
Completing the Enumeration of Inversion Sequences

Avoiding One or Two Patterns of Length 3

Benjamin Testart

Submitted: Jan 10, 2025; Accepted: Jun 19, 2025; Published: Nov 14, 2025

© The author. Released under the CC BY license (International 4.0).

Abstract

We present four constructions of inversion sequences, and use them to compute
the enumeration sequences of 24 classes of pattern-avoiding inversion sequences.
This completes the enumeration of inversion sequences avoiding one or two patterns
of length 3. Some of our constructions are based on generating trees. Others involve
pattern-avoiding words, which we also count using generating trees. To solve some
of these cases, we introduce a generalization of inversion sequences, which we call
shifted inversion sequences. Lastly, we briefly discuss the asymptotics of pattern-
avoiding inversion sequences, focusing on their exponential or super-exponential
behavior.

Mathematics Subject Classifications: 05A05, 05A15

1 Introduction

1.1 Basic definitions

Let N be the set of natural numbers, including 0. Given a natural number n ∈ N, we call
integer sequences of size n the elements of Nn. We write the terms of an integer sequence
σ = (σ1, . . . , σn) ∈ Nn. We denote by In the set of inversion sequences [19, 12] of size n,
that is the set of sequences σ ∈ Nn such that σi < i for all i ∈ {1, . . . , n}.

There is a simple bijection between In and the set of permutations of n elements, called
the Lehmer code, which explains the name “inversion sequence”. If π is a permutation of
the set {1, . . . , n}, the inversion sequence σ ∈ In associated with π by the Lehmer code
is defined by σi = |{j : π(j) > π(i) and j < i}| for all i ∈ {1, . . . , n}, i.e. σi counts the
number of inversions of π whose second entry is at position i.

Given two integer sequences σ = (σ1, . . . , σn) ∈ Nn and ρ = (ρ1, . . . , ρk) ∈ Nk, we say
that σ contains the pattern ρ if there exists a subsequence of σ which is order-isomorphic
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to ρ. Such a subsequence is called an occurrence of ρ. In this work, we exclusively
study patterns of length 3, which we denote ρ1ρ2ρ3 instead of (ρ1, ρ2, ρ3) for simplicity.
For instance the sequence (4, 3, 2, 5, 4) contains the pattern 021, since the subsequences
(3, 5, 4) and (2, 5, 4) are both occurrences of 021. A sequence avoids a pattern ρ if it does
not contain ρ, e.g. the inversion sequence (0, 0, 2, 3, 2, 0, 1, 5) avoids the pattern 101. If P
is a set of patterns, we denote by In(P ) the set of inversion sequences of size n avoiding
all patterns in P .

1.2 Context and summary of results

The study of pattern-avoiding inversion sequences (and many more types of sequences
avoiding patterns) branched from pattern-avoiding permutations, a well-established field
of research in enumerative combinatorics, see e.g. [15] or [31]. Pattern-avoiding inversion
sequences were first introduced in [19] and [12], independently. Their study was continued
in many articles, such as [22, 8, 3, 4, 35, 17, 5, 20, 27, 16], among others.

The enumeration of inversion sequences avoiding a single pattern of length 3 was
already solved for all patterns except 010, see Table 1. A systematic study of inversion
sequences avoiding pairs of patterns of length 3 was conducted by Yan and Lin in [35],
which left open the enumeration of inversion sequences avoiding 32 of the 78 total pairs.
Since then, eight cases were solved in [16], and one additional case was solved in [11] and
[27] independently. Most of these cases were solved using bijections with other known
combinatorial objects, or through generating trees.

Pattern ρ |In(ρ)| for n = 1, . . . , 7 Solved in OEIS [24]

000 1, 2, 5, 16, 61, 272, 1385 [12] A000111

001 1, 2, 4, 8, 16, 32, 64 [12] A000079

010 1, 2, 5, 15, 53, 215, 979 Theorem 56 A263779

011 1, 2, 5, 15, 52, 203, 877 [12] A000110

012 1, 2, 5, 13, 34, 89, 233 [12] and [19] A001519

021 1, 2, 6, 22, 90, 394, 1806 [12] and [19] A006318

100 1, 2, 6, 23, 106, 565, 3399 [16] A263780

101 or 110 1, 2, 6, 23, 105, 549, 3207 [12] A113227

102 1, 2, 6, 22, 89, 381, 1694 [19] A200753

120 1, 2, 6, 23, 103, 515, 2803 [19] A263778

201 or 210 1, 2, 6, 24, 118, 674, 4306 [19] A263777

Table 1: Enumeration sequences of inversion sequences avoiding a single pattern of length
3.
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In our work, we solve1 the enumeration of inversion sequences avoiding 010, and the
remaining 23 cases for pairs of patterns through four different constructions of pattern-
avoiding inversion sequences, see Table 2.

Pattern pair P |In(P )| for n = 1, . . . , 7 Solved in Performance OEIS [24]

{000, 100} 1, 2, 5, 16, 60, 260, 1267 Theorem 2 990 A279564

{102, 201} 1, 2, 6, 22, 87, 354, 1465 Theorems 10,74 6100 A279566

{000, 102} 1, 2, 5, 14, 40, 121, 373 Theorem 17 5800 A374541

{102, 210} 1, 2, 6, 22, 87, 351, 1416 Theorems 20,76 5600 A374542

{000, 201} or {000, 210} 1, 2, 5, 16, 60, 257, 1218 Theorem 22 735 A374543

{100, 110} 1, 2, 6, 22, 93, 437, 2233 Theorem 25 820 A374544

{100, 101} 1, 2, 6, 22, 93, 439, 2267 Theorem 27 815 A374545

{110, 201} 1, 2, 6, 23, 103, 512, 2739 Theorem 29 825 A374546

{101, 210} 1, 2, 6, 23, 103, 513, 2763 Theorem 31 810 A374547

{011, 120} 1, 2, 5, 14, 42, 132, 431 Theorem 37 430 A374548

{100, 120} 1, 2, 6, 22, 92, 421, 2062 Theorem 40 350 A374549

{120, 201} 1, 2, 6, 23, 102, 498, 2607 Theorem 43 340 A374550

{110, 120} 1, 2, 6, 22, 92, 423, 2091 Theorem 46 330 A279570

{010, 120} 1, 2, 5, 15, 52, 201, 845 Theorem 48 330 A279559

{101, 120} 1, 2, 6, 22, 90, 397, 1859 Theorem 50 240 A374551

{000, 120} 1, 2, 5, 15, 50, 185, 737 Theorem 51 355 A374552

{000, 010} 1, 2, 4, 10, 29, 95, 345 Theorem 58 235 A279552

{010, 201} or {010, 210} 1, 2, 5, 15, 53, 214, 958 Theorem 61 185 A360052

{010, 110} 1, 2, 5, 15, 52, 201, 847 Theorem 64 145 A359191

{010, 102} 1, 2, 5, 15, 51, 186, 707 Theorem 67 265 A374553

{100, 102} 1, 2, 6, 21, 80, 318, 1305 Theorem 68 380 A374554

Table 2: Enumeration sequences of inversion sequences avoiding pairs of patterns studied
in this article. Each section of the table corresponds to a different construction. The
“performance” column indicates an approximation of the number of terms of each enu-
meration sequence we were able to compute in 1 minute, with C++ programs running on
a personal computer (naive methods can compute around 20 terms at most).

1We consider the enumeration of P -avoiding inversion sequences “solved” once an algorithm is known
to compute each number |In(P )| in polynomial time in n. Such an algorithm is sometimes called a
“Wilfian formula” after Herbert Wilf’s paper [34]. In our work, Wilfian formulas always take the form
of a recurrence relation or an explicit expression.
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Each construction is presented in a different section. The construction of Section 2
simply consists in inserting each entry of a sequence from left to right. In Section 3, we
construct sequences by inserting their entries in increasing order of value (the order of
insertion of entries having the same value varies according to the patterns considered).
Section 4 is an improved and more complete version of a previous (unpublished) work
[29]. It relies on a decomposition of inversion sequences around their first maximum; this
means sequences are obtained by concatenating two smaller sequences. Section 5 intro-
duces shifted inversion sequences and uses a decomposition around their first minimum,
similar to that of Section 4. It is sometimes easier to construct pattern-avoiding inversion
sequences by seeing them as a particular case of shifted inversion sequences.

In Section 6, we present conjectures about the algebraicity of the generating functions
of several classes of inversion sequences avoiding pairs of patterns, and prove two of
those conjectures. We conclude with a brief discussion on the asymptotic behavior of
the number of pattern-avoiding inversion sequences in Section 7. In particular, we give
sufficient conditions on a set of patterns P to show that the growth of the enumeration
sequence of P -avoiding inversion sequences is bounded above by an exponential function,
or to show that it is super-exponential.

1.3 Notation and preliminaries

Notation

For any integers a, b ∈ Z, we denote the integer interval [a, b] = {k ∈ Z : a 6 k 6 b}. We

denote by δa,b =

{
1 if a = b

0 if a 6= b
the Kronecker delta function. For all n ∈ N, we denote

by Cn = 1
n+1

(
2n
n

)
the Catalan numbers. We denote by ε the empty sequence, that is the

only sequence of size 0.
Let n,m ∈ N, and let σ ∈ Nn, τ ∈ Nm be two integer sequences. We define the

concatenation of σ and τ as σ · τ = (σ1, . . . , σn, τ1, . . . , τm) ∈ Nn+m. For all k ∈ N, we
denote by σk the concatenation of k copies of σ (in particular, σ0 = ε).

For any k ∈ N, we denote by σ + k = (σi + k)i∈[1,n] the sequence obtained by adding
k to each term of σ.

Terminology

A combinatorial class is a set of objects C together with a size function | · | : C → N such
that there is a finite number of objects of size n for each n ∈ N. For any set of patterns
P , the set of all P -avoiding inversion sequences I(P ) =

∐
n>0 In(P ) is a combinatorial

class.
If C is a combinatorial class, and Cn its subset of objects of size n for each n ∈ N, we

call (|Cn|)n∈N the enumeration sequence of C (here, the vertical bars are used to denote set
cardinality). The (ordinary) generating function of the combinatorial class C =

∐
n∈N Cn

is the formal power series
∑

n∈N |Cn|xn in the indeterminate x.
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Given two integer sequences σ ∈ Nn and τ ∈ Nm, we say that τ is a factor of σ if τ
is a subsequence of consecutive terms of σ, i.e. if there exists two integers a 6 b ∈ [1, n]
such that τ = (σi)i∈[a,b], or τ = ε.

Statistics

For all n ∈ N and σ ∈ Nn, let

• Vals(σ) = {σi : i ∈ [1, n]} be the set of values of σ,

• min(σ) = min(Vals(σ)) be the minimum of σ, with the convention min(ε) = +∞,

• max(σ) = max(Vals(σ)) be the maximum of σ, with the convention max(ε) = −1,

• dist(σ) = |Vals(σ)| be the number of distinct values of σ,

• |σ| = n be the size or length of σ,

• firstmax(σ) = min(i ∈ [1, n] : σi = max(σ)) be the position of the first maximum
of σ, with the convention firstmax(ε) = 0,

• lastmax(σ) = max(i ∈ [1, n] : σi = max(σ)) be the position of the last maximum
of σ, with the convention lastmax(ε) = 0.

Words

For all n, k ∈ N, we denote by Wn,k = [0, k − 1]n the set of words of length n over the
alphabet [0, k − 1], and by Wn,k = {ω ∈ Wn,k : dist(ω) = k} the subset of words in
which each letter of the alphabet [0, k− 1] appears at least once2. For any set of patterns
P , we denote byWn,k(P ) andWn,k(P ) the subsets of P -avoiding words ofWn,k andWn,k.
The following proposition shows that it is essentially equivalent to solve the enumeration
of Wn,k(P ) or that of Wn,k(P ).

Proposition 1. For any set of patterns P , for all n, k ∈ N,

|Wn,k(P )| =
min(n,k)∑
d=0

(
k

d

)
|Wn,d(P )|.

Proof. Let n, k > 0, d ∈ [0,min(n, k)], and let Wn,k,d = {ω ∈ Wn,k : d = dist(ω)}
be the subset of Wn,k of words containing exactly d distinct letters. Let Fd,k be the
set of strictly increasing functions from [0, d − 1] to [0, k − 1]. It is easy to see that
the function Fd,k ×Wn,d → Wn,k,d, (ϕ, ω) 7→ (ϕ(ωi))i∈[1,n] is a bijection. For any set of
patterns P , restricting this function to the domain Fd,k ×Wn,d(P ) yields a bijection with
the set of P -avoiding words in Wn,k,d (the image of (ϕ, ω) is order-isomorphic to ω, so

it contains the same patterns). This concludes the proof, since Wn,k =
∐min(n,k)

d=0 Wn,k,d,
and |Fd,k| =

(
k
d

)
.

2Equivalently, Wn,k is the set of maps [1, n]→ [0, k− 1], and Wn,k is the subset of surjective maps. We
remark that the set of surjective maps [1, n] → [1, k] is also known as the set of Cayley permutations
[23] of length n and maximum k.
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2 Generating trees growing on the right

2.1 Method

A generating tree is a rooted, labelled tree such that the label of each node determines
its number of children, and their labels. Generating trees were first introduced in the
context of pattern-avoiding permutations in [32, 33]. We call combinatorial generating
tree a generating tree labelled by the objects of a combinatorial class and such that each
object of size n labels exactly one node, at level n (with the convention that the root
is at level 0). A combinatorial generating tree can be defined using a map, called ECO
operator [7], which constructs each object of size n+ 1 from some object of size n. More
generally, a generating tree can always be defined by a succession rule

Ω =

{
a

` `1 . . . `c(`)

composed of an axiom a, which labels the root of the tree, and a production which
associates to each label ` the labels of the children of any node labelled ` in the tree.
In the example above, we denoted c(`) the number of children of nodes labelled `, and
`1, . . . , `c(`) the labels3 of those children. A simple combinatorial generating tree for the
class of inversion sequences is defined by the succession rule

Ωinv =

{
ε

σ  σ · i for i ∈ [0, |σ|].

For any set of patterns P , a combinatorial generating tree for the class of P -avoiding
inversion sequences I(P ) can be obtained by restricting the above to only accept values of
i such that σ · i avoids the patterns in P . This does define a generating tree: indeed, if σ · i
avoids P , then σ must also avoid P . We call this tree the generating tree growing on the
right for inversion sequences avoiding the patterns P . The present section is dedicated to
such generating trees, which are one of the simplest and most common construction for
pattern-avoiding inversion sequences. In all of Section 2, we call i a forbidden value for
(σ, P ) (or simply for σ, when P is implicit) if σ · i contains a pattern in P .

Most generating trees used in the literature to solve enumeration problems are not
combinatorial generating trees, but instead use labels that are much simpler (typically,
integers or tuples of integers). We define a generating tree to be concise if it does not
contain two isomorphic subtrees rooted in nodes having different labels. Informally, a
generating tree is concise if it involves the minimal number of labels required to describe
the “shape” of the tree.

We say that two nodes of a tree T are T -equivalent if they are roots of isomorphic
subtrees of T . In particular, two nodes of T which have the same label are always T -
equivalent: the label of a node determines its number of children and their labels, hence

3The same label may appear on several children of `. Formally, the production maps each label to a
multiset of labels.
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a label also determines the entire subtree rooted in its node, by induction. Note that
T is concise if and only if two T -equivalent nodes always have the same label. We now
explain how to go (in favorable cases) from a combinatorial generating tree to a concise
generating tree.

Assume we have a combinatorial generating tree T for a combinatorial class C and a
statistic s : C → L for some set L, such that for each σ ∈ C, the value s(σ) determines
the number of children of the node labelled σ in T , and the value of s when applied to
each child. Formally, this means there exists a function f : L → NL (where NL is the
set of multisets of elements in L) such that for all σ ∈ C, f(s(σ)) is the finite multiset
s(τ1), . . . , s(τq), where τ1, . . . , τq are the labels of the children of the node labelled σ in T .
Replacing each label σ by the value s(σ) yields a generating tree T ′ which is isomorphic to
T . Notice that T ′ is defined by a succession rule which only involves the values of s (the
axiom of this rule is the image under s of the label of the root of T , and its production
is the function we denoted f). On our previous example, we can use the statistic “size”
to turn Ωinv into a simpler succession rule

Ωfactorial =

{
(0)

(n) (n+ 1)n+1

where the production means that each node labelled (n) has n+ 1 children, each labelled
(n+ 1). From this succession rule, we can easily see that there are n! nodes at level n.

By keeping only the value s(σ) rather than the “complete” object σ ∈ C as a label, we
can retain a lower amount of information about objects, which is still sufficient to describe
the tree (up to isomorphism). We say that two objects σ, τ ∈ C such that s(σ) = s(τ) are
s-equivalent. Each label ` ∈ L of T ′ corresponds to the s-equivalence class s−1(`) ⊆ C.

Since s-equivalent objects of C are always labels of T -equivalent nodes, the coarsest s-
equivalence relation is obtained by defining s to be the statistic which maps each object of
C to the T -equivalence class of the corresponding node. In particular, for any generating
tree T , there exists a concise generating tree T ′ isomorphic to T , obtained by replacing
the label of each node of T by its T -equivalence class.

In practice, finding this tree T ′ requires some way of knowing whether two nodes are
T -equivalent, which is not always obvious. For slightly different definitions4 of generating
trees and equivalence, [16] presents an algorithm which can test whether two nodes are
equivalent in finite time, for any combinatorial generating tree growing on the right for
inversion sequences avoiding a finite set of patterns. This algorithm then labels each node
of the tree by an inversion sequence (the minimal sequence in lexicographic order) which
corresponds to a node in the same equivalence class.

Classically, generating trees are used to solve enumeration problems because they in-
duce recurrence relations on the corresponding enumeration sequences (which may also

4In [16], generating trees are defined as plane trees, and two nodes are equivalent if they are roots of
isomorphic plane subtrees. This relation relies on an order on the children of each node, and it is finer
than the T -equivalence we defined.
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be turned into equations satisfied by their generating function). Here we formalize how
a succession rule can be turned into such a recurrence relation. Assume we have a com-
binatorial generating tree T for a combinatorial class C, a generating tree T ′ labelled by
elements in some set L, and a function s : C → L such that replacing each label σ of T by
its image s(σ) yields T ′. For all (n, `) ∈ N× L, let cn,` = |{σ ∈ C : |σ| = n, s(σ) = `}|,
so that the number of objects of size n in C is

∑
` cn,`. Let f : L→ NL be the production

of T ′. For all n > 1 and ` ∈ L, we have

cn,` =
∑
k∈L

f(k)(`) · cn−1,k,

where f(k)(`) counts the multiplicity of the label ` among the children of a node labelled
k in T ′.

ε

0

00

000

0000 0001 0002 0003

001

0011 0012 0013

002

0022 0023

01

011

0111 0112 0113

012

0122 0123

Figure 1: First five levels of the combinatorial generating tree growing on the right for
I(10).

We end this introduction with a simple example. The following succession rule de-
scribes the generating tree growing on the right for inversion sequences avoiding the
pattern 10 (i.e. nondecreasing inversion sequences), represented in Figure 1.

Ω10 =

{
ε

σ  σ · i for i ∈ [max(σ), |σ|].

For each σ ∈ I(10), let s(σ) be the number of children of the node labelled σ in this
tree. It can be shown that s(ε) = 1, and s(σ) = 1 + |σ| − max(σ) if σ is nonempty.
By replacing each label σ by the value s(σ), we obtain an isomorphic generating tree,
represented in Figure 2, and described by the succession rule

ΩCat =

{
(1)

(k) (i) for i ∈ [2, k + 1].

It is known [32] that the succession rule ΩCat describes a tree in which the number
of nodes at each level n is the Catalan number Cn = 1

n+1

(
2n
n

)
. It is easy to see that
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1

2

3

4

5 4 3 2

3

4 3 2

2

3 2

2

3

4 3 2

2

3 2

Figure 2: First five levels of the generating tree described by the succession rule ΩCat.

this succession rule describes a concise generating tree: the label of each node counts its
number of children, so if two nodes are roots of isomorphic subtrees, they must have the
same label.

From now on, we allow ourselves to represent a combinatorial generating tree and an
isomorphic concise generating tree on the same figure, by placing two labels on each node.

2.2 The pair {000, 100}

Theorem 2. The enumeration of inversion sequences avoiding the patterns 000 and 100
is given by the succession rule

Ω{000,100} =


(1, 0)

(a, b) (a+ 1, b− 1)b

(a+ 1− j, b+ j) for j ∈ [1, a].

Proof. For all n ∈ N and σ ∈ In(000, 100), let

• A(σ) = {i > max(σ) : σ · i ∈ I(000, 100)} be the set of values which can be
inserted at the end of σ “strictly above” its maximum,

• B(σ) = {i 6 max(σ) : σ · i ∈ I(000, 100)} be the set of values which can be
inserted at the end of σ “weakly below” its maximum.

Inserting any value greater than max(σ) at the end of σ cannot create an occurrence
of the patterns 000 or 100. As a result, A(σ) = [max(σ) + 1, n]. Let a(σ) = |A(σ)|, and
b(σ) = |B(σ)|. In particular, (a(ε), b(ε)) = (1, 0).

We show that the combinatorial generating tree growing on the right for I(000, 100)
is isomorphic to the tree described by Ω{000,100}. This isomorphism relabels each node σ
by (a(σ), b(σ)).

Let n ∈ N, σ ∈ In(000, 100), i ∈ A(σ) tB(σ), and σ′ = σ · i.
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• If i ∈ B(σ), then A(σ′) = A(σ)t{n+1} and B(σ′) = B(σ)\{i}, since if i < max(σ),
then i becomes forbidden to avoid 100, and if i = max(σ), then i becomes forbidden
to avoid 000. In this case, σ′ satisfies (a(σ′), b(σ′)) = (a(σ) + 1, b(σ)− 1).

• If i ∈ A(σ), then no additional values are forbidden, and the values [max(σ) + 1, i]
are now less than or equal to max(σ′). Let j = i−max(σ). In this case, σ′ satisfies
(a(σ′), b(σ′)) = (a(σ) + 1 − j, b(σ) + j). As i ranges over A(σ), j varies from 1 to
a(σ).

2.3 The pair {102, 201}

In this section, we present a generating tree construction to enumerate I(102, 201). We
later use this construction to find the generating function of I(102, 201) in Theorem 74.

A core idea in our construction of inversion sequences avoiding 102 and 201 is that
we may restrict the “future” of combinatorial objects in a generating tree construction;
we discuss this further in Remark 13. This idea comes from Pantone, who calls this a
“commitment”, see [27].

We begin by establishing some general properties of integer sequences avoiding 102
and 201. For any σ ∈ Nn such that dist(σ) > 2, let sec(σ) = max(Vals(σ)\{max(σ)})
be the second largest value of σ.

Proposition 3. Let σ be an integer sequence of size n such that dist(σ) > 2, let
m = max(σ) and s = sec(σ). Then σ avoids 102 and 201 if and only if all three following
conditions are satisfied:

1. (σi)i∈[1,firstmax(σ)] is nondecreasing,

2. (σi)i∈[lastmax(σ),n] is nonincreasing,

3. ∀i ∈ [firstmax(σ), lastmax(σ)], σi ∈ {m, s}.
Proof. First, we show that each condition is necessary:

1. If i < j ∈ [1,firstmax(σ)] satisfy σi > σj, then σj < m. In particular, we have
j 6= firstmax(σ) hence (σi, σj,m) is an occurrence of 102.

2. If i < j ∈ [lastmax(σ), n] satisfy σi < σj, then σi < m. In particular, we have
i 6= lastmax(σ) hence (m,σi, σj) is an occurrence of 201.

3. If i ∈ [firstmax(σ), lastmax(σ)] satisfies σi < s, let j be an integer such that
σj = s. If j < i, then (σj, σi,m) is an occurrence of 102. If i < j, then (m,σi, σj) is
an occurrence of 201.

Assume, for the sake of contradiction, that σ satisfies all three conditions, and that
(σi, σj, σk) is an occurrence of 102 for some i < j < k ∈ [1, n]. Since σi > σj, condition 1
implies that j > firstmax(σ). Since σj < σk, condition 2 implies that j < lastmax(σ).
Hence by condition 3, σj > s, which implies that (σi, σj) = (m, s) because σi > σj.
Finally σk > σi = m, a contradiction. The same reasoning holds for the pattern 201, by
the reverse symmetry.
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Proposition 3 has two immediate corollaries.

Corollary 4. Let σ be a {102, 201}-avoiding integer sequence such that m = max(σ),
and s = sec(σ). Any occurrence of the pattern 101 in σ is a subsequence (m, s,m).

Corollary 5. An integer sequence avoids {101, 102, 201} if and only if it is unimodal.

We first study inversion sequences avoiding {101, 102, 201}, then those which avoid
{102, 201} and contain the pattern 101. The enumeration of inversion sequences avoiding
101, 102 and 201 was already solved and their generating function is given in [10]5. We
nevertheless describe a generating tree for this class, for the sake of completeness, and in
order to better introduce the more difficult case of sequences containing 101.

Let An,m = {σ ∈ In(10) : m = max(σ)} be the set of nondecreasing inversion
sequences of size n and maximum m for n > 1, and let A0,0 = {ε} by convention. Let

C
(1)
n,` = {σ ∈ In(101, 102, 201) : ` = σn < max(σ)} be the set of {101, 102, 201}-

avoiding inversion sequences of size n, last value `, and such that ` is not the maximum.
Let A =

∐
n,m>0An,m, and C(1) =

∐
n>`>0 C

(1)
n,`. From Corollary 5, C(1) is the set of

unimodal inversion sequences which decrease after reaching their maximum, and we have
I(101, 102, 201) = A t C(1). Let an,m = |An,m|, and c

(1)
n,` = |C(1)

n,`|.

Lemma 6. For all n > m > 0,

an,m =

(
n+m−1

m

)
(n−m)

n
.

For all n > 3, ` > 0,

c
(1)
n,` =

n−2∑
i=`

c
(1)
n−1,i +

n−2∑
i=`+1

an−1,i.

Proof. Let n > 1, m ∈ [0, n − 1], and σ ∈ An,m. By definition of An,m, we have σn = m.
Removing the last entry σn from σ yields a sequence in An−1,i for some i ∈ [0,m]. Con-
versely, σ can be obtained by appending the value m to some sequence in An−1,i. Hence,
there is a bijection between the sets An,m and

∐m
i=0An−1,i. This yields the equation

an,m =
∑m

i=0 an−1,i, from which we can easily prove that an,m =
(n+m−1

m )(n−m)

n
for all

n > m > 0. This corresponds to Catalan’s Triangle (OEIS A009766).

Let n > 3, ` > 0, σ ∈ C
(1)
n,`, and i = σn−1 > `. Let σ′ = (σj)j∈[1,n−1] be the sequence

obtained by removing the last entry from σ. If σ′ is nondecreasing, then i = max(σ) > `,

and σ′ ∈ An−1,i. Otherwise, σ′ ∈ C
(1)
n,`. As in the previous case, this is a bijection between

C
(1)
n,` and

(∐n−2
i=` C

(1)
n−1,i

)
t
(∐n−2

i=`+1 An−1,i
)
.

5This article employs the same generating tree construction (that is, inserting each entry of a sequence
from left to right). However, it does not present an explicit description of the labels in terms of statistics
of inversion sequences, since the algorithmic approach from [16] was used to derive the succession rule.

the electronic journal of combinatorics 32(4) (2025), #P4.46 11



Remark 7. The bijections from the proof of Lemma 6 can be turned into a succession
rule, by labelling (n,m) each sequence in An,m, and labelling (`) each sequence in C

(1)
n,`:

Ω{101,102,201} =


(0, 0)

(n,m)  (n+ 1, i) for i ∈ [m,n]

(i) for i ∈ [0,m− 1]

(`)  (i) for i ∈ [0, `].

It remains to count inversion sequences in I(102, 201) which contain 101. By Propo-
sition 3 and Corollary 4, an inversion sequence σ avoids {102, 201} and contains 101 if
and only if it can be split into three factors α · β · γ = σ such that:

1. α is a nondecreasing inversion sequence such that max(α) < max(σ),

2. β is a word over the alphabet {max(σ), sec(σ)} which contains 101, and such that
β1 = max(σ),

3. γ is a (possibly empty) nonincreasing word over the alphabet [0, sec(σ)− 1].

We distinguish several sets of sequences according to how much of the first occurrence of
the pattern 101 has already appeared. Let

• B
(1)
n,s = {σ ∈ In(10) : s ∈ [sec(σ),max(σ)−1]}, which can be seen as the sequences

in which only the first 1 in a pattern 101 has yet appeared.

• B
(2)
n,s = {σ · (s)i : i ∈ [1, n− 2], σ ∈ B

(1)
n−i,s}, which can be seen as the sequences in

which only the first 10 in a pattern 101 has yet appeared.

• B
(3)
n,s = {σ ∈ In(102, 201) : s = sec(σ) 6 σn, σ contains 101} be the set of
{102, 201}-avoiding inversion sequences of size n and second largest value s which
contain 101, and for which the factor denoted γ earlier is empty.

• C
(2)
n,` = {σ ∈ In(102, 201} : ` = σn < sec(σ), σ contains 101} be the set of
{102, 201)-avoiding inversion sequences of size n and last value ` which contain 101,
and for which the factor denoted γ earlier is nonempty.

Let B(2) =
∐

n,s>0B
(2)
n,s, B(3) =

∐
n,s>0B

(3)
n,s, and C(2) =

∐
n,`>0 C

(2)
n,`. In particular, {σ ∈

I(102, 201) : σ contains 101} = B(3) t C(2).

Remark 8. The subsets of I(102, 201) we have defined are not disjoint. More precisely,
the following holds.

1. The sets B
(1)
n,s intersect for different values of s. For instance, the sequence (0, 0, 2)

belongs to both B
(1)
3,0 and B

(1)
3,1.

2. Each sequence in a set B
(1)
n,s also belongs to a set An,m for some m > s.
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3. Each set B
(2)
n,s is a subset of C

(1)
n,s.

Let b
(i)
n,s = |B(i)

n,s| for i ∈ {1, 2, 3}, and c
(2)
n,s = |C(2)

n,s|.

Lemma 9. For all 0 6 s 6 n− 2,

b(1)n,s = b
(1)
n−1,s + (n− 1− s)an,s.

For all 0 6 s 6 n− 3,
b(2)n,s = b

(2)
n−1,s + b

(1)
n−1,s.

For all 0 6 s 6 n− 4,
b(3)n,s = 2b

(3)
n−1,s + b

(2)
n−1,s.

For all 0 6 ` 6 n− 6,

c
(2)
n,` =

n−5∑
i=`

c
(2)
n−1,i +

n−5∑
i=`+1

b
(3)
n−1,i.

Proof. We give a bijective proof of each identity by removing the last entry of an inversion
sequence.

Let n > 2, s ∈ [0, n− 2], σ ∈ B
(1)
n,s. In particular, σn = max(σ). Let σ′ = (σj)j∈[1,n−1]

be the sequence obtained by removing the last entry from σ, and let i = σn−1. If i = σn,

then σ′ ∈ B
(1)
n−1,s. Otherwise, i = sec(σ) 6 s, σ′ ∈ An−1,i, and σn ∈ [s + 1, n − 1]. This

yields a bijection between B
(1)
n,s and B

(1)
n−1,s

∐(
[s+1, n−1]×

∐s
i=0An−1,i

)
. We know from

the proof of Lemma 6 that
∐s

i=0An−1,i is in bijection with An,s.

Let n > 3, s ∈ [0, n−3], and σ ∈ B
(2)
n,s. In particular, σn = s, and σn−1 ∈ {max(σ), s}.

Let σ′ = (σj)j∈[1,n−1] be the sequence obtained by removing the last entry from σ, and let

i = σn−1. If i = s, then σ′ ∈ B
(2)
n−1,s. Otherwise i = max(σ), and σ′ ∈ B

(1)
n−1,s.

Let n > 4, s ∈ [0, n − 4], and σ ∈ B
(3)
n,s. Let σ′ = (σj)j∈[1,n−1] be the sequence

obtained by removing the last entry from σ. If σ′ contains 101, then σ′ ∈ B
(3)
n−1,s, and

σn ∈ {max(σ), s}. Otherwise σ′ ∈ B
(2)
n−1,s, and σn = max(σ).

Let n > 6, ` ∈ [0, n− 6], and σ ∈ C
(2)
n,`. Let σ′ = (σj)j∈[1,n−1] be the sequence obtained

by removing the last entry from σ, and let i = σn−1 > `. If i < sec(σ), then σ′ ∈ C
(2)
n−1,i.

Otherwise i > `, and σ′ ∈ B
(3)
n−1,i.

Let Cn,` = C
(1)
n,` t C

(2)
n,` and cn,` = |Cn,`| = c

(1)
n,` + c

(2)
n,`. Let also C = C(1) t C(2).

Theorem 10. For all n > 1,

|In(102, 201)| =

(
n−1∑
m=0

an,m

)
+

(
n−4∑
s=0

b(3)n,s

)
+

(
n−3∑
`=0

cn,`

)
.

Proof. Merging our results for inversion sequences which avoid or contain 101, we obtain

I(102, 201) =
(
A t C(1)

)
t
(
B(3) t C(2)

)
= A tB(3) t C.
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Remark 11. The equations for counting c
(1)
n,` and c

(2)
n,` from Lemmas 6 and 9 can be merged

into a single recurrence relation for cn,`. For all 0 6 ` 6 n− 3,

cn,` = cn−1,` +
n−2∑
i=`+1

an−1,i + b
(3)
n−1,i + cn−1,i.

Remark 12. By labelling

• (a, n,m) each sequence of An,m,

• (b(i), s) each sequence of B
(i)
n,s for i ∈ {1, 2, 3}

• (c, `) each sequence of Cn,`,

the recurrence relations from Lemmas 6, 9, and Remark 11 correspond to the succession
rule

Ω{102,201} =



(a, 0, 0)

(a, n,m)  (a, n+ 1, i) for i ∈ [m,n]

(b(1), i)n−i for i ∈ [m,n− 1]

(c, i) for i ∈ [0,m− 1]

(b(1), s)  (b(1), s) (b(2), s)

(b(2), s)  (b(2), s) (b(3), s)

(b(3), s)  (b(3), s)2

(c, i) for i ∈ [0, s− 1]

(c, `)  (c, i) for i ∈ [0, `].

Let T be the generating tree described by the succession rule Ω{102,201}. We now explain
how to relate T with the definitions of Section 2.1. First, note that T is not isomorphic
to a combinatorial generating tree for the class I(102, 201), because of the intersections
mentioned in Remark 8. By construction, T is isomorphic to a combinatorial generating
tree for the disjoint union U of the sets A, {

∐
n>0B

(1)
n,s}s>0, B(2), B(3) and C. We can

view the combinatorial class U as a subset of N× I(102, 201):

U ∼=
(
{0} ×

(
A tB(3) t C

))
t
(
{1} ×B(2)

)
t

(∐
s>0

(
{s+ 2} ×

∐
n>0

B(1)
n,s

))
,

and define the size of each object (k, σ) ∈ U as the size of σ. By the proof of Theorem
10, the objects of U of the form (0, σ) are trivially in bijection with I(102, 201). The
remaining objects of U , of the form (k, σ) for k > 1, can be called phantom objects as
they are ultimately not counted.
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ε
(a, 0, 0)

0
(a, 1, 0)

00
(a, 2, 0)

000
(a, 3, 0)

001
(a, 3, 1)

0011
(a, 4, 1)

0012
(a, 4, 2)

0013
(a, 4, 3)

00133
(a, 5, 3)

00134
(a, 5, 4)

00134
(b(1), 3)

00130
(c, 0)

00131
(c, 1)

00132
(c, 2)

001320
(c, 0)

001321
(c, 1)

001322
(c, 2)

0012
(b(1), 1)

0013
(b(1), 1)

0013
(b(1), 2)

0010
(c, 0)

002
(a, 3, 2)

001
(b(1), 0)

002
(b(1), 0)

002
(b(1), 1)

01
(a, 2, 1)

011
(a, 3, 1)

012
(a, 3, 2)

0122
(a, 4, 2)

0123
(a, 4, 3)

0123
(b(1), 2)

01233
(b(1), 2)

01232
(b(2), 2)

012322
(b(2), 2)

012323
(b(3), 2)

0123232
(b(3), 2)

0123233
(b(3), 2)

0123230
(c, 0)

0123231
(c, 1)

0120
(c, 0)

0121
(c, 1)

01210
(c, 0)

01211
(c, 1)

012
(b(1), 1)

010
(c, 0)

0100
(c, 0)

01
(b(1), 0)

011
(b(1), 0)

010
(b(2), 0)

0100
(b(2), 0)

0101
(b(3), 0)

01010
(b(3), 0)

01011
(b(3), 0)

Figure 3: Part of the generating tree described by the succession rule Ω{102,201}. Phantom objects are colored in gray.
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These phantom objects are nevertheless necessary in our construction, since removing
all the nodes of T corresponding to phantom objects would disconnect6 T . The tree T is
represented in Figure 3, on page 15.

Remark 13. The phantom objects can be understood as follows. In an object (1, σ) ∈ U ,
σ ∈ I(101, 102, 201) is a prefix of an inversion sequence avoiding 102 and 201, whose
maximum m and second maximum s form an occurrence (m, s) of the pattern 10 which
must be completed into an occurrence (m, s,m) of 101 in the future. In particular, we
may only insert the values m or s at the end of σ; otherwise, the subsequence (m, s,m)
could never appear, by Corollary 4. Similarly, in an object (s + 2, σ) ∈ U , σ ∈ I(10) is
a prefix of an inversion sequence avoiding 102 and 201, that has maximum m > s and
which must contain an occurrence (m, s,m) of 101 in the future. In particular, we may
only insert the values m or s at the end of σ; otherwise, the subsequence (m, s,m) could
never appear, by Corollary 4.

This construction may appear more complicated than necessary. Indeed, we could
simply consider the generating tree growing on the right for I(102, 201) instead, and this
would not involve phantom objects. However, that would be less efficient, since this tree
requires more labels. Specifically, the number of distinct labels appearing at level n in this
tree would be quadratic in n (we would need to record both the values of the maximum
and the second maximum of sequences in A), whereas our construction only involves a
linear number of labels.

Remark 14. We could directly obtain an explicit expression for |In(102, 201)| from the
observations of Proposition 3 and Corollaries 4 and 5, although using it for enumeration
is not as efficient as our generating tree approach. The sequences of In(101, 102, 201) are
counted by

1 +
n−1∑
m=1

n∑
`=m+1

(
`+m−1
m

)
(`−m)

`
·
(
n− `+m− 1

n− `

)
,

as shown in [10]. The sequences of In(102, 201) which contain 101 are counted by

n−2∑
f=2

n∑
`=f+2

f−2∑
s=0

(f − s− 1) ·
(
f+s−1

s

)
(f − s)
f

· (2`−f−1 − 1) ·
(
n− `+ s

n− `

)
.

The summands count the number of sequences σ ∈ In(102, 201) such that m = max(σ),
s = sec(σ), f = firstmax(σ), and ` = lastmax(σ).

3 Removing the maximum

3.1 Method

Generally speaking, removing a term from an inversion sequence does not always create
another inversion sequence. In fact, removing the i-th term σi from an inversion sequence

6More precisely, each node of T corresponding to an object in {0} ×B(3) or {0} × C(2) has an ancestor
which corresponds to a phantom object in {1} ×B(2).
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σ ∈ In for some i ∈ [1, n] yields an inversion sequence if and only if σj < j − 1 for
all j ∈ [i + 1, n]. In particular if σi = max(σ), then for all j ∈ [i + 1, n] we have
σj 6 σi < i 6 j − 1, and the above condition is satisfied. Hence, removing a maximum
from an inversion sequence always yields an inversion sequence.

Following this idea, we can decompose inversion sequences by removing their maxima
one by one. For this decomposition to be unambiguous, we must choose the order of
removal of the different occurrences of the maximum (this order is not always trivial).
Observe that this decomposition defines a combinatorial generating tree T for inversion
sequences. In that tree, the parent of each nonempty inversion sequence is obtained by
removing its “next” maximum in the chosen order.

For any set of patterns P , a combinatorial generating tree for P -avoiding inversion
sequences can be obtained by removing all nodes of T whose label contains a pattern in
P . Indeed, this procedure does not disconnect T since the parent (in T ) of any nonempty
P -avoiding inversion sequence also avoids P .

Let us quickly go over each pattern that appears in this section, and establish necessary
and sufficient conditions for an integer sequence to avoid any occurrence of the given
pattern which involves the maximum of the sequence.

• 000: The maximum does not appear more than twice.

• 100: All values appearing after the first maximum are distinct, or equal to the
maximum.

• 101: All occurrences of the maximum are consecutive.

• 110: All maxima after the first one appear in a single factor, at the end of the
sequence.

• 102: The subsequence to the left of the last maximum is nondecreasing, ignoring
other occurrences of the maximum.

• 201: The subsequence to the right of the first maximum is nonincreasing, ignoring
other occurrences of the maximum.

• 210: The subsequence to the right of the first maximum is nondecreasing, ignoring
other occurrences of the maximum.

Since our generating tree construction inserts a maximum, the children of a node labelled
σ in T ′ are the children of σ in T which satisfy the above conditions (for the patterns in
P ). Such facts will be used in proofs throughout this section without explicit reference.

3.2 The pair {000, 102}

In this subsection, we use a generalization of succession rules called doubled succession
rules, introduced in [13], which allows a node at level n in a generating tree to have

children at levels n+ 1 or n+ 2, denoted by
1
 and

2
 in the succession rule. We find a
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doubled succession rule describing a generating tree for I(000, 102) (up to isomorphism),
and later use this rule to compute the generating function of I(000, 102) in the appendix.

For all σ ∈ I(000, 102), let inc(σ) be the size of the longest nondecreasing factor at
the beginning of σ, and let sites(σ) = inc(σ)−max(σ). In particular, sites(ε) = 1.

Remark 15. Let σ ∈ I(000, 102)\{ε} be a nonempty inversion sequence. Since σ avoids the
pattern 102, the factor (σi)i∈[1,firstmax(σ)] is nondecreasing. In other words, the maximum
of σ is reached before its first descent, and therefore σinc(σ) = max(σ). This also implies
that inc(σ) > max(σ), hence sites(σ) is positive.

Given n > 1, σ ∈ Nn, p ∈ [1, n+1] and v ∈ N, we denote by [σ]vp the sequence obtained
from σ by inserting the value v at position p, that is [σ]vp = (σi)i∈[1,p−1] · v · (σi)i∈[p,n].

Lemma 16. Let n > 0, σ ∈ In(000, 102), m = max(σ), i ∈ [1, n + 1], and k > 0.
Let σ′ = [σ]m+k

i be the sequence obtained from σ by inserting m + k at position i. Then
σ′ ∈ In+1(000, 102) if and only if i ∈ [m+ k + 1, inc(σ) + 1].

Proof. Since σ does not contain the value m+k, inserting it cannot create an occurrence of
the pattern 000. The value m+k must be inserted in the interval [m+k+1, n+1] in order
to create an inversion sequence. By definition of inc(σ), (σi)i∈[1,inc(σ)] is nondecreasing,
hence inserting m+k in any position [m+k+1, inc(σ)+1] does not create an occurrence
of 102. On the contrary, inserting m + k in any position [inc(σ) + 2, n + 1] creates an
occurrence of 102, since (σinc(σ), σinc(σ)+1) is an occurrence of 10 and m+ k > σinc(σ).

It follows from Lemma 16 that the statistic sites(σ) can be interpreted either as the
number of values (denoted k earlier) greater than m which could be inserted in σ, or the
number of positions (denoted i earlier) where a value greater than m can be inserted in
σ, so that the resulting sequence is in In+1(000, 102).

Theorem 17. The enumeration of inversion sequences avoiding the patterns 000 and 102
is given by the doubled succession rule

Ω{000,102} =


(1)

(s)
1
 (j)s+1−j for j ∈ [1, s]

(s)
2
 (j + 1)s+1−j(j)(

s+1−j
2 ) for j ∈ [1, s].

Proof. We consider the combinatorial generating tree (with jumps) for I(000, 102) such
that the parent of any σ ∈ I(000, 102)\{ε} is obtained from σ by removing all occurrences
of max(σ). Due to the avoidance of 000, max(σ) appears either once or twice in σ, so the
difference between the level of σ and that of its parent is either 1 or 2. We then replace
each label σ by the value sites(σ) defined above. The axiom of the resulting succession
rule is (1) since sites(ε) = 1.

In the rest of this proof, let n > 0, σ ∈ In(000, 102) and m = max(σ).
Let i, k > 1 be two integers, and σ′ = [σ]m+k

i . From Lemma 16, σ′ ∈ In+1(000, 102)
if and only if i ∈ [m + 2, inc(σ) + 1] and k ∈ [1, i −m − 1]. Let us now assume that is
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the case. By definition of σ′, we have inc(σ′) = i and max(σ′) = m + k. In particular,
sites(σ′) = i− (m+ k) ∈ [1, sites(σ)].

Let j ∈ [1, sites(σ)]. Let us count how many choices of i and k satisfy the identity
sites([σ]m+k

i ) = j. The ordered pair (i, k) is a solution whenever j = i − (m + k), i.e.
whenever k = i−m− j. Since k is positive, there is one solution for each value of i such
that i > m + j. The number of solutions (i, k) is the number of values i in the interval
[m + j + 1, inc(σ) + 1], so there are inc(σ) + 1 − (m + j) = sites(σ) + 1 − j solutions.

This corresponds to (s)
1
 (j)s+1−j in the succession rule. Now let us count in how many

ways we may insert two occurrences of a value greater than m in σ. In the previous case,
inserting a second m + k adjacent to the first one yields a sequence σ′′ = [σ′]m+k

i which
satisfies sites(σ′′) = i+1−(m+k) = sites(σ′)+1. We obtain sites(σ)+1−j sequences of

size n+2 and label j+1 for each j ∈ [1, sites(σ)]. This corresponds to (s)
2
 (j+1)s+1−j

in the succession rule.
In order to insert a value m + k > m in two non adjacent positions in σ, we choose

two positions i1 < i2 ∈ [m+k+ 1, inc(σ) + 1] and define σ′′ = [[σ]m+k
i2

]m+k
i1

, which satisfies
sites(σ′′) = i1 − (m+ k) ∈ [1, sites(σ)]. Let j ∈ [1, sites(σ)], and let us count how many
choices of i1, i2 and k satisfy sites(σ′′) = j. The triple (i1, i2, k) is a solution whenever
j = i1 − (m + k), i.e. whenever k = i1 −m− j. Since k is positive, there is one solution
for each (i1, i2) such that i1 > m + j. The number of solutions is the number of ordered
pairs (i1, i2) such that i1 < i2 and i1, i2 ∈ [m+ j+ 1, inc(σ) + 1], so there are

(
sites(σ)+1−j

2

)
solutions. This corresponds to (s)

2
 (j)(

s+1−j
2 ) in the succession rule.

ε
(1)

0
(1)

01
(1)

012
(1)

0123
(1)

0122
(2)

011
(2)

0112
(2)

0113
(1)

0121
(1)

00
(2)

001
(2)

0012
(2)

0013
(1)

0021
(1)

002
(1)

0023
(1)

010
(1)

0120
(1)

0011
(3)

0022
(2)

0101
(1)

0110
(2)

Figure 4: First five levels of the generating tree described by the succession rule Ω{000,102}.
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The generating tree described by Ω{000,102} is represented in Figure 4.

3.3 The pair {102, 210}

In this section, we present a generating tree for the class I(102, 210). We later use this
construction to find the generating function of I(102, 210) in Theorem 76.

For any n > 0 and any σ ∈ Nn, let Des(σ) = {i ∈ [1, n − 1] : σi > σi+1} be the set
of descent tops of σ.

Proposition 18. Let σ be a {102, 210}-avoiding integer sequence. Then any descent top
of σ is the position of a maximum of σ, i.e. if d ∈ Des(σ) then σd = max(σ).

Proof. Assume, for the sake of contradiction, that i ∈ Des(σ) and σi < max(σ). Since
Des(σ) is nonempty, |σ| > 2. Let j ∈ [1, |σ|] be such that σj = max(σ). In particular,
j /∈ {i, i + 1}. If j < i, then (σj, σi, σi+1) is an occurrence of 210. If j > i + 1, then
(σi, σi+1, σj) is an occurrence of 102.

Proposition 19. Let σ be a {102, 210}-avoiding integer sequence, and let v > max(σ).

• If σ is nondecreasing, then inserting the value v anywhere in σ does not create any
occurrence of 102 or 210.

• If σ has exactly one descent σd > σd+1, then inserting the value v at some position
p in σ yields a {102, 210}-avoiding sequence if and only if p = d+ 1.

• If σ has at least two descents, then inserting the value v anywhere in σ creates an
occurrence of 102 or 210.

Proof. We go case-by-case.

• Since v is greater than all values of σ, the value v could only take the role of the 2
in a pattern 102 or 210. Hence, in order for the insertion of the value v to create an
occurrence of either pattern, σ must already contain the pattern 10.

• If d is the only descent top of σ, then all occurrences (σi, σj) of the pattern 10 in
σ must satisfy i 6 d and j > d. In particular, inserting v at position d + 1 cannot
create an occurrence of either pattern 102 or 210. If v is inserted at any other
position, the resulting sequence still contains a descent top of value σd < v, so it
contains 102 or 210 by Proposition 18.

• Inserting v anywhere in σ yields a sequence which still contains a descent top of
value max(σ) < v, and therefore contains 102 or 210 by Proposition 18.

It is now clear we want to partition I(102, 210) into three subsets. For all n > 0, let

• An = {σ ∈ In(102, 210) : |Des(σ)| = 0} = In(10) be the set of nondecreasing
inversion sequences of size n,
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• Bn = {σ ∈ In(102, 210) : |Des(σ)| = 1} be the set of {102, 210}-avoiding inversion
sequences of size n having exactly one descent,

• Cn = {σ ∈ In(102, 210) : |Des(σ)| > 2} be the set of {102, 210}-avoiding inversion
sequences of size n having at least two descents.

We define a statistic bounce : I(102, 210)→ N, which behaves differently on each subset.

• For all σ ∈ An, let bounce(σ) = n− σn, with the convention bounce(ε) = 0.

• For all σ ∈ Bn, let bounce(σ) = d− σd, where d is the only element of Des(σ).

• For all σ ∈ Cn, let bounce(σ) = firstmax(σ)−max(σ).

Note that when σ is nonempty, bounce(σ) counts the difference between some position
of the maximum of σ and the value of this maximum; however, the exact position varies
according to the number of descents of σ. In particular, bounce(σ) > 0 if σ 6= ε.

Let An,k = {σ ∈ An : k = bounce(σ)}, Bn,k = {σ ∈ Bn : k = bounce(σ)}, and
Cn,k = {σ ∈ Cn : k = bounce(σ)}. We also consider some subsets of Bn,k and Cn,k.

• Let B
(1)
n,k = {σ ∈ Bn,k : (σi)i∈[1,n]\firstmax(σ) ∈ An−1} be the subset of sequences

of Bn,k such that removing the first maximum yields a sequence in An−1. Let

B
(2)
n,k = Bn,k\B(1)

n,k.

• Let C
(1)
n,k = {σ ∈ Cn,k : (σi)i∈[1,n]\firstmax(σ) ∈ Bn−1} be the subset of sequences

of Cn,k such that removing the first maximum yields a sequence in Bn−1. Let

C
(2)
n,k = Cn,k\C(1)

n,k.

We give an example for each of the five cases.

• α = (0, 0, 1, 3, 3, 3, 4, 6, 6) ∈ A9,3, since Des(α) = ∅ and bounce(α) = 9− 6.

• β = (0, 0, 0, 1, 1, 4, 1, 3, 4) ∈ B
(1)
9,2, since Des(β) = {6} and bounce(β) = 6− 4.

• β′ = (0, 0, 0, 1, 2, 2, 2, 0, 1) ∈ B
(2)
9,5, since Des(β′) = {7} and bounce(β′) = 7− 2.

• γ = (0, 0, 1, 1, 2, 4, 3, 4, 3) ∈ C
(1)
9,2, since Des(γ) = {6, 8} and bounce(γ) = 6− 4.

• γ′ = (0, 1, 1, 3, 3, 1, 3, 2, 3) ∈ C
(2)
9,1, since Des(γ′) = {5, 7} and bounce(γ′) = 4− 3.
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ε
(a, 0)

0
(a, 1)

00
(a, 2)

000
(a, 3)

0000
(a, 4)

0001
(a, 3)

0002
(a, 2)

0003
(a, 1)

0010
(b(1), 2)

00101
(b(1), 1)

00110
(b(2), 3)

00120
(b(2), 2)

00130
(b(2), 1)

01010
(c(1), 1)

010110
(c(1), 1)

011010
(c(2), 1)

0020
(b(1), 1)

0100
(b(1), 1)

001
(a, 2)

0011
(a, 3)

0012
(a, 2)

0013
(a, 1)

0021
(b(1), 1)

002
(a, 1)

0022
(a, 2)

0023
(a, 1)

010
(b(1), 1)

0101
(b(1), 1)

0110
(b(2), 2)

01110
(b(2), 3)

01120
(b(2), 2)

01130
(b(2), 1)

0120
(b(2), 1)

01
(a, 1)

011
(a, 2)

0111
(a, 3)

0112
(a, 2)

0113
(a, 1)

0121
(b(1), 1)

012
(a, 1)

0122
(a, 2)

0123
(a, 1)

Figure 5: Part of the generating tree described by the succession rule Ω{102,210}.
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Theorem 20. The enumeration of inversion sequences avoiding the patterns 102 and 210
is given by the succession rule

Ω{102,210} =



(a, 0)

(a, k)  (a, i) for i ∈ [1, k + 1]

(b(1), i)k−i for i ∈ [1, k − 1]

(b(1), k)  (b(1), k)

(b(2), i) for i ∈ [1, k + 1]

(c(1), i) for i ∈ [1, k − 1]

(b(2), k)  (b(2), i) for i ∈ [1, k + 1]

(c(1), k)  (c(1), k)

(c(2), i) for i ∈ [1, k]

(c(2), k)  (c(2), i) for i ∈ [1, k].

The generating tree described by Ω{102,210} is represented in Figure 5, on page 22.

Proof. We describe a combinatorial generating tree for I(102, 210) which “grows” in-
version sequences by inserting entries in increasing order of value. We then label the
sequences of I(102, 210) according to which set they belong to: each sequence in a set

An,k is labelled (a, k), each sequence in a set B
(i)
n,k is labelled (b(i), k), and each sequence in

a set C
(i)
n,k is labelled (c(i), k), for i ∈ {1, 2}. In particular, the empty sequence ε is labelled

(a, 0), which is the axiom of the succession rule.
The order of insertion of the different occurrences of each value is not simple. We first

explain it informally, before describing the full construction in detail. Let σ ∈ I(102, 210)
be an inversion sequence of size n > 1 and maximum m. Let σ′ ∈ I(102, 210) be the
subsequence obtained by removing all values m from σ. We generate σ from σ′ by inserting
entries of value m in the following order.

1. The rightmost descent top of σ (if σ has at least one descent).

2. Any entries of value m appearing in a single factor at the end of σ, from left to
right.

3. The second rightmost descent top of σ (if σ has at least two descents).

4. Any entries appearing in a constant factor of value m which contains the rightmost
descent top of σ (if σ has at least one descent), inserted from left to right, and to
the right of the entry inserted at step 1.

5. Any remaining entries of value m, from right to left.
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For instance if σ = (0, 0, 0, 1, 2, 2, 6, 6, 2, 3, 6, 4, 6, 6, 6, 4, 4, 6, 6, 6, 4, 6, 6) ∈ I23(102, 210),
then the order of insertion of the 11 entries of maximal value 6 is shown on the bottom
row of the example below.

0 0 0 1 2 2 6 6 2 3 6 4 6 6 6 4 4 6 6 6 4 6 6
11 10 9 8 7 4 1 5 6 2 3

This order of insertion may not be intuitive, but the resulting generating tree construction
has some advantages compared to a simpler order:

• most importantly, it only requires one parameter (the value of the bounce statistic),

• it does not involve “phantom objects” as in Section 2.3,

• the resulting succession rule does not involve the size n of the sequences.

We now turn to a step-by-step description of the generating tree, which matches
the succession rule Ω{102,210}. Let σ ∈ I(102, 210), n = |σ|, k = bounce(σ), and
m = max(σ).

• Suppose σ ∈ An,k. In particular, if σ is nonempty then max(σ) = σn = n− k.

– Inserting any value v ∈ [n−k, n] at the end of σ yields a sequence in An+1,n+1−v,
where n+ 1− v ∈ [1, k+ 1]. This production alone generates all nondecreasing
inversion sequences.

– If σ is nonempty, inserting any value v ∈ [n − k + 1, n − 1] at any position

p ∈ [v + 1, n] creates a sequence in B
(1)
n+1,p−v. For each i = p − v ∈ [1, k − 1],

there are k− i sequences in B
(1)
n+1,i generated by σ (one sequence for each value

v ∈ [n− k + 1, n− i], for p = v + i).

• Suppose σ ∈ B
(1)
n,k. In particular, Des(σ) = {k +m}.

– Inserting the value m at the end of σ yields a sequence in B
(1)
n+1,k.

– Inserting any value v ∈ [m,m + k] between the top and bottom of the only

descent of σ (i.e. at position k +m+ 1) yields a sequence in B
(2)
n+1,k−v+m+1.

– Inserting the value m at any position p ∈ [m+ 1, k +m− 1] yields a sequence

in C
(1)
n+1,p−m.

• Suppose σ ∈ B
(2)
n,k. In particular, Des(σ) = {k+m}. As before, inserting any value

v ∈ [m,m+k] between the top and bottom of the only descent of σ (i.e. at position

k +m+ 1) yields a sequence in B
(2)
n+1,k−v+m+1.

• Suppose σ ∈ C
(1)
n,k. In particular, firstmax(σ) = k +m.

– Inserting the value m right-adjacent to the rightmost descent top of σ (i.e. at

position max(Des(σ)) + 1) yields a sequence in C
(1)
n+1,k.
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– Inserting the value m at any position p ∈ [m+1,firstmax(σ)] yields a sequence

in C
(2)
n+1,p−m.

• Suppose σ ∈ C
(2)
n,k. In particular, firstmax(σ) = k + m. As before, inserting the

value m at any position p ∈ [m+ 1,firstmax(σ)] yields a sequence in C
(2)
n+1,p−m.

Notice that inserting some value v > m at any other position would either yield a sequence
which already appears in this construction, or create an occurrence of a pattern 102 or
210.

3.4 The pairs {000, 201} or {000, 210}

A bijection between I(000, 201) and I(000, 210) was established in [35, Theorem 8.1].
In this section we enumerate I(000, 201), although the same construction can also be
applied to I(000, 210) with a little more work, and results in the same equations. Let
An,m,p = {σ ∈ In(000, 201) : m = max(σ), p = firstmax(σ) = lastmax(σ)} be the
set of {000, 201}-avoiding inversion sequences of size n, maximum m, and such that m
appears only once and at position p. Let an,m,p = |An,m,p|. By definition, an,m,p = 0 if
n < p or p 6 m. When m = 0, an,0,p = δn,1δp,1. The numbers (an,m,p)n,m,p∈N can then be
calculated using the following lemma.

Lemma 21. For all 1 6 m < p 6 n,

an,m,p =
m−1∑
s=0

p∑
q=s+1

an−1,s,q + (p− q + δp,q − δp,n)an−2,s,q

Proof. Let m > 1, p > m, n > p be three integers, and let σ ∈ An,m,p. Let σ′ be the
sequence obtained by removing the value m from σ. Let s = max(σ′) be the second
largest value in σ, and q = firstmax(σ′). Note that if q < p then σq = s, and if q > p
then σq+1 = s. In particular, if q > p then the subsequence (σp, σp+1, σq+1) is an occurrence
of the pattern 201. Hence q is less than or equal to p.

Since σ′ avoids the pattern 000, its maximum s appears either once or twice.

• If s appears only once in σ′, then σ′ ∈ An−1,s,q. Note that inserting the value m
at position p in any sequence in An−1,s,q for s < m and q 6 p does not create an
occurrence of 000 or 201, so this is a bijection.

• If s appears twice, then removing the second occurrence yields an inversion sequence
σ′′ ∈ An−2,s,q. The possible positions for the second s in σ′ are:

– Before p:

{
[q + 1, p− 1] if q < p

∅ if q = p
, so there are p− q − 1 + δp,q choices.

– After p:

{
{p+ 1} if p < n

∅ if p = n
, so there are 1− δp,n choices.
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This adds up to p− q + δp,q − δp,n possible positions for the second s.

Summing over all possible values of m and p completes the proof.

Theorem 22. For all n > 2,

|In(000, 201)| =
n−1∑
m=0

n∑
p=m+1

an,m,p + (n− p)an−1,m,p.

Proof. Let n > 2, σ ∈ In(000, 201), m = max(σ), and p = firstmax(σ). Since σ avoids
000, the maximum m appears either once or twice in σ.

• If m appears only once, then σ ∈ An,m,p.

• If m appears twice, then removing the second m yields a sequence σ′ ∈ An−1,m,p.
There are n− p possible positions for the second m, hence n− p different sequences
σ correspond to the same σ′.

Summing over all possible values of m and p completes the proof.

Remark 23. The pairs of patterns studied in the next four sections contain either 101 or
110. In a sequence that avoids 101 (resp. 110), all occurrences of the maximum after the
leftmost one must appear in a single factor at the end of the sequence (resp. consecutive to
the leftmost maximum). This allows us to restrict the enumeration to inversion sequences
which contain only one occurrence of the maximum without loss of generality, since each
repetition of that maximum can only be placed at a single position.

3.5 The pair {100, 110}

Let An,m,p = {σ ∈ In(100, 110) : m = max(σ), p = firstmax(σ) = lastmax(σ)} be
the set of {100, 110}-avoiding inversion sequences of size n, maximum m, and such that
m appears only once and at position p. Let an,m,p = |An,m,p|. In particular, an,m,p = 0 if
n < p or p 6 m, and an,0,p = δn,1δp,1.

Lemma 24. Let 1 6 m < p 6 n. If p ∈ {n− 1, n},

an,m,p =
m−1∑
s=0

n−1∑
q=s+1

n−1∑
`=q

a`,s,q.

If p < n− 1,

an,m,p =
m−1∑
s=0

(n− p) · an−1,s,p +

p−1∑
q=s+1

an−1,s,q + an−2,s,q.
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Proof. Let 1 6 m < p 6 n, and σ ∈ An,m,p. Let σ′ = (σi)i∈[1,n]\{p} be the sequence
obtained by removing the value m from σ. Let s = max(σ′) and q = firstmax(σ′). Let
σ′′ be the sequence obtained by removing all terms of value s except the first one from
σ′, so that σ′′ ∈ A`,s,q for some ` ∈ [q, n− 1].

Since σ avoids 100, all terms of σ after position p must have distinct values. In
particular, s appears at most once after p. Since σ′ avoids 110, every s after the first one
must appear in a single factor at the end of σ′. At this point, there are two cases:

1. If p ∈ {n−1, n}, then the value s could appear any number of times without creating
an occurrence of 100 in σ. In that case, σ′′ can be any sequence in A`,s,q for any
` ∈ [q, n− 1]: starting from any sequence in A`,s,q for any s < m, q > s, and ` < n,
we can append n− `− 1 terms of value s, then insert m at position p ∈ {n− 1, n}
without creating an occurrence of 100 or 110, and this is a bijection. Thus, we
obtain the first equation of the lemma.

2. If p < n− 1:

• If q < p:

– If σ contains a single term of value s, then σ′′ = σ′ ∈ An−1,s,q.

– If σ contains two terms of value s, then the second one is σn due to the
avoidance of 110. In that case, σ′′ ∈ An−2,s,q.

In either case, this is a bijection for the same reason as before. Note that s
cannot appear more than twice in σ, otherwise (σp, σn−1, σn) = (m, s, s) would
be an occurrence of 100.

• If q > p, then s appears only once in σ in order to avoid 100. In that case,
σ′′ = σ′ can be any sequence in An−1,s,q such that all values (σ′′i )i∈[p,n−1] are
distinct. Moving the value s in σ′′ from position q to position p yields a
sequence τ ∈ An−1,s,p. Conversely, starting from any sequence τ ∈ An−1,s,p and
moving the value s from position p to position q ∈ [p, n− 1] yields a sequence
σ′′ ∈ An−1,s,q such that all values (σ′′i )i∈[p,n−1] are distinct. Since there are n−p
possible values of q, each sequence τ ∈ An−1,s,p is obtained from n− p different
sequences σ′′.

Theorem 25. For all n > 2,

|In(100, 110)| =
n∑
`=1

`−1∑
m=0

∑̀
p=m+1

a`,m,p.

Proof. Let n > 2, σ ∈ In(100, 110), m = max(σ), and p = firstmax(σ). Since σ avoids
110, all terms of value m after the first one σp are in a factor (σi)i∈[`+1,n] for some ` ∈ [p, n].
Let σ′ be the sequence obtained by removing all terms of value m from σ, except the first
one σp. By definition, σ′ ∈ A`,m,p. Since we can rebuild σ by appending n − ` terms of
value m to σ′, this is a bijection between In(100, 110) and

∐
06m<p6`6nA`,m,p.
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3.6 The pair {100, 101}

Let An,m,p = {σ ∈ In(100, 101) : m = max(σ), p = firstmax(σ) = lastmax(σ)} be
the set of {100, 101}-avoiding inversion sequences of size n, maximum m, and such that
m appears only once and at position p. Let an,m,p = |An,m,p|. In particular, an,m,p = 0 if
n < p or p 6 m, and an,0,p = δn,1δp,1.

Lemma 26. Let 1 6 m < p 6 n. If p ∈ {n− 1, n},

an,m,p =
m−1∑
s=0

n−1∑
q=s+1

n−1∑
`=q

a`,s,q.

If p < n− 1,

an,m,p =
m−1∑
s=0

(n− p) · an−1,s,p +

p−1∑
q=s+1

n−1∑
`=n−p+q−1

a`,s,q.

Proof. This is quite similar to the proof of Lemma 24, except that now the terms of
value s in σ′ appear in a single factor starting at position q, instead of being split into
σ′q and a factor at the end of σ′. This makes a difference in only one case: if p < n − 1
and q < p, then there may be more than two terms of value s. More precisely, the
terms of value s in σ′ are in a factor (σi)i∈[q,q+k] for some k ∈ [0, p − q]. In particular
σ′′ = (σ′i)i∈[1,n−1]\[q+1,q+k] ∈ A`,s,q, so ` = n− 1− k ∈ [n− p+ q − 1, n− 1].

Theorem 27. For all n > 2,

|In(100, 101)| =
n∑
`=1

`−1∑
m=0

∑̀
p=m+1

a`,m,p.

Proof. Very similar to the proof of Theorem 25, but now the factor of repetitions of the
maximum is placed immediately after the first maximum, instead of being at the end of
the sequence.

3.7 The pair {110, 201}

Let An,m,p = {σ ∈ In(110, 201) : m = max(σ), p = firstmax(σ) = lastmax(σ)} be
the set of {110, 201}-avoiding inversion sequences of size n, maximum m, and such that
m appears only once and at position p. Let an,m,p = |An,m,p|. In particular, an,m,p = 0 if
n < p or p 6 m, and an,0,p = δn,1δp,1.

Lemma 28. Let 1 6 m < p 6 n. If p ∈ {n− 1, n},

an,m,p =
m−1∑
s=0

n−1∑
q=s+1

n−1∑
`=q

a`,s,q.

If p < n− 1,

an,m,p =
m−1∑
s=0

p∑
q=s+1

an−1,s,q +

p−1+δp,q∑
`=q

a`,s,q.
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Proof. Let 1 6 m < p 6 n, and σ ∈ An,m,p. Let σ′ = (σi)i∈[1,n]\{p} be the sequence
obtained by removing the value m from σ. Let s = max(σ′) and q = firstmax(σ′). In
particular q 6 p, otherwise (σp, σp+1, σq+1) would be an occurrence of 201. Let σ′′ be the
sequence obtained by removing all terms of value s except the first one from σ′, so that
σ′′ ∈ A`,s,q for some ` ∈ [q, n− 1].

• If p ∈ {n−1, n}, we obtain the same equation as in Lemma 24, for the same reason.

• If p < n− 1,

– If s appears only once in σ′, then σ′′ = σ′ can be any sequence in An−1,s,q

– If s appears more than once, then every s after the first one must be in a single
factor at the end of σ′ to avoid 110. Since σ avoids 201, the factor (σi)i∈[p+1,n] is
nonincreasing, which means every term in this factor has value s. The sequence
σ′′ obtained has length ` ∈ [q, p− 1] if q < p, or ` = p if q = p.

Theorem 29. For all n > 2,

|In(110, 201)| =
n∑
`=1

`−1∑
m=0

∑̀
p=m+1

a`,m,p.

Proof. Identical to the proof of Theorem 25, since inserting a term of maximal value
anywhere after the first maximum cannot create an occurrence of 201.

3.8 The pair {101, 210}

Let An,m,p = {σ ∈ In(101, 210) : m = max(σ), p = firstmax(σ) = lastmax(σ)} be
the set of {101, 210}-avoiding inversion sequences of size n, maximum m, and such that
m appears only once and at position p. Let an,m,p = |An,m,p|. In particular, an,m,p = 0 if
n < p or p 6 m, and an,0,p = δn,1δp,1.

Lemma 30. Let 1 6 m < p 6 n. If p ∈ {n− 1, n},

an,m,p =
m−1∑
s=0

n−1∑
q=s+1

n−1∑
`=q

a`,s,q.

If p < n− 1,

an,m,p =
m−1∑
s=0

(
n−1∑
q=p

aq,s,p

)
+

p−1∑
q=s+1

aq,s,q +
n−1∑

`=n−p+q

a`,s,q.

Proof. Let 1 6 m < p 6 n, and σ ∈ An,m,p. Let σ′ = (σi)i∈[1,n]\{p} be the sequence
obtained by removing the value m from σ. Let s = max(σ′) and q = firstmax(σ′). Let
σ′′ be the sequence obtained by removing all terms of value s except the first one from
σ′, so that σ′′ ∈ A`,s,q for some ` ∈ [q, n− 1].
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• If p ∈ {n−1, n}, we obtain the same equation as in Lemma 26, for the same reason.

• If p < n− 1:

– If q > p, then every term in the factor (σi)i∈[q+1,n] has value s, because σ avoids
210. In that case σ′′ is a sequence in Aq,s,q such that (σ′′i )i∈[p,q] is nondecreasing.
The set of such sequences σ′′ is in bijection with Aq,s,p (to see that, simply move
the value s from position q to position p).

– If q < p, let k + 1 be the number of terms of value s in σ. In particular,
k = |σ′| − |σ′′| = n − 1 − `. Note that the terms of value s in σ′ are exactly
(σ′i)i∈[q,q+k].

∗ If k > p − q, then σp+1 = s, which implies that every term (σi)i∈[q,n]\{p}
has value s because σ avoids 210. In particular k = n− 1− q, ` = q, and
we obtain a sequence σ′′ ∈ Aq,s,q.

∗ If k < p − q, then the value s does not appear after position p, and we
obtain a sequence σ′′ ∈ A`,s,q for ` = n− 1− k ∈ [n− p+ q, n− 1].

Theorem 31. For all n > 2,

|In(101, 210)| =
n∑
`=1

`−1∑
m=0

∑̀
p=m+1

a`,m,p.

Proof. Identical to the proof of Theorem 27, since inserting a term of maximal value
anywhere after the first maximum cannot create an occurrence of 210.

3.9 A generating tree perspective on the previous constructions

The inversion sequences studied in Sections 3.4 to 3.8 could also be generated by inserting
their values one by one, in increasing order (and inserting any repetitions of a value from
left to right). This yields generating trees which differ only slightly from our construction.
We chose not to present them that way, since it would require distinguishing several
subsets of inversion sequences, as we did in Sections 2.3 and 3.3. In all five cases, the
resulting succession rules would have two integer parameters, which always record the
number of positions where a new maximum may be inserted, and the number of possible
values of a new maximum. The first parameter is influenced by pattern-avoidance, and
the second one is used to maintain the “subdiagonal” property characterizing inversion
sequences.

Note that Sections 3.2 and 3.3 use such generating tree constructions, but only have
one integer parameter.

• For the pair of patterns {000, 102}, the two parameters are one and the same, and
correspond to the statistic we denoted sites, as explained in the paragraph just
before Theorem 17.

• For the pair {102, 210}:
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– a new maximum cannot be inserted in a sequence with several descents; it
follows that such sequences only require one parameter to record the number
of positions where repetitions of the current maximum could be inserted.

– in a sequence which has 0 or 1 descents, the positions where a new maximum
may be inserted are trivial (for 0 descents any position is fine, and for 1 descent
the only available position is between the top and the bottom of the descent),
so only the number of possible values of a new maximum is required.

4 Splitting at the first maximum

4.1 Method

The method described in this section is a generalization of the construction used in [19]
for 120-avoiding inversion sequences.

Let σ ∈ In be an inversion sequence of size n > 1, m = max(σ), and p = firstmax(σ).
By definition, p > m. Let α = (σi)i∈[1,p−1], β = (σi)i∈[p,n] be two factors of σ, which satisfy
α·β = σ. The case m = 0 corresponds to constant inversion sequences, whose enumeration
is trivial. When m > 0, we use this decomposition to count inversion sequences σ from
the number of possible choices for α and β. Note that α is an inversion sequence of size
p − 1 and maximum less than m, and β is a word of length n − p + 1 over the alphabet
[0,m] such that β1 = m. More precisely, the following holds (where Wn,k is the set of
words of length n over the alphabet [0, k − 1]).

Remark 32. For all 0 6 m < p < n, {σ ∈ In : m = max(σ), p = firstmax(σ)} =
{α · β : α ∈ Ip−1, max(α) < m, β ∈ Wn−p+1,m+1, β1 = m}.

Now we can express pattern avoidance on σ in terms of necessary and sufficient con-
ditions on α and β.

Remark 33. Let τ be a pattern of length k > 2. Then σ avoids τ if and only if all three
following conditions are satisfied:

1. α avoids τ ,

2. β avoids τ ,

3. There are no i1 < i2 < · · · < ik ∈ [1, n] such that i1 < p, ik > p and (σij)j∈[1,k] is an
occurrence of τ .

Condition 3 is difficult to work with in general, but it can be turned into simple
conditions on α and β for certain patterns, such as 120 or 010.

Proposition 34. If τ = 120, condition 3 is equivalent to max(α) 6min(β).

Proof. If max(α) > min(β), then (max(α),m,min(β)) is an occurrence of 120. Con-
versely, if there are three integers i1 < i2 < i3 such that i1 < p, i3 > p and (σi1 , σi2 , σi3) is
an occurrence of 120, then max(α) > σi1 > σi3 >min(β).
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Proposition 35. If τ = 010, condition 3 is equivalent to Vals(α) ∩Vals(β) = ∅.

Proof. If v ∈ Vals(α) ∩ Vals(β), then (v,m, v) is an occurrence of 010. Conversely, if
there are three integers i1 < i2 < i3 such that i1 < p, i3 > p and (σi1 , σi2 , σi3) is an
occurrence of 010, then σi1 = σi3 ∈ Vals(α) ∩Vals(β).

Sections 4.2 to 4.9 are focused on the pattern 120, while Sections 4.10 to 4.14 are
focused on the pattern 010.

We always count the possible choices for α by recurrence, since α is an inversion
sequence that is shorter than σ and must avoid the same patterns. On the other hand,
the words β form a different family of objects which must be enumerated independently.
This could be solved by applying the same decomposition around the first maximum to
words, since Remark 32 has an analogue for words7. We use generating trees instead,
since it results in simpler and more efficient recurrence formulas.

Depending on the pair of patterns studied, we consider different types of words in our
decomposition. We always denote β the word defined as above, γ = (βi)i∈[2,n−p] the same
word without the first letter m (so that σ = α ·m · γ), and γ′ = (βi)i∈[1,n−p],βi 6=m the word
obtained by removing all letters m from β.

4.2 A useful symmetry

Given two integers n, k ∈ N, a composition of n into k (possibly empty) parts is an
integer sequence λ = (λ1, . . . , λk) ∈ Nk such that

∑k
i=1 λi = n. Let n, k ∈ N and let λ

be a composition of n into k parts. We denote by Wλ ⊆ Wn,k the set of words in which
each letter ` ∈ [0, k − 1] appears exactly λ`+1 times (i.e. permutations of the multiset
{`λ`+1 : ` ∈ [0, k − 1]}). As before, we denote by Wλ(P ) the subset of words avoiding
some set of patterns P . The following theorem is a result of [2] (up to symmetry).

Theorem 36. Let k ∈ N. The function Nk → N, (λ1, . . . , λk) 7→ |Wλ(120)| is symmetric.

In other words, if λ, µ ∈ Nk are two sequences such that there exists a permutation π of
[1, k] which satisfies µi = λπ(i) for all i ∈ [1, k], then the identity |Wλ(120)| = |Wµ(120)|
holds. This result was generalized in [1] and [28] to show that the number |Wλ(120)|
remains unchanged when the pattern 120 is replaced by any permutation of {0, 1, 2}.

4.3 The pair {011, 120}

Let An,m = {σ ∈ In(011, 120) : m = max(σ)} be the set of {011, 120}-avoiding inversion
sequences of size n and maximum m. Let Bn,k = {ω ∈ Wn,k(120) : ωi = ωj =⇒ i = j}
be the set of 120-avoiding words of length n over the alphabet [0, k − 1] which do not
contain any repeated letter. Let Cn,k = {ω ∈ Wn,k(120) : ωi = ωj 6= 0 =⇒ i = j} be

7More precisely, the set of words ω ∈ Wn,k such that m = max(ω) and p = firstmax(ω) (note that p
does not have to be greater than m now) is in bijection with the set of ordered pairs (α, β) such that
α ∈ Wp−1,m and β ∈ Wn−p+1,m+1 satisfies β1 = m. Remark 33 and Propositions 34 and 35 apply to
these words as well.

the electronic journal of combinatorics 32(4) (2025), #P4.46 32



the set of 120-avoiding words of length n over the alphabet [0, k−1] which do not contain
any nonzero repeated letter. Let an,m = |An,m|, bn,k = |Bn,k|, and cn,k = |Cn,k|.

Theorem 37. For all 0 < m < n,

an,m =
n∑

p=m+1

cn−p,m +
m−1∑
j=1

ap−1,j · bn−p,m−j−1.

Proof. Let σ ∈ An,m, p = firstmax(σ), α = (σi)i∈[1,p−1], γ = (σi)i∈[p+1,n], and let
j = max(α). In particular, j < m.

• If j = 0, then α = (0)p−1, and γ ∈ Cn−p,m since σ1 = 0 implies that any nonzero
repeated letter creates an occurrence of the pattern 011.

• If j > 1, then α ∈ Ap−1,j. By Proposition 34, γ is a 120-avoiding word of length n−p
over the alphabet [j + 1,m− 1] (since repeating j or m would create an occurrence
of 011) in which all letters are distinct (to avoid 011). Subtracting j + 1 from every
letter in γ yields a word in Bn−p,m−j−1.

Observing that these two constructions are bijective concludes the proof.

Let us now enumerate the families of words (Bn,k)n,k∈N and (Cn,k)n,k∈N.

Proposition 38. For all n, k > 0,

bn,k =

(
k
n

)(
2n
n

)
n+ 1

.

Proof. There are
(
k
n

)
possible choices for the set of n distinct letters in [0, k − 1] which

appear in a word of Bn,k. Once this set of letters is decided, choosing their order
amounts to choosing a 120-avoiding permutation of size n, counted by the Catalan number
Cn = 1

n+1

(
2n
n

)
.

Lemma 39. For all n > 1, k > 2,

cn,k = 2cn,k−1 + cn−1,k − cn−1,k−1 −
(
k−2
n

)(
2n
n

)
n+ 1

.

Proof. Let n > 0, k > 2, and ω ∈ Cn,k. We consider three different cases, based on the
position of the letter 1 in ω.

• If ω does not contain the letter 1, then subtracting 1 from every nonzero letter in ω
yields a word in Cn,k−1, and this is a bijection. As such, the words of Cn,k which do
not contain the letter 1 are counted by cn,k−1.

• Otherwise, ω contains exactly one occurrence of the letter 1. This implies that n > 1
and k > 2.
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– If there is any occurrence of the letter 0 appearing to the right of the letter
1 in ω, then every such occurrence must be in a single factor adjacent to the
letter 1 (otherwise, ω would contain the pattern 120). Hence, removing the
last letter 0 in ω can yield any word in Cn−1,k which contains the letter 1, and
this is a bijection. We know from the previous case that the words of Cn−1,k
which do not contain the letter 1 are counted by cn−1,k−1, hence the number of
possible words ω in this case is cn−1,k − cn−1,k−1.

– Otherwise, every letter 0 in ω appears to the left of the letter 1. Subtracting
1 from every nonzero letter in ω then yields a word in Cn,k−1 which contains
the letter 0. Note this defines a bijection: its inverse takes any word in Cn,k−1
which contains the letter 0, adds 1 to every nonzero letter, and replaces the
last letter 0 by the letter 1. Since the words of Cn,k−1 which do not contain the
letter 0 are trivially in bijection with Bn,k−2, we find there are cn,k−1 − bn,k−2
possible choices for the word ω in this case.

We also give an explicit expression for cn,k in Lemma 42.

4.4 The pair {100, 120}

Let An,m = {σ ∈ In(100, 120) : m = max(σ)} be the set of {100, 120}-avoiding inversion
sequences of size n and maximum m. Let Bn,k = {ω ∈ Wn,k(120) : ωi = ωj 6= k− 1 =⇒
i = j} be the set of 120-avoiding words of length n over the alphabet [0, k − 1] which do
not contain any non-maximal repeated letter. Let an,m = |An,m|, and bn,k = |Bn,k|.

Theorem 40. For all 0 < m < n,

an,m =
n∑

p=m+1

m−1∑
j=0

ap−1,j · bn−p,m−j+1.

Proof. Let σ ∈ An,m, p = firstmax(σ), α = (σi)i∈[1,p−1], γ = (σi)i∈[p+1,n], and let
j = max(α). In particular, α ∈ Ap−1,j. By Proposition 34, γ ∈ [j,m]n−p. Since σ
avoids 100, γ cannot contain any repeated value lower than m. Subtracting j from each
letter of γ yields a word in Bn−p,m−j+1.

As in Section 4.3, let Cn,k = {ω ∈ Wn,k(120) : ωi = ωj 6= 0 =⇒ i = j} be the set
of 120-avoiding words of length n over the alphabet [0, k − 1] which do not contain any
nonzero repeated letter, and let cn,k = |Cn,k|. The number of words cn,k was counted in
Lemma 39.

Lemma 41. For all n, k > 0, bn,k = cn,k.

Proof. Let Bn,k,r = {ω ∈ Bn,k : r = |{i ∈ [1, n] : ωi = k − 1}|} be the subset of
Bn,k of words in which the largest letter k − 1 appears exactly r times. Likewise, let
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Cn,k,r = {ω ∈ Cn,k : r = |{i ∈ [1, n] : ωi = 0}|} be the subset of Cn,k of words in which
the letter 0 appears exactly r times. By definition, we have

Bn,k =
n∐
r=0

Bn,k,r and Cn,k =
n∐
r=0

Cn,k,r.

Let Dn,k = {λ ∈ {0, 1}k : n =
∑k

i=1 λi} be the set of compositions of n into k parts of
size 0 or 1. In the notation of Section 4.2, for all r > 0,

Bn,k,r =
∐

λ∈Dn−r,k−1

Wλ·r(120) and Cn,k,r =
∐

λ∈Dn−r,k−1

Wr·λ(120).

By Theorem 36, for all r > 0 and λ ∈ Dn−r,k−1, |Wλ·r(120)| = |Wr·λ(120)|. This implies
that |Bn,k,r| = |Cn,k,r| for all n, k, r > 0, hence bn,k = cn,k.

We also provide an explicit expression of bn,k.

Lemma 42. For all n > 0, k > 1,

bn,k =
1

n+ 1

min(n,k)∑
d=0

(
k − 1

d

)(
n+ d

n

)
(n− d+ 1).

Proof. Let En,k = {ω ∈ Bn,k+1 : [0, k − 1] ⊆ Vals(ω)} be the subset of words of Bn,k+1

which contain all letters [0, k − 1] (and may contain the letter k). In particular, for all
n > 0, En,k is empty if k > n, and En,0 = {(0)n}. Note that any word of En,k contains
exactly one occurrence of each letter in [0, k − 1], and n − k occurrences of the letter k.
Let en,k = |En,k|.

The same construction as in Proposition 1 gives the following identity, seeing that(
k−1
d

)
is the number of increasing functions [0, d]→ [0, k− 1] such that d 7→ k− 1. For all

n > 0, k > 1,

bn,k =

min(n,k)∑
d=0

(
k − 1

d

)
en,d.

Let us now count the words of En,k. Let 1 6 k 6 n, and ω ∈ En,k.

• If ωn = k, then removing ωn yields a word in En−1,k and this is a bijection.

• If ωn < k, then no letter k may appear after the letter k − 1 in ω, otherwise the
subsequence (k − 1, k, ωn) would be an occurrence of 120. Replacing every letter k
in ω by k − 1 yields a word ω′ ∈ En,k−1 (since each letter in [0, k − 2] still appears
exactly once in ω′), and this is a bijection. Indeed, it can be reversed by taking any
word ω′ ∈ En,k−1 and replacing every letter k − 1 except the last one by the letter
k (notice that ω′ ∈ En,k−1 must contain the letter k − 1 since k 6 n).
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Hence, (en,k)n,k>0 satisfies the recurrence relation en,k = en−1,k + en,k−1 for all 1 6 k 6 n,
with initial conditions en,0 = 1 for all n > 0 and e0,k = 0 for all k > 1. From this
recurrence, we can easily prove by induction that for all 0 6 k 6 n,

en,k =

(
n+k
n

)
(n− k + 1)

n+ 1
,

which shows that (en,k)n,k>0 is Catalan’s triangle (entry A009766 of the OEIS).

4.5 The pair {120, 201}

Let An,m = {σ ∈ In(120, 201) : m = max(σ)} be the set of {120, 201}-avoiding inversion
sequences of size n and maximum m. Let Bn,k = {ω ∈ Wn,k+1(120) : ωi < ωj 6= k =⇒
j < i} be the set of 120-avoiding words of length n over the alphabet [0, k] whose non-
maximal letters appear in nonincreasing order. Let an,m = |An,m|, and bn,k = |Bn,k|.

Theorem 43. For all 0 < m < n,

an,m =
n∑

p=m+1

m−1∑
j=0

ap−1,j · bn−p,m−j.

Proof. Let σ ∈ An,m, p = firstmax(σ), α = (σi)i∈[1,p−1], γ = (σi)i∈[p+1,n], and let j =
max(α). In particular, α ∈ Ap−1,j. By Proposition 34, γ ∈ [j,m]n−p. Since σ avoids
201 and σp = m, all letters different from m in γ appear in nonincreasing order. By
subtracting j from all letters in γ, we obtain a word in the set Bn−p,m−j. We easily
observe that this construction is a bijection.

Remark 44. For all n > 0 and k > 1, there are
(
k+n−1
n

)
nonincreasing words of length

n over the alphabet [0, k − 1]. Indeed, the set of nonincreasing words of length n over
the alphabet [0, k − 1] is in bijection with the set of compositions of n into k (possibly
empty) parts. More precisely, for each composition of n into k parts λ, there is a single
nonincreasing word in the set Wλ (using the notation from Section 4.2).

Lemma 45. For all n, k > 1,

bn,k =

(
k + n+ 1

n

)
+ k

(
2n − 1− n(n+ 1)

2

)
− n.

Proof. Let n, k > 1, and ω ∈ Bn,k.

• If the letter k does not appear in ω, then ω can be any nonincreasing word of length
n over the alphabet [0, k − 1]. By Remark 44, there are

(
k+n−1
n

)
such words.

• Otherwise, let p = firstmax(ω) be the position of the first letter k in ω.

– If p = 1, then ω1 = k and (ωi)i∈[2,n] can be any word of Bn−1,k.
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– If p > 2, let α = (ωi)i∈[1,p−1] and γ = (ωi)i∈[p+1,n]. In particular, α is a
nonincreasing word of length p − 1 over the alphabet [0, k − 1]. By Remark
44, there are

(
k+p−2
p−1

)
possible words α. Note that any letter v ∈ Vals(γ) such

that v 6= k must satisfy both v 6min(α) (by the nonincreasing property) and
v >max(α) (to avoid 120). We distinguish two cases:

∗ If α is constant, then α = (v)p−1 for some v ∈ [0, k−1], and γ ∈ {v, k}n−p.
In that case, there are k possible choices for α, and for each α there are
2n−p possible choices for γ.

∗ Otherwise, there are
(
k+p−2
p−1

)
− k remaining choices for α. Since α is not

constant, min(α) < max(α), hence no letter in [0, k − 1] may appear in
γ, so γ = (k)n−p.

We obtain the following equation for all n, k > 1:

bn,k =

(
k + n− 1

n

)
+ bn−1,k +

n∑
p=2

(
k · 2n−p +

(
k + p− 2

p− 1

)
− k
)

=

(
k + n− 1

n

)
+ bn−1,k + k(2n−1 − 1) +

(
k + n− 1

n− 1

)
− 1− k(n− 1)

= bn−1,k +

(
k + n

n

)
+ k(2n−1 − n)− 1.

We conclude the proof with a telescoping sum. For all n, k > 1,

bn,k = b0,k +
n∑
i=1

(bi,k − bi−1,k)

= 1 +
n∑
i=1

((
k + i

i

)
+ k(2i−1 − i)− 1

)
=

(
k + n+ 1

n

)
+ k

(
2n − 1− n(n+ 1)

2

)
− n.

4.6 The pair {110, 120}

Let An,m = {σ ∈ In(110, 120) : m = max(σ)} be the set of {110, 120}-avoiding
inversion sequences of size n and maximum m. Let Bn,k =

∐
`∈[0,n]W`,k(110, 120) be the

set of {110, 120}-avoiding words of length at most n over the alphabet [0, k − 1]. Let
an,m = |An,m|, and bn,k = |Bn,k|.

Theorem 46. For all 0 < m < n,

an,m =
n∑

p=m+1

m−1∑
j=0

ap−1,j · bn−p,m−j.
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Proof. Let σ ∈ An,m, p = firstmax(σ), α = (σi)i∈[1,p−1], γ = (σi)i∈[p+1,n], j = max(α).
In particular, α ∈ Ap−1,j. By Proposition 34, γ ∈ [j,m]n−p. Since σ avoids 110, if γq = m
for some q ∈ [1, n − p] then γi = m for all i ∈ [q, n − p]. In other words, all occurrences
of m in γ (if any) must appear in a single factor at the end of γ. Let k ∈ [0, n − p] be
the number of occurrences of m in γ, and γ′ = (γi)i∈[1,n−p−k] be the word obtained by
removing all letters m from γ. By subtracting j from all letters in γ′, we obtain a word
in the set Bn−p,m−j. We easily observe that this construction is a bijection.

Let Cn,k = Wn,k(110, 120) be the set of {110, 120}-avoiding words of length n which
contain all letters of the alphabet [0, k − 1]. Let cn,k = |Cn,k|. By definition of Bn,k and
Proposition 1, for all n, k > 0,

bn,k =
n∑
`=0

min(`,k)∑
d=0

(
k

d

)
c`,d.

Lemma 47. For all 1 6 k 6 n,

cn,k =
1

k

(
n− 1

k − 1

)(
n+ k

k − 1

)
.

Proof. For all 0 6 k 6 n and ω ∈ Cn,k, let dec(ω) be the size of the longest strictly
decreasing factor at the beginning of ω. In particular, if n > 0 then ωdec(ω) is the
first letter 0 in ω (otherwise the first 0 would appear after a weak increase, creating
an occurrence of 110 or 120). Also note that dec(ω) 6 k since all letters of a strictly
decreasing factor are distinct. Let Cn,k,s = {ω ∈ Cn,k : s = dec(ω)}, and cn,k,s = |Cn,k,s|.

We consider the combinatorial generating tree for
∐

n>k>0 Cn,k obtained by inserting
letters in decreasing order of value, and inserting repeats of a letter from right to left.
This amounts to inserting the letter 0 before the first 0 in a word ω ∈ Cn,k, or inserting
the letter 0 in ω+1. This indeed defines a generating tree since any nonempty word ω has
a unique parent of size |ω| − 1, obtained by removing the first 0 from ω, and subtracting
1 from every letter if the resulting word does not contain the letter 0.

For any word ω ∈ Cn,k, the positions where the letter 0 may be inserted before the
first 0 in ω are [1,dec(ω)], and this clearly cannot create an occurrence of 110 or 120.
The positions where the letter 0 may be inserted in ω+ 1 without creating an occurrence
of 110 or 120 are [1,dec(ω) + 1]. This implies that each word of Cn,k,s has one child in
Cn+1,k,i for all i ∈ [1, s], and one child in Cn+1,k+1,i for all i ∈ [1, s + 1]. We obtain the
following equation for all 2 6 i 6 k 6 n:

cn,k,i =
n−1∑
s=i

cn−1,k,s +
n−1∑
s=i−1

cn−1,k−1,s.

In particular, cn,k,i− cn,k,i+1 = cn−1,k,i+ cn−1,k−1,i−1, so a simpler recurrence relation holds:
for all 2 6 s 6 k 6 n,

cn,k,s = cn,k,s+1 + cn−1,k,s + cn−1,k−1,s−1.
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From this equation, we can easily prove by induction that for all 1 6 s 6 k 6 n,

cn,k,s =
s(n+ k − s− 1)!

(n− k)!k!(k − s)!
.

Finally, the expression of cn,k is obtained by summing over s. For all 1 6 k 6 n,

cn,k =
k∑
s=1

cn,k,s

=
k∑
s=1

s(n+ k − s− 1)!

(n− k)!k!(k − s)!

=
1

k

(
n− 1

k − 1

) k∑
s=1

s

(
n+ k − s− 1

n− 1

)

=
1

k

(
n− 1

k − 1

) k∑
i=1

k∑
s=i

(
n+ k − s− 1

n− 1

)

=
1

k

(
n− 1

k − 1

) k∑
i=1

(
n+ k − i

n

)
=

1

k

(
n− 1

k − 1

)(
n+ k

k − 1

)
.

4.7 The pair {010, 120}

Let An,m = {σ ∈ In(010, 120) : m = max(σ)} be the set of {010, 120}-avoiding
inversion sequences of size n and maximum m. Let Bn,k = Wn,k(010, 120) be the set of
{010, 120}-avoiding words of length n over the alphabet [0, k− 1]. Let an,m = |An,m|, and
bn,k = |Bn,k|.

Theorem 48. For all 0 < m < n,

an,m =
n∑

p=m+1

m−1∑
j=0

ap−1,j · bn−p,m−j.

Proof. It follows from Remarks 32 and 33 and Propositions 34 and 35 that for 0 < m < n,
An,m is the set of inversion sequences α ·m · γ such that:

• α ∈ ap−1,j for some p ∈ [m+ 1, n] and j ∈ [0,m− 1],

• γ ∈ [0,m]n−p avoids 010 and 120 and satisfies min(γ) > max(α) = j.

In other words, γ is a {010, 120}-avoiding word of length n−p over the alphabet [j+1,m],
and the set of such words is clearly in bijection with Bn−p,m−j.
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Let Cn,k = Wn,k(010, 120) be the set of {010, 120}-avoiding words of length n which
contain all letters of the alphabet [0, k − 1]. Let cn,k = |Cn,k|. By Proposition 1, for all
n, k > 0,

bn,k =

min(n,k)∑
d=0

(
k

d

)
cn,d.

Lemma 49. For all n, k > 1,

cn,k =
1

k

(
n− 1

k − 1

)(
n+ k

k − 1

)
.

Proof. We consider the combinatorial generating tree for
∐

n>k>0 Cn,k obtained by insert-
ing letters in increasing order of value, and inserting repeats of a letter from right to left.
In other words, at each step of the construction, we either insert a letter k in a word
ω ∈ Cn,k, or insert a letter k − 1 before the first k − 1 in ω.

For all 1 6 k 6 n and ω ∈ Cn,k, let

Sites(ω) = {q ∈ [1,firstmax(ω)] : max((ωi)i∈[1,q−1]) < min((ωi)i∈[q,n])}

be the set of positions where the letter k − 1 may be inserted before the first letter k − 1
in ω without creating an occurrence of 010 or 120. The set of positions where the letter k
may be inserted in ω without creating an occurrence of 010 or 120 is Sites(ω)t {n+ 1}.
For all 1 6 s 6 k 6 n, let Cn,k,s = {ω ∈ Cn,k : s = |Sites(ω)|}.

Let 1 6 s 6 k 6 n and ω ∈ Cn,k,s. Let q1 < q2 < · · · < qs be the elements of Sites(ω).
Then for all i ∈ [1, s], inserting the letter k − 1 at position qi yields a word of Cn+1,k,i,
and inserting the letter k at position qi yields a word of Cn+1,k+1,i. Additionally, inserting
the letter k at position n+ 1 yields a word in Cn+1,k+1,s+1. Hence the following equation
holds: for all 2 6 i 6 k 6 n,

cn,k,i =
n−1∑
s=i

cn−1,k,s +
n−1∑
s=i−1

cn−1,k−1,s.

The same recurrence relation was found in the proof of Lemma 47, with the same initial
condition c1,1,1 = 1. This exhibits a bijection between the sets of words Wn,k(010, 120)
and Wn,k(110, 120) (which trivially extends to a bijection between Wn,k(010, 120) and
Wn,k(110, 120)), and concludes our proof.

4.8 The pair {101, 120}

Let An,m = {σ ∈ In(101, 120) : m = max(σ)} be the set of {101, 120}-avoiding inversion
sequences of size n and maximumm. Since the sequences in An,m avoid 101, all occurrences
of their maximum m are consecutive. Let A′n,m = {σ ∈ An,m : σn = m} be the subset of
An,m of sequences whose last value is their maximum. Let Bn,k =

∐
`∈[0,n]W`,k(101, 120)

be the set of {101, 120}-avoiding words of length at most n over the alphabet [0, k − 1].
Let an,m = |An,m|, a′n,m = |A′n,m|, and bn,k = |Bn,k|.
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Theorem 50. For all 0 < m < n,

an,m =
n∑

p=m+1

m−1∑
j=0

a′p−1,j · bn−p,m−j + (ap−1,j − a′p−1,j) · bn−p,m−j−1,

a′n,m =
n∑

p=m+1

n−1∑
j=0

ap−1,j.

Proof. Let σ ∈ An,m, p = firstmax(σ), α = (σi)i∈[1,p−1], γ = (σi)i∈[p+1,n], j = max(α).
In particular, α ∈ Ap−1,j and γ ∈ [j,m]n−p. Let ` = lastmax(σ) ∈ [p, n] be the position
of the last value m in σ. Since σ avoids 101, all occurrences of the maximum m are
consecutive, hence their positions are [p, `]. Let γ′ = (σi)i∈[`+1,n] be the word obtained by
removing all letters m from γ.

• If α ∈ A′p−1,j, then γ′ can be any {101, 120}-avoiding word of length n−` ∈ [0, n−p]
over the alphabet [j,m− 1]. Subtracting j from all letters in γ′ yields any word in
the set Bn−p,m−j.

• If α ∈ Ap−1,j\A′p−1,j, then σp−1 < j. The subsequence (j, σp−1) is an occurrence of
the pattern 10, which implies that the value j does not appear in γ′ (otherwise σ
would contain 101). In that case, γ′ is a word over the alphabet [j + 1,m− 1], and
the number of possible words γ′ is bn−p,m−j−1.

Finally, if σ ∈ A′n,m then γ = (m)n−p and α can be any sequence in Ap−1,j. This yields
the second equation.

It remains to count the words of Bn,k. Let F (x, y) =
∑

`,k>0 |W`,k(101, 120)|x`yk
be the ordinary generating function of {101, 120}-avoiding words. The enumeration of
{101, 120}-avoiding words was solved in [18], with the following expression:

F (x, y) =
(1− x)2 − (1− 2x)y −

√
(1− x)4 − 2(1− x)2y + (1− 4x2 + 4x3)y2

2xy(1− y)
.

The generating function of Bn,k is

B(x, y) =
∑
n,k>0

bn,kx
nyk

=
∑
n,k>0

∑
`∈[0,n]

|W`,k(101, 120)|xnyk

=
∑
`,k>0

|W`,k(101, 120)|
∑
n>`

xnyk

=
∑
`,k>0

|W`,k(101, 120)| x
`yk

1− x

=
F (x, y)

1− x
.

the electronic journal of combinatorics 32(4) (2025), #P4.46 41



4.9 The pair {000, 120}

Given a sequence σ ∈ Nn and an integer v ∈ N, let occ(σ, v) = |{i ∈ [1, n] : σi = v}| be
the number of occurrences of the value v in σ.

Let An,m,r = {σ ∈ In(000, 120) : m = max(σ), r = occ(σ,m)} be the set of
{000, 120}-avoiding inversion sequences of size n, maximum m, and r occurrences of m.
Let Bn,k = Wn,k(000, 120) be the set of {000, 120}-avoiding words of length n over the
alphabet [0, k − 1], and Cn,k = {ω ∈ Bn,k : occ(ω, k − 1) = 1} be the subset of
words of Bn,k in which the largest letter k − 1 appears exactly once. We also consider
the subsets of Bn,k and Cn,k of words in which the letter 0 appears less than twice: let
Bn,k,��00 = {ω ∈ Bn,k : occ(ω, 0) < 2} and Cn,k,��00 = {ω ∈ Cn,k : occ(ω, 0) < 2}. Let
an,m,r = |An,m,r|, bn,k = |Bn,k|, cn,k = |Cn,k|, bn,k,��00 = |Bn,k,��00|, and cn,k,��00 = |Cn,k,��00|.

Theorem 51. For all 0 < m < n,

an,m,1 =
n∑

p=m+1

m−1∑
j=0

ap−1,j,1 · bn−p,m−j,��00 + ap−1,j,2 · bn−p,m−j−1,

an,m,2 =
n∑

p=m+1

m−1∑
j=0

ap−1,j,1 · cn−p,m−j+1,��00 + ap−1,j,2 · cn−p,m−j.

Proof. Let σ ∈ An,m, p = firstmax(σ), α = (σi)i∈[1,p−1], γ = (σi)i∈[p+1,n], j = max(α).
In particular, α ∈ Ap−1,j and γ ∈ [j,m]n−p by Proposition 34.

• If σ ∈ An,m,1, then the letter m cannot appear in γ, so γ ∈ [j,m− 1]n−p.

– If α ∈ Ap−1,j,1 then the letter j appears at most once in γ (to avoid the pattern
000). By subtracting j from every letter in γ, we obtain a word in the set
Bn−p,m−j,��00.

– If α ∈ Ap−1,j,2 then the letter j cannot appear in γ. By subtracting j + 1 from
every letter in γ, we obtain a word in the set Bn−p,m−j−1.

• If σ ∈ An,m,2, then the letter m appears exactly once in γ.

– If α ∈ Ap−1,j,1 then subtracting j from every letter in γ yields a word in the
set Cn−p,m−j+1,��00.

– If α ∈ Ap−1,j,2 then subtracting j + 1 from every letter in γ yields a word in
the set Cn−p,m−j.

We easily observe that this construction is a bijection.

For a, b ∈ {1, 2}, let Dn,k,a,b = {ω ∈ Wn,k(000, 120) : a = occ(ω, 0), b = occ(ω, k − 1)}
be the set of {000, 120}-avoiding words of length n which contain every letter of the
alphabet [0, k− 1] and in which the letter 0 appears a times and the letter k− 1 appears
b times. Let dn,k,a,b = |Dn,k,a,b|.
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Proposition 52. For all n, k > 1,

bn,k =

min(n,k)∑
d=1

(
k

d

) ∑
a,b∈{1,2}

dn,d,a,b,

cn,k =

min(n,k)∑
d=1

(
k − 1

d− 1

) ∑
a∈{1,2}

dn,d,a,1,

bn,k,��00 =

min(n,k)∑
d=1

(k − 1

d− 1

) ∑
b∈{1,2}

dn,d,1,b +

(
k − 1

d

) ∑
a,b∈{1,2}

dn,d,a,b

 ,

cn,k,��00 =

min(n,k)∑
d=1

(k − 2

d− 2

)
dn,d,1,1 +

(
k − 2

d− 1

) ∑
a∈{1,2}

dn,d,a,1

 .

Proof. Let Fd,k be the set of increasing functions from [0, d − 1] to [0, k − 1]. The four
identities above can be proven using the same construction as in the proof of Proposition
1, observing that

1.
(
k
d

)
= |Fd,k|,

2.
(
k−1
d−1

)
= |{ϕ ∈ Fd,k : ϕ(d− 1) = k − 1}|,

3.
(
k−1
d−1

)
= |{ϕ ∈ Fd,k : ϕ(0) = 0}|, and

(
k−1
d

)
= |{ϕ ∈ Fd,k : ϕ(0) > 0}|,

4.
(
k−2
d−2

)
= |{ϕ ∈ Fd,k : ϕ(0) = 0, ϕ(d − 1) = k − 1}|, and

(
k−2
d−1

)
= |{ϕ ∈ Fd,k :

ϕ(0) > 0, ϕ(d− 1) = k − 1}|.

Let En,k = {λ ∈ {1, 2}k : n =
∑k

i=1 λi} be the set of compositions of n into k parts
of size 1 or 2. Equivalently, En,k is the set of words of length k over the alphabet {1, 2}
which contain exactly 2k−n occurrences of the letter 1 and n−k occurrences of the letter
2. Observe that En,k is empty if n < k or n > 2k.

Remark 53. In the notation of Section 4.2,

Dn,k,a,b =
∐

λ∈En,k

(λ1,λk)=(a,b)

Wλ(120).

Let Fn,k = W(2)n−k·(1)2k−n(120) be the set of 120-avoiding words of length n over the
alphabet [0, k− 1], which contain exactly 2 occurrences of each letter in [0, n− k− 1] and
1 occurrence of each letter in [n− k, k − 1], and let fn,k = |Fn,k|.

Proposition 54. For all k > 2, n ∈ [k, 2k] and a, b ∈ {1, 2},

dn,k,a,b =

(
k − 2

n− k + 2− a− b

)
fn,k
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Proof. For all k > 2, n ∈ [k, 2k] and a, b ∈ {1, 2}, the set of sequences λ ∈ En,k such that
λ1 = a and λk = b is the set of sequences of the form a · λ′ · b where λ′ is a word of length
k− 2 over the alphabet {1, 2} which contains exactly n− k+ 2− a− b occurrences of the
letter 2. Hence, there are

(
k−2

n−k+2−a−b

)
such sequences.

By Theorem 36, the number of words |Wλ(120)| is independent of the choice of
λ ∈ En,k, and counted by fn,k. Remark 53 concludes the proof.

Lemma 55. The following recurrence relation holds for all k > 1, n ∈ [k + 1, 2k]:

fn,k = fn,k+1 − fn−1,k,

with initial conditions fn,n = 1
n+1

(
2n
n

)
for all n > 0.

Proof. Let k > 2, n ∈ [k, 2k − 2], and ω ∈ Fn,k. In particular, ω contains a single letter
k − 1 and a single letter k − 2.

• If the letter k − 2 is on the left of k − 1, then k − 1 is the last letter of ω (because
ω avoids the pattern 120). In that case, removing the letter k − 1 yields a word in
Fn−1,k−1, and this is a bijection.

• Otherwise, the letter k− 2 is on the right of k− 1. In that case, replacing the letter
k − 1 by k − 2 yields a word in W(2)n−k·(1)2k−n−2·(2)(120), and this is a bijection. By
Theorem 36, this set is equinumerous with W(2)n−k+1·(1)2k−n−2(120) = Fn,k−1.

This shows that for all k > 2 and n ∈ [k, 2k−2], fn,k = fn,k−1+fn−1,k−1, which is equivalent
to the recurrence relation of the lemma.

For all n > 0, Fn,n is trivially in bijection with the set of 120-avoiding permutations
of size n, which is known to be counted by the Catalan number Cn = 1

n+1

(
2n
n

)
.

The numbers fn,k can be found in entry A059346 of the OEIS.

4.10 The pattern 010

We denote by
[
n
k

]
the unsigned Stirling numbers of the first kind, which count the number

of permutations of size n with k cycles (among other combinatorial interpretations, cf.
entry A132393 of the OEIS).

Let An,m,d = {σ ∈ In(010) : m = max(σ), d = dist(σ)} be the set of 010-avoiding
inversion sequences of size n, maximum m, and having exactly d distinct values. Let also
Bn,k = {ω ∈ Wn,k(010) : ω1 = k − 1} be the set of 010-avoiding words of length n
which contain all letters of the alphabet [0, k− 1] and begin with their largest letter. Let
an,m,d = |An,m,d| and bn,k = |Bn,k|.

Theorem 56. For all 2 6 d 6 m+ 1 6 n,

an,m,d =
d−1∑
i=0

(
m− i

d− i− 1

) n∑
p=m+1

bn−p+1,d−i

m−1∑
j=0

ap−1,j,i.
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Proof. Let σ ∈ An,m,d, p = firstmax(σ), α = (σi)i∈[1,p−1], and β = (σi)i∈[p,n].
Since σ avoids the pattern 010, α and β avoid 010, and Vals(α) ∩ Vals(β) = ∅ by

Proposition 35. In particular, α ∈ Ap−1,j,i for some j < m and i < d, and β is a 010-
avoiding word of length n−p+1, which contains exactly d− i distinct values chosen from
the remaining m + 1 − i (that is, all values in [0,m] except for the i values in α), and
such that β1 = m. Since m is always in β, there are

(
m−i
d−i−1

)
possible choices for the set

Vals(β). Once the values of β are chosen, there are bn−p+1,d−i ways to arrange them into
a word avoiding 010 and beginning with its largest letter.

Lemma 57. For all n, k > 1,

bn,k =

[
n

n+ 1− k

]
.

Proof. Let n > k > 2, and ω ∈ Bn,k. Since ω avoids the pattern 010, all letters 0 in ω
are consecutive.

• If ω contains several letters 0, then removing one of them yields a word ω′ ∈ Bn−1,k,
and this is clearly a bijection.

• If ω contains a single letter 0, then removing it and subtracting 1 from all other
letters yields a word ω′ ∈ Bn−1,k−1. Since ω1 = k − 1 > 0, there are n− 1 possible
positions for the letter 0 in ω, so exactly n− 1 words ω ∈ Bn,k yield the same ω′.

Hence the following recurrence relation holds for all n > k > 2:

bn,k = bn−1,k + (n− 1)bn−1,k−1.

This recurrence relation is also satisfied by the Stirling numbers of the first kind
[

n
n+1−k

]
,

and we can easily verify that initial conditions also match.

4.11 The pair of patterns {000, 010}

Let An,m,d = {σ ∈ In(000, 010) : m = max(σ), d = dist(σ)} be the set of {000, 010}-
avoiding inversion sequences of size n, maximum m, and having d distinct values. Let
Bn,k = {ω ∈ Wn,k(000, 010) : ω1 = k − 1} be the set of {000, 010}-avoiding words of
length n which contain all letters of the alphabet [0, k − 1] and begin with their largest
letter. Let an,m,d = |An,m,d|, and bn,k = |Bn,k|. Since the sequences of An,m,d and the
words of Bn,k avoid the pattern 000, we have an,m,d = 0 if n > 2d, and bn,k = 0 if n > 2k.

Theorem 58. For all 2 6 d 6 m+ 1 6 n,

an,m,d =
d−1∑
i=0

(
m− i

d− i− 1

) n∑
p=m+1

bn−p+1,d−i

m−1∑
j=0

ap−1,j,i.

Proof. Identical to the proof of Theorem 56: the pattern 000 could not spread over α and
β, since the avoidance of 010 already implies that α and β do not share any values.
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Lemma 59. For all n, k > 2,

bn,k = (n− 1)bn−1,k−1 + (n− 2)bn−2,k−1.

Proof. Let n > k > 2, and ω ∈ Bn,k. Since ω avoids 010, all letters 0 in ω are consecutive.
Since ω avoids 000, ω has at most two letters 0.

• If ω contains a single letter 0, then removing it and subtracting 1 from all other
letters yields a word ω′ ∈ Bn−1,k−1. Since ω1 = k − 1 > 0, there are n− 1 possible
positions for the letter 0 in ω, so exactly n− 1 words ω ∈ Bn,k yield the same ω′.

• If ω contains two letters 0, then removing them and subtracting 1 from all other
letters yields a word ω′ ∈ Bn−2,k−1. There are n − 2 possible positions for the two
consecutive letters 0 in ω, so exactly n− 2 words ω ∈ Bn,k yield the same ω′.

4.12 Forbidden values

In the remainder of Section 4, if α is a sequence avoiding a set of patterns P , we say that
a value v ∈ {0, . . . ,max(α)} is forbidden by α and P if α ·mv contains a pattern in P
when m > max(α). We denote by Forb(α, P ) the set of values forbidden by α and P ,
or simply Forb(α) when there is no ambiguity.

In our decomposition around the first maximum of an inversion sequence σ = α ·m ·γ,
if γ contains a value in Forb(α, τ), then σ contains τ . This means that in order for σ
to avoid τ , γ must be a word over the alphabet [0,m]\Forb(α). This is in fact a weaker
version of condition 3 from Remark 33, since it only ensures that σ does not contain any
occurrence of τ whose last entry only is in γ.

Note that Propositions 34, 35 can be expressed in terms of forbidden values:

Forb(α, 120) = [0,max(α)− 1], Forb(α, 010) = Vals(α),

and these identities hold for any integer sequence α (not only for inversion sequences). In
particular, if α is an inversion sequence such that max(α) > 0, then |Forb(α, 010)| > 2.

Earlier, we refined the enumeration of pattern-avoiding inversion sequences σ according
to one or two parameters (in addition to their size). The first one was the maximumm of σ,
and is required for our decomposition around the first maximum (so that the maximum of
the left part α is less thanm). For every pair of pattern which contained 120, the number of
forbidden values was redundant with the maximum of σ, and therefore unnecessary. In the
previous two cases (the patterns 010 and {000, 010}), the second parameter counting the
number of distinct values d of σ was in fact the number of forbidden values |Forb(σ, 010)|.

For each pair of patterns P which follows, there is no simple equivalent description
of |Forb(σ, P )|, and introducing this parameter allows us to solve the enumeration of
P -avoiding inversion sequences.
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4.13 The pairs {010, 201} and {010, 210}

A bijection between I(010, 201) and I(010, 210) was established in [35]. In this section we
work with the pair of patterns {010, 210}, although our construction can also be applied
to inversion sequences avoiding the pair {010, 201}, resulting in the same equations.

Remark 60. Let σ be a {010, 210}-avoiding integer sequence. Let q be the largest value
of σ such that a larger value appears to its left, or q = 0 if there is no such value (i.e.
if σ is nondecreasing). Then we have Forb(σ, 210) = [0, q − 1]. Recalling also that
Forb(σ, 010) = Vals(σ), we find Forb(σ, {010, 210}) = [0, q−1]t{i ∈ Vals(σ) : i > q}.

Let An,m,f = {σ ∈ In(010, 210) : m = max(σ), f = |Forb(σ)|} be the set of
{010, 210}-avoiding inversion sequences of size n, maximum m, and having f forbidden
values. Let Bn,k = {ω ∈ Wn,k+1(010) : ωi < ωj < k =⇒ i < j and k − 1 ∈ Vals(ω)}
if k > 0, or Bn,k = {(0)n} if k = 0, be the set of 010-avoiding words ω of length n over
the alphabet [0, k] such that the subword ω′ obtained by removing all letters k from ω is
nondecreasing, and k − 1 is the maximum of ω′. Let an,m,f = |An,m,f |, and bn,k = |Bn,k|.

Theorem 61. For all 2 6 f 6 m+ 1 6 n,

an,m,f =
n∑

p=m+1

f−1∑
i=0

bn−p,f−i−1

m−1∑
j=0

ap−1,j,i.

Proof. Let σ ∈ An,m,f , p = firstmax(σ), α = (σi)i∈[1,p−1], and γ = (σi)i∈[p+1,n]. Let γ′

be the subsequence of γ obtained by removing all values m from γ. Since σ avoids the
pattern 010, α and γ avoid 010, and Vals(α) ∩Vals(γ) = ∅ by Proposition 35. Since σ
avoids the pattern 210, α avoids 210, and γ′ is nondecreasing.

The subsequence α is in Ap−1,j,i for some j < m and i 6 f . Notice that we actually
have i < f since m is a forbidden value for σ (because of the avoidance of 010), but not
for α (since m > max(α)). The subsequence γ is a 010-avoiding word of length n−p over
the alphabet Σ = [0,m]\Forb(α) of size m+ 1− i, and such that γ′ is nondecreasing.

The maximum of γ′ is the largest letter of m ·γ such that a larger letter appears to its
left, and m is the only value in m · γ which is greater than max(γ′). Hence, by Remark
60, Forb(σ) = Forb(α) t {` ∈ Σ : ` 6 max(γ′)} t {m} (this still holds if γ′ is empty,
i.e. max(γ′) = −1). Since |{` ∈ Σ : ` 6 max(γ′)}| = |Forb(σ)| − |Forb(α)| − |{m}| =
f − i− 1, replacing the letters {` ∈ Σ : ` 6 max(γ′)} by [0, f − i− 2] and the letter m
by f − i− 1 yields a bijection between the words γ and the words of Bn−p,f−i−1.

Let Cn,k be the set of 010-avoiding words ω of length n over the alphabet [0, k−1]t{∞}
(where ∞ is the largest letter) such that the subword ω′ defined by removing all letters
∞ from ω is nondecreasing, and k − 1 is the maximum of ω′. Clearly, taking any word
ω ∈ Cn,k and replacing each letter ∞ in ω by the letter k yields a word in Bn,k, and this
is a bijection. It is more convenient for the proof of the following lemma to count the
words of Cn,k rather than those of Bn,k.

Let C
(1)
n,k = {ω ∈ Cn,k | ωn = ∞}, and C

(2)
n,k = {ω ∈ Cn,k | ωn 6= ∞}, so that

Cn,k = C
(1)
n,k t C

(2)
n,k. Let c

(1)
n,k = |C(1)

n,k|, and c
(2)
n,k = |C(2)

n,k|. In particular, bn,k = c
(1)
n,k + c

(2)
n,k.
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Lemma 62. For all n > 2, k > 1,

bn,k = bn,k−1 + 2bn−1,k − bn−2,k − bn−1,k−1 + bn−2,k−1.

Proof. Let n > 1, k > 0, and ω ∈ Cn,k.

• If ω ∈ C
(1)
n,k, then ωn =∞. Removing ωn yields a word in Cn−1,k.

• If ω ∈ C
(2)
n,k, then by the nondecreasing property, ωn = k − 1.

– If ωn−1 = k − 1, then removing ωn yields a word in C
(2)
n−1,k.

– If ωn−1 = ∞, then the avoidance of the pattern 010 ensures ω cannot contain

another letter k − 1, therefore removing ωn yields a word in C
(1)
n−1,i for some

i < k.

– Otherwise, ωn−1 = i for some i < k, and removing ωn yields a word in C
(2)
n−1,i.

The maps described above are all bijections, hence for all n > 1, k > 0,

c
(1)
n,k = bn−1,k,

and for all n > 2, k > 0,

c
(2)
n,k = c

(2)
n−1,k +

k−1∑
i=0

c
(1)
n−1,i + c

(2)
n−1,i

= bn−1,k − c
(1)
n−1,k +

k−1∑
i=0

bn−1,i

= bn−1,k − bn−2,k +
k−1∑
i=0

bn−1,i.

By summing c
(1)
n,k and c

(2)
n,k, we have for all n > 2, k > 0,

bn,k = 2bn−1,k − bn−2,k +
k−1∑
i=0

bn−1,i.

We conclude by telescoping the sum over i. For all n > 2, k > 1,

bn,k − bn,k−1 = 2bn−1,k − bn−2,k +
k−1∑
i=0

bn−1,i − (2bn−1,k−1 − bn−2,k−1 +
k−2∑
i=0

bn−1,i)

= 2bn−1,k − bn−2,k − bn−1,k−1 + bn−2,k−1.
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4.14 The pair {010, 110}

Remark 63. Let σ be a {010, 110}-avoiding integer sequence. Let q be the largest repeated
value in σ, or q = 0 if there is no such value. Then Forb(σ, 110) = [0, q−1]. Recalling that
Forb(σ, 010) = Vals(σ), we find Forb(σ, {010, 110}) = [0, q−1]t{i ∈ Vals(σ) : i > q}.

Let An,m,f = {σ ∈ In(010, 110) : m = max(σ), f = |Forb(σ)|} be the set of
{010, 110}-avoiding inversion sequences of size n, maximum m, and having f forbidden
values. Let Bn,k,f = {ω ∈ Wn,k(010, 110) : f = |Forb(ω)|} be the set of {010, 110}-
avoiding words of length n over the alphabet [0, k − 1] having f forbidden values. Let
Cn,k =

∐
`∈[0,n]W`,k(010, 110) be the set of {010, 110}-avoiding words of length at most n

over the alphabet [0, k − 1]. Let an,m,f = |An,m,f |, bn,k,f = |Bn,k,f |, and cn,k = |Cn,k|.

Theorem 64. For all 2 6 f 6 m+ 1 6 n,

an,m,f =
n∑

p=m+1

f−1∑
i=0

m−1∑
j=0

ap−1,j,i · (bn−p,m−i,f−i−1 + δf,m+1 · cn−p−1,m−i).

Proof. Let σ ∈ An,m,f , p = firstmax(σ), α = (σi)i∈[1,p−1], and γ = (σi)i∈[p+1,n]. Since σ
avoids the pattern 010, α and γ avoid 010, and Vals(α)∩Vals(γ) = ∅ by Proposition 35.
Since σ avoids the pattern 110, α and γ avoid 110, and all letters of γ are greater than
any repeated letter of α.

The subsequence α is in Ap−1,j,i for some j < m and i < f (for the same reason as
in the proof of Theorem 61). The subsequence γ is a {010, 110}-avoiding word of length
n − p over the alphabet Σ = [0,m]\Forb(α) of size m + 1 − i. Additionally, if a letter
m appears in γ, then all letters to its right are also m; otherwise σ would contain the
pattern 110. We distinguish two cases for γ.

• If γ does not contain the letter m, then γ is a {010, 110}-avoiding word of length
n−p over an alphabet of size m−i. Let q be the largest repeated letter in γ, or q = 0
if there is no such letter. From Remark 63, we observe that the forbidden values of
σ are Forb(σ) = Forb(α) t {` ∈ Σ : ` < q} t {` ∈ Vals(γ) : ` > q} t {m}. In
particular, |{` ∈ Σ : ` < q} t {` ∈ Vals(γ) : ` > q}| = f − i − 1. Replacing the
letters of Σ by [0,m − i] (while preserving their order) yields a bijection between
the words γ and the words of Bn−p,m−i,f−i−1.

• If γ contains the letter m, then γ can be written as γ′ · (m)k, where γ′ does not
contain the letter m, and k > 0. The number of such words γ′ is cn−p−1,m−i. In this
case, m is the largest repeated letter in σ as well as the maximum of σ. This occurs
if and only if f = m+ 1 (i.e. all values [0,m] are forbidden by σ).

By definition,

Cn,k =
n∐
`=0

k∐
f=0

B`,k,f , hence cn,k =
n∑
`=0

k∑
f=0

b`,k,f .
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We count the words of Bn,k,f in Lemma 66. In order to do so, we first construct the words
of Wn,k(010, 110) by inserting their letters in increasing order from 0 to k − 1 (all such
letters necessarily appearing), and inserting repeats of a letter from left to right. For all
ω ∈ Wn,k(010, 110), let Sites(ω) = {i ∈ [1, n+1] : Vals((ωj)j<i)∩Vals((ωj)j>i) = ∅} be
the set of positions (called active sites) where the letter k may be inserted in ω without
creating an occurrence of the pattern 010. In particular, 1 and n + 1 are always active
sites of ω. Note also that inserting the letter k in ω cannot create an occurrence of the
pattern 110: the letter k cannot take the role of the letter 0 in the pattern 110 since it
is greater than all letters of ω, and it cannot take the role of the letter 1 since it only
appears once.

Let Dn,k,s = {ω ∈ Wn,k(010, 110) : s = |Sites(ω)|} be the set of {010, 110}-avoiding
words of length n containing all letters of the alphabet [0, k − 1] and having s active

sites. Let D
(1)
n,k,s be the subset of Dn,k,s of words containing exactly one letter k − 1, and

D
(2)
n,k,s be the subset of remaining words (i.e. words containing at least two letters k − 1

if k > 1, or the empty word if (n, k, s) = (0, 0, 1)), so that Dn,k,s = D
(1)
n,k,s t D

(2)
n,k,s. Let

dn,k,s = |Dn,k,s|, d(1)n,k,s = |D(1)
n,k,s|, and d

(2)
n,k,s = |D(2)

n,k,s|.

Lemma 65. For all n, k, s > 1,

d
(1)
n,k,s = (s− 1)dn−1,k−1,s−1.

For all n, s > 2, k > 1,

d
(2)
n,k,s = d

(2)
n,k,s+1 + d

(2)
n−1,k,s − d

(2)
n−1,k,s+1 + dn−2,k−1,s−1.

Proof. Let n, k, s > 0, ω ∈ Dn,k,s, and let (p1, . . . , ps) be the values of Sites(ω) in in-
creasing order (in particular, p1 = 1 and ps = n+ 1). We consider three different ways in
which the word ω can “grow”.

1. Inserting a letter k. Let i ∈ [1, s], and let ω′ be the word obtained by inserting the
letter k at position pi in ω. Then Sites(ω′) = {pj : j ∈ [1, i]}t{pj +1 : j ∈ [i, s]},
so ω′ ∈ D

(1)
n+1,k+1,s+1.

2. Inserting two occurrences of the letter k. This is similar to the previous case, since
the rightmost letter k can only be inserted at the end of the word in order to avoid
the pattern 110. Let i ∈ [1, s], and let ω′ be the word obtained by inserting one
letter k at position pi in ω, and one letter k at the end of the resulting word (at

position n+ 2). Then Sites(ω′) = {pj : j ∈ [1, i]} t {n+ 3}, so ω′ ∈ D
(2)
n+2,k+1,i+1.

3. Inserting a repeat of letter k− 1, to the right of the rightmost letter k− 1, and only
if ω already contains at least two occurrences of the letter k − 1 (i.e. ω ∈ D

(2)
n,k,s

and k > 0). In that case, every letter k − 1 in ω except (possibly) the leftmost
k − 1 must be in a single factor at the end of ω, in order to avoid 110. Let ω′

be the word obtained by inserting the letter k − 1 at position n + 1 in ω. Then
Sites(ω′) =

(
Sites(ω)\{n+ 1}

)
t {n+ 2}, so ω′ ∈ D

(2)
n+1,k,s.
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It can be seen that any word in a set Dn,k,s for some n, k, s > 0 can be obtained in exactly
one way from the construction described above, starting from the empty word ε. In other
words, we described a combinatorial generating tree for the class

∐
n,k>0Wn,k(010, 110).

From item 1, we have for all n, k, s > 1,

d
(1)
n,k,s = (s− 1)dn−1,k−1,s−1.

From items 2 and 3, we have for all n, s > 2, k > 1,

d
(2)
n,k,s = d

(2)
n−1,k,s +

n−1∑
j=s−1

dn−2,k−1,j,

which may be rewritten

d
(2)
n,k,s − d

(2)
n,k,s+1 = d

(2)
n−1,k,s − d

(2)
n−1,k,s+1 + dn−2,k−1,s−1.

For any integer sequence σ, let rep(σ) = max(v ∈ Vals(σ) : ∃i 6= j, σi = σj = v) be
the largest repeated value in σ, with the convention rep(σ) = −1 if σ does not contain
any repeated value. Let top(σ) = |{i ∈ Vals(σ) : i > rep(σ)}| be the number of values
of σ which are greater than its largest repeated value (if no value is repeated, then top(σ)
is the number of distinct values of σ, or equivalently the size of σ).

We call unused letters of a word ω ∈ Wn,k the letters in the set [0, k − 1]\Vals(ω).
Note this definition relies not only on ω, but also on the alphabet considered (e.g. each
word of Wn,k is also in Wn,k+1, but has different unused letters).

Lemma 66. For all n, k, f > 0,

bn,k,f =

f∑
t=0

(
t+ k − f
k − f

) f−t∑
b=0

(
f − t− 1

b

) n−t+1∑
s=1

(s+ t− 1)!

(s− 1)!
d
(2)
n−t,f−b−t,s.

Proof. Let ω ∈ Bn,k,f . In particular, by Remark 63, f = rep(ω) + top(ω) + 1, and k− f
is the number of unused letters of ω greater than rep(ω). Let t = top(ω), d = dist(ω),
and b = f −d be the number of unused letters in ω less than rep(ω). To summarize, over
the alphabet [0, k − 1], ω has:

• t letters greater than rep(ω),

• k − f unused letters greater than rep(ω),

• b unused letters less than rep(ω),

• rep(ω)− b = f − t− 1− b letters less than rep(ω), if ω 6= ε.

Replacing the d letters of Vals(ω) by [0, d−1] while preserving their order (by shifting
the values so that there are no more unused letters) yields a word ω′ ∈ Wn,d. Further

removing all letters greater than rep(ω′) from ω′ yields a word ω′′ ∈ D
(2)
n−t,f−b−t,s for some

s ∈ [1, n− t+ 1].

For any n, k, f, t, b, s, and ω′′ ∈ D
(2)
n−t,f−b−t,s, there are

(
t+k−f
k−f

)(
f−t−1
b

)
(s+t−1)!
(s−1)! words

ω ∈ Bn,k,f whose image under the above construction is ω′′. Indeed, there are
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•
(
t+k−f
k−f

)
possible sets of unused letters greater than rep(ω),

•
(
f−t−1
b

)
possible sets of unused letters less than rep(ω) (this still holds if ω = ε),

• (s+t−1)!
(s−1)! possible placements for the t letters greater than rep(ω). This can be seen

by inserting each of those t letters in increasing order: inserting a letter greater than
the maximum in a word corresponds to item 1 in the proof of Lemma 65, so there
are s possible positions for the smallest inserted letter, s+ 1 for the next letter, and
so on.

5 Shifted inversion sequences

5.1 Method

For all n, s ∈ N, let Isn = {σ ∈ Nn : σi < i + s ∀i ∈ [1, n]} be the set of s-shifted
inversion sequences of size n. In particular, Isn ⊆ Is+1

n , and I0n = In. An s-shifted
inversion sequence of size n can be seen as an inversion sequence of size n+ s whose first
s entries were removed. More precisely, for all n, s > 0, In+s = {σ · τ : (σ, τ) ∈ Is×Isn}.
For any set of patterns P , we denote by Isn(P ) the set of P -avoiding s-shifted inversion
sequences of size n.

In this section, we study some patterns for which it is easier to split sequences around
their minimum. We use a decomposition of sequences around their first minimum, similar
to that of Section 4, although a shifted inversion sequence now naturally appears on the
right side when this decomposition is applied to an inversion sequence.

In Section 4, the right side of the decomposition was a word, since the value of the
maximum was fixed. A similar event occurs in the upcoming cases, when decomposing
sequences around their first minimum: the sequences of Sections 5.2 and 5.3 avoid the
pattern 102, so when the left side of the decomposition is nonempty (i.e. the first value
of the sequence is not the minimum), all values of the right side must be less than or
equal to all values of the left side, hence the right side is a word on a fixed alphabet, once
again. It follows that shifted inversion sequences only appear on the right side of this
decomposition when the left side is empty. Naturally, the left side of the decomposition
around the first minimum of an inversion sequence is always empty, since the leftmost
value of a nonempty inversion sequence is always 0. It follows that words only appear
when this decomposition is recursively applied to a shifted inversion sequence.

For instance, applying this decomposition to (0, 0, 0, 0, 4, 4, 5, 0, 3, 4, 2, 3, 0) ∈ I13(102)
will first remove each leading zero, yielding the sequence (4, 4, 5, 0, 3, 4, 2, 3, 0) ∈ I49 (102),
then split it into a shifted inversion sequence (4, 4, 5) and a word (3, 4, 2, 3, 0).

5.2 The pair {010, 102}

For the generating function of I(010, 102), see [30].
Let An,s = Isn(010, 102) be the set of {010, 102}-avoiding s-shifted inversion sequences

of size n. Let Bn,k = {ω ∈ Wn,k(010, 102) : max(ω) = k − 1} be the set of {010, 102}-
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avoiding words of length n over the alphabet [0, k− 1] which contain the letter k− 1. Let
an,s = |An,s| and bn,k = |Bn,k|. In particular, |In(010, 102)| = an,0.

Theorem 67. For all n > 1, s > 0,

an,s = (
n∑
z=0

an−z,s+z−1) + (
n−1∑
z=1

an−z,s−1) +
n−2∑
r=1

s∑
m=1

br,m

n−r−1∑
`=0

(n− r − `− δ`,0)a`,s−m−1.

Proof. Let n > 1, s > 0, and σ ∈ An,s. Since σ avoids the pattern 010, all occurrences
of the value 0 in σ must be consecutive. Let z = |{i ∈ [1, n] : σi = 0}| be the number
of occurrences of the value 0 in σ. Let σ′ be the sequence obtained by removing every
occurrence of the value 0 from σ, and subtracting 1 from all remaining values.

• If z = 0 or σ1 = 0, then σ′ ∈ An−z,s+z−1. This is a bijection since σ = (0)z · (σ′+ 1).

• If σ1 6= 0 and σn = 0, then σ′ ∈ An−z,s−1. This is a bijection since σ = (σ′+ 1) · (0)z.

• If z > 0, σ0 6= 0, and σn 6= 0, let α and β be the (uniquely defined) integer sequences
such that σ = α ·(0)z ·β. In particular, α and β are both nonempty, and their values
are positive. Let r be the size of β, m be the maximum of β, and β′ ∈ Br,m be the
word obtained by subtracting 1 from each letter of β.

Since σ avoids 102, every value of α is greater than or equal to m (in particular,
m 6 α1 6 s). All occurrences of the value m in α must be in a single factor at the
end of α; otherwise, a value greater than m would appear to the right of a value m
in α, creating an occurrence of the pattern 010 in σ (since β also contains m). Let q
be the number of occurrences of the value m in α, and let ` = |α|− q be the number
of entries of α of value greater than m. Let α′ ∈ A`,s−m−1 be the sequence obtained
by removing every occurrence of the value m from α and subtracting m + 1 from
the remaining values.

Note that any choice of q and z such that q + z = n− `− r does not affect α′ and
β′. We have q ∈ [0, n− r − `− 1] if α′ is nonempty, and q ∈ [1, n− r − `− 1] if α′

is empty (since α is not empty), so there are n − r − ` − δ`,0 possible values for q.
For each possible value of q, there is one value of z such that q + z = n− `− r.
This decomposition is bijective, since for any choice of

– m ∈ [1, s],

– `, q, z, r ∈ N such that `+ q, z, r > 1 and `+ q + z + r = n,

– α′ ∈ A`,s−m−1,

– β′ ∈ Br,m,

we have (α′ + m + 1) · (m)q · (0)z · (β′ + 1) ∈ An,s. Specifically, this construction
cannot create any occurrence of a pattern 010 or 102 since all values of α′ +m+ 1
are greater than all values of β′ + 1.
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Let F : (x, y) 7→
∑

`,k>0 |W`,k(010, 102)|x`yk be the ordinary generating function of
{010, 102}-avoiding words. The enumeration of {010, 102}-avoiding words was solved in
[18], with the following expression:

F (x, y) =
(1− x)2 − (1− 2x)y −

√
(1− x)4 − 2(1− x)2y + (1− 4x2 + 4x3)y2

2xy(1− y)
.

We easily observe that Bn,k = Wn,k(010, 102)\Wn,k−1(010, 102), so the generating func-
tion of

∐
n,k∈N Bn,k is (x, y) 7→ (1−y)F (x, y). We can then extract the numbers bn,k from

this generating function, as in Section 4.8. The function F is actually the same as in Sec-
tion 4.8, since {010, 102}-avoiding words and {101, 120}-avoiding words are in bijection
via the complement map Wn,k(010, 102)→Wn,k(101, 120), ω 7→ (k − 1− ωi)i∈[1,n].

5.3 The pair {100, 102}

Let An,s = Isn(100, 102) be the set of {100, 102}-avoiding s-shifted inversion sequences of
size n. Let A′n,s = {σ ∈ An,s : 0 ∈ Vals(σ) and σ1 6= 0} be the subset of sequences which
contain a 0 but do not begin by 0. Let Bn,k = {ω ∈ Wn,k(102) : ωi = ωj =⇒ i = j}
be the set of 102-avoiding words of length n over the alphabet [0, k − 1] which do not
contain any repeated letter. Let Cn,k = {ω ∈ Wn,k(102) : ωi = ωj 6= k − 1 =⇒ i = j}
be the set of 102-avoiding words of length n over the alphabet [0, k − 1] which do not
contain any non-maximal repeated letter. Let an,s = |An,s|, a′n,s = |A′n,s|, bn,k = |Bn,k|,
and cn,k = |Cn,k|. In particular, In(100, 102) = an,0.

Theorem 68. For all n > 1, s > 0,

an,s = an,s−1 + an−1,s+1 + a′n,s,

a′n,s =
n∑
p=2

s∑
m=1

(
cn−p,m +

p−2∑
r=1

ap−1−r,s+r−m−1 · bn−p,m +

p−2∑
r=0

a′p−1−r,s+r−m · bn−p,m−1

)
.

Proof. Let n > 1, s > 0, and σ ∈ An,s.

• If σ does not contain the value 0, then subtracting 1 from every value of σ yields a
sequence in An,s−1, and this is a bijection.

• If σ1 = 0, then removing the first term from σ yields a sequence in An−1,s+1, and
this is a bijection.

• Otherwise, σ ∈ A′n,s.

This proves the first equality. Let us now turn to the second one.
Let n > 1, s > 0, and σ ∈ A′n,s. Since σ avoids the pattern 100 and σ1 > 0, there

is exactly one term of value 0 in σ. Let p be the position of the only value 0 in σ. Let
α = (σi)i∈[1,p−1] and β = (σi)i∈[p+1,n] be the two subsequences such that σ = α · 0 · β. In
particular, all values of α and β are positive. By construction, α is nonempty, but β may
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be empty. Let m be the minimum of α. Since σ avoids the pattern 102, all values of β
must be less than or equal to m, so β is a word of length n− p over the alphabet [1,m].
Since σ avoids the pattern 100, each value in [1,m− 1] appears at most once in β. Let β′

be the word obtained by subtracting 1 from every letter of β.

• If α = (m)p−1 is constant, then β′ can be any word of Cn−p,m.

• Otherwise, α contains at least one value greater than m. Since σ avoids the pattern
100, the letter m can appear at most once in β. In other words, all letters of β
must be distinct, so β′ ∈ Bn−p,m. Let r ∈ [0, p − 2] be the number of consecutive
occurrences of the value m at the beginning of α.

– If all values m in α appear in the factor (m)r at the beginning of α, let
α′ ∈ Ap−1−r,s+r−m−1 be the sequence obtained by removing this factor from
α, and subtracting m + 1 from all remaining values. Recall α must contain
the value m at least once, so r > 0. This defines a bijection, since for any
α′ ∈ Ap−1−r,s+r−m−1 and β′ ∈ Bn−p,m, the sequence (m)r ·(α′+m+1)·0·(β′+1)
is in A′n,s.

– Otherwise, there is exactly one value m in α outside of the factor (m)r at the
beginning of α, since having a second value m outside of this factor would imply
that the subsequence (αr+1,m,m) is an occurrence of the pattern 100. The
same reasoning shows that β cannot contain the letter m, so β′ ∈ Bn−p,m−1.
Let α′ ∈ A′p−1−r,s+r−m be the sequence obtained by removing the factor (m)r at
the beginning of α, and subtracting m from all remaining values. This defines
a bijection, since for any α′ ∈ A′p−1−r,s+r−m and β′ ∈ Bn−p,m−1, the sequence
(m)r · (α′ +m) · 0 · (β′ + 1) is in A′n,s.

Words avoiding the pairs of patterns {100, 102} or {011, 120} are trivially in bijection
via the complement map Wn,k(100, 102) → Wn,k(011, 120), ω 7→ (k − 1 − ωi)i∈[1,n]. We
studied the pair of patterns {011, 120} in Section 4.3, and it can easily be seen that the
complement map defines bijections between the sets Bn,k, resp. Cn,k, and their counter-
parts of Section 4.3. Therefore, the following identities are deduced from Proposition 38
and Lemma 39:

• for all n, k > 0,

bn,k =

(
k
n

)(
2n
n

)
n+ 1

,

• for all n > 1, k > 2,

cn,k = 2cn,k−1 + cn−1,k − cn−1,k−1 −
(
k−2
n

)(
2n
n

)
n+ 1

.
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6 Generating functions

In the literature, a succession rule describing a generating tree is often used to calculate
the generating function of the associated combinatorial class. Indeed, a succession rule
can be turned into a system of functional equations satisfied by the generating function.
These equations often involve catalytic variables, which correspond to some statistics of
the combinatorial objects (the same statistics that label the generating tree). A common
tool for solving these equations is the kernel method [6].

The constructions of pattern-avoiding inversion sequences we presented allow us to
compute many terms of their enumeration sequences (usually a few hundred, see Table
2 for more precise data). From those initial terms, Pantone has conjectured algebraic
expressions for three of their generating functions, using his software [26].

Conjecture 69. The ordinary generating function F of I(000, 102) is algebraic with
minimal polynomial

x4F (x)4 − 2x3(x− 1)F (x)3 + x(x3 − 2x2 + 4x− 1)F (x)2 − (2x2 − 2x+ 1)F (x) + 1.

Conjecture 70. The ordinary generating function F of I(102, 201) is algebraic with
minimal polynomial

x(x− 1)2(x− 2)2(2x− 1)2F (x)2 + (x− 1)(2x− 1)(4x4 − 9x3 + 5x2 + 4x− 2)F (x)

− x5 + 9x4 − 22x3 + 25x2 − 12x+ 2.

Conjecture 71. The ordinary generating function F of I(102, 210) is algebraic with
minimal polynomial

(4x− 1)(x− 1)4x3F (x)2 − (4x− 1)(4x4 − 22x3 + 25x2 − 9x+ 1)(x− 1)2F (x)

+ 4x7 − 44x6 + 165x5 − 254x4 + 194x3 − 75x2 + 14x− 1.

We prove Conjectures 70 and 71 by calculating the generating functions of I(102, 201)
and I(102, 210), in Theorems 74 and 76 below. In a personal communication, Pantone
proves Conjecture 69 by calculating the generating function of I(000, 102), using a system
of equations we derived from the succession rule Ω{000,102} of Theorem 17. We present
this proof in the appendix.

Pantone also has a conjecture in [27] about inversion sequences avoiding the patterns
010 and 102.

Conjecture 72. The ordinary generating function F of I(010, 102) is algebraic with
minimal polynomial

x(x2 − x+ 1)(x− 1)2F (x)3 + 2x(x− 1)(2x2 − 2x+ 1)F (x)2

− (x4 − 8x3 + 11x2 − 6x+ 1)F (x)− (2x− 1)(x− 1)2.
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Conjecture 72 is now proved in [30], using yet another generating tree construction of
inversion sequences.

The software [26] could not guess an algebraic, D-finite, or D-algebraic generating
function for any other classes of pattern-avoiding inversion sequences we studied in this
article.

We now calculate the generating functions of I(102, 201) and I(102, 210) from our
succession rules, using the kernel method.

6.1 The generating function of I(102, 201)

We define generating functions corresponding to the numbers a, b(i), c of Section 2.3.
Let A(x, y) =

∑
n,m>0 an,mx

nym, let B(i)(x, y) =
∑

n,s>0 b
(i)
n,sxnys for i ∈ {1, 2, 3}, and

let C(x, y) =
∑

n,`>0 cn,`x
ny`. Let also F (x) =

∑
n>0 |In(102, 201)|xn be the ordinary

generating function of I(102, 201).
Recall the succession rule Ω{102,201} from Remark 12:

Ω{102,201} =



(a, 0, 0)

(a, n,m)  (a, n+ 1, i) for i ∈ [m,n]

(b(1), i)n−i for i ∈ [m,n− 1]

(c, i) for i ∈ [0,m− 1]

(b(1), s)  (b(1), s) (b(2), s)

(b(2), s)  (b(2), s) (b(3), s)

(b(3), s)  (b(3), s)2

(c, i) for i ∈ [0, s− 1]

(c, `)  (c, i) for i ∈ [0, `].

Proposition 73. The functions A,B(1), B(2), B(3), C, and F satisfy the following equa-
tions.

A(x, y) = 1 +
x

1− y
(
A(x, y)− yA(xy, 1)

)
B(1)(x, y) = xB(1)(x, y) +

x

(1− y)

(
x
∂A

∂x
(x, y)− y∂A

∂y
(x, y) +

y

1− y
(
A(xy, 1)− A(x, y)

))
B(2)(x, y) = x

(
B(1)(x, y) +B(2)(x, y)

)
B(3)(x, y) = x

(
B(2)(x, y) + 2B(3)(x, y)

)
C(x, y) =

x

1− y
(
C(x, 1)− yC(x, y) + A(x, 1)− A(x, y) +B(3)(x, 1)−B(3)(x, y)

)
F (x) = A(x, 1) +B(3)(x, 1) + C(x, 1)
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Proof. We turn the succession rule Ω{102,201} into equations relating the generating func-
tions.

A(x, y) = 1 +
∑
n,m>0

an,mx
n+1

n∑
i=m

yi

= 1 +
∑
n,m>0

an,mx
n+1y

m − yn+1

1− y

= 1 +
x

1− y
(
A(x, y)− yA(xy, 1)

)

B(1)(x, y) =

(∑
n,s>0

b(1)n,sx
n+1ys

)
+

( ∑
n,m>0

an,mx
n+1

n−1∑
i=m

(n− i)yi
)

= xB(1)(x, y) +
∑
n,m>0

an,m
xn+1

1− y

(
nym −mym +

yn+1 − ym+1

1− y

)
= xB(1)(x, y) +

x

(1− y)

(
x
∂A

∂x
(x, y)− y∂A

∂y
(x, y) +

y

1− y
(
A(xy, 1)− A(x, y)

))

B(2)(x, y) =
∑
n,s>0

(b(1)n,s + b(2)n,s)x
n+1ys

= x
(
B(1)(x, y) +B(2)(x, y)

)

B(3)(x, y) =
∑
n,s>0

(b(2)n,s + 2b(3)n,s)x
n+1ys

= x
(
B(2)(x, y) + 2B(3)(x, y)

)

C(x, y) =

(∑
n,`>0

cn,`x
n+1
∑̀
i=0

yi

)
+

(∑
n,k>0

(an,k + b
(3)
n,k)x

n+1

k−1∑
i=0

yi

)

=

(∑
n,`>0

cn,`x
n+11− y`+1

1− y

)
+

(∑
n,k>0

(an,k + b
(3)
n,k)x

n+11− yk

1− y

)
=

x

1− y
(
C(x, 1)− yC(x, y) + A(x, 1)− A(x, y) +B(3)(x, 1)−B(3)(x, y)

)
The equation F (x) = A(x, 1) +B(3)(x, 1) + C(x, 1) is an immediate consequence of The-
orem 10.
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Theorem 74. The generating function of I(102, 201) is

F (x) =
−8x4 + 18x3 − 10x2 − 8x+ 4 + 2(2x− 1)(x2 − 2x+ 2)

√
(5x− 1)(x− 1)

4x(2x− 1)(x− 1)(x− 2)2
.

Proof. From Proposition 73, we have

(1− y − x)A(x, y) = 1− y − xyA(xy, 1). (1)

We cancel the kernel (1− y − x) by defining Y (x) = 1− x and replacing y by Y (x):

0 = 1− (1− x)− x(1− x)A(x(1− x), 1),

and obtain

A(x− x2, 1) =
1

1− x
.

This determines a unique formal power series A(x, 1):

A(x, 1) =
1−
√

1− 4x

2x
.

Replacing A(x, 1) by this expression in (1) yields

A(x, y) =
1− 2y +

√
1− 4xy

2− 2x− 2y
.

From Proposition 73, we have

B(1)(x, y) =
x

(1− x)(1− y)

(
x
∂A

∂x
(x, y)− y∂A

∂y
(x, y) +

y

1− y
(
A(xy, 1)− A(x, y)

))
,

B(2)(x, y) =
x

1− x
B(1)(x, y),

B(3)(x, y) =
x

1− 2x
B(2)(x, y),

(1− y + xy)C(x, y) = x
(
C(x, 1) + A(x, 1)− A(x, y) +B(3)(x, 1)−B(3)(x, y)

)
.

We easily obtain expressions for B(1)(x, y), B(2)(x, y), and B(3)(x, y) from that of A(x, y).
As for C, we apply the kernel method again. The kernel is 1 − y + xy, we cancel it by
setting y = 1

1−x . We obtain an expression for C(x, 1):

C(x, 1) = A

(
x,

1

1− x

)
− A(x, 1) +B(3)

(
x,

1

1− x

)
−B(3)(x, 1).

Finally, we can write an expression for F (x):

F (x) = A(x, 1) +B(3)(x, 1) + C(x, 1)

=
−8x4 + 18x3 − 10x2 − 8x+ 4 + 2(2x− 1)(x2 − 2x+ 2)

√
(5x− 1)(x− 1)

4x(2x− 1)(x− 1)(x− 2)2
.
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6.2 The generating function of I(102, 210)

We define generating functions corresponding to the numbers a, b(i), c(i) of Section 3.3.
Let A(x, y) =

∑
n,k>0 an,kx

nyk, B(i)(x, y) =
∑

n,k>0 b
(i)
n,kx

nyk, C(i)(x, y) =
∑

n,k>0 c
(i)
n,kx

nyk

for i ∈ {1, 2}. Let F (x) =
∑

n>0 |In(102, 210)|xn be the ordinary generating function of
I(102, 210).

Recall the succession rule Ω{102,210} from Theorem 20:

Ω{102,210} =



(a, 0)

(a, k)  (a, i) for i ∈ [1, k + 1]

(b(1), i)k−i for i ∈ [1, k − 1]

(b(1), k)  (b(1), k)

(b(2), i) for i ∈ [1, k + 1]

(c(1), i) for i ∈ [1, k − 1]

(b(2), k)  (b(2), i) for i ∈ [1, k + 1]

(c(1), k)  (c(1), k)

(c(2), i) for i ∈ [1, k]

(c(2), k)  (c(2), i) for i ∈ [1, k].

Proposition 75. The functions A,B(1), B(2), C(1), C(2), and F satisfy the following equa-
tions.

A(x, y) = 1 +
xy

1− y
(
A(x, 1)− yA(x, y)

)
B(1)(x, y) = xB(1)(x, y) +

xy

1− y

(
∂A

∂y
(x, 1) +

1

1− y
(
A(x, y)− A(x, 1)

))
B(2)(x, y) =

xy

1− y
(
B(1)(x, 1) +B(2)(x, 1)− y

(
B(1)(x, y) +B(2)(x, y)

))
C(1)(x, y) = xC(1)(x, y) +

x

1− y
(
yB(1)(x, 1)−B(1)(x, y)

)
C(2)(x, y) =

xy

1− y
(
C(1)(x, 1) + C(2)(x, 1)− C(1)(x, y)− C(2)(x, y)

)
.

F (x) = A(x, 1) +B(1)(x, 1) +B(2)(x, 1) + C(1)(x, 1) + C(2)(x, 1)

Proof. We turn the succession rule Ω{102,210} into equations relating the generating func-
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tions.

A(x, y) = 1 +
∑
n,k>0

an,kx
n+1

k+1∑
i=1

yi

= 1 +
∑
n,k>0

an,kx
n+1y − yk+2

1− y

= 1 +
xy

1− y
(
A(x, 1)− yA(x, y)

)

B(1)(x, y) =

(∑
n,k>0

b
(1)
n,kx

n+1yk

)
+

(∑
n,k>0

an,kx
n+1

k−1∑
i=1

(k − i)yi
)

= xB(1)(x, y) +
∑
n,k>0

an,k
xn+1y

1− y

(
k +

yk − 1

1− y

)
= xB(1)(x, y) +

xy

1− y

(
∂A

∂y
(x, 1) +

1

1− y
(
A(x, y)− A(x, 1)

))

B(2)(x, y) =
∑
n,k>0

(
b
(1)
n,k + b

(2)
n,k

)
xn+1

k+1∑
i=1

yi

=
∑
n,k>0

(
b
(1)
n,k + b

(2)
n,k

)
xn+1y − yk+2

1− y

=
xy

1− y
(
B(1)(x, 1) +B(2)(x, 1)− y

(
B(1)(x, y) +B(2)(x, y)

))

C(1)(x, y) =

(∑
n,k>0

c
(1)
n,kx

n+1yk

)
+

(∑
n,k>0

b
(1)
n,kx

n+1

k−1∑
i=1

yi

)

= xC(1)(x, y) +
∑
n,k>0

b
(1)
n,kx

n+1y − yk

1− y

= xC(1)(x, y) +
x

1− y
(
yB(1)(x, 1)−B(1)(x, y)

)

C(2)(x, y) =
∑
n,k>0

(
c
(1)
n,k + c

(2)
n,k

)
xn+1

k∑
i=1

yi

=
∑
n,k>0

(
c
(1)
n,k + c

(2)
n,k

)
xn+1y − yk+1

1− y

=
xy

1− y
(
C(1)(x, 1) + C(2)(x, 1)− C(1)(x, y)− C(2)(x, y)

)
.

By definition, F (x) = A(x, 1) +B(1)(x, 1) +B(2)(x, 1) + C(1)(x, 1) + C(2)(x, 1).
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Theorem 76. The generating function F (x) of I(102, 210) is

(4x− 1)(4x4 − 22x3 + 25x2 − 9x+ 1)− (2x− 1)(x2 − 5x+ 1)(2x2 − 4x+ 1)
√

1− 4x

2x3(4x− 1)(x− 1)2
.

Proof. From Proposition 75, we have

(1− y + xy2)A(x, y) = 1− y + xyA(x, 1) (2)

B(1)(x, y) =
xy

(1− x)(1− y)

(
∂A

∂y
(x, 1) +

1

1− y
(
A(x, y)− A(x, 1)

))
(3)

(1− y + xy2)B(2)(x, y) = xy
(
B(1)(x, 1) +B(2)(x, 1)− yB(1)(x, y)

)
(4)

C(1)(x, y) =
x

(1− x)(1− y)

(
yB(1)(x, 1)−B(1)(x, y)

)
(5)

(1− y + xy)C(2)(x, y) = xy
(
C(1)(x, 1) + C(2)(x, 1)− C(1)(x, y)

)
. (6)

First, we derive an expression of A(x, y) from (2). To cancel the kernel (1 − y + xy2),
there are two solution in y:

Y1(x) =
1−
√

1− 4x

2x
, Y2(x) =

1 +
√

1− 4x

2x
.

Only Y1 defines a formal power series. We replace y by Y1(x) in (2), and obtain

A(x, 1) =
1−
√

1− 4x

2x
.

Replacing A(x, 1) by this expression in (2) yields

A(x, y) =
2− y − y

√
1− 4x

2(1− y + xy2)
.

We can obtain expressions for B(1)(x, y) and C1(x, y) by substituting our expression of
A(x, y) in (3) and (5).

Next, we look for an expression of B(2)(x, 1) from (4). The kernel is the same as for

A. Replacing y by 1−
√
1−4x
2x

in (4) yields

B(2)(x, 1) =
1−
√

1− 4x

2x
B(1)

(
x,

1−
√

1− 4x

2x

)
−B(1)(x, 1).

If we tried to directly evaluate B(1)
(
x, 1−

√
1−4x
2x

)
from our expressions of B(1)(x, y) and

A(x, y), we would obtain the fraction 0
0
. Instead, we can write down an expression for

A
(
x, 1−

√
1−4z
2z

)
, then consider its limit as z tends to x, to show that

A

(
x,

1−
√

1− 4x

2x

)
=

1

2

(
1 +

1√
1− 4x

)
.
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We can then obtain an expression of B(1)
(
x, 1−

√
1−4x
2x

)
, and therefore of B(2)(x, 1).

Finally, we look for an expression of C(2)(x, 1) from (6). The kernel is (1 − y + xy).
We cancel it by setting y = 1

1−x , and obtain

C(2)(x, 1) = C(1)

(
x,

1

1− x

)
− C(1)(x, 1).

The generating function of I(102, 210) is

A(x, 1) +B(1)(x, 1) +B(2)(x, 1) + C(1)(x, 1) + C(2)(x, 1)

=
(4x− 1)(4x4 − 22x3 + 25x2 − 9x+ 1)− (2x− 1)(x2 − 5x+ 1)(2x2 − 4x+ 1)

√
1− 4x

2x3(4x− 1)(x− 1)2
.

7 Asymptotics

Looking back at the first few terms of the enumeration sequences in Table 2, it could
appear that among the pairs of patterns we have studied, the one avoided by the most
inversion sequences is {101, 210}, and the one avoided by the fewest inversion sequences
is {000, 010}. Interestingly, it can be shown that the enumeration sequence of I(101, 210)
is bounded above by an exponential function, and that of I(000, 010) is super-exponential
(see Propositions 77 and 78 below). In fact, computation indicates there are more inver-
sion sequences of size n avoiding {000, 010} than {101, 210} starting at n = 41.

Marcus and Tardos [21, Theorem 9] prove that the number of n × n 0-1 matrices
avoiding a permutation matrix P is bounded above by cnP for some constant cP . The
subset of n× n 0-1 matrices which contain exactly one 1-entry in each column is clearly
in bijection with the set Wn,n of words of length n over the alphabet [0, n − 1]. For any
permutation π, this restricts to a bijection between matrices which avoid the permutation
matrix of π and words avoiding the pattern π. Observing that Wn,n includes the set In
of inversion sequences of size n, we obtain the following proposition.

Proposition 77. For any permutation π, for all n > 0, we have |In(π)| 6 cnπ for some
constant cπ.

In particular, the growth of I(101, 210) is at most exponential since 210 is a permutation
pattern (i.e. a pattern without any repeated values).

Proposition 78 below implies that every class of inversion sequences avoiding only
patterns with repeated values studied in this article have a super-exponential growth:
I(010), I(000, 010), I(000, 100), I(100, 110), I(100, 101), and I(010, 110).

Proposition 78. The enumeration sequence of I(000, 010, 100, 101, 110) grows super-
exponentially.

Proof. Let An,k = {σ ∈ In : σ = α·(β+k), α = (0, 0, 1, 1, . . . , k−1, k−1), β ∈ Ikn−2k(00)}
be the set of inversion sequences of length n which begin by (0, 0, 1, 1, . . . , k − 1, k − 1),
followed by n − 2k distinct values greater than or equal to k. Let An =

∐
k>0An,k.
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For all k > 0 and n > 2k, we have |An,k| = (k + 1)n−2k, hence for any k > 0, |An| is
asymptotically larger than kn. Since this holds for an arbitrarily large value of k, |An| has
a super-exponential asymptotic behavior. By construction, every sequence in An avoids
the patterns 000, 010, 100, 101, and 110.

Constructions similar to the above proof can be used to show that many classes
of inversion sequences avoiding patterns with repeated letters have a super-exponential
growth. However this is not always the case: for instance, [12, Theorem 10] proves that
|In(001)| = 2n−1 for all n > 1. Remarkably, 001 is the only pattern ρ of size 3 with
repeated values such that the growth of I(ρ) is at most exponential.

Using his software [25], Pantone provided us with precise conjectures about the asymp-
totic behavior of some of the enumeration sequences, based on the initial terms we com-
puted. We present these conjectures in Table 3. In particular, it seems that the classes
I(010, 201) and I(101, 210) have the same growth rate, and the classes I(100, 120) and
I(110, 201) as well.

Class µ α β

I(000, 201) ∼ 10.9282032 ∼ −7.3906 ?

I(010, 201) ∼ 10.1566572 ∼ −7.6168360 ?

I(100, 102) ∼ 5.066130494716195596699600 −3/2 0

I(100, 120) ∼ 7.72334814688 −3/2 0

I(101, 210) ∼ 10.156657 ∼ −6.273831 0

I(110, 201) ∼ 7.7233481468847308370 −3/2 0

I(120, 201) ∼ 7.4563913226671221339 −3/2 0

Table 3: Conjectured asymptotic behavior of the form Cµnnα log(n)β for the enumeration
sequences of some classes of pattern-avoiding inversion sequences.

Appendix

In this appendix, we present a proof of Conjecture 69 provided by Jay Pantone in a
personal communication.

Recall the succession rule Ω{000,102} from Section 3.2:

Ω{000,102} =


(1)

(s)
1
 (j)s+1−j for j ∈ [1, s]

(s)
2
 (j + 1)s+1−j(j)(

s+1−j
2 ) for j ∈ [1, s].

Let an,s = |{σ ∈ In(000, 102) : sites(σ) = s}| where sites is defined in Section 3.2 and
corresponds to the parameter of the rule Ω{000,102}. Let A(x, y) =

∑
n,s>0 an,sx

nys.
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From the succession rule Ω{000,102}, it can be seen that the generating function of the
children of a sequence of I(000, 102) having size n and s active sites is

(xn+1 + xn+2y)

(
s∑
j=1

(s+ 1− j)yj
)

+ xn+2

(
s∑
j=1

(
s+ 1− j

2

)
yj

)

= (xn+1y + xn+2y2)
ys+1 − y + s(1− y)

(1− y)2

+ xn+2y
2y − 2ys+1 − 2s(1− y) + s(s+ 1)(1− y)2

2(1− y)3
.

Seeing that
∂A

∂y
(x, 1) =

∑
n,s>0

s an,sx
n,

∂2(y · A)

∂y2
(x, 1) =

∑
n,s>0

s(s+ 1)an,sx
n,

we can apply this transformation to each monomial an,sx
nys, and obtain an equation

which characterizes A(x, y).

A(x, y) = y +
xy + x2y2

(1− y)2

(
y(A(x, y)− A(x, 1)) + (1− y)

∂A

∂y
(x, 1)

)
+

x2y

2(1− y)3

(
2y(A(x, 1)− A(x, y))− 2(1− y)

∂A

∂y
(x, 1) + (1− y)2

∂2(y · A)

∂y2
(x, 1)

)
= y − xy2 (1 + xy)(1− y)− x

(1− y)3
(A(x, 1)− A(x, y))

+ xy
(1 + xy)(1− y)− x

(1− y)2
∂A

∂y
(x, 1) +

x2y

2(1− y)

∂2(y · A)

∂y2
(x, 1)

To simplify this expression, we introduce two series B(x, y) and C(x, y).

B(x, y) = y
A(x, 1)− A(x, y)

1− y
=
∑
n,s>0

an,sx
n

s∑
i=1

yi

C(x, y) =
B(x, 1)−B(x, y)

1− y
=
∑
n,s>0

an,sx
n

s∑
i=1

i−1∑
j=0

yj

From the definitions of B(x, y) and C(x, y), it can be seen that

B(x, 1) =
∂A

∂y
(x, 1),

C(x, 1) =
∑
n,s>0

an,sx
n

s∑
i=1

i−1∑
j=0

1 =
∑
n,s>0

s(s+ 1)

2
an,sx

n =
1

2

∂2(y · A)

∂y2
(x, 1).
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We can now rewrite our equation for A(x, y) in terms of B and C, without partial deriva-
tives.

A(x, y) = y + xy
(1 + xy)(1− y)− x

(1− y)2
(B(x, 1)−B(x, y)) +

x2y

1− y
C(x, 1)

= y + xy
(1 + xy)(1− y)− x

1− y
C(x, y) +

x2y

1− y
C(x, 1)

In summary, A(x, y) is defined by the following system of equations involving x, y, the
three series A(x, y), B(x, y), C(x, y), and their evaluations for y = 1.

0 = (y − 1)A(x, y) + (1− y)y + xy((1 + xy)(1− y)− x)C(x, y) + x2yC(x, 1)

0 = (y − 1)B(x, y) + y(A(x, 1)− A(x, y))

0 = (y − 1)C(x, y) + (B(x, 1)−B(x, y))

This can be seen as a system of three polynomial equations in eight variables (x, y, A(x, 1),
B(x, 1), C(x, 1), A(x, y), B(x, y), and C(x, y)). Using Gröbner basis computations8, we
can eliminate B(x, y) and C(x, y) from this system, and obtain an equation involving only
six variables:

(−x2y4 + x2y3 − x2y2 − xy3 + xy2 + y3 − 3y2 + 3y − 1)A(x, y)

+ xy2(xy2 − xy + x+ y − 1)A(x, 1) + xy(y − 1)(xy2 − xy + x+ y − 1)B(x, 1)

+ x2y(y − 1)2C(x, 1)− y(y − 1)3 = 0.

(7)

This single equation uniquely defines the series A(x, y), A(x, 1), B(x, 1), and C(x, 1),
under the assumption that A(x, y) is a formal power series in x whose coefficients are
polynomials in y. Next, we use the approach from [9] generalizing the kernel method to
solve this equation. The kernel of (7) is

−x2y4 + x2y3 − x2y2 − xy3 + xy2 + y3 − 3y2 + 3y − 1.

The coefficient of x0 is a polynomial of degree 3 in y, therefore the kernel has three roots
Y1(x), Y2(x), Y3(x) that are fractional power series in x, by [9, Theorem 2]. Now, for
i ∈ {1, 2, 3}, we have

−x2Yi(x)4 + x2Yi(x)3 − x2Yi(x)2 − xYi(x)3 + xYi(x)2 + Yi(x)3 − 3Yi(x)2 + 3Yi(x)− 1 = 0

and

xYi(x)2(xYi(x)2 − xYi(x) + x+ Yi(x)− 1)A(x, 1)

+ xYi(x)(Yi(x)− 1)(xYi(x)2 − xYi(x) + x+ Yi(x)− 1)B(x, 1)

+ x2Yi(x)(Yi(x)− 1)2C(x, 1)− Yi(x)(Yi(x)− 1)3 = 0.

8We use the Maple package PolynomialIdeals.
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This forms a system of 6 equations. We add another indeterminate Z and a seventh
equation

Z(Y1(x)− Y2(x))(Y1(x)− Y3(x))(Y2(x)− Y3(x))− 1 = 0,

to ensure that the system has a solution only if the series Y1(x), Y2(x), and Y3(x) are
distinct. Fortunately they are distinct, and using Gröbner basis computations again, we
can find an equation involving only x and A(x, 1).

x4A(x, 1)4−2x3(x−1)A(x, 1)3+x(x3−2x2+4x−1)A(x, 1)2+(−2x2+2x−1)A(x, 1)+1 = 0

The left-hand side is the minimal polynomial of A(x, 1), and this proves Conjecture 69.
We can compute the minimal polynomials of B(x, 1) and C(x, 1) in the same way.

x6B(x, 1)4 − 3x4B(x, 1)3 + x2(x2 − x+ 3)B(x, 1)2 + (−x2 + x− 1)B(x, 1) + 1 = 0

x8C(x, 1)4 + x5(3x+ 1)C(x, 1)3 + 2x3(2x+ 1)C(x, 1)2 + (3x2 + x− 1)C(x, 1) + 1 = 0

Going back to equation (7), we can now see that A(x, y) is the sum of three algebraic
functions of (x, y) (of degree 4 each), so A(x, y) is itself algebraic. Its minimal polynomial
is difficult to obtain, since asking a computer algebra program to directly eliminate A(x, 1),
B(x, 1) and C(x, 1) from a system of four equations consisting in (7) and the minimal
polynomials of A(x, 1), B(x, 1), and C(x, 1) would yield a polynomial that is too big to
compute (the minimal polynomial of A(x, y) is a very small factor of this huge polynomial).
Pantone still managed to eliminate the variables A(x, 1), B(x, 1), and C(x, 1) “by hand”
one at a time, using resultants. He found that the function A(x, y) is also algebraic of
degree 4, and its minimal polynomial is

x2
(
(y − 1)(x2y3 + xy2 + 3y) + x2y2 − y3 + 1

)
A(x, y)4

− xy
(
(y − 1)(2x3y2 + 4x2y − xy2 + 2x+ 2y − 2)− 2x2y3 + 2x3y

)
A(x, y)3

+ y2
(
(y − 1)(x4y − 2x3y + x3 + 2x2 − 1)

+ (x− y)(−2x2 − 2xy + 3x) + x4 + x2y2
)
A(x, y)2

− y3
(
x2y + x2 − 2x− y + 2

)
A(x, y) + y4.

The statistic sites associated with the catalytic variable y is essentially the same
as the statistic rank studied in [14] (to be precise, sites(σ) = rank(σ) + 1 for any
σ ∈ I(000, 102)), so this answers the question of enumerating {000, 102}-avoiding inver-
sion sequences according to their rank, that was left open in [14].
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