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Abstract

We say that a graph G is (k, {)-stable if removing k vertices from it reduces its
independence number by at most £. We say that G is tight (k, £)-stable if it is (k, £)-
stable and its independence number equals L%MJ + ¢, the maximum possible,
where n is the vertex number of G. Answering a question of Dong and Wu, we show
that every tight (2,0)-stable graph with odd vertex number must be an odd cycle.
Moreover, we show that for all k¥ > 3, every tight (k,0)-stable graph has at most
k + 6 vertices.

Mathematics Subject Classifications: 05C69

1 Introduction

The resilience of graph properties is a fundamental question in graph theory. Motivated
by studies on the Erdés-Rogers function, Dong and Wu [3] investigated the resilience of
graph independence number with respect to removing vertices. For a graph G = (V, E)
and vertices vy, ..., v, € V, we let G\ {vy,...,v;} denote the induced subgraph of G on
V\{v1,...,v}. Forintegers k > ¢ > 0, we say that G is (k, {)-stable if for any k vertices
U1, ..., €V, we have a(G \ {v1,...,v:}) = o(G) — L.

A result in [3] states that any (k, £)-stable graph G on n vertices satisfies

n—k+1
2

A (k,0)-stable graph for which equality holds (i.e., a(G) = |2=EEL| 4 /) is called tight
(k,?)-stable. When ¢ = 0, it is easily seen that every Ky is tight (k,0)-stable. When
¢ > 0, one can always obtain a tight (k, ¢)-stable graph by taking the disjoint union of a
tight (k —1,¢ — 1)-stable graph with an isolated vertex. Starting with Kj_y1, this yields
a tight (k, ¢)-stable graph on k + 1 vertices for any k& > ¢ > 0.

Suppose n is any integer greater than k. Does an n-vertex (k, £)-stable graph always
exist? The answer is “yes” when (k,¢) = (1,0). Indeed, when n is even, any n-vertex

a(G) < | |+
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balanced bipartite graph that contains a perfect matching is tight (1,0)-stable. When
n is odd, one can always take an (n — 1)-vertex tight (1,0)-stable graph and add an
extra vertex adjacent to all its vertices, to form an n-vertex tight (1,0)-stable graph. In
general, by taking the disjoint union of a tight (1,0)-stable graph with ¢ isolated vertices,
we immediately obtain examples of tight (¢ + 1,¢)-stable graphs for arbitrary ¢ on any
number of vertices n > ¢ + 1.

Going one step further, we consider the case where (k,¢) = (2,0). When n is even,
one can find multiple examples of n-vertex tight (2,0)-stable graphs, such as a vertex-
disjoint union of two odd cycles, or an even subdivision of K,. (We say that G’ is an
even subdivision of G if we can obtain G’ from G by iteratively performing the following
two-step operation: (i) take edge uv € E and two new vertices u', v’ ¢ V; (ii) replace V'
by VU{u/,v'} and E by (E\ {uv}) U {uw’,u'v',v'v}.) However, when n is odd, the only
example known so far is the n-cycle C,,.

Dong and Wu [3, Section 8| asked whether ), is the only n-vertex tight (2, 0)-stable
graph when n is odd. We answer this question in the affirmative. Moreover, we will show
the following structural properties on tight (k,0)-stable graphs for k =1 and k = 2.

Theorem 1. Let G be a tight (k,0)-stable graph on n vertices.

(a) If k =1 and n is even, then G contains a perfect matching.

(b) If k =1 andn is odd, then G has a spanning subgraph that is a vertex-disjoint union
of an odd cycle and a (possibly empty) matching.

(¢) If k =2 and n is odd, then G is an odd cycle.

(d) If k =2 andn is even, then G has a spanning subgraph that is either a vertex-disjoint
union of two odd cycles, or an even subdivision of K.

Remark 2. The authors of [3] conjectured that every tight (2,0)-stable graph is Hamilto-
nian. Here we point out that this is not the case, as every even subdivision of K} is tight
(2,0)-stable, but not every such subdivision is Hamiltonian.

Note that for every k = 1,2 and n > k, one can always find a tight (k,0)-stable graph
with n vertices. We show that this becomes different for £ > 3. In particular, a tight
(3,0)-stable graph has at most 9 vertices.

Theorem 3. Let G be a tight (3,0)-stable graph. Then G has a spanning subgraph that
is among the five graphs K4, K5, H7, Ty, Hy as in Figure 1.

Observe that if G is tight (k,0)-stable, then for any vertex v € V, G\ {v} is tight
(k — 1,0)-stable. Thus, Theorem 3 immediately gives the following.
Corollary 4. For all k > 3, any tight (k,0)-stable graph has at most k + 6 vertices.

We will prove Theorem 1(a)—(c) in Section 2. Our proof of Theorem 1(d) and Theo-
rem 3 utilizes properties of a-critical graphs, which are graphs whose independence num-
ber is affected by any edge removal. In Section 3, we introduce the notion of a-criticality
and prove these parts. Finally, in Section 4, we discuss some remaining questions about
(k, ¢)-stable graphs.
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Figure 1: The five graphs listed in Theorem 3

2  Proof of Theorem 1(a)—(c)

We start by stating the following fact on (1,0)-stable graphs that was proved in [3]. For
completeness, we also include a proof of this result.

Lemma 5. Let G = (V,E) be a (1,0)-stable graph, and let A C V' be a maximum
independent set in G. Then there exists a matching of size |A| between A and V' \ A.

Proof. Tt suffices to show that Hall’s condition holds from A to V' '\ A. For every subset
S C A, we use N(S) to denote the neighborhood of S in G, which is a subset of V' \ A
as A is independent. By contradiction, suppose there exists Z C A such that Z # () and
IN(Z)| < |Z|. Without loss of generality, we may assume that Z is minimal. Take any
z € Z. Since a(G) = a(G \ {z}), there exists another maximum independent set A’ in G
that does not contain z.

Let X; = ZNA and Xy = Z\ A'. Define U = (A \ N(X2)) U X,. Since A’ is
independent, Xy C Z C A is independent and A"\ N(X5) does not contain any neighbors
of Xy, we know that U = (A" \ N(X5)) U X5 is independent.

Note that Z is a disjoint union of X; and X5. Since X; C A" and A’ is independent, for
every a € A’, we cannot have a € N(X;), so a ¢ N(X3) if and only if a ¢ N(Z)\ N(X).
Hence we have U = (A" \ (N(Z) \ N(X1))) U X,. Since X, and A’ are disjoint, this gives

U] = A"\ (N(2) \ N(X1))| + [ Xz
> |A'| = IN(Z) \ N(X1)| + | Xz
= [A] = IN(Z)] + IN(X1)| + | Xzl

Since z € Z\ A’, we have X; C Z, so |[N(X1)| = | X1| by minimality of Z. Thus, we have
Ul 2 A = IN(Z)| + | Xa] + [ Xo| = |A'| = IN(2)] + |Z] > | A,
contradicting the fact that A’ is a maximum independent set in G. m

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.45 3



With Theorem 5, we can go ahead and prove Theorem 1(a)—(c).

Proof of Theorem 1(a). Suppose G = (V, E) is a tight (1,0)-stable graph on n vertices,
with n even. Then a(G) = |%] = 2. Let A C V be a maximum independent set, so that
|A] = |V \ A] = 5. By Theorem 5, there exists a matching from A to V'\ A, which is a

perfect matching in G. O

Proof of Theorem 1(b). Suppose G = (V, E) is a tight (1,0)-stable graph on n vertices,
with n odd. Then a(G) = |2] = 251 Let m = o(G) = %+ and A C V be a maximum
independent set, so that |[A| = m and |V \ A] = m + 1. By Theorem 5, there exists
a matching of size m from A to V' \ A. Label V' = {ay,...,am,b1,...,by,c} such that

A=A{ay,...,an}, and a;b; € E for every i € [m|. Let B ={b,...,bn}.

For every b; € B, we say that b; has property (x) if there exists {iy,...,is} C [m] such
that is = i, and c—a;,—b;,— .. —a;,~b;, is a path in G. Consider the partition [m] = X UY
given by

X = {i € [m] : b; has property (x)},
Y = {i € [m] : b; does not have property (x)}.

Observe that there is no edge between {a; : i € Y} and {b; : i € X} U{c}. If for some
ip € Y, a;, is adjacent to some vertex in {b; : i € X} U{c}, then b;, would have property
(%), contradicting the definition of Y. Since {a; : i € Y} C A is independent, to avoid
the independent set {a; : i € Y}U{b; : i € X} U{c} (as it has size m + 1), there must be
some edge within {b; : i € X} U{c}. One can then check that no matter where this edge
occurs, it will create a spanning subgraph of G that is a vertex-disjoint union of one odd

cycle and a (possibly empty) matching (see Figure 2 for an illustration). O
ag ~— by ag — by ag — by
as bs as bs as bs
ao bg ag bQ a b2
al bl a1 bl al bl
& & &

Figure 2: Some canonical cases in Theorem 1(b)

Proof of Theorem 1(c). Suppose G = (V, E) is a tight (2,0)-stable graph on n vertices,
with n odd. Then o(G) = |25%| = 5% = |2]. In particular, G is tight (1,0)-stable. By
Theorem 1(b), G has a spanning subgraph H that is a vertex-disjoint union of one odd
cycle and a (possibly empty) matching.

We first verify that H = C),. By contradiction, suppose H is a vertex-disjoint union of
a nonempty matching ey, ..., es and an odd cycle C,,_s, with s > 1. Then every indepen-
dent set of size ”T_l in G must include one vertex from each of eq,...,e,. Thus, removing
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the two vertices in e; will destroy all maximum independent sets in G, contradicting the
fact that G is (2,0)-stable. Hence H = C,,. If G # H, i.e., G is an odd cycle plus some
extra chords, then we can find another spanning subgraph H’ of GG that is a vertex-disjoint
union of a smaller odd cycle and a nonempty matching, which by the argument above
implies that G is not (2,0)-stable. Thus, we must have G = H = C,,. ]

3 Proof of Theorem 1(d) and Theorem 3

In this section, we prove Theorem 1(d) and Theorem 3. As mentioned earlier, we first
introduce the concept of a-critical graphs.

Definition 6. For graph G = (V, E) and edge uv € F, we let G — uv denote the graph
whose vertex set is V' and edge set is E'\ {uv}.

Definition 7. We say that G = (V, E) is a-critical if for every edge uv € E, we have
a(G —uwv) > a(G).

We will utilize the following results, by Andrasfai [2] and Surdnyi [6], on connected
a-critical graphs with independence number close to n/2. A survey on these results can
be found at [5, Chapter 18]. A proof of Theorem 9 can also be found at [7].

Theorem 8 (Andrésfai). Let G = (V,E) be a connected a-critical graph with |V| =
2a(G) +2. Then G is an even subdivision of Kj.

Theorem 9 (Surdnyi). Let G = (V, E) be a connected a-critical graph with |V| = 2a(G)+
3 and minimum degree at least 3. Then G must be one of K5, H7, Hy or Ty as in
Theorem 3.

Proof of Theorem 1(d). Suppose G = (V, E) is a tight (2,0)-stable graph on n vertices,
with n even. By a greedy removal of edges, we can obtain a spanning subgraph G’ of G,
such that a(G") = a(G) =n/2 — 1 and G’ is a-critical. Since G is (2,0)-stable, so is the
subgraph G'.

Let Gi,...,G; be the connected components of G'. For every i € [t], since G; is
(2,0)-stable, we have o(G;) < L'V(GSN_IJ < |V(G2")|_1. This gives

n—t
2 )

g —1=a(G)=a(G) + -+ a(G)) < %(W(Gl)y Fo V(G| = t) =

sot < 2.

If ¢t = 1, then G’ is a connected a-critical graph with |V(G")| = 2a(G’) + 2. By
Theorem 8, G’ is an even subdivision of K.

If t = 2, then G’ is a vertex-disjoint union of G; and Gs, each of which has o(G;) =
w This implies that both G; and G are tight (2,0)-stable graphs with odd vertex
number. By Theorem 1(c), G’ is a vertex-disjoint union of two odd cycles. O

We now move on to prove Theorem 3.

ot
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Proof of Theorem 3. Suppose G = (V, E) is a tight (3,0)-stable graph on n vertices.

If n is even, then a(G) = | %52 | = 2 —1. Fix any vertex v € V. Since G is (3,0)-stable,

G\ {v} is (2,0)-stable. Moreover, since a(G \ {v}) =5 —1 = L%J, we know that

G\ {v} is tight (2,0)-stable. By Theorem 1(c), G \ {v} is an odd cycle. We therefore
know that G'\ {v} is an odd cycle for every v € V. The only graph that has this property
is the 4-vertex complete graph Kj.

If n is odd, then a(G) = L"T’QJ = ”T’?’ Again, by a greedy removal of edges, we can
obtain a spanning subgraph G’ of G, such that a(G’) = a(G) = 52 and G’ is a-critical.
Since G is (3,0)-stable, so is the subgraph G'. Let Gy, ..., G; be the connected components
of G'. For every i € [t], since G; is (3,0)-stable, we have a(G;) < L%J < w

This gives

n—3 n — 2t
2 2 7

so t = 1. Therefore, G’ is a connected a-critical graph with |V (G')| = 2a(G’) + 3.

We further note that G’ has minimum degree at least 3. By contradiction, if G’ has
a vertex v of degree < 2, then by removing v and its neighbors from G’, we are able to
remove at most 3 vertices from G’ and reduce its independence number, which means that
G’ is not (3,0)-stable. Hence G’ is a connected a-critical graph with |V (G')| = 2a(G") +3
and minimum degree at least 3. By Theorem 9, G' must be one of K5, H;, Hg or Ty. []

= a(@) = alG) + - +a(Gy) < V(G| +-+ +[V(G)] —20) =

4 Further questions

In this work, we investigated the structure of n-vertex (k, 0)-stable graphs with indepen-
dence number o = L”‘T’“HJ Our results show that such graphs can be arbitrarily large
for K = 1,2 but are very sharply bounded in size when k£ > 3. While the cliques K, and
Ko are tight (k,0)-stable, we do not know any other natural infinite family of graphs
Gy, that is tight (k, 0)-stable for each k > 3. Thus, we ask the following.

Question 10. Does there exist a positive integer kg such that, for all & > kg, the only
tight (k,0)-stable graphs are Ky 1 and Ky o7

Our proofs suggest that there might be some connections between tight (k, ¢)-stable
graphs — whose independence number is resilient under vertex removal, and a-critical
graphs — whose independence number is susceptible to edge removal. It would be inter-
esting to understand these connections further.

Recall that every (k,0)-stable graph on n vertices has independence number at most
L"’T’““J, Corollary 4 implies that for a fixed £, this upper bound cannot be attained for
sufficiently large n. In the opposite direction, Dong and Wu [3] constructed a sequence of
n-vertex (3,0)-stable graphs with independence number n/2 —O(y/n). This was extended
by Alon [1] who showed that for every k > [ > 0, there exists a sequence of n-vertex (k, ¢)-
stable graphs with independence number n/2 — o(n). For k = 3, we ask whether we can
improve the O(y/n) gap to a constant.
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Question 11. Does there exist ¢ > 0 such that there is a sequence of (3, 0)-stable graphs
G, with vertex number n — oo and a(G) > |V(G)|/2 — ¢?

Remark 12. We remark that Questions 10 and 11 were both resolved in the recent paper
by Liu, Song, and Wang [4]. Question 10 was answered in the positive, while Question
11 was answered in the negative. The paper also made further progress in understanding
tight (k, £)-stable graphs for general /.
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