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Abstract

Classical parking functions are a generalization of permutations that appear
in many combinatorial structures. Prime parking functions are indecomposable
components such that any classical parking function can be uniquely described as
a direct sum of prime ones. In this article, we extend the notion of primeness
to three generalizations of classical parking functions: vector parking functions,
(p, q)-parking functions, and two-dimensional vector parking functions. We study
their enumeration by obtaining explicit formulas for the number of prime vector
parking functions when the vector is an arithmetic progression, prime (p, q)-parking
functions, and prime two-dimensional vector parking functions when the weight
matrix is an affine transformation of the coordinates.

Mathematics Subject Classifications: 05A15

1 Introduction

Let N = {0, 1, 2, . . .} and set Nn = {0, 1, . . . , n−1} for n > 1. A classical parking function,
or simply a parking function, of length n is a sequence a = (a0, a1, . . . , an−1) ∈ (Nn)n whose
weakly increasing rearrangement, denoted (a(0), a(1), . . . , a(n−1)), satisfies a(i) 6 i for all
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i ∈ Nn. We call this weakly increasing sequence the set of order statistics of a, where
each a(i) is the i-th order statistic of a.

Parking functions can be described by a deterministic parking process, as follows.
Consider a parking lot with n parking spots on a one-way street labeled by Nn. A queue
of n cars enters the lot one by one, with car i having a preferred spot ai, which we call
its parking preference. For each i ∈ Nn, car i drives to its preferred spot ai and attempts
to park. If the spot is not available, the car continues on and parks in the next available
spot, if one exists. If there is no available spot, the car will exit the lot. We call this the
parking rule, and the list of preferences a = (a0, a1, . . . , an−1) is called a parking function
if all cars are able to park in the lot under the parking rule. It is well-known that parking
functions of length n are enumerated by (n+ 1)n−1, see [10, 17].

The inequalities satisfied by the order statistics can be restated as

#{j : aj 6 i} > i+ 1 for i = 0, . . . , n− 1, (1.1)

that is, a is a parking function if the number of aj 6 i is weakly bounded below by i+ 1
for each i.

It is convenient to represent parking functions as lattice paths with labeled vertical
steps. For n,m > 0, define L(n,m) to be the set of lattice paths from (0, 0) to (n,m)
consisting of north-steps (denoted by N) and east-steps (denoted by E). For a sequence
a ∈ (Nn)n, define the lattice path La ∈ L(n, n) to be the unique path whose i-th vertical
edge has x-coordinate a(i) for each i ∈ Nn. Then a is a parking function if and only if
La is a Catalan path, one which is weakly bounded below by the diagonal y = x. Then,
the vertical edges of La corresponding to a parking function a are labeled by Nn so that
the x-coordinate of the edge with the label j is equal to aj, and labels with the same
x-coordinate increase from bottom to top.

An increasing parking function a = (a0, . . . , an−1) satisfies a0 6 a1 6 · · · 6 an−1, and
therefore, ai = a(i). The set of increasing parking functions is in bijection with the set
of Catalan paths. See Figure 1 for an example. Consequently, the increasing parking
functions of length n are enumerated by the Catalan number Cn = 1
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Figure 1: (a) The increasing parking function a = (0, 0, 2, 3) and parking function b =
(2, 0, 3, 0) correspond to the same Catalan path La = Lb. (b) The parking function b is
represented by adding labels j ∈ N4 to the vertical edges of Lb such that j has x-coordinate
bj.
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Many mathematical objects can be uniquely decomposed into prime components, a
process commonly referred to as prime decomposition. For instance, consider a Catalan
path P ∈ L(n, n): There is a unique way to split this path into nontrivial components
P1, P2, . . . , Pk for some k > 1 such that each Pi touches the line y = x only at its
endpoints. We represent this split as a direct sum P = P1 ⊕ · · · ⊕ Pk, which should be
interpreted as concatenating the endpoints of the Pi’s from left to right. Furthermore,
each Pi can be written as {N} ⊕ P ′i ⊕ {E}, where P ′i is itself a Catalan path. We call
the components Pi the prime Catalan paths, so that any Catalan path is either empty
or can be written uniquely as a finite sequence of prime Catalan paths. This yields the
following decomposition for the class of Catalan paths C in terms of the class of prime
Catalan paths P :

C = ε ∪ P?, P = {N} ⊕ C ⊕ {E},

where ε is the trivial (empty) path of size 0, and the notation P? indicates the concate-
nation of any finite number of objects in P .

It is natural, then, to characterize the set of classical prime parking functions as those
whose corresponding Catalan paths are prime. Indeed, let a1,a2, . . . ,ak be a sequence
of prime parking functions, where for each i, Lai

touches the diagonal y = x only at
its endpoints. Assume the length of ai is di. For a sequence x = (x1, x2, . . . , xk) and
r ∈ N, define x + r = (x1 + r, x2 + r, . . . , xk + r), and let bi = ai + d1 + d2 + · · · + di−1
for i = 1, . . . , k. Then any shuffle of the sequences b1, b2, . . . , bk is a parking function.
Assume a is such a shuffle and let Bi be the set of positions of entries of bi in a. Then
in the labeled Catalan path representation of a, we have that La = La1 ⊕ · · · ⊕ Lak

, and
the labels on La are obtained by replacing the labels of vertical edges in Lai

with the
elements in Bi, where label j is replaced by the j-th order statistic of Bi.
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Figure 2: The parking function a = (0, 3, 1, 0) can be decomposed as a = a1 ⊕ a2 with
a1 = (0, 1, 0) and a2 = (0). Note that b1 = a1 = (0, 1, 0) and b2 = a2 + 3 = (3), and a is
a shuffle of b1 and b2. Here, B1 = {0, 2, 3} and B2 = {1}, where Bi is the set of positions
of bi in a, for i = 1, 2.

Conversely, given any parking function a, one can uniquely reconstruct the prime
components a1,a2, . . . ,ak by taking the prime decomposition of the lattice path La =
P1 ⊕ · · · ⊕ Pk, and, for i = 1, 2, . . . , k, associating a parking function ai to the prime
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segment Pi with edges relabeled with the label set N|ai|. In this sense, we write a as a
direct (shuffle) sum a = a1⊕· · ·⊕ak. See Figure 2 for an example of such a decomposition.

Definition 1. A sequence a = (a0, . . . , an−1) ∈ Nn is a prime parking function if

#{j : aj 6 i} > i+ 1 for i = 0, . . . , n− 2.

Translating back to the parking process, a parking function of length n is said to be
prime if at least i+ 2 cars want to park in i+ 1 spots (labeled 0, . . . , i) for 0 6 i 6 n− 2.
We denote the set of classical parking functions of length n by PF(n) and the set of
prime parking functions of length n by PPF(n). The following lemma provides a useful
equivalent characterization.

Lemma 2. Let a = (a0, . . . , an−1) ∈ Nn. Then a ∈ PPF(n) if and only if removing a 0
from a yields a parking function of length n− 1.

Proof. Suppose a ∈ PPF(n). Observe that the first inequality of Definition 1 is #{j :
aj 6 0} > 1, so 0 ∈ a. Let a′ = (a′0, . . . , a

′
n−2) be any sequence obtained by removing a

0 from a. For i = 0, . . . , n − 2, we have #{j : a′j 6 i} = #{j : aj 6 i} − 1 > i + 1, so
a′ ∈ PF(n− 1). Reversing the argument gives the other direction.

Prime parking functions have appealing enumerative properties, making them intrigu-
ing objects to study in their own right. The number of prime parking functions of length n
is (n−1)n−1 (see, for instance, [20, Exercise 5.49(f)]), and the number of prime increasing
parking functions is Cn−1.

The objective of this paper is to extend and characterize primeness to various families
of generalized parking functions. The first family is the set of vector parking functions,
defined as sequences whose order statistics are strictly bounded above by a vector u.
Vector parking functions are related to empirical distributions, parking polytopes, and
Gončarov polynomials [11, 21]. The second family is the set of (p, q)-parking functions,
a two dimensional generalization introduced by Cori and Poulalhon [4], which can be
interpreted as recurrent configurations in the sandpile model for complete bipartite graphs
with an extra root. In addition, we discuss primeness for a common generalization of
these two families–the two dimensional vector parking functions with weight matrix U ,
as introduced in [8, 14].

Our paper is structured as follows: In Section 2, we introduce and recall results for
vector parking functions, (p, q)-parking functions, and two-dimensional vector parking
functions. In Section 3, we propose a definition for prime u-parking functions that is
compatible with the concept of prime decomposition. We give closed formulas for the
enumeration of prime u-parking functions when u is an arithmetic sequence. In Section 4,
we propose an analogous definition for prime (p, q)-parking functions and provide closed
formulas for their enumeration. Additionally, we generalize the results to two-dimensional
vector parking functions with weight matrix U defined by an affine transformation of the
coordinates. Finally, we list some open questions in Section 5.
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2 Definitions

2.1 Vector parking functions

We now consider a parking process where each parking spot can have a nonnegative
capacity. Suppose the parking spots are labeled by N, and let u = (u0, . . . , un−1) with
1 6 u0 6 · · · 6 un−1 encode the capacities of the parking spots, such that the capacity of
spot i is the multiplicity of i + 1 in the vector u, notated as mi+1(u), for 0 6 i 6 n− 1.
In particular,

∑
i>0mi+1(u) = n.

A u-parking function can be described via a parking process, as follows. Let a =
(a0, . . . , an−1) be a list of parking preferences with ai > 0 for each i ∈ Nn. A queue
of n cars with parking preferences given by a enters the lot, and each car drives to its
preferred spot and attempts to park. A car may park at a spot j if there are fewer than
mj+1(u) cars already parked there. Otherwise it will attempt the next spot j + 1, and so
on. If there are no available spots past spot j, the car must exit the lot. We say that a
is a u-(vector) parking function if all cars are able to park under this parking rule. See
Example 3.

Example 3. Let n = 5, and suppose u = (1, 1, 3, 3, 9) and a = (6, 0, 1, 0, 0). Then we
have m1(u) = 2,m3(u) = 2,m9(u) = 1, and mj(u) = 0 for any j 6= 1, 3, 9. Thus there
are 3 non-empty spots with total capacity 5: spots 0, 2, and 8 with capacities 2, 2, and
1, respectively. The cars with parking preferences given by a then park as follows: Car 0
parks in spot 8, car 1 parks in spot 0, car 2 parks in spot 2, car 3 parks in spot 0, and
car 4 parks in spot 2.

Similar to the definition of parking functions that satisfy the inequalities in (1.1),
u-vector parking functions can also be defined by a set of inequalities.

Definition 4. Let u = (u0, . . . , un−1) be a weakly increasing sequence of positive integers.
We say a sequence a = (a0, . . . , an−1) ∈ Nn with order statistics (a(0), . . . , a(n−1)) is a u-
parking function if a(i) < ui for each 0 6 i 6 n − 1. In other words, to be a u-parking
function, the number of cars that prefer the first ui spots need to be at least i+ 1:

#{j : aj < ui} > i+ 1, for i = 0, . . . , n− 1. (2.1)

Note that when u = (1, 2, . . . , n), the definition of a u-vector parking function coin-
cides with that of a classical parking function.

Observe that the number of effective inequalities in Definition 4 is the number of
distinct values in the vector u. Moreover, for i = n − 1, the inequality must be an
equality.

The set of increasing u-parking functions corresponds to the set of u-parking functions
whose entries are weakly increasing. Denote the set of u-parking functions and their
increasing counterpart by PF(u) and IPF(u), respectively. For readability, we will also
sometimes write PFn(u) and IPFn(u) to emphasize the length n.

For a fixed vector u = (u0, . . . , un−1) with 1 6 u0 6 · · · 6 un−1, let Lu ∈ L(un−1, n)
be the unique path with vertical steps having x-coordinates u0, . . . , un−1. Define the set
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of lattice paths with right boundary u to be the set of paths P ∈ L(un−1, n) that lie to
the left of Lu and whose vertical edges never coincide with the vertical edges of Lu. In
particular, if a has order statistics (a(0), a(1), . . . , a(n−1)), then La has right boundary u if
and only if a(i) < ui for 0 6 i 6 n− 1. From the equivalence with Ineq. (2.1), we obtain
that a is a u-parking function if and only if La has right boundary u. See Figure 3 for
an example.

It is immediate that the set of increasing u-parking functions is equivalent to the set
of lattice paths with right boundary u, which has been well-studied, for example, in [15,
Chapter 2].

As in the classical case, u-parking functions can be represented by labeled lattice paths
with right boundary u by placing labels on the vertical edges to correspond to the order
of the entries in the parking function.

0 1 2 3 4 5 6 7 8 9
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1

3

4

2

0

Figure 3: We revisit Example 3. For u = (1, 1, 3, 3, 9), the lattice path Lu =
ENNEENNEEEEEEN has vertical edges given by u. For a = (6, 0, 1, 0, 0), the
labeled lattice path La = NNNENEEEEENEEE has right boundary u, confirming
that a is a u-parking function.

For general u, the number of u-parking functions is given by a determinantal formula
[11, 21], which is not easy to evaluate. When u is an arithmetic progression, it is well-
known that the formulas have a simple form.

Proposition 5. Let u be given by the arithmetic progression ui = a+ bi with a, b ∈ N.

1. The number of u-parking functions is #PF (u) = a(a+ bn)n−1.

2. The number of increasing u-parking functions is

#IPF (u) =
a

a+ n(b+ 1)

(
a+ n(b+ 1)

n

)
.

When a = b = 1, Proposition 5 recovers the enumeration for the classical case.
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2.2 (p, q)-parking functions

Cori and Poulalhon introduced (p, q)-parking functions for fixed positive integers p and
q [4]. We will follow an equivalent formulation by Snider and Yan [18, Theorem 3.4],
extending the definition to all p, q ∈ N.

Definition 6. For p, q ∈ N, let a = (a0, . . . , ap−1) and b = (b0, . . . , bq−1) be two vectors
in Np×Nq with (a(0), . . . , a(p−1)) and (b(0), . . . , b(q−1)) the corresponding increasing rear-
rangements. Let Lb ∈ L(p, q) be the unique path whose vertical steps have x-coordinates
b(0), . . . , b(q−1). Let L⊥a ∈ L(p, q) be the unique path whose horizontal steps have y-
coordinates a(0), . . . , a(p−1). Then we say that (a, b) is a (p, q)-parking function if Lb is
weakly above L⊥a .

The symbol “⊥” is used since L⊥a could be viewed as the reflection of La across the
line y = x. See Figure 4 for an example.

Note that if pq = 0, by convention there is a unique (p, q)-parking function: when
p = 0 and q > 0, we take a = ∅, b = 0q, and define Lb ∈ L(p, q) to be the vertical line
from (0, 0) to (0, q) with L⊥a = ∅; when q = 0 and p > 0, then we take b = ∅, a = 0p, and
define L⊥a ∈ L(p, q) to be the horizontal line from (0, 0) to (p, 0) with Lb = ∅.

As with classical parking functions, an increasing (p, q)-parking function is a (p, q)-
parking function whose entries (a0, . . . , ap−1) and (b0, . . . , bq−1) are weakly increasing. We
denote the sets of (p, q)-parking functions by PF(p, q) and the increasing ones by IPF(p, q).
An increasing (p, q)-parking function (i, j) can be identified with its corresponding pair of
lattice paths L⊥i and Lj . A (p, q)-parking function (a, b) can be represented by labeling
the edges of L⊥a and Lb as follows. The horizontal edges of L⊥a are labeled with elements
of Np, where edge i has y-coordinate ai, with labels increasing from left to right for edges
with the same y-coordinate. Similarly, the vertical edges of Lb are labeled with elements
of Nq, where edge j has x-coordinate bj, with labels increasing from bottom to top for
edges with the same x-coordinate. See Example 8 for an example.

Definition 6 is equivalent to the following characterization.

Lemma 7. The pair (a, b) ∈ Np×Nq with corresponding order statistics (a(0), . . . , a(p−1))
and (b(0), . . . , b(q−1)) is a (p, q)-parking function if and only if the following hold:

i) #{j : aj < i+ 1} > b(i) for i = 0, . . . , q − 1, and

ii) #{j : bj < i+ 1} > a(i) for i = 0, . . . , p− 1.

Proof. Let (a, b) ∈ Np×Nq with order statistics (a(0), . . . , a(p−1)) and (b(0), . . . , b(q−1)).
First, if (a, b) is not a (p, q)-parking function, then there exist nonnegative integers c1 < c2
and r1 < r2 such that L⊥a passes through (c1, r2) and Lb passes through (c2, r1). This
implies that a(c1) > r2 and b(r1) > c2. In turn, this forces

#{j : bj < c2} 6 r1 < r2 6 a(c1) 6 a(c2−1),

so that condition ii) of the lemma is not satisfied.
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Conversely, if the inequalities in the lemma are not satisfied, assume without loss of
generality that there exists some 0 6 i 6 q − 1 such that #{j : aj < i + 1} < b(i).
In particular, this implies that a(b(i)−1) > i + 1, so that L⊥a passes through the point
(b(i) − 1, i + 1). However, Lb passes through the point (b(i), i) by construction, so Lb

must not lie weakly above L⊥a , i.e. (a, b) is not a (p, q)-parking function. Thus the two
conditions are equivalent.

Example 8. For (p, q) = (3, 4), the pair a = (3, 0, 3) and b = (1, 0, 1, 0) is a (p, q)-parking
function whose lattice path representations L⊥a and Lb are shown in Figure 4(a) with the
labels on the edges representing the indices of the corresponding elements. On the other
hand, the pair a′ = (0, 3, 3) and b′ = (0, 0, 2, 2) is not a (p, q)-parking function since L⊥a′

and Lb′ cross, as shown in Figure 4(b).

(a)
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4

0 1 2 3

1

0 2

1
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2

(b)

0 3 3

0

0

2

2

0

1

2

3

4

0 1 2 3

Figure 4: (a) For the pair a = (3, 0, 3) and b = (1, 0, 1, 0), Lb = NNENNEE is weakly
above L⊥a = ENNNEEN , confirming that (a, b) is a (3, 4)-parking function. (b) For
the pair a′ = (0, 3, 3) and b′ = (0, 0, 2, 2), Lb′ = NNEENNE is not weakly above
L⊥a′ = ENNNEEN , and thus (a′, b′) is not a (3,4)-parking function.

In [4], Cori and Poulalhon computed that the number of (p, q)-parking functions is

#PF(p, q) = (p+ q + 1)(p+ 1)q−1(q + 1)p−1,

and the number of increasing (p, q)-parking functions, with n = p + q, is the Narayana
number

#IPF(p, q) =
1

n+ 1

(
n+ 1

p

)(
n+ 1

q

)
.

Note that the counting formulas above also apply in the boundary case pq = 0, where
there is a unique (p, q)-parking function that is trivially increasing.

2.3 Two-dimensional vector parking functions

As will be seen further on, (p, q)-parking functions are a special case of the more gen-
eral set of two-dimensional vector parking functions, also known as U -parking functions.
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U -parking functions originated in the study of bivariate Gončarov polynomials, which
are solutions to the Gončarov interpolation problem [8]. Gončarov polynomials {gn}n>0

provide a natural algebraic tool to enumerate the u-parking functions, with the basic re-
lations that #PF(u) = gn(x;x−u0, . . . , x−un−1); see [11]. Similarly, one can consider the
Gončarov interpolation problem in higher dimensions; in two dimensions, a basis for the
set of solutions is given by bivariate Gončarov polynomials associated with a certain set
of nodes U ⊂ N2. Then, the corresponding combinatorial objects are the two-dimensional
vector parking functions bounded by entries of the weight matrix given by U . The exact
definition is stated below.

For p, q ∈ N, let U ⊂ N2 be a set of nodes U = {zk,` = (uk,`, vk,`) : (0, 0) 6 (k, `) 6
(p, q)}. Define Gp,q(U) to be the directed graph whose vertices are the lattice points
{(k, `) : (0, 0) 6 (k, `) 6 (p, q)} and whose edges are all unit-length north-steps and east-
steps connecting its vertices. Every edge e of Gp,q(U) is assigned a weight wt(e) given
by

wt(e) =

{
uk,` if e is an east step from (k, `) to (k + 1, `),

vk,` if e is a north step from (k, `) to (k, `+ 1),

as shown in Figure 5(a):

(a)
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(b)
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3
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Figure 5: (a) For U = {zk,` = (uk,`, vk,`) : (0, 0) 6 (k, `) 6 (3, 4)}, we show the edge
weights on the directed graph G3,4(U). Subsequent figures will omit the arrows. (b) We
show the path P = NNEENEN ∈ L(3, 4) and the weights on the edges of G3,4(U ) for
U from Example 10. The edge weights on P are (wt(e1), . . . ,wt(e7)) = (1, 1, 3, 3, 3, 4, 4),
corresponding to the weight sequences (3, 3, 4) and (1, 1, 3, 4) when restricted to the hor-
izontal and vertical edges, respectively.

For a lattice path P ∈ L(p, q), we write P = e1e2 . . . ep+q, where ei ∈ {E,N}, to record
the sequence of steps of P . Let (a, b) be a pair of nonnegative integer sequences with
a = (a0, . . . , ap−1) and b = (b0, . . . , bq−1) with respective order statistics a(0) 6 · · · 6 a(p−1)
and b(0) 6 · · · 6 b(q−1). Then we say that the pair (a, b) is bounded by P with respect to
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U if, for r = 1, . . . , p+ q,{
a(i) < wt(er) if er is the i-th east step of P, or

b(j) < wt(er) if er is the j-th north step of P.

It should be noted that the bound is strict, similar to the concept of the right boundary.
See Example 10 for an example.

We now provide the definition of two-dimensional vector parking functions as estab-
lished in [8].

Definition 9 ([8, Definition 3]). Suppose U = {zk,` = (uk,`, vk,`) : (0, 0) 6 (k, `) 6
(p, q)} ⊂ N2 is a set of nodes satisfying uk,` 6 uk′,`′ and vk,` 6 vk′,`′ when k 6 k′ and
` 6 `′. A pair of sequences (a, b) ∈ Np × Nq is a two-dimensional U -parking function
if and only if (a, b) are bounded by some lattice path P ∈ L(p, q) with respect to U .
We refer to U as the weight matrix. We denote the sets of two-dimensional U -parking
functions by PF(2)(U ) and the increasing ones by IPF(2)(U). To highlight the dimensions
of U , we may also use the notation PF(2)

p,q(U) and IPF(2)
p,q(U).

Note that the lattice path, if it exists, is not necessarily unique.

Example 10. Let (p, q) = (3, 4), and U = {zk,` = (`+ 1, k+ 1) : (0, 0) 6 (k, `) 6 (3, 4)}.
Consider the pair a = (2, 3, 2) and b = (3, 0, 1, 0). The path P = NNEENEN , shown in
Figure 5(b), has horizontal and vertical edge weights (3, 3, 4) and (1, 1, 3, 4), which bound
the order statistics of a and b, respectively. Thus (a, b) is a U -parking function.

On the other hand, consider a′ = (4, 3, 3) and b′ = (2, 0, 2, 1). Suppose there exists a
lattice path P ′ ∈ L(3, 4) whose horizontal steps have weights strictly greater than (3, 3, 4)
with respect to U . Then P ′ must begin with three N steps, making the weights on its
first three vertical steps 1, which means the horizontal weights of P ′ cannot be strictly
greater than (0, 1, 2, 2). Thus (a′, b′) is not a U -parking function as there is no lattice
path bounding (a′, b′) with respect to U .

In [18], Snider and Yan showed that (p, q)-parking functions are in fact two-dimensional
U -parking functions. We state their result as follows.

Proposition 11 ([18, Theorem 3.1]). Set U0 = {zk,` = (` + 1, k + 1) : (0, 0) 6 (k, `) 6
(p, q)}. A pair (a, b) ∈ Np × Nq is a (p, q)-parking function if and only if (a, b) ∈
PF(2)

p,q(U0).

In general, the exact value of the number of U -parking functions is hard to compute.
However, when U is given by an affine linear transformation, an explicit formula is known.

Proposition 12 ([14, Corollary 4.2]). Fix p, q ∈ N. Let U = {zk,` = (uk,`, vk,`) : (0, 0) 6
(k, `) 6 (p, q)} be given by the affine linear function(

uk,`
vk,`

)
=

(
a b
c d

)(
k
`

)
+

(
s
t

)
,
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with a, b, c, d, s, t ∈ N. Then the number of increasing U -parking functions of size (p, q) is

#IPF(2)
p,q(U) =

1

p!q!
(st+ tbq + scp)(s+ ap+ bq + 1)(p−1)(t+ cp+ dq + 1)(q−1) , (2.2)

where x(n) = x(x+ 1) · · · (x+ k − 1) = k!
(
x+k−1

k

)
. The number of U -parking functions is

#PF(2)
p,q(U) = (st+ tbq + scp)(s+ ap+ bq)p−1(t+ cp+ dq)q−1. (2.3)

Remark 13. We explain (2.2) and (2.3) for the case pq = 0. When p = 0 and q > 0,
we have (a, b) = (a, ∅), where a is a u1-vector parking function associated to the vector
u1 = (u0, . . . , uq−1) with ui = s + ai, and the formulas reduce to those in Proposition 5,
with the convention that x(−1) := 1/(x − 1). The p > 0 and q = 0 case is symmetric.
Finally, when p = q = 0, both formulas equal 1, counting the unique parking function
(a, b) = (∅, ∅).

3 Prime vector parking functions

Recall that one of the characterizations of a prime classical parking function is the re-
quirement that the weak order statistic inequalities are made strict, as per Definition 1.
We extend this notion to define prime u-parking functions, by making the inequalities in
Ineq. (2.1) strict.

Definition 14. Let u = (u0, u1, . . . , un−1) be a weakly increasing vector of nonnegative
integers. A u-parking function is prime if

#{j : aj < ui} > i+ 1 for i = 0, 1, . . . , n− 2 . (3.1)

In particular, if n = 1, any u-parking function is prime.

Denote the set of prime u-parking functions by PPFn(u) and the set of increasing
ones by IPPFn(u). Analogous to Lemma 2, there is an equivalent description for prime
vector parking functions.

Lemma 15. Let n > 2, u = (u0, u1, . . . , un−1), and u1 = (u0, u1, . . . , un−2). For a ∈ Nn,
a ∈ PPFn(u) if and only if removing any entry less than u0 from a yields a u1-parking
function of length n− 1.

Proof. Suppose a ∈ PPFn(u). Since #{j : aj < u0} > 1, there is an entry of a less than
u0. Let a′ = (a′0, . . . , a

′
n−1) be any sequence obtained by removing such an entry. For

i = 0, . . . , n− 2, we have #{j : a′j < ui} = #{j : aj < ui}− 1 > i+ 1, so a′ ∈ PFn−1(u1).
Reversing the argument gives the other direction.

Comparing Definition 4 and Definition 14, we get another characterization of prime
u-parking functions.
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Proposition 16. Let n > 1, u = (u0, u1, . . . , un−1), and u′ = (u0, u0, u1, . . . , un−2). Then
a vector a is a prime u-parking function if and only if it is a u′-parking function.

Proof. It is obvious for n = 1. For n > 2, rewriting Ineq. (3.1) as #{j : aj < ui} > i+ 2
for all i ∈ {0, 1, . . . , n − 2}, we reindex to obtain #{j : aj < ui−1} > i + 1 for all
i ∈ {1, . . . , n − 1}, which coincides with the set of inequalities defining a u′-parking
function.

From the above lemma, there is an immediate equivalence between prime u-parking
functions and u′-parking functions, as well as for their increasing counterparts:

PPFn(u)←→ PFn(u′)

IPPFn(u)←→ IPFn(u′)

where
u = (u0, u1, . . . , un−1), u′ = (u0, u0, u1, . . . , un−2).

3.1 Decomposition into prime components

We justify the definition of prime vector parking functions by giving an explicit description
of how a u-parking function decomposes into prime components.

Recall that increasing u-vector parking functions can be represented by lattice paths
with right boundary u, and u-vector parking functions are obtained by labeling the
vertical edges of the lattice path. We first examine the lattice paths that correspond to
prime u-vector parking functions; we refer to them as u-prime lattice paths, or lattice
paths that are prime with respect to right boundary u. Define the set of points Iu =
{(0, 0), (u0, 1), (u1, 2), . . . , (un−1, n)}. The u-prime lattice paths in L(un−1, n) are precisely
those paths that contain points in Iu only at the beginning and ending vertices (namely,
Iu ∩ P = {(0, 0), (un−1, n)}). In particular, the u-prime components of a given lattice
path P ∈ L(un−1, n) with the right boundary u are associated to the portions of P that
lie between the points in the set Iu ∩ P .

Assume Iu ∩P = {(0, 0), (ui1 , i1 + 1), . . . , (uik , ik + 1)} where 0 < i1 < i2 < · · · < ik =
un−1 for some k > 1 is the set of points in Iu on the path P . Let P1 be the portion of P
from (0, 0) to (ui1 , i1 + 1) and Pj be the portion of P from (uij−1

, ij−1 + 1) to (uij , ij + 1)

for j = 2, . . . , k. Define u(1) = (u0, u1, . . . , ui1), and for 2 6 j 6 k, define

u(j) = (uij−1+1 − uij−1
, uij−1+2 − uij−1

, . . . , uij − uij−1
).

Then P = P1⊕P2⊕· · ·⊕Pk is a concatenation of lattice paths such that Pj is a u(j)-prime
lattice path for 1 6 j 6 k. Indeed, P1 ∈ L(ui1 , i1 + 1) is prime with respect to the right
boundary u(1), and, for j = 2, . . . , k, viewing the point (uij−1

, ij−1 +1) as the origin (0, 0),
we confirm that Pj ∈ L(uij − uij−1

, ij − ij−1) is prime with respect to the right boundary

u(j).
Now let i be an increasing u-parking function with corresponding lattice path (with

right boundary u) P . Then i can be decomposed as a direct sum of prime increasing
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vector parking functions i = i(1)⊕ i(2)⊕ · · · ⊕ i(k) where i(j) ∈ IPPF(u(j)) is the weakly
increasing sequence corresponding to the lattice path Pj, for 1 6 j 6 k. See Example 17.

Example 17. Let u = (1, 2, 4, 5, 7, 8) with Lu drawn in blue, and let i = (0, 0, 3, 3, 4, 7) ∈
IPF(u) with Li drawn in red. We mark the points in Iu with (solid or empty) circles to
show the prime decomposition of i: The prime components correspond to portions of the
path separated by the (solid blue) points in the set Iu∩Li = {(0, 0), (u1, 2), (u4, 5), (u5, 6)}.
For this example, ignore the sequence a and the labels on the lattice paths.

2

4

1

5

3

0

= ⊕ ⊕
0

1

0

2

1

0

u = (1, 2, 4, 5, 7, 8)

i = (0, 0, 3, 3, 4, 7)

a = (7, 3, 0, 4, 0, 3)

u(1) = (1, 2)

i(1) = (0, 0)

a(1) = (0, 0)

u(2) = (2, 3, 5)

i(2) = (1, 1, 2)

a(2) = (1, 2, 1)

u(3) = (1)

i(3) = (0)

a(3) = (0)

General u-parking functions are obtained by labeling the vertical edges of a lattice
path P ∈ L(un−1, n) with the right boundary u, with the property that labels along each
of the vertical edges with the same x-coordinates increase from bottom to top. Similar to
the classical case, any u-vector parking function can be viewed as a direct (shuffle) sum
of prime vector parking functions by the following steps.

Let a be a u-parking function with corresponding labeled lattice path P . Ignoring the
labeling, decompose P as the concatenation P1 ⊕ P2 ⊕ · · · ⊕ Pk as described above. For
1 6 i 6 k, let Bi be the set of labels on Pi. Replace the labels in Bi by {0, 1, . . . , |Bi|−1},
following the same numerical order, to obtain a lattice path P ′i whose vertical edges are
labeled by N|Bi| and let a(i) be the u(i)-vector parking function corresponding to the
labeled lattice path P ′i . Then we write

a = a(1) ⊕ a(2) ⊕ · · · ⊕ a(k).

Another way to obtain a(i) is to let b(i) be the subsequence of a restricted to the positions
in Bi and take a(i) = b(i) − upi−1, where pi =

∑
j<i |Bj|.

Example 18. For u = (1, 2, 4, 5, 7, 8) and a = (7, 3, 0, 4, 0, 3) ∈ PF(u), the increasing
rearrangement of a is i in Example 17. The labels on the vertical edges of La = Li are
(2, 4, 1, 5, 3, 0) from bottom to top, so that B1 = {2, 4}, B2 = {1, 3, 5} and B3 = {0}.
Therefore b(1) = (0, 0), b(2) = (3, 4, 3) and b(3) = (7). It follows that a(1) = b(1) = (0, 0),
a(2) = b(2) − u1 = (1, 2, 1) and a(3) = b(3) − u4 = (0). The labeling on the lattice path
La is indicated in the figure in Example 17.
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3.2 Enumeration of prime u-parking functions when u is an arithmetic pro-
gression

In this subsection we derive explicit formulas for prime u-parking functions when u =
(u0, . . . , un−1) is an arithmetic sequence given by ui = a+bi. First we consider IPPFn(u),
the set of increasing prime u-parking functions.

Theorem 19. Fix n > 1 and let a, b ∈ N. The number of increasing prime u-parking
functions for u = (u0, . . . , un−1) given by ui = a+ bi is

#IPPFn(u) =
a− b
n

(
a+ (b+ 1)(n− 1)

n− 1

)
+
b

n

(
(b+ 1)(n− 1)

n− 1

)
. (3.2)

When a = b = 1, Theorem 19 recovers the enumeration for the classical case IPPF(u) =
IPPF(n) = Cn−1.

Proof. Recall that α is an increasing prime u-parking function if and only if α is an
increasing u′-parking function for u′ = (a, a, a + b, a + 2b, . . . , a + (n − 2)b). For each
i ∈ {0, 1, . . . , a− 1}, by Proposition 5, the number of α = (a0, a1, . . . , an−1) ∈ IPPFn(u)
with a0 = i is

mn,i :=
a− i

a+ (n− 1)(b+ 1)− i

(
a+ (n− 1)(b+ 1)− i

n− 1

)
=

(
1− K

K + a− i

)(
K + a− i
n− 1

)
=

(
K + a− i
n− 1

)
− K

n− 1

(
K + a− i− 1

n− 2

)
where K = (n− 1)(b+ 1). Next, we have

a−1∑
i=0

(
K + a− i
n− 1

)
− K

n− 1

(
K + a− i− 1

n− 2

)

=
K+a∑

i=K+1

(
i

n− 1

)
− K

n− 1

K+a−1∑
i=K

(
i

n− 2

)
by reindexing

=

(
K+a∑
i=0

(
i

n− 1

)
−

K∑
i=0

(
i

n− 1

))
− K

n− 1

(
K+a−1∑
i=0

(
i

n− 2

)
−

K−1∑
i=0

(
i

n− 2

))

=

(
K + a+ 1

n

)
−
(
K + 1

n

)
− K

n− 1

((
K + a

n− 1

)
−
(

K

n− 1

))
by the Hockey-stick identity

=

(
K + a+ 1

n

)
− K

n− 1

(
K + a

n− 1

)
+

K

n− 1

(
K

n− 1

)
−
(
K + 1

n

)
.

The above can be simplified using(
K + a+ 1

n

)
− K

n− 1

(
K + a

n− 1

)
=
a− b
n

(
K + a

n− 1

)
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and

K

n− 1

(
K

n− 1

)
−
(
K + 1

n

)
=
b

n

(
K

n− 1

)
.

Combining the above, we get

a−1∑
i=0

(
K + a− i
n− 1

)
− K

n− 1

(
K + a− i− 1

n− 2

)
=
a− b
n

(
K + a

n− 1

)
+
b

n

(
K

n− 1

)
as desired.

Next we enumerate PPFn(u), the set of all prime u-parking functions when u is given
by an arithmetic progression.

Theorem 20. Fix n > 1 and let a, b ∈ N. The number of prime u-parking functions for
u = (u0, . . . , un−1) given by ui = a+ bi is

#PPFn(u) = (a− b)
[
a+ (n− 1)b

]n−1
+ bn(n− 1)n−1. (3.3)

Proof. Following Proposition 16, we count the number of u′-parking functions where
u′ = (a, a, a + b, a + 2b, . . . , a + (n − 2)b). For a u′-parking function a, let a1 be the
subsequence of a consisting of entries smaller than a and a2 be the subsequence of a
consisting of entries larger than or equal to a.

Let k := |a1|. Then, notice that a1 ∈ {0, 1, . . . , a− 1}k and a2 ∈ PF(a+ (k− 1)b, a+
kb, . . . , a+ (n− 2)b). Since every entry in a2 is at least a, we have that a2 − a is a u(k)-

parking function, where u(k) = ((k − 1)b, kb, . . . , (n− 2)b). Since u(k) = (u
(k)
0 , . . . , u

(k)
n−k)

is given by the arithmetic progression u
(k)
i = a′ + bi with a′ = (k − 1)b, the number of

choices for a2 is #PFn−k(u(k)) = (k − 1)b(nb− b)n−k−1. Thus the number of choices for
(a1,a2) such that a ∈ PPFn(u′) is ak(k − 1)b(nb− b)n−k−1.

As k = |a1| > 1, summing over 1 6 k 6 n, we obtain that #PPF(u) is equal to

n∑
k=1

(
n

k

)
ak(k − 1)b(nb− b)n−k−1 =

1

n− 1

(
n∑

k=1

(
n

k

)
kak(nb− b)n−k −

n∑
k=1

(
n

k

)
ak(nb− b)n−k

)

=
1

n− 1

(
na(a + nb− b)n−1 − (a + nb− b)n + (nb− b)n

)
= bn(n− 1)n−1 + (a− b)(a + nb− b)n−1.

When a = b = 1, Theorem 20 recovers the enumeration for the classical case PPFn(u) =
PPF(n) = (n− 1)n−1.

Remark 21. For a vector u = (u0, u1, . . . , un−1), define the difference vector of u by

∆(u) := (u0, u1 − u0, u2 − u1, . . . , un−1 − un−2).

Let u be given by ui = a + bi. For u′ = (u0, u0, u1, . . . , un−2), we have ∆(u′) =
(a, 0, b, b, . . . , b). Then Theorem 20 could alternatively be proven by applying [23, Theo-
rem 3] to ∆(u′).
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4 Prime (p, q)-parking functions

In this section, we propose a definition for prime (p, q)-parking functions, which will serve
as the (p, q)-analog of prime classical parking functions. Our motivation for this definition
is to obtain a unique decomposition of a (p, q)-parking function into prime components.

We always assume that at least one of p, q is nonzero unless otherwise specified, but
for technical reasons, we allow the case pq = 0 in the following definition.

Definition 22. Let p, q > 1 and let (a, b) ∈ Np × Nq be a (p, q)-parking function with
order statistics a(0) 6 · · · 6 a(p−1) and b(0) 6 · · · 6 b(q−1) for a and b, respectively. Then
(a, b) is prime if it satisfies the conditions

i) #{j : aj < i} > b(i) for 1 6 i 6 q − 1, and

ii) #{j : bj < i} > a(i) for 1 6 i 6 p− 1.

If p = 0, then we say that (∅, b) ∈ N0 × Nq is prime if and only if q = 1 and b = (0).
If q = 0, then we say that (a, ∅) ∈ Np × N0 is prime if and only if p = 1 and a = (0).

We let PPF(p, q) denote the set of prime (p, q)-parking functions, and let IPPF(p, q)
denote the set of increasing prime (p, q)-parking functions. Note that the above inequal-
ities imply that entries in a and b are bounded by q and p, respectively. Furthermore,
it follows immediately from the definition that (a, b) is a prime (p, q)-parking function if
and only if (b,a) is a prime (q, p)-parking function.

As in the classical case, there are a few equivalent ways of defining primeness for
(p, q)-parking functions, which we provide in the following proposition.

Proposition 23. The following are equivalent.

1. (a, b) is a prime (p, q)-parking function.

2. The lattice paths L⊥a and Lb have exactly two common points: (0, 0) and (p, q).

3. If p, q > 1, removing a 0 entry from both a and b yields a (p − 1, q − 1)-parking
function.

Proof. If p = 0, then both (1) and (2) occur if and only if q = 1. In this case, the pair
(a, b) = (∅, (0)) is the only prime (0, 1)-parking function, and (a, b) = (∅, (0)) is also the
only pair in N0×N1 whose corresponding lattice paths L⊥a , Lb ∈ L(0, 1) share exactly two
common points. The case q = 0 is similar. Thus (1) and (2) are equivalent for pq = 0.

We now prove the equivalences in the case p, q > 1. Let (a, b) ∈ Np×Nq. First assume
that (a, b) is a prime (p, q)-parking function. We will show that (2) holds. Assume for
the sake of contradiction that L⊥a and Lb intersect at some lattice point (c, r) 6= (0, 0)
with c < p or r < q. By symmetry, it suffices to consider the case where 0 < c < p. If
r = 0, we must have b(0) > c > 0. But this then implies that #{j : bj < 1} = 0 6 a(0),
contradicting (ii.) of Definition 22.

Now assume that r > 1. We must then have a(c−1) 6 r and b(r−1) 6 c. We examine
the following two cases for r.
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i. If r < q, then we must have a(c) > r and b(r) > c. Thus #{j : aj < r} 6 c 6 b(r),
contradicting i) of Definition 22.

ii. If r = q, then we must have a(c) = · · · = a(p−1) = q, so that #{j : bj < p− 1} 6 q =
a(p−1), contradicting ii) of Definition 22.

Thus (1)⇒ (2). Now assume that (a, b) ∈ Np×Nq is a non-prime, (p, q)-parking function.
Then without loss of generality, there exists some 0 6 i < q−1 such that i) of Definition 22
doesn’t hold, so that we have #{j : aj < i} 6 b(i). On the other hand, since (a, b) is
a parking function, we also have b(i) 6 #{j : aj < i + 1}. Thus a(b(i)) > i + 1, while

a(b(i)−1) < i+ 1, so L⊥a necessarily passes through the point (b(i), i+ 1). But Lb also passes
through (b(i), i + 1) by construction, so (2) is not satisfied. Therefore (2) ⇒ (1), proving
the first equivalence.

We now prove that conditions (1) and (3) are equivalent. First note that if (a, b) is a
prime (p, q)-parking function, then it follows immediately from Definition 22 that each of
a and b contains a 0 entry. Let (a′, b′) ∈ Np−1 × Nq−1 be any pair obtained by removing
a 0 from both a and b. Then a′(i) = a(i+1) for each 0 6 i 6 p− 2, and b′(i) = b(i+1) for each
0 6 i 6 q − 2. Furthermore, note that

#{j : a′j < i+ 1} = #{j : aj < i+ 1}− 1 and #{j : b′j < i+ 1} = #{j : bj < i+ 1}− 1

for any i > 0. We then have that

#{j : aj < i+ 1} − 1 > b(i+1) − 1, which implies #{j : a′j < i+ 1} > b(i+1) = b′(i), and

#{j : bj < i+ 1} − 1 > a(i+1) − 1, which implies #{j : b′j < i+ 1} > a(i+1) = a′(i), (4.1)

so that (a′, b′) is a (p − 1, q − 1)-parking function. Reversing the argument also proves
that if (a′, b′) is a (p− 1, q− 1)-parking function and (a, b) is obtained by prepending a 0
entry to each of a′ and b′, then the resulting pair (a, b) is a prime (p, q)-parking function.
Thus (1) and (3) are equivalent.

From Proposition 23, by comparing Ineq. (4.1) to Definition 9, we obtain the following
useful equivalence, illustrated in Example 25.

Proposition 24. Let U ′
0 = {(uk,`, vk,`) : (0, 0) 6 (k, `) 6 (p, q)} be defined by

(u′k,`, v
′
k,`) =

{
(`, k) if k, ` > 1

(1, 1) if k` = 0.

The prime (p, q)-parking functions are exactly the two-dimensional U ′
0-parking functions,

and the same for their increasing counterparts. That is,

PPF(p, q) = PF(2)
p,q(U

′
0) and IPPF(p, q) = IPF(2)

p,q(U
′
0).
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Proof. Let (a′, b′) ∈ PF(p− 1, q− 1) be the (p− 1, q− 1) parking function obtained from
(a, b) by removing a 0 from each vector according to Proposition 23, so that a′i = ai+1

for 0 6 i 6 p − 2 and b′j = bj+1 for 0 6 j 6 q − 2. By Proposition 11, we have that

(a′, b′) ∈ PF
(2)
p−1,q−1(U0), where U0 = {(uk,`, vk,`) : (0, 0) 6 (k, `) 6 (p− 1, q− 1)} is given

by

(uk,`, vk,`) = (k + 1, `+ 1) =

{
(u′k,` + 1, v′k,` + 1) k, ` > 1

(u′k,`, v
′
k,`) k` = 0.

Let P ′ ∈ L(p− 1, q− 1) be a path which bounds (a′, b′) with respect to U0, and consider
the path P = {EN} ⊕ P ′ ∈ L(p, q). The weights of all but the first two edges of P
lie off the x = 0 and y = 0 axes, and as the x- and y-coordinates of those edges are
incremented by 1 while (u′k,`, v

′
k,`) = (uk,` − 1, vk,` − 1) for all k, ` > 1, the weights of

those edges with respect to U ′
0 are identical to their weights with respect to U0. Thus

the last p − 1 horizontal edges of P bound those of a and the last q − 1 vertical edges
of P bound those of b. Moreover, the first edge of a (resp. b) is a0 = 0 (resp. b0 = 0),
which is bounded by u′0,1 = 1 (resp. v′1,0 = 1). Thus P bounds (a, b) with respect to U ′

0,

proving (a, b) ∈ PF(2)
p,q(U

′
0). Reversing the argument establishes the equivalence in the

other direction. Since these bounds are independent of the labelings on the edges, the
corresponding claim holds for IPPF(p, q), as well.

Example 25. For (p, q) = (3, 4), the pair a = (0, 0, 3) and b = (0, 0, 1, 1) is a prime
(p, q)-parking function, and can also be seen as a two-dimensional U ′

0-parking function as
defined in Proposition 24. Consider the path P = NENENNE ∈ L(3, 4), which is shown
below. The weights according to U ′

0 on its horizontal and vertical edges are, respectively,
(1, 2, 4) and (1, 1, 2, 2), which indeed bound (a, b). We remark that the path P must be
such that with the exception of its first edge, it does not share any vertical edges with Lb

or horizontal edges with L⊥a . In particular, this can only be achieved when Lb and L⊥a do
not touch except at the points (0, 0) and (p, q).

0 0 3

0

0

1

1

1 2 31

1 2 31

1 2 31

1 2 31

1

2

3

4

1

1

2

3

4

1

1

2

3

4

1

4.1 Decomposition into prime components

As mentioned earlier, the notion of primeness requires that any object can be uniquely
decomposed into prime components, such that the prime components are themselves
indecomposable. We give an explicit description of such a decomposition for (p, q)-parking
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functions into their prime components. We first give a description for the increasing (p, q)-
parking functions.

Let (i(1), j(1)) ∈ IPF (p1, q1), . . . , (i
(k), j(k)) ∈ IPF (pk, qk) be a sequence of increasing

prime (p`, q`)-parking functions for p1+· · ·+pk = p and q1+· · ·+qk = q. Then we define the
direct sum (i, j) = (i(1), j(1))⊕· · ·⊕(i(k), j(k)) to be the increasing (p, q)-parking function
corresponding to the lattice paths L⊥i := L⊥

i(1)
⊕ · · · ⊕ L⊥

i(k)
and Lj := Lj(1) ⊕ · · · ⊕ Lj(k) .

Then, any increasing (p, q)-parking function (i, j) may be uniquely decomposed as a
direct sum of increasing prime (pi, qi)-parking functions, for uniquely determined (p`, q`)
for ` = 1, . . . , k, as follows. Let (0, 0) = (x0, y0), (x1, y1), . . . , (xk, yk) = (p, q) denote the
(pointwise increasing) coordinates of the lattice points at which L⊥i and Lj intersect. For
each 1 6 ` 6 k, let

i` = (0 = ay`−1
− ay`−1

, ay`−1+1 − ay`−1
, . . . , ay`−1 − ay`−1

) and

j` = (0 = bx`−1
− bx`−1

, bx`−1+1 − bx`−1
, . . . , bx`−1 − bx`−1

).

If x`−1 = x` (respectively y`−1 = y`), then we let j` = ∅ (respectively i` = ∅) by conven-
tion.

Then each (i`, j`) is an increasing prime (x`−x`−1, y`− y`−1)-parking function, whose
corresponding lattice paths are given by the portions of L⊥i and Lj (respectively) which
lie weakly between the points (x`−1, y`−1) and (x`, y`). By construction, we thus have the
following (unique) decomposition of (i, j) into increasing prime parking functions:

(i, j) = (i(1), j(1))⊕ · · · ⊕ (i(k), j(k)).

Example 26. We show the prime decomposition of the increasing (6, 5)-parking function
(i, j) with i = (0, 0, 2, 3, 3, 3) and j = (0, 0, 1, 5, 6). For this example, ignore the labels on
the edges and the sequences a and b.

1 5

3

0 2 4

2

4

1

3

0

= ⊕ ⊕ ⊕ ⊕

0 2

1

1

2

0

0 0

0

0 0

i = (0, 0, 2, 3, 3, 3)

j = (0, 0, 1, 5, 6)

a = (3, 0, 3, 2, 3, 0)

b = (6, 1, 0, 5, 0)

i(1) = (0, 0, 2)

j(1) = (0, 0, 1)

a(1) = (0, 2, 0)

b(1) = (1, 0, 0)

i(2) = (0)

j(2) = ∅
a(2) = (0)

b(2) = ∅

i(3) = (0)

j(3) = ∅
a(3) = (0)

b(3) = ∅

i(4) = (0)

j(4) = (0)

a(4) = (0)

b(4) = (0)

i(5) = ∅
j(5) = (0)

a(5) = ∅
b(5) = (0)

Now let (a, b) be a (p, q)-parking function. We may similarly decompose (a, b) into
prime components as follows. Let i = (a(0), . . . , a(p−1)) and j = (b(0), . . . , b(q−1)) denote
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the increasing rearrangements of a and b, noting that L⊥a = L⊥i and Lb = Lj as unla-
beled lattice paths. As above, let (0, 0) = (x0, y0), (x1, y1), . . . , (xk, yk) = (p, q) denote the
(pointwise increasing) coordinates of the lattice points at which the two lattice paths inter-
sect. Then the decomposition of (i, j) into prime components described above determines
a decomposition of the lattice paths L⊥a and Lb (ignoring labels, for now):

L⊥a = L⊥a,1 ⊕ · · · ⊕ L⊥a,k, Lb = Lb,1 ⊕ · · · ⊕ Lb,k.

For 1 6 ` 6 k, let A` denote the set of labels which appear on the horizontal steps of L⊥a,`,
and let B` denote the set of labels which appear on the vertical steps of Lb,`. Replace
the labels in A` by {0, 1, . . . , |A`| − 1} and replace the labels in B` by {0, 1, . . . , |B`| − 1},
maintaining the same numerical order in each case, to obtain a pair of labeled lattice
paths L⊥a,`

′
, Lb,`

′, where the horizontal edges of L⊥a,`
′

are labeled by N|A`| and the vertical

edges of Lb,`
′ are labeled by N|B`|. Let (a(`), b(`)) denote the (x`−x`−1, y`− y`−1)-parking

function corresponding to the pair of labeled lattice paths L⊥a,`
′
, Lb,`

′. Then, we write

(a, b) = (a(1), b(1))⊕ · · · ⊕ (a(k), b(k)).

Example 27. Let (a, b) be the (6, 5)-parking function with a = (3, 0, 3, 2, 3, 0) and
b = (6, 1, 0, 5, 0). The prime decomposition of the increasing rearrangement (i, j) of
(a, b) is given in Example 26. Here we have

A1 = {1, 3, 5}, A2 = {0}, A3 = {2}, A4 = {4}, A5 = ∅, and

B1 = {1, 2, 4}, B2 = B3 = ∅, B4 = {3}, B5 = {0}.
As a result, the prime components are given by

(a(1), b(1)) = ((0, 2, 0), (1, 0, 0)), (a(2), b(2)) = (a(3), b(3)) = ((0), ∅),

(a(4), b(4)) = ((0), (0)), (a(5), b(5)) = (∅, (0)).

4.2 Enumeration of prime (p, q)-parking functions

Increasing (p, q)-parking functions are in bijection with pairs of lattice paths, letting us
easily compute #IPPF(p, q).

Lemma 28. The number of increasing prime (p, q)-parking functions is

#IPPF(p, q) =
1

p+ q − 1

(
p+ q − 1

p− 1

)(
p+ q − 1

q − 1

)
.

Proof. From Proposition 23, an increasing prime (p, q)-parking function (a, b) must have
a0 = 0, b0 = 0, ap−1 6 q − 1, and bq−1 6 p − 1. Thus the set of increasing prime (p, q)-
parking functions is in bijection with pairs of non-intersecting lattice paths from (1, 0) to
(p, q− 1) and (0, 1) to (p− 1, q), respectively, which can be counted using the Lindström–

Gessel–Viennot Lemma [6] to obtain #IPPF(p, q) =
(
p+q−2
q−1

)2 − (p+q−2
q

)(
p+q−2

p

)
.
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Next, we derive a closed formula to enumerate the number of prime (p, q)-parking
functions.

Theorem 29. When p, q > 1, the number of prime (p, q)-parking functions is

#PPF(p, q) = pq(q − 1)p−1 + qp(p− 1)q−1 − (p+ q − 1)(p− 1)q−1(q − 1)p−1.

If p = 0, q = 1 or p = 1, q = 0, #PPF(p, q) = 1, and in all other cases, #PPF(p, q) = 0.

Proof. When pq = 0, the result follows directly from Definition 22.
For p, q > 1, we will use the equivalence of Proposition 24 to show that the set of

prime (p, q)-parking functions (a, b) with exactly i edges on the x-axis and j edges on the
y-axis (respectively, number of 0’s in a and b) is obtained from the set of two-dimensional
vector parking functions corresponding to the weight matrix Z(i,j) = {(uk,`, vk,`) : (0, 0) 6
(k, `) 6 (p− i, q − j)} given by

(uk,`, vk,`) = (`+ j − 1, k + i− 1).

For a (p, q)-parking function (a, b), define m0(a) = #{j : aj = 0} and m0(b) = #{j :
bj = 0} to be the number of 0’s in a and b, respectively. Further, let a′ and b′ be the
subsequences of positive integers of a and b, respectively. For (0, 0) 6 (i, j) 6 (p, q),
define

PPF(i,j)(p, q) := {(a, b) ∈ PPF(p, q) : (m0(a),m0(b)) = (i, j)}.
Fixing (i, j), let (a, b) ∈ PPF(i,j)(p, q). Observe that the point (i, j) is weakly above L⊥a
and weakly to the right of Lb, and let P = (r1, . . . , rp+q) ∈ L(p, q) be a lattice path
that lies weakly between L⊥a and Lb and passes through (i, j). By Proposition 24, (a, b) is
bounded by P with respect to Z′ defined by z′k,` = (`, k) for k, ` > 1. Let the edge weights
of P with respect to Z′ be s = (s1, . . . , sp) and t = (t1, . . . , tq) for the horizontal and
vertical edges, respectively, so that (a, b) is bounded by (s, t). Let P ′ = (ri+j+1, . . . , rp+q)
be the portion of P following the point (i, j). The edge weights of P ′ with respect to Z(i,j)

are s′ = (si+1−1, . . . , sp−1) and t′ = (tj+1−1, . . . , tq−1). Thus (a′−1, b′−1) is bounded
by (s′, t′), so (a′−1, b′−1) ∈ PF(2)

p,q(Z
(i,j)). Thus we conclude that (a, b) ∈ PPF(i,j)(p, q)

if and only if (a′ − 1, b′ − 1) is a Z(i,j)-parking function for the weight matrix Z(i,j).
Now, for any fixed positive subsequences (a′, b′), there are

(
p
i

)(
q
j

)
parking functions

(a, b) ∈ PPF(i,j)(p, q) corresponding to the choices of positions of the the i 0’s in a and j
0’s in b. Thus we have

#PPF(i,j)(p, q) =

(
p

i

)(
q

j

)
#PF(2)

p,q(Z
(i,j)) with #PPF(p, q) =

p∑
i=1

q∑
j=1

#PPF(i,j)(p, q) .

Using (2.3) with

(
a b
c d

)
=

(
0 1
1 0

)
and

(
s
t

)
=

(
j − 1
i− 1

)
, we obtain

#PPF(p, q) =

p∑
i=1

q∑
j=1

(
p

i

)(
q

j

)
(1 + qi+ pj − p− q − ij)(q − 1)p−i−1(p− 1)q−j−1. (4.2)

the electronic journal of combinatorics 32(4) (2025), #P4.48 21



Next, we simplify the sum in (4.2). Setting ci,j =
(
p
i

)(
q
j

)
(1 + qi+ pj − p− q − ij)(q −

1)p−i−1(p− 1)q−j−1, we rewrite (4.2) as

#PPF(p, q) =

p∑
i=1

q∑
j=1

ci,j =

p∑
i=0

q∑
j=0

ci,j −
p∑

i=0

ci,0 −
q∑

j=0

c0,j + c0,0 .

Using the identities
∑a

i=0

(
a
i

)
xi =

∑a
i=0

(
a
i

)
xa−i = (1 + x)a and

∑a
i=0 i

(
a
i

)
xi−1 =

∑a
i=0(a−

i)
(
a
i

)
xa−i−1 = a(1 + x)a−1, we compute

q∑
j=0

c0,j = (q − 1)p−1
(

(1− p− q)
q∑

j=0

(
q

j

)
(p− 1)q−j−1 + p

q∑
j=0

(
q

j

)
j(p− 1)q−j−1

)
= (q − 1)p−1(p− 1)−1

(
(1− p− q)pq + qpq

)
= −pq(q − 1)p−1,

and by symmetry,
∑p

i=0 ci,0 = −qp(p− 1)q−1. Then,

p∑
i=0

p∑
j=0

ci,j =

p∑
i=0

(
p

i

)
(q − 1)−i

q∑
j=0

c0,j +

p∑
i=0

i

(
p

i

)
(q − 1)p−i−1

q∑
j=0

(q − j)
(
q

j

)
(p− 1)q−j−1

= −
p∑

i=0

(
p

i

)
(q − 1)−ipq(q − 1)p−1 +

p∑
i=0

i

(
p

i

)
(q − 1)p−i−1qpq−1

= 0 .

Combining the above with c0,0 = (1 − p − q)(q − 1)p−1(p − 1)q−1, we get the desired
equality.

4.3 Generalization for two-dimensional vector parking functions

Inspired by the primeness of (p, q)-parking functions, we propose a definition of primeness
for two-dimensional vector parking functions with weight matrix U for p, q > 1.

Definition 30. Let p, q be positive integers. Assume U = {(uk,`, vk,`) : (0, 0) 6 (k, `) 6
(p, q)} ⊂ N2. Let a = (a0, . . . , ap−1) ∈ Np and b = (b0, . . . , bq−1) ∈ Nq. A pair (a, b) is a
prime two-dimensional U -parking function if and only if there are lattice paths P1, P2 ∈
L(p, q) such that

1. The order statistics of (a, b) are bounded by both P1 and P2 with respect to U , and

2. The only lattice points at which the lattice paths P1 and P2 intersect are (0, 0) and
(p, q).

Denote by PPF(2)
p,q(U) the set of prime two-dimensional U -parking functions and by

IPPF(2)
p,q(U) the set of prime increasing ones.
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Given U = {zk,` = (uk,`, vk,`) : (0, 0) 6 (k, `) 6 (p, q)}, define a new weight matrix
U ′ by letting U ′ = {z′k,` = (u′k,`, v

′
k,`) : (0, 0) 6 (k, `) 6 (p, q)}, where

z′k,` = (u′k,`, v
′
k,`) =


(uk,`−1, vk−1,`) if k, ` > 1,
(uk,0, v0,0) if ` = 0
(u0,0, v0,`) if k = 0.

(4.3)

In particular, z′0,0 = (u0,0, v0,0).

Theorem 31. The following sets are equal

PPF (2)
p,q (U) = PF (2)

p,q (U ′),

and
IPPF (2)

p,q (U) = IPF (2)
p,q (U ′).

Proof. Let (a, b) ∈ Np×Nq be a prime two-dimensional U -parking function, with lattice
paths P1 and P2 with P2 to the left of P1, satisfying the conditions of Definition 30. One
notices that P1 must start with E and end with N , and vice versa for P2. Let P ′1 be the
part of P1 from (1, 0) to (p, q − 1) and let P ′2 be the part of P2 from (0, 1) to (p − 1, q).
See Figure 6(a) for an example.

Let Q1 be the path obtained from P ′1 by moving one unit up, and Q2 the path obtained
from P ′2 by moving one unit to the right. Then Q1 and Q2 are lattice paths from (1, 1) to
(p, q) with Q2 weakly to the left of Q1. See Figure 6(b) for an example.

(a)

P1P2

weight matrix U

u0,0 u1,0

u2,1 u3,1
v0,0

v0,1

v3,2

v3,3

(b)

Q1Q2

weight matrix U ′

u1,0

u2,1 u3,1
v0,1

v3,2

v3,3

Figure 6: (a) We show lattice paths (P1, P2) with weights given by U with (P ′1, P
′
2) the

portions of (P1, P2) marked by solid lines. (b) (P ′1, P
′
2) correspond to lattice paths (Q1, Q2),

and the weights on (P ′1, P
′
2) according to U induce the weights on (Q1, Q2) according to

U ′ on the sub-grid {(k, `) : (1, 1) 6 (k, `) 6 (p, q)}.

By definition, the order statistics of (a, b) are bounded by both P1 and P2 with respect
to U . Hence a(0) < u0,0 and b(0) < v0,0. In addition, the order statistics of a \ a(0) is
bounded piecewise by the weight of horizontal steps of P ′1, or equivalently, the weight of
horizontal steps of Q1 with respect to the weight U ′. Similar statements hold for b \ b(0)

the electronic journal of combinatorics 32(4) (2025), #P4.48 23



and the vertical steps of Q2. Let P = {EN}⊕Q where Q is any lattice path lying between
Q1 and Q2. Then (a, b) is a two-dimensional U ′-parking function whose order statistics
are bounded by P with respect to U ′.

Conversely, let (a, b) be a two-dimensional U ′-parking function that is bounded by
a lattice path Q with respect to U ′. Without loss of generality, assume Q starts with
E and the initial segment of Q is EkN for some k > 1. Let Q′ be obtained from Q by
replacing the initial EkN with ENEk−1. Then Q′ passes through (1, 1), and its edge
weights bound the order statistics of (a, b) as well. Now moving back to the grid with the
weight matrix U . Let R be the part of Q′ from (1, 1) to (p, q), R1 obtained from R by
moving one unit down, and R2 obtained from R by moving one unit to the left. Finally
let P1 = {E} ⊕R1 ⊕ {N} and P2 = {N} ⊕R2 ⊕ {E}. Then P1 and P2 are non-touching
lattice paths whose weights bound (a, b) with respect to the weight U , as required by
Definition 30.

Obtaining explicit formulas for higher dimensional U -parking functions is generally
very difficult, and only a few cases are known. An important exception is the affine
case, where the number of U -parking functions is given in Proposition 12. This case is of
special interest since it corresponds to a higher dimensional analog of Abel polynomials in
interpolation theory and can be computed efficiently (see [8, 13, 14]). It also includes the
cases of graphical parking functions when the graph G is a weighted complete bipartite
graph with an additional root vertex adjacent to all the vertices [19], analogous to the
way classical parking functions correspond to complete graphs.

Here we present explicit formulas for the numbers of prime two-dimensional U -parking
functions and their increasing analogs for the case when U is given by the following
equation: (

uk,`
vk,`

)
=

(
a b
c d

)(
k
`

)
+

(
s
t

)
, (4.4)

with a, b, c, d, s, t ∈ N.

Theorem 32. For the general affine weight U given by Equation (4.4), let X = ap +
b(q − 1) and Y = c(p− 1) + dq. Then

#IPPF(2)
p,q(U) =

1

p!q!

[(
(s+ bq − b)(t+ cp− c)− bcpq

)
(s+X + 1)(p−1)(t+ Y + 1)(q−1)

+ b
(
c(p+ q − 1) + t− tq

)
(X + 1)(p−1)(t+ Y + 1)(q−1)

+ c
(
b(p+ q − 1) + s− sp

)
(s+X + 1)(p−1)(Y + 1)(q−1)

− bc(p+ q − 1)(X + 1)(p−1)(Y + 1)(q−1)
]

and

#PPF(2)
p,q(U) =

(
(s+ bq − b)(t+ cp− c)− bcpq

)
(s+X)p−1(t+ Y )q−1

+ b
(
c(p+ q − 1) + t− tq

)
Xp−1(t+ Y )q−1

+ c
(
b(p+ q − 1) + s− sp

)
(s+X)p−1Y q−1 − bc(p+ q − 1)Xp−1Y q−1.
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Note that when a = d = 0 and b = c = s = t = 1, we have X = q − 1 and Y = p− 1,
and the formulas in Theorem 32 agree with those in Lemma 28 and Theorem 29.

Proof. By Theorem 31, it suffices to compute the number of two-dimensional U ′-parking
functions. Assume (a, b) ∈ Np × Nq is a U ′-parking function. Let a1 and a2 be the
subsequences of a consisting of entries less than u0,0 = s and greater than or equal to
s, respectively. Similarly, let b1 and b2 be the subsequences of b consisting of entries
respectively less than v0,0 = t and greater than or equal to t. Let i, j be the length of a1

and b1, respectively.
We claim that if P is a lattice path whose weight sequence bounds (a, b), then there

exists a lattice path P ′ passing through (i, j) whose weight sequence also bounds (a, b)
(both with respect to U ′). Indeed, P ′ can be constructed as follows. Let i′ and j′ be
maximal such that the points A = (i′, j) and B = (i, j′) are on P . Then either A 6 B
or B 6 A; without loss of generality, assume the former. Let R be the portion of P after
the point B = (i, j′). Then we let P ′ = {EiN j′} ⊕ R. We have that the weight sequence
on the vertical steps of P ′ is at least that of P , and the weights on the first i horizontal
steps of P ′ are all at least s, which bound the first k order statistics of a. Thus P ′ bounds
(a, b). See Figure 7 for an example.
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2 3 4 5 6 7

2 3 4 5 6 7

2 4 5 6 7 8

2 5 6 7 8 9

2 6 7 8 9 10

2 7 8 9 10 11

A

B

Figure 7: We show an example of a two-dimensional U ′-parking function (a, b) for pa-
rameters a = b = c = d = 1, s = 2, and t = 3. The edge weights given by U ′ are
shown on the grid. Let a = (1, 1, 1, 4, 7, 9) and b = (1, 2, 5, 8, 10). Then a1 = (1, 1, 1)
and b1 = (1, 2), so i = 3 and j = 2. A lattice path P = NEENNEEENEN ∈ L(6, 5)
has horizontal and vertical weight sequences with respect to U ′ given by (2, 3, 6, 7, 8, 10)
and (3, 5, 6, 10, 12), respectively, and thus bounds (a, b), is shown as a solid line. Then
A = (i′, j) = (2, 2) and B = (i, j′) = (3, 3), where A 6 B. The lattice path P ′, which
passes through (i, j) = (3, 2), and bounds (a, b) with respect to U ′, is obtained from P
by replacing the part from (0, 0) to B by E3N3 (this segment is shown as a dashed line).

Now, we focus our attention on (a2, b2). Consider the lattice path bounding (a, b)
with respect to U ′ that passes through (i, j), and restrict to the segment starting at (i, j).
Let P be such a lattice path that passes through the point (i, j), let R be the portion of
P after (i, j), and let R′ be the path R shifted to start at the origin (0, 0). Denote the
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horizontal and vertical weight sequences of P with respect to U ′ by (h0, . . . , hp−1) and
(v0, . . . , vq−1), respectively.

Define the weight matrix U (i,j) = {(z(i,j)k,` : 0 6 k 6 p− i, 0 6 ` 6 q − j}, where

z
(i,j)
k,` =

(
a b
c d

)(
k
`

)
+

(
ai+ b(j − 1)
c(i− 1) + dj

)
.

Then the horizontal and vertical weight sequences of R′ with respect to U (i,j) are precisely
(hi, . . . , hp−1)− s and (vj, . . . , vq−1)− t, respectively. Since R bounds the portion of (a, b)
corresponding to (a2, b2) with respect to U ′, we have that R′ bounds (a2− s, b2− t) with
respect to U (i,j).

Conversely, suppose (a′2, b
′
2) ∈ Np−i × Nq−j is a pair of sequences bounded by some

path R with respect to U (i,j). For some (a1, b2) ∈ Ni
s ×Nj

t , define a to be a shuffle of a1

and a′2 + s, and b to be a shuffle of b1 and b′2 + t. Then we have that (a, b) is bounded
by the path {EiN j} ⊕R with respect to U ′.

Thus we may conclude that the pair (a2−s, b2−t) is exactly a two-dimensional vector
parking function for the weight matrix U (i,j).

To count the number of possible sequences a corresponding to a fixed a2, we observe
that a1 ∈ Ni

s, and that a is a shuffle of a1 and a2. Thus there are
(
p
i

)
si sequences a for

each a2. Similarly, there are
(
q
j

)
tj possible sequences b for each b2. Combining the above

with (2.3), we have

#PPF(2)
p,q(U) =

p∑
i=1

q∑
j=1

(
p

i

)(
q

j

)
sitj#PF

(2)
p−i,q−j(U

(i,j))

=

p∑
i=1

q∑
j=1

(
p

i

)(
q

j

)
sitjAXp−i−1Y q−j−1 (4.5)

where

X = ap+ b(q − 1), Y = c(p− 1) + dq,

and

A = ij(ad− bc) + ic
(
a(p− 1) + bq

)
+ bj

(
cp+ d(q − 1)

)
+ bc(1− p− q).

If we restrict to counting pairs of nondecreasing sequences (a, b) corresponding to a
nondecreasing pair (a2, b2), we have that there are

(
s+i−1

i

)
= s(i)/i! choices for a1 ∈ Ni

s

and
(
t+j−1

j

)
= t(j)/j! choices for b1 ∈ Nj

t (where x(n) = x(x+ 1) · · · (x+n− 1) is the rising
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factorial). Combining the above with (2.2),

#IPPF (2)
p,q (U) =

p∑
i=1

q∑
j=1

A

i!j!
s(i)t(j)#IPF

(2)
p−i,q−j(U

(i,j))

=

p∑
i=1

q∑
j=1

A

(p− i)(q − j)i!j!
s(i)t(j)

(
ap + b(q − 1) + p− i− 1

p− i− 1

)(
c(p− 1) + dq + q − j − 1

q − j − 1

)

=
1

XY

p∑
i=1

q∑
j=1

A

(
s + i− 1

i

)(
t + j − 1

j

)(
X + p− i− 1

p− i

)(
Y + q − j − 1

q − j

)
(4.6)

=
1

p!q!XY

p∑
i=1

q∑
j=1

(
p

i

)(
q

j

)
As(i)t(j)X(p−i)Y (q−j). (4.7)

Using binomial identities for xn and the rising factorial x(n) and a similar computation
as in the proof of Theorem 29, we obtain the desired formulas.

5 Final remarks and open problems

Classical parking functions are well-known for their connections to various discrete and
algebraic structures. Initially introduced as hashing functions to analyze the distribution
of linear probes, parking functions have since been linked to numerous areas, including the
enumeration of labeled trees and forests, hyperplane arrangements, noncrossing partition
lattices, monomial ideals, and the combinatorial theory of Macdonald polynomials, among
others. Comprehensive overviews can be found in the survey papers [22] and [7] (along
with the many references cited therein). The first of these discusses the combinatorial
properties of parking functions, and the latter highlights their important role in algebraic
combinatorics and the representation theory of diagonal harmonics. While the general
theory of parking functions has been extensively developed, the properties of prime park-
ing functions have received comparatively little attention. A deeper understanding of the
roles that prime parking functions and their sum-enumerators play in combinatorics and
algebra would be highly valuable.

There are numerous generalizations of classical parking functions in the literature. In
this paper, we explore the concept of primeness in the context of vector parking functions,
(p, q)-parking functions, and two-dimensional vector parking functions. For the first two
cases, the corresponding parking functions can be represented by labeled lattice paths,
where the notion of an “indecomposable component” is well-defined in terms of the lattice
paths, guiding an appropriate definition of primeness. We extend this notion to two-
dimensional vector parking functions. However, the interpretation of “indecomposable”
in this latter case remains unclear.

For dimension d > 3, there are notions of (p1, p2, . . . , pd)-parking functions (as defined
by Cori and Poulalhon) and d-dimensional vector parking functions. However, in both
cases, we lack an interpretation involving disjoint lattice paths. Extending the concept of
primeness to higher-dimensional parking functions remains an open question.
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Beyond the generalized parking functions discussed in this paper, there are other
models, such as G-parking functions, which are linked to the recurrent configurations
of sandpile models on a digraph G [16]. Other examples include parking functions and
mappings defined through a parking process on trees or digraphs [2, 12], parking functions
involving cars of different sizes [1, 5], or parking processes allowing backward movement
[3]. While there is extensive literature on these topics, to our knowledge, primeness
has only been explored for parking functions on trees (see [9]). Much remains to be
investigated in this area.
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