)| + \dots + |V(G_t)| - t) = \frac{n - t}{2},$$

so $t \leq 2$.

If t=1, then G' is a connected α -critical graph with $|V(G')|=2\alpha(G')+2$. By Theorem 8, G' is an even subdivision of K_4 .

If t=2, then G' is a vertex-disjoint union of G_1 and G_2 , each of which has $\alpha(G_i)=\frac{|V(G_i)|-1}{2}$. This implies that both G_1 and G_2 are tight (2,0)-stable graphs with odd vertex number. By Theorem 1(c), G' is a vertex-disjoint union of two odd cycles.

We now move on to prove Theorem 3.

Proof of Theorem 3. Suppose G = (V, E) is a tight (3,0)-stable graph on n vertices.

If n is even, then $\alpha(G) = \left\lfloor \frac{n-2}{2} \right\rfloor = \frac{n}{2} - 1$. Fix any vertex $v \in V$. Since G is (3,0)-stable, $G \setminus \{v\}$ is (2,0)-stable. Moreover, since $\alpha(G \setminus \{v\}) = \frac{n}{2} - 1 = \left\lfloor \frac{(n-1)-1}{2} \right\rfloor$, we know that $G \setminus \{v\}$ is tight (2,0)-stable. By Theorem 1(c), $G \setminus \{v\}$ is an odd cycle. We therefore know that $G \setminus \{v\}$ is an odd cycle for every $v \in V$. The only graph that has this property is the 4-vertex complete graph K_4 .

If n is odd, then $\alpha(G) = \left\lfloor \frac{n-2}{2} \right\rfloor = \frac{n-3}{2}$. Again, by a greedy removal of edges, we can obtain a spanning subgraph G' of G, such that $\alpha(G') = \alpha(G) = \frac{n-3}{2}$ and G' is α -critical. Since G is (3,0)-stable, so is the subgraph G'. Let G_1, \ldots, G_t be the connected components of G'. For every $i \in [t]$, since G_i is (3,0)-stable, we have $\alpha(G_i) \leq \left\lfloor \frac{|V(G_i)|-2}{2} \right\rfloor \leq \frac{|V(G_i)|-2}{2}$. This gives

$$\frac{n-3}{2} = \alpha(G') = \alpha(G_1) + \dots + \alpha(G_t) \leqslant \frac{1}{2}(|V(G_1)| + \dots + |V(G_t)| - 2t) = \frac{n-2t}{2},$$

so t=1. Therefore, G' is a connected α -critical graph with $|V(G')|=2\alpha(G')+3$.

We further note that G' has minimum degree at least 3. By contradiction, if G' has a vertex v of degree ≤ 2 , then by removing v and its neighbors from G', we are able to remove at most 3 vertices from G' and reduce its independence number, which means that G' is not (3,0)-stable. Hence G' is a connected α -critical graph with $|V(G')| = 2\alpha(G') + 3$ and minimum degree at least 3. By Theorem 9, G' must be one of K_5 , H_7 , H_9 or H_9 . \square

4 Further questions

In this work, we investigated the structure of n-vertex (k,0)-stable graphs with independence number $\alpha = \left\lfloor \frac{n-k+1}{2} \right\rfloor$. Our results show that such graphs can be arbitrarily large for k = 1, 2 but are very sharply bounded in size when $k \geq 3$. While the cliques K_{k+1} and K_{k+2} are tight (k,0)-stable, we do not know any other natural infinite family of graphs G_k that is tight (k,0)-stable for each $k \geq 3$. Thus, we ask the following.

Question 10. Does there exist a positive integer k_0 such that, for all $k \ge k_0$, the only tight (k, 0)-stable graphs are K_{k+1} and K_{k+2} ?

Our proofs suggest that there might be some connections between tight (k, ℓ) -stable graphs – whose independence number is resilient under vertex removal, and α -critical graphs – whose independence number is susceptible to edge removal. It would be interesting to understand these connections further.

Recall that every (k,0)-stable graph on n vertices has independence number at most $\lfloor \frac{n-k+1}{2} \rfloor$; Corollary 4 implies that for a fixed k, this upper bound cannot be attained for sufficiently large n. In the opposite direction, Dong and Wu [3] constructed a sequence of n-vertex (3,0)-stable graphs with independence number $n/2 - O(\sqrt{n})$. This was extended by Alon [1] who showed that for every $k > l \ge 0$, there exists a sequence of n-vertex (k,ℓ) -stable graphs with independence number n/2 - o(n). For k = 3, we ask whether we can improve the $O(\sqrt{n})$ gap to a constant.

Question 11. Does there exist c > 0 such that there is a sequence of (3,0)-stable graphs G, with vertex number $n \to \infty$ and $\alpha(G) \ge |V(G)|/2 - c$?

Remark 12. We remark that Questions 10 and 11 were both resolved in the recent paper by Liu, Song, and Wang [4]. Question 10 was answered in the positive, while Question 11 was answered in the negative. The paper also made further progress in understanding tight (k, ℓ) -stable graphs for general ℓ .

Acknowledgments

We thank the anonymous referees for their helpful comments.

References

- [1] Noga Alon, Hitting all maximum independent sets, preprint (2021), arXiv:2103.05998.
- [2] Béla Andrásfai, *On critical graphs*, in Theory of Graphs (Internat. Sympos., Rome, 1966), Gordon & Breach, New York, 1967, pp. 9–19.
- [3] Zichao Dong and Zhuo Wu, On the stability of the graph independence number, SIAM J. Discrete Math., 36 (2022), pp. 229–240, doi:10.1137/21M1405071.
- [4] Xiaonan Liu, Zi-Xia Song, and Zhiyu Wang, On tight (k, ℓ) -stable graphs, J. Graph Theory, 110(2) (2025), pp. 193–199, doi.org/10.1002/jgt.23264.
- [5] László Lovász, *Graphs and geometry*, American Mathematical Society, Providence, RI, 2019, doi:10.1090/coll/065.
- [6] László Surányi, On line critical graphs, in Infinite and Finite Sets: Dedicated to Paul Erdős on His 60th Birthday, North-Holland, Amsterdam-London, 1975, pp. 1411–1444.
- [7] Qing Chuan Zhu. The structure of α -critical graphs with $|V(G)| 2\alpha(G) = 3$, in Graph Theory and its Applications: East and West, New York Acad. Sci., New York, 1989, pp. 716–722, doi:10.1111/j.1749-6632.1989.tb16453.x.