How Many Random Edges Make
an Almost-Dirac Graph Hamiltonian?

Alberto Espuny Diaz® Richarlotte Valéra Razafindravola’

Submitted: Nov 22, 2024; Accepted: Oct 13, 2025; Published: Nov 14, 2025
(©) The authors. Released under the CC BY license (International 4.0).

Abstract

We study Hamiltonicity in the union of an n-vertex graph H with high minimum
degree and a binomial random graph on the same vertex set. In particular, we
consider the case when H has minimum degree close to n/2. We determine the
perturbed threshold for Hamiltonicity in this setting.

To be precise, let n :=n/2 — §(H). For n = w(1), we show that it suffices to
add ©(n) random edges to H to a.a.s. obtain a Hamiltonian graph; for n = 0(1), we
show that w(1) edges suffice. In fact, when n = o(n) and n = w(1), we show that
(8 + o(1))n random edges suffice, which is best possible up to the error term. This
determines the sharp perturbed threshold for Hamiltonicity in this range of degrees.

We also obtain analogous results for perfect matchings, showing that, in this
range of degrees, the sharp perturbed thresholds for Hamiltonicity and for perfect
matchings differ by a factor of 2.

Mathematics Subject Classifications: 05C35, 05C80.

1 Introduction

9

The study of random graphs focuses on understanding the (likely) properties of the “average’
graph (on a given probability space). In a similar way, the study of randomly perturbed
graphs can be seen as the study of the properties of the “average” supergraph of a given
graph H. Since the seminal work of Bohman, Frieze and Martin [12] on Hamiltonicity of
randomly perturbed graphs, these have received much attention, especially during the last
decade. Most of this research has considered supergraphs of graphs with some minimum
degree condition.

More precisely, the framework we consider is the following. Given an (integer) function
d = d(n), we take some sequence of n-vertex graphs {H,},en with minimum degree
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d(H,) = d. We also consider the binomial random graph G(n,p) (which is an n-vertex
graph sampled by adding each of the (g‘) possible edges independently with probability p)
on the same vertex set as H,. We are interested in understanding the likely properties of
H, UG(n,p) (we only consider simple graphs). To simplify statements, we say that an
event occurs asymptotically almost surely (a.a.s.) if the probability that it does tends to 1
as n tends to infinity.

Much of the research into random graphs has focused on understanding the thresholds
for different properties. Roughly speaking, a threshold refers to a range of values for the
parameter p where the random graph suddenly transitions from a.a.s. not satisfying a
property to a.a.s. satisfying it. This notion extends to the study of randomly perturbed
graphs in a natural way. Formally, in this paper we consider the following definition.

Definition 1. Given a nontrivial monotone graph property P and an integer-valued
function d = d(n), a function p* = p*(n) is a d-threshold for P if the following two
statements hold:

(0) There exists a graph sequence { H,, }neny with 6(H,,) > d such that, if p = o(p*), then
a.a.s. H, UG(n,p) ¢ P.

(1) For every graph sequence {H,},en with §(H,) > d, if p = w(p*), then a.a.s.
H,UG(n,p) € P.

Moreover, we say that p* = p*(n) is a sharp d-threshold for P if, for every fixed £ > 0, the
following two statements hold:

(0) There exists a graph sequence {H,, },en with 6(H,) > d such that, if p < (1 — €)p*,
then a.a.s. H, UG(n,p) ¢ P.

(1) For every graph sequence {H, },eny with 0(H,) > d, if p > (1 + €)p*, then a.a.s.
H, UG(n,p) € P.

While the (sharp) d-thresholds for different properties are not unique, we will follow the
custom of referring to one such d-threshold (usually, the one with the simplest expression)
as the (sharp) d-threshold for P. Moreover, when every sequence of graphs {H,, } ey with
d(H,) > d satisfies that H, € P (for all sufficiently large n), we abuse the definition and
say that the (sharp) d-threshold for P is 0. Naturally, the results about thresholds in
binomial random graphs correspond to O-thresholds. While these definitions are built on
graph sequences, in practice we will omit the sequences from our statements, and they
will be implicit in the use of n-vertex graphs H,,.

1.1 Hamiltonicity

In this paper, we focus mainly on Hamiltonicity (that is, the property of containing
a spanning cycle). A classical theorem of Dirac [22] ensures that, if d > n/2, then
the (sharp) d-threshold for Hamiltonicity is 0. On the opposite extreme, Pdsa [47] and
Korsunov [38] independently showed that the O-threshold for Hamiltonicity is logn/n
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(in fact, Korsunov [38] showed that logn/n is the sharp O-threshold for Hamiltonicity).
For d = an with a € (0,1/2) fixed, Bohman, Frieze and Martin [12] showed that the
d-threshold for Hamiltonicity is 1/n. Together, these results give a complete “macroscopic’
picture of the thresholds for Hamiltonicity: for every o € [0, 1), if we set d = an, the
d-threshold for Hamiltonicity is known. However, in this macroscopic picture we observe
two jumps in the behaviour of the threshold as a function of a. The first such jump occurs
at o = 0, and the second, at « = 1/2. For any property P and any « € [0, 1] where such
a jump occurs, we shall refer to the range d = (1 £ o(1))an as a critical window. (This
should not be confused with the probabilistic critical windows, which refer to the range
around the threshold for some property.) One should expect that, when considering these
critical windows more carefully, the d-threshold will interpolate between the two thresholds
of the macroscopic picture, to some extent.

The behaviour of Hamiltonicity around the critical window when a = 0 (which
corresponds to random perturbation of sparse graphs) is fairly well understood: indeed,
already Bohman, Frieze and Martin [12] showed that, for 1 < d = o(n), the function
log(n/d)/n is a d-threshold for Hamiltonicity, and Hahn-Klimroth, Maesaka, Mogge, Mohr
and Parczyk [30] improved the implicit constant to show that p = (6 + o(1)) log(n/d)/n
suffices for H,, U G(n,p) to a.a.s. contain a Hamilton cycle. However, the critical window
around a = 1/2 has not been studied at all. The main goal of this note is to provide the
d-threshold for Hamiltonicity in this critical window, thus completing the picture of the
d-thresholds for Hamiltonicity. Throughout the paper, whenever we write n/2 — n, it is
assumed that this is an integer.

9

Theorem 2. Let d =n/2 —n, where 1/2 < n < n/64. The d-threshold for Hamiltonicity
is n/n?.

Our proof of Theorem 2 avoids the use of the rotation-extension technique. In the
range where 7 is linear, this leads to a new proof of the main result of Bohman, Frieze and
Martin [12], in addition to the subsequent proofs of Krivelevich, Kwan and Sudakov [40]
and Hahn-Klimroth, Maesaka, Mogge, Mohr and Parczyk [30]. Our proof does not extend
to all the dense range of degrees (the upper bound on 7 in the statement is not best
possible but, since we cannot hope to get close to n/2 with our approach, we have made
no effort to optimise it). However, for the range that we consider, our proof yields a
better upper bound on the sharp d-threshold for Hamiltonicity than that in [30], and thus
improves on all previously known bounds (see Theorem 7 (b)). In fact, for a smaller range
of the function 7 (but covering essentially all the critical window), our technique provides
us with the sharp d-threshold for Hamiltonicity.

Theorem 3. Let d =n/2 —n, where n = w(1) and n = o(n). The sharp d-threshold for
Hamiltonicity is 16n/n?.

This is the first (non-trivial) result about sharp d-thresholds with d = w(1) in the
literature. We remark that, when n = ©(1), there is no sharp d-threshold for Hamiltonicity,
so the lower bound on 7 in Theorem 3 is necessary. The extremal graph witnessing the
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(0)-statement is the standard one for the Hamiltonicity problem: a complete bipartite
graph H, with parts of size d and n — d, respectively; see Section 2 for more details.

As mentioned above, our proof avoids the use of the rotation-extension technique
pioneered by Pésa [47], and is in fact elementary. However, it uses some ideas which are
reminiscent of this technique. In particular, in non-Hamiltonian graphs, we consider the
existence of large sets of non-edges which, if added to the graph, lead to containing a
longer cycle; see Lemma 9. Such non-edges are usually called boosters in the literature,
and have been central to many proofs about Hamilton cycles. A standard tool to use in
this setup would be a lemma that ensures that expander graphs have many boosters (see,
e.g., the survey of Krivelevich [39, Corollary 2.8]). This could be used to shorten our proof
of Theorem 2; however, a more precise counting of such boosters is needed in order to
derive the sharp d-threshold in Theorem 3.

As a corollary of Theorem 3, we also obtain the sharp d-threshold for pancyclicity (that
is, the property of containing a cycle of every length between 3 and n) for a slightly more
restricted range of d. This property has been considered in randomly perturbed graphs
by Krivelevich, Kwan and Sudakov [40] and Aigner-Horev, Hefetz and Krivelevich [2] as
well as Allin and Espuny Diaz [3]. In particular, the following simple result of Allin and
Espuny Diaz [3] can be used in our setting.

Theorem 4 ([3, Theorem 4]). Let H, be a graph on n vertices containing a Hamilton
cycle. Then a.a.s. H, UG(n,4logn/e(H,)) is pancyclic.

The following is an immediate consequence of Theorems 3 and 4.

Corollary 5. Let d =n/2 —n, where n = w(logn) and n = o(n). The sharp d-threshold
for pancyclicity is 16n/n?.

1.2 Perfect matchings

Let us now assume that n is an even integer (and so all the sequences of graphs are
restricted to even values of n). The property of containing a perfect matching (that is,
a set of n/2 pairwise disjoint edges) is one of the most studied in graph theory. Since a
Hamilton cycle contains a perfect matching, Dirac’s theorem [22] ensures that, for d > n/2,
the (sharp) d-threshold for containing a perfect matching is 0. A classical result of Erdds
and Rényi [25] shows that the sharp 0-threshold for perfect matchings is logn/n. Note
that these coincide with the respective sharp d-thresholds for Hamiltonicity (in the case of
the O-threshold, a difference can be seen by analysing smaller order terms). For randomly
perturbed graphs with 1 < d < n/2, the results of Bohman, Frieze and Martin [12],
together with Theorem 2 and the standard extremal graph, immediately imply that the
d-threshold for perfect matchings also coincides with the d-threshold for Hamiltonicity.
However, it turns out that the sharp d-threshold for perfect matchings does not coincide
with that for Hamiltonicity. Our techniques allow us to determine this sharp threshold
too, in the same range of d as for Hamiltonicity.

Theorem 6. Let d =n/2 —n, where n = w(1) and n = o(n). The sharp d-threshold for
containing a perfect matching is 877/n2.
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The extremal graph witnessing the (0)-statement for this sharp threshold is the same
as for Hamiltonicity. Our proof of Theorem 6 also works when n is odd to show that the
sharp d-threshold for containing a matching of size [n/2] is 8n/n?.

1.3 Related work

Hamiltonicity is likely the property that has been studied the most in randomly perturbed
graphs. In addition to the papers we already mentioned (for graphs), it has also been
studied in directed graphs [8, 12, 40], hypergraphs [32, 40, 43] and subgraphs of the
hypercube [21]. In graphs, Hamiltonicity has also been considered when the perturbation
comes from a random regular graph [23, 27, 34] or a random geometric graph [26, 28|.
A variant of the problem considers random colourings of randomly perturbed graphs
and aims to find rainbow Hamilton cycles [1, 4, 37]. Some recent results include the
colour-bias of Hamilton cycles [18] or the Hamilton cycle space [33]. The Hamiltonicity
Maker-Breaker [19] and Waiter-Client [20] games played on randomly perturbed graphs
have been considered as well. It would be interesting to understand these problems at the
appropriate critical windows for Hamiltonicity.

In addition to Hamiltonicity, multiple other spanning properties have been studied in
the context of randomly perturbed graphs. For instance, the full “macroscopic” behaviour
of the d-thresholds is known for connectivity [11], spanning bounded degree trees [13, 41]
and (almost) unbounded degree trees [35] (for which, analogously to Hamiltonicity, there
are two critical windows); cycle-factors [10, 15, 16, 31| and 2-universality [17, 46] (for which
there are three critical windows), and squares of Hamilton cycles [17, 24] (for which there
is an infinite number of critical windows). For K,-factors with r > 4, the “macroscopic’
d-threshold is known for all but finitely many points [7, 10, 31|, particularly showing that
there are r critical windows. We believe that studying the d-thresholds for these properties
in the respective critical windows would be a very interesting problem. Additionally,
for some properties, the d-thresholds are known for some range of the values of d. For
example, there are results about different F-factors [10] and higher powers of Hamilton
cycles [5, 6, 14, 24, 44, 45], as well as some results for general bounded degree spanning
graphs [14].

)

2 Proofs

We begin this section by proving the (0)-statement for our different results. As already
mentioned in the introduction, these follow from a construction that is standard in the
area; we include the details for the benefit of the unfamiliar reader. Let d = n/2 — 7,
where 1/2 < n=mn(n) < n/64. Let H, be a complete bipartite graph with parts A and B
of size d and n — d, respectively.

Suppose first that we wish to obtain a graph which contains a matching of size
|n/2]| on the vertex set AU B. As |A| < |B|, any such matching must have at least
|n/2| —|A| = n — 1/2 edges contained in B. The expected number of edges in B in
the random graph G(n,p) is E[|E(G(n,p)[B])|] = ("/QZ’L”)p = O(n?p). Thus, by Markov’s

ot
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inequality, if p = o(n/n?), then a.a.s. G(n, p)[B] contains o(n) edges. Since any Hamilton
cycle contains a matching of size |n/2], this completes the proof of the (0)-statement for
Theorem 2. (There is in fact one missing case, when n is odd and n = 1/2; in this case,
clearly any Hamilton cycle must contain at least one edge in B, and this will not occur if
p = o(n™?), again by Markov’s inequality.)

Suppose now that n = w(1) and n = o(n). Then E[|E(G(n,p)[B])|] = (”/22+77)p =
(1+0(1))n?p/8. Since |E(G(n,p)[B])| is a binomial random variable, for any fixed & > 0, if
p < (1—¢)8n/n?, it follows by Chernoff’s inequality that a.a.s. |E(G(n,p)[B])| < (1—¢/2)n,
and so H, UG(n,p) does not contain a matching of size |n/2]|. This completes the (0)-
statement for Theorem 6.

Lastly, consider any cycle on vertex set AU B. Each such cycle can be mapped to a
(cyclic) word consisting of n symbols, each being an A or a B depending on which set
each vertex of the cycle belongs to. Due to the difference in sizes of the sets, each such
word must have at least |B| — |A| = 2n pairs of consecutive B’s. In other words, in order
for H, U G(n,p) to contain a Hamilton cycle, a necessary condition is that G(n,p)[B]
must contain at least 21 edges. Arguing like above with Chernoft’s inequality, we conclude
that a.a.s. this does not hold if p < (1 — £)16n/n?, thus completing the (0)-statement for
Theorem 3.

From now on, we focus on the proofs of the (1)-statements. For technical reasons,
it will be convenient to step away from the binomial random graph model and instead
consider uniform random graphs. Given an integer m € [(})], the random graph G, ,, is an
n-vertex graph with exactly m edges chosen uniformly at random among all such graphs.
A well-known coupling argument allows us to work with this model and transfer the results
we obtain to the binomial random graph model. Indeed, assuming m = w(1), there exist
p=(1 —|—0(1))m/(72‘) and a coupling (G, G) such that Gy ~ Gy, G2 ~ G(n,p) and a.a.s.
G1 € Gy. As such, in order to conclude our proofs, it suffices to study H,, U G,, .

2.1 Hamiltonicity

Given that the (0)-statements have already been proved, Theorems 2 and 3 are an
immediate consequence of the following theorem.

Theorem 7. Let H,, be a graph on n vertices with §(H,,) > n/2—mn, where 1/2 < n < n/64.
(a) If m = w(n), then a.a.s. H, U Gy, ., is Hamiltonian.

(b) Ifn=w(l), A =w(n?) andm > + A, then a.a.s. H,UG,, ,, is Hamiltomian.

21
1/4—-8n/n

One of the main tools for our proof of Theorem 7 is the following classical result of
Dirac, which ensures that, if H,, is 2-connected, then it contains an almost spanning cycle.

Lemma 8 (Dirac [22, Theorem 4]). Any 2-connected graph G on n vertices with 6(G) = d,
where 1 < d < n/2, contains a cycle of length at least 2d.

The next lemma ensures that, for any 2-connected non-Hamiltonian graph H,, with
high minimum degree, there is a large number of non-edges (essentially as many as in
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an unbalanced complete bipartite graph) which, if added to H,, would result in a graph
containing longer cycles than H,,.

Lemma 9. Let H,, be an n-vertex 2-connected graph with 6(H,) > n/2 —n > 1. Suppose
H,, is not Hamiltonian and let C be a longest cycle in H,. Then, there exists a set
E C E(K,) of size |E| = n*/8 — 4nn such that, for any e € E, H, U {e} contains a cycle
longer than C.

Proof. For each v € V(H,), let Ne(v) = {w € V(C) | vw € E(H,)}. By Lemma 8, the
cycle C has length at least n — 2n. From the definition of N¢(v) and the minimum degree
condition, for any v € V(H,), we have that

[Ne(v)| = n/2 = 3n. (1)

Let us now fix an orientation of the cycle C and, for each vertex w € V(C), denote
by w™ and w* the predecessor and the successor of w in the orientation of C, respectively.
Then, fix an arbitrary vertex v € V(H,)\ V(C). Note that, if w € N¢(v), then w™ ¢ Ne(v),
as otherwise C U {w~v,vw} \ {w~w} would form a cycle longer than C (see Figure 1 for
reference). Analogously, w™ ¢ N¢(v). From this fact, one can easily see that N¢(v)
decomposes C into paths of length at least 2 (where the length of a path is its number of
edges). For each i > 2, denote by X; the number of paths of length ¢ in C which result
from this decomposition of C, so we have that

S X, = [Ne(o)] > /2 = 30,

122

It follows that

V(e =) iXi>2Xs+3 (in - X2> >2X,+3(5 = 30— X2),
122 122

which implies that
n

Xo > 5~ 9. (2)
Let W, :=={w € V(C) \ Ne(v) | w™,wt € N¢(v)} and note that |W,| = X5. Observe

that, if w € W, and u € Ne(w) \ {w™}, then u~ ¢ Ne(w), as otherwise
C\ {w w,ww™, v u} U{w v,vw"} U{u w, wu}

would form a cycle longer than C (see Figure 1). In other words, for every w € W, and
u € Ne(w) \ {w™}, we have that wu™ ¢ F(H,) and H, U{wu~} would have a cycle longer
than C. Thus, using (1) and (2), there exist at least (n/2—9n)(n/2—3n—1)/2 > n?/8—4nn
edges e € F(K,,) \ E(H,) such that H, U {e} contains a longer cycle than C (where we
divide by 2 to avoid double counting edges). O

Our last tool is a particular case of a result of Bohman, Frieze, Krivelevich and
Martin [11] which ensures that, if H,, has high minimum degree, then a.a.s. we need to
add very few random edges for it to become 2-connected, so that Lemmas 8 and 9 apply.
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Figure 1: A depiction for the proof of Lemma 9. The circle represents a longest cycle C
in H,, and v € V(H,) \ V(C). The neighbours of v in C split it into paths, most of which
have length 2 and are of the form w™ww™, where w ¢ N¢(v). For each neighbour u of one
such vertex w in C, both its predecessor and successor along C cannot be neighbours of w,
and thus can be elements of E.

Lemma 10 (Bohman, Frieze, Krivelevich and Martin [11, Theorem 6]). Let H,, be an
n-vertex graph with 6(H,) > an, where o € (0,1) is fized. If m = w(1), then a.a.s.
H, UG, is 2-connected.

With these results in hand, we can already prove Theorem 7. The main idea is to add
random edges in rounds to the graph, each round ending when a longer cycle can be found.
This is iterated until a Hamilton cycle appears; this process is analogous to the one used
by Bohman, Frieze and Martin [12]. Since the starting graph is almost Hamiltonian, the
number of rounds that is needed is small. Moreover, since at every step there is a large
set of “good” non-edges, each round is likely to finish rather quickly. This leads to the
improved bounds.

Proof of Theorem 7. First, let mo = w(1) grow arbitrarily slowly. Let Go == H,, U G} -
By Lemma 10, a.a.s. G is 2-connected. Condition on this event. Let C be a longest cycle
in Gy and k = |V(H,) \ V(C)|. Note that k < 2n by Lemma 8. Let Ej be the set of all
edges e € F(K,,) \ E(Gy) such that Gy U {e} has a longer cycle than Gy.

Now, consider a sequence of random graphs Gy C G; C Gy C --- C G}, defined
as follows. For each i € [k], if GY | = G,;_; is not Hamiltonian, we start sampling
edges ez(-l), e§2), ... € E(K,) uniformly at random with replacement and, for each j € N,
define G7_, = G/~ U {ez(j)}. In this case, we let Y; be the minimum j € N such that
egj ) e FE;_1 and, then, set G; = G}fil. Moreover, we define F; to be the set of all edges
e € E(K,) \ E(G;) such that G; U {e} has a longer cycle than G;. If instead G;_; is
Hamiltonian, we let G; =Gy =+ =G =G 1and Y; =Y, =--- =Y, =0.

Let h be the minimum ¢ € [k] for which G; is Hamiltonian. Note that this is well
defined by the definition of &, since each subsequent G; either is Hamiltonian or contains
a longer cycle than GG;_;. The random variables Y7, Y5, ..., Y}, are independent geometric
random variables with parameter p; = |E;_1|/(}) > 1/4 —8n/n, where the inequality holds

by Lemma 9. We set YV := Zle Y, = Z?Zl Y; to be the total number of random edges
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added until G, is Hamiltonian, and let G¥ denote the n-vertex graph consisting of all
these random edges. Note that there is a trivial coupling between Gy, o, G¥ and Gy, g1y
such that G, U GY C G mo+y, S0 it suffices to bound Y to reach the desired conclusion.

In order to prove (a), since Y7, Y5, ..., Y} are geometric random variables and k < 27,
note that
k by 2
ElY]| = ElY;] = — < —— < 16m,
Y] ; i Ly, S ja—sg/n S

where the second inequality holds by the upper bound on n. Thus, by Markov’s inequality

and since myg is chosen to grow arbitrarily slowly, if m = w(n), then a.a.s. Y < m, that is,

a.a.s. adding mg +m = w(n) random edges to H, suffices to obtain a Hamiltonian graph.
In order to prove (b), assume that n = w(1). Recall that E[Y] < l/llz—gn/n' Moreover,

since the variables Y7, ..., Y} are independent, again using the upper bound on n we have

that

h

1—pi 3/4+8 7/8
Z_p<2 /44 8n/n <2nL=112n-

k
var(Y):izlvar(Yi):il 2 S —sym)e S s

By Chebyshev’s inequality, for any A = w(n*/?), we have that P[|Y — E[Y]| > \/2] = o(1),
so a.a.s. Y <E[Y]+ A2 < 2L + \/2. Since my is chosen to grow arbitrarily slowly,

1/4—8n/n
we may take mg < A/2, and it follows that a.a.s. adding my + Y < WWESW + A random
edges to H, suffices to obtain a Hamiltonian graph. O]

2.2 Perfect matchings

For simplicity, throughout this section we assume that n is even. Our goal is to complete
the proof of Theorem 6. Since we already showed its (0)-statement, it suffices to prove the
following result. (For the sake of simplifying the calculations, we state it only for n = o(n),
which suffices for Theorem 6; for larger values of 1, a statement similar to Theorem 7 (b)
holds as well.)

Theorem 11. Let H, be a graph on n vertices with minimum degree at least n/2 —n. If
n = o(n) with n = w(l), A = w(n'?) and m > 4n + A, then a.a.s. H, U G, contains a
perfect matching.

The proof of Theorem 11 follows along similar lines as that of Theorem 7. The main
part is to show that, if H, is 2-connected, then there are many non-edges that, if added
to H,, would result in a graph with a larger matching than H,,.

Lemma 12. Let H, be an n-vertex 2-connected graph with 6(H,) > n/2—n > 1. Assume
that H, does not contain a perfect matching and let M be a largest matching in H,.
Then, there exists a set M C E(K,,) of size at least n*/8 — 4nn such that, for any e € M,

H, U{e} contains a matching which is larger than M.
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Proof. By Lemma 8, H, contains a cycle of length at least n — 27, so H,, contains a
matching of size at least n/2 — 7. Let M be a largest matching in H,, and, for each
w € V(M), let w™ denote the vertex w’ € V(M) such that ww’ € M. Moreover, for each
u € V(H,)\ V(M),let Ny(u) = {w e V(M) |w" e N(u)}, where N(u) represents the
set of all neighbours of u in H,,. An M-augmenting path P is a path whose endpoints are
not in M and whose edges alternate between E(H,)\ M and M; in particular, the edge
set Mp = (M\ E(P))U(E(P)\ M) is a larger matching than M.

Note that, for any pair of distinct vertices u,v € V(H,) \ V(M), H, cannot contain a
(u, v)-path of length 5 using two edges of M, as otherwise this would be an M-augmenting
path. It follows that, for any pair of distinct u,v € V(H,) \ V(M) and all z € Ny (u)
and y € Ny (v) with x # y, we must have that e = zy ¢ E(H,), since otherwise we would
have one such path of length 5. In particular, each such edge is a potential edge that, if
added to H,, creates a graph with a larger matching than M. From the minimum degree
condition and the size of M, we conclude that |[Na(u)| > n/2—3n and |[Na(v)| = n/2—3n.
Hence, there exist at least ("/ 22_ 3’7) > n?/8 — 4nn such potential edges. O]

The proof of Theorem 11 is now essentially the same as the proof of Theorem 7 (b),
using Lemma 12 instead of Lemma 9. The main difference is that, through the sequence
of random graphs, each subsequent largest matching contains at least two more vertices
than the previous, and so one may take k = |V (H,)\ V(M)|/2 < n (where M is a largest
matching in Gy). This smaller number of random graphs in the sequence leads to the
improved bound on m. We omit the details of the proof.

3 Open problems

With Theorems 3 and 6, we have showed that, if d = n/2 — o(n), the sharp d-thresholds
for Hamiltonicity and perfect matchings coincide with what is needed for a randomly
perturbed unbalanced complete bipartite graph to contain a Hamilton cycle or perfect
matching. It seems plausible that unbalanced complete bipartite graphs should also
witness the sharp d-threshold for perfect matchings for smaller values of d. Let d = an
for some fixed constant « € (0,1/2), and let H,, be a complete bipartite graph with parts
A and B of size d and n — d, respectively. Note that H,, contains a matching of size d,
where, moreover, its d vertices in B can be chosen arbitrarily. We know, from the work of
Bohman, Frieze and Martin [12] and the extremal example of the complete bipartite graph,
that the sharp d-threshold for the containment of a perfect matching (if it exists) must
be of the form C/n, where C' = C(«) is a constant. We conjecture that this threshold
should coincide with the threshold for G(n,p)[B] ~ G(n — d,p) to contain a matching
of size n/2 — d (which can then be completed using edges of H,,). The (likely) size of a
largest matching in sparse random graphs was determined by Karp and Sipser [36] (see
also [9, Theorem 4] for a concrete expression). Using their work, we propose the following
conjecture.
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Conjecture 13. Let a € (0,1/2) be fixed, and let d = an. The sharp d-threshold for
containing a perfect matching is C'/n, where C' = C'(«) is the solution to the equation

% EY 120

1 =
(2 —2a)C 2 —2a’

(3)

where 7, is the smallest root of the equation z = (1 — a)Cexp(—(1 — a)Ce™™) and
7= (1—a)Ce .

(To see where the constant in (3) comes from, note from [9, Theorem 4] that, for
p = C/n, a.a.s. the largest matching of G(n, p) has size

0, + 0% + 0,0"
(1+ o(1)) (1 - T) n,

where 0, is the smallest root of the equation x = C'exp(—Ce™%) and 0* = Ce~%. Naturally,
we are interested in the maximum matching in G((1 — a)n,p) ~ G(n/, (1 — a)C/n’) as n’
tends to infinity. This yields the expression on the left in (3). The expression on the right
comes from wanting this matching to have size at least n/2 —d = (1 — 2a)n’/(2 — 2).)

It also seems plausible that complete bipartite graphs should be the extremal example
for Hamiltonicity for the entire range of d. Clearly, the complete bipartite graph H,
defined above contains a cycle of length 2d, and no longer cycles. If an edge with both
endpoints in B is added to H,,, this can be used to construct a longer cycle. In this case,
however, it is not only isolated edges that are useful for constructing longer cycles: indeed,
any path (of length at most n — 2d) contained in B can be incorporated into a cycle.
Thus, a linear forest (that is, a collection of vertex-disjoint paths) containing n — 2d edges
within B can be used to construct a Hamilton cycle.

Conjecture 14. Let o € (0,1/2) be fixed, and let d = an. The sharp d-threshold for
Hamiltonicity coincides with the sharp threshold for G(n — d, p) to contain a linear forest
of size n — 2d.

In this case, we do not propose an explicit expression for the threshold since the size of
the largest linear forest in a sparse random graph has not been considered in the literature.
Studying this problem may be of independent interest. We expect the sharp d-threshold
for Hamiltonicity to differ from that for perfect matchings by a constant factor, with this
constant factor depending on o and tending to 1 as « tends to 0.

We also believe Conjecture 14 should hold for pancyclicity. Moreover, we have no
reason to believe that the lower bound on d in Corollary 5 is necessary, and think that a
statement analogous to Theorem 3 should hold for pancyclicity as well. Naturally, we also
believe that determining the sharp d-threshold for perfect matchings, Hamiltonicity and
pancyclicity in the critical window d = o(n) is a problem of interest.

Lastly, we want to consider the extension of our results to randomly perturbed directed
graphs (or digraphs for short), where we allow up to two edges between each pair of
vertices, one in each direction. We define thresholds analogously as above, where now
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the binomial random digraph D(n, p) is obtained by adding each of the possible n(n — 1)
edges independently at random with probability p, and instead of the minimum degree
of a graph we consider the minimum semidegree of the digraph, which is the minimum,
over all vertices, of the minimum between the number of edges leaving and the number
of edges arriving at each vertex. A classical result of Ghouila-Houri [29] shows that,
if §°(D) = d > n/2, then the (sharp) d-threshold for Hamiltonicity is 0. The sharp
0-threshold is again log n/n (as follows by a general coupling argument of McDiarmid [42]).
The Hamiltonicity of randomly perturbed digraphs when d = an with a € (0,1/2) fixed
was studied by Bohman, Frieze and Martin [12], who showed that the d-threshold in this
case is also 1/n (later, Krivelevich, Kwan and Sudakov [40] provided a new proof of this
fact). Just like in graphs, the thresholds present two critical windows around o = 0 and
a = 1/2, and it is thus natural to consider the d-thresholds in these regimes. The extension
of Theorem 2 to digraphs remains open.

Conjecture 15. Let d = n/2 —n, where 1/2 < n = n(n) = o(n). The d-threshold for
Hamiltonicity in randomly perturbed directed graphs is n/n?.

Very recently, Araujo, Balogh, Krueger, Piga and Treglown [8] considered different
orientations of Hamilton cycles in randomly perturbed digraphs. It would also be interesting
to extend their work to the corresponding critical windows.
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