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Abstract

A finite set of points is generic if no two points are on the same vertical or
horizontal line. The set is orthogonally convex if every point has an empty quadrant.
We study the smallest integer No(n) such that every generic set of No(n) points
contains a orthogonally convex subset of size n. For even n, we prove N0(n) =
1
8(n

2 + 2n + 8), which is tight, and in the odd case we get close upper and lower
bounds. To prove these results, we apply the theory of Greene and Kleitman (1976)
and Frank (1980) about posets to the partial order of point sets in the plane. Generic
sets correspond to permutations in a canonical way.

A permutation is convex if it is order isomorphic to a finite generic set of points
in convex position. The value of No(n) is also the smallest N such that every
permutation of N contains a convex subpermutation of size n.
Mathematics Subject Classifications: 06A07, 52C10

1 Introduction

In 1935, Erdős and Szekeres [2] proved that for each n there exists a smallest positive
integer N(n) such that every set of at least N(n) points in the plane in general position
contains a subset of n points in convex position. They proved the upper bound of N(n) 6(
2n−4
n−2

)
+ 1 and conjectured that N(n) = 2n−2 + 1. In 2017, Suk [10] almost settled the

Erdős-Szekeres conjecture by showing that N(n) 6 2n+o(n).
aDepartment of Mathematics and Computer Science, Davidson College, Davidson, NC, U.S.A.
(hsblake@davidson.edu).

bDiscrete Mathematics Group, Institut für Mathematik, Technische Universität Berlin, Germany
(felsner@math.tu-berlin.de).

c Work completed while affiliated with the Discrete Mathematics Group, Institut für Mathematik,
Technische Universität Berlin, Germany (rimmahamalainen231@gmail.com).

d Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznan, Poland
(mw@amu.edu.pl).

the electronic journal of combinatorics 32(4) (2025), #P4.49 https://doi.org/10.37236/13543

https://doi.org/10.37236/13543


A finite set X of points in the plane is in orthogonally convex position if every point
x ∈ X has a quadrant Qx, aligned with the x and y axes, such that the intersection of Qx

with X is just x. We precisely determine the smallest positive integer No(n) such that
every set of at least No(n) points in the plane in generic position, i.e., no two points on a
common horizontal or vertical line, contains a subset of n points in orthogonally convex
position. In contrast to the situation in the classical Erdős and Szekeres problem, the
growth of No(n) is only quadratic.

From the Lemma of Erdős and Szekeres or equivalently from Dilworth’s theorem it
follows that a generic set of m points contains a monotone subset, either increasing or
decreasing, of size

√
m. The union of two increasing or of two decreasing subsets of points

is orthogonally convex. It can be shown that this observation yields an orthogonally
convex subset of size at least 2

√
m, hence No(n) 6 n2/4. The precise value of No(n) is

smaller by roughly a factor of two.

Theorem 1. For each n > 4 there exists a smallest positive integer No(n) such that each
finite set of No(n) points in generic position contains an orthogonally convex subset of
size n. When n = 2s is even, the value of No(n) is given by

No(n) =

(
s+ 1

2

)
+ 1 =

1

8
(n2 + 2n+ 8).

When n = 2s− 1 is odd, we have

No(n) 6

(
s+ 1

2

)
− 1 =

1

8
(n2 + 4n− 5)

and

No(n) >

{
2t2 + 1 = 1

8
(n2 + 2n+ 9) if n = 4t− 1

2t2 − 2t+ 2 = 1
8
(n2 + 2n+ 13) if n = 4t− 3

.

The proof of the theorem in Section 3 depends on the Ferrers shape associated with an
order. According to a theory of Greene and Kleitman this shape depends on the maximum
sizes of families of chains and antichains.

The bridge from partial orders to orthogonal convexity is via permutations which can
be interpreted as 2-dimensional partial orders or as point sets. In Section 2 we describe
these connections. There we also introduce terminology and concepts from orthogonal
convexity. Albert et al. [1] define convex permutations as permutations which are order
isomorphic to a finite generic convex set, i.e., the points of the plot of the convex permuta-
tion can be displaced such that they are the corners of a convex polygon without changing
their horizontal and vertical order. They consider the least Nc(n) such that every per-
mutation of length Nc(n) contains a convex subpermutation of length n. Albert et al.
prove that n2/8 < Nc(n) < n2/4. Since the Erdős and Szekeres problems for orthogonal
convexity and permutation convexity are the same (Proposition 4) we also establish that
Nc(n) is slightly above n2/8 + n/4.
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2 Orthogonal convexity and related concepts

Before we formally introduce the notion of an orthogonally convex set below in Definition 2
we relate to classical convexity and problems with the notion of an orthogonal convex hull.

A finite set X ⊆ R2 in general position is in convex position if X is the set of corners
of its convex hull which is a convex polygon.

The definition of orthogonal convexity is as follows: A set A ⊆ R2 is orthogonally
convex (o-convex ) if and only if A ∩ L is connected whenever L is a horizontal or a
vertical straight line in R2. In particular, A∩L is empty, a single point, a line segment, a
half-line or all of L. Note that orthogonally convex sets need not be connected. Various
definitions of an orthogonal convex hull have been proposed in the literature, see Ottman et
al. [9], and the more recent book about the more general concept of restricted-orientation
convexity [4]. Some of the definitions of the orthogonal convex hull lead to a convex
hull which is not unique and in all definitions the convex hull of a set of points may be
disconnected.

We base our investigations on the notion of an extremal point of a set. This allows us
to speak about point sets in orthogonally convex position without deciding on a definition
of the orthogonal convex hull.

A finite set X ⊆ R2 in general position is in convex position if every point x ∈ X is
extremal in X, i.e., there is a halfplane Hx such that Hx ∩X = {x}. In the orthogonal
setting we replace the halfplane by a quadrant.

Definition 2. A finite set X ⊆ R2 in generic position is in o-convex position if to every
point x ∈ X is o-extremal, i.e., there is a quadrant Qx such that Qx ∩X = {x}.

Let X be a generic set of n points in the plane. With X we associate a permuta-
tion π(X) as follows: The points of X are labeled from 1 to n by increasing y-coordinates.
Then to obtain π(X) we list the labels by increasing x-coordinate. Two generic point sets
with identical permutations are called order isomorphic. With a permutation π : [n]→ [n]
we associate the point set Xπ = {(i, π(i)) : i ∈ [n]}. This representation is the plot of the
permutation. The plot is a canonical representative of the order isomorphism class of π.

A convex permutation is a permutation whose order isomorphism class contains a point
set in convex position. Convex permutations were introduced by Albert et al. [1]. They
study enumeration questions and the Erdős-Szekeres problem for convex subpermutations
of permutations. With the following proposition they make convex permutations acces-
sible for their study. The entry τ(j) is a left-to-right maximum of the permutation τ if
τ(i) < τ(j) for all i < j. We denote the set of left-to-right maxima of τ as LRmax(τ).
The sets LRmin(τ) (left-to-right minima), RLmin(τ) (right-to-left minima), and RLmax(τ)
(right-to-left maxima) are defined alike. An entry is extremal if it belongs to the union of
the four sets.

Proposition 3 (Albert et al. [1]). A permutation is convex if and only if all its entries
are extremal.

Let X be a point set in the order isomorphism class of τ and let p be the point of X
corresponding to the entry τ(j) of τ . Then p is o-extremal in X if and only if τ(j) is
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extremal in τ . Indeed, the o-extremality of p is witnessed by the 1st quadrant if and
only if τ(j) is a right-to-left maximum. Similarly points with a witnessing 2nd quadrant
correspond to left-to-right maxima, while points with a witnessing 3rd quadrant correspond
to left-to-right minima, and those with a witnessing 4th quadrant to right-to-left minima.
With these observations we obtain the following consequence of Proposition 3.

Proposition 4. A permutation is convex if and only if the point sets in its order isomor-
phism class are o-convex.

Permutations and their plots, or equivalently generic point sets, can be interpreted as
2-dimensional orders with a given realizer. This remark allows us to shift between nota-
tion and concepts from order theory and from the world of permutations. Most important
to us is the equivalence of chains/antichains in point sets and increasing/decreasing sub-
sequences in permutations. In the following we will think of X as a point set, an order,
and a permutation interchangeably.

3 The Ferrers shape of a point set

A partition is a weakly decreasing sequence λ = (λ1, λ2, . . . , λk) of positive integers. With
a partition λ, one associates its Ferrers diagram (also called Ferrers shape), which is a
down-set of squares in the first quadrant with λi squares in the i-th row. The Robinson-
Schensted correspondence is a bijection between permutations and pairs (P,Q) of Young
tableaux of the same shape. We denote the Ferrers shape of the tableaux associated
with π as F (π).

A k-chain of an order P = (X,<P ) is defined as a family of k pairwise disjoint chains,
and a `-antichain is a family of ` pairwise disjoint antichains. Interest in k-chains and
`-antichains of orders goes back to Greene and Kleitman [8, 7] who discovered a rich
duality between maximum k-chains and maximum `-antichains. The following theorem
is part of the theory.

Theorem 5. With an ordered set P with n elements there is an associated integer par-
tition λ of n with Ferrers shape F (P ), such that the number of squares in the k longest
columns of F (P ) equals the maximal number of elements covered by a k-chain of P , and
the number of squares in the ` longest rows of F (P ) equals the maximal number of elements
covered by an `-antichain of P .

It is known that if X is a generic point set in the order isomorphism class of π
and P = (X,<) is the dominance order on X, then F (π) = F (P ). This follows from
work of Greene [6] and from Viennot’s [11] planarized version of the Robinson-Schensted
correspondence, see also [3].

Figure 1 shows an example. In this case the Ferrers diagram F of the point set
corresponds to the partition (5, 3, 3, 2, 2, 1). Several proofs of Theorem 5 are known. The
approach taken by András Frank [5] is particularly elegant and provides additional insight
into the interplay of maximum chain and antichain families. Following Frank we call a
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chain family C and an antichain family A of an order P = (X,<) an orthogonal pair if
the following two conditions hold:

(1) X =
(⋃
A∈A

A
)
∪
(⋃
C∈C

C
)
, and (2) |A ∩ C| = 1 for all A ∈ A, C ∈ C.

Frank proved the existence of a sequence of orthogonal chain and antichain families. The
sequence consists of an orthogonal pair for every point from the boundary of F (P ). With
the point (k, `) from the boundary of F (P ) we get an orthogonal pair (C,A) such that C
is a k-chain and A is an `-antichain. (See Figure 1.)

F

X

9
2
14
4
12

6
1

10
16
3
5
7
8
11
15
13

1 2 3 4 5 6 7 8 910111213141516

π

Figure 1: A point set X where the blue segments are the edges of the diagram of P =
(X,<), the Ferrers shape F = F (P ) and two orthogonal pairs of X. The orthogonal pairs,
with chains outlined in blue and antichains in pink, correspond to the boundary points
(3, 3) and (2, 5) of F . The elements of the corresponding rectangles are emphasized.

If (C,A) is an orthogonal (k, `)-pair in X, then there are exactly k · ` points in X
which belong to a chain of C and an antichain of A. We call such a set R a (k, `)-rectangle
of X, formally R = {C ∩ A : C ∈ C and A ∈ A}.

A rectangle R is a point set in its own right. It can be seen as an order and it comes
with a permutation.

Lemma 6. If R is a (k, `)-rectangle, then width(R) = k and height(R) = `.

Proof. Let (C,A) be the orthogonal (k, `)-pair defining R. Since R can be covered by k
chains width(R) 6 k. Further, every antichain A in A has a nonempty intersection with
each of the k disjoint chains of C, hence, |A| > k. With width(R) = max(|A| : A antichain
in R) we get width(R) = k. The argument for height(R) is dual, by exchanging the role
of chains and antichains and the letters k and `.

The canonical antichain partition of a poset P = (X,<) is constructed by recursively
removing all minimal elements from P and making them one of the antichains of the
partition. More explicitely A1 = Min(X) and Aj = Min

(
X \

⋃
{Ai : 1 6 i < j}

)
for j > 1.

Note that by definition for each element y ∈ Aj with j > 1 there is some x ∈ Aj−1 with
x < y. Due to this property there is a chain of h elements in P if the canonical antichain
partition consists of h non-empty antichains. This in essence is the dual of Dilworth’s
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theorem, i.e., the statement: the maximal size of a chain equals the minimal number of
antichains partitioning the elements of P .

The transpose of a point set X is the set X> = {(y, x); (x, y) ∈ X}. Mapping the
canonical antichain partition of X> back to X yields the canonical chain partition of X.
The following lemma will be useful:

Lemma 7. The canonical antichain partition and the canonical chain partition of a (k, `)-
rectangle R are an orthogonal pair of R.

Proof. Let A1, . . . , Ah be the canonical antichain partition. Since height(R) = ` and the
canonical antichain partition is a minimum antichain partition we have h = `. From⋃h

1 Ai = R, and R = k · `, and width(R) = k, we deduce that |Ai| = k for all i ∈ {1, .., `}.
The dual argument yields |Cj| = ` for every chain Cj from the canonical chain partition.
This also implies that Cj must have a nonempty intersection with each Ai.

Proposition 8. Let R be a (k, `)-rectangle with canonical chain and antichain partitions
C1, . . . , Ck and A1, . . . , A`. All the points in A1, A`, C1, and Ck are o-extremal, moreover,
if k > 1 and ` > 1, then |A1 ∪ A` ∪ C1 ∪ Ck| = 2(k + `)− 4.

Proof. Let ρ be the permutation corresponding to R. Since A1 = Min(R), elements
of A1 have an empty 3-rd quadrant, so they are the elements of LRmin(ρ). Similarly
A` = Max(R) = RLmax(ρ) and the elements of C1 and Ck correspond to LRmax(ρ) and
RLmin(ρ). Hence, they are all o-extremal. By construction the two chains and the two
antichains are disjoint. A chain and an antichain can share at most one point and they
do, hence, |A1 ∪ A` ∪ C1 ∪ Ck| = 2(k + `)− 4.

We now know that a large rectangle in X contributes a large o-convex set in X. To
obtain a sharp bound, however, we need a second type of o-convex set. A subset T of X
is called 2-thin if either width(T ) 6 2 or height(T ) 6 2.

Proposition 9. A 2-thin subset T of a point set X is o-convex.

Proof. If height(T ) 6 2, then T = Min(T ) ∪Max(T ). Hence, every element of T has at
least one empty quadrant. The case of width(T ) 6 2 is dual.

Now let X be a point set and suppose that X contains no o-convex set of sizem. Let F
be the Ferrers shape of X. The boundary of F is strictly below the line x + y = m+4

2
,

otherwise X would contain a (k, `)-rectangle with 2(k+ `)− 4 > m. This contradicts the
assumption. Hence x+ y 6 m+4

2
− 1

2
= m+3

2
.

The largest Ferrers shape F below this line belongs to the cells partition of the shape
(m+1

2
, m−1

2
, . . . , 3, 2, 1). This triangular shape has 1

8
(m2 + 4m + 3) cells. However, if X

has the shape of this partition, then it contains a 2-chain and a 2-antichain, each of size
m+1
2

+ m−1
2

= m, which are 2-thin o-convex sets. It follows that we have to take off the
extremal cells in the first row and the first column. The remaining shape is shown in
Figure 2 is has 1

8
(m2 + 4m+ 3)− 2 cells. Adding a cell to this shape makes an o-convex

subset of size m unavoidable.
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Note that we tacitly used that m+1 is even, i.e., m is odd. This yields the first upper
bound on No(m): if m = 2s − 1 and X has at least 1

8
(m2 + 4m + 3) − 1 =

(
s+1
2

)
− 1

elements, then X contains an o-convex subset of size m.

Figure 2: The triangular shape with
(
s+1
2

)
cells is extremal for n = 2s. The extremal

shape for odd n = 2s − 1 is the truncated triangular shape with
(
s+1
2

)
− 2 cells. The

depicted shapes have s = 7.

For m = 2s the triangular partition (s, s− 1, . . . , 2, 1) is extremal. Rectangles in this
shape yield o-convex sets of size 2s− 2 and the maximum 2-thin subsets have size 2s− 1.
The addition of a single cell to this shape, however, yields a rectangle which contributes
an o-convex set of size 2s. This gives the upper bound on No(m) in the even case: if
m = 2s and X has at least

(
s+1
2

)
+ 1 = 1

8
(m2 + 2m + 8) elements, then X contains an

o-convex subset of size m.

Lower bound examples

From the analysis leading to the upper bound we know that matching lower bound ex-
amples have to be point sets whose Ferrers shapes are the triangular and truncated tri-
angular shapes shown in Figure 2. Our examples will be weak orders, i.e., they are
obtained by substituting the elements of a chain by antichains. Albert et. al [1] used
similar examples for their lower bound and they called them layered permutations. We
write X = W [a1, . . . , as] if X is obtained from a chain C of size s by substituting the
i-th element of C with an antichain Ai of size ai. Figure 3 shows W [1, 3, 5, 7, 5, 3, 1] and
W [1, 3, 5, 7, 6, 4, 2] and W [2, 4, 6, 8, 6, 4, 2].

Lemma 10. Let β1 = (a, a+ 2, . . . , a+ 2(j1 − 1), a+ 2j1) be an increasing sequence and
let β2 = (b+2j2, b+2(j2−1), . . . , b+2, b) be a decreasing sequence. Let their concatenation
be α = β1β2. The largest o-convex subset of W [α] is of size a+ b+ 2(j1 + j2).

Proof. Let K be an o-convex subset of W [a1, . . . , as] and suppose that i is the least
index with K ∩ Ai 6= ∅ and j is the largest index with K ∩ Aj 6= ∅. Then |K| 6
ai+aj+2(j− i−1) because Min(K) ⊆ Ai, Max(K) ⊆ Aj, and every antichain between Ai
and Aj can contribute at most two elements to K.

In β1 and β2 the step size is 2. Suppose Min(K) is an antichain Ai from β1. If K ′ is
obtained from K by removing Ai from K and adding Ai+1, then the size of K and K ′ is
upper bounded by the same value. This value is equal to the sum of the cardinalities of
the largest antichain coming from β1 and the largest of β2, i.e., K 6 a+ b+2(j1+ j2).
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Applying the bound of the lemma to appropriate point sets W [α] we obtain the lower
bounds on No(n) stated in Theorem 1.

• The set W [1, 3, 5, . . . , 2t − 1, 2t, 2t − 2, . . . , 4, 2] contains no o-convex set of size 4t.
Since the size of the set is

(
2t+1
2

)
this shows that if n = 2s = 4t, then No(n) >(

s+1
2

)
+ 1 = 1

8
(n2 + 2n+ 8).

• The set W [1, 3, 5, . . . , 2t + 1, 2t, 2t − 2, . . . , 4, 2] contains no o-convex set of size
4t + 2. Since the size of the set is

(
2t+2
2

)
, this shows that if n = 2s = 4t + 2, then

No(n) >
(
s+1
2

)
+ 1 = 1

8
(n2 + 2n+ 8).

• The set W [1, 3, . . . , 2t − 3, 2t − 1, 2t − 3, . . . , 3, 1] contains no o-convex set of size
4t − 3. Since the size of the set is t2 + (t − 1)2 this shows that if n = 4t − 3, then
No(n) > 2t2 − 2t+ 2 = 1

8
(n2 + 2n+ 13).

• The set W [2, 4, . . . , 2t− 2, 2t, 2t− 2, . . . , 4, 2] contains no o-convex set of size 4t− 1.
Since the size of the set is 2t2 this shows that if n = 4t− 1, then No(n) > 2t2 + 1 =
1
8
(n2 + 2n+ 9).

Figure 3: W [1, 3, 5, 7, 5, 3, 1] and W [1, 3, 5, 7, 6, 4, 2] and W [2, 4, 6, 8, 6, 4, 2], they are con-
jectured to be maximum point sets without o-convex subset of size 13, 14, and 15
respectively. Hence No(13) > 26, No(14) > 29, No(15) > 33. We also know
No(13) 6 27, No(14) 6 29, No(15) 6 35.

4 Open Problems and Future Directions

For odd values of n we have not yet been able to precisely determine the value of No(n).
We believe that the lower bound is tight. Since our lower bound examples are weak orders
they have the property that they admit a chain partition C and an antichain partition A
such that for all (k, `) the k longest chains of C together with the ` largest antichains of A
form an orthogonal pair. (In the terminology of West [12] these partitions are completely
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saturated). It is easy to show that restricted to point sets with the above property the
lower bound is tight. The crucial property is that in this case we find an o-convex subset
of size 2(k + `) − 1 whenever (k, `) is a concave corner on the boundary of the Ferrers
shape, i.e., (k + 1, `) and (k, `+ 1) are points of the boundary as well.

To close the gap between upper and lower bound in the odd case we either need lower
bound examples with a more complex structure or additional techniques for constructing
large o-convex subsets.

Another interesting problem, in addition to studying subsets in o-convex position, is
the study of o-convex holes, namely, finding o-convex subsets whose interior is empty.
Let Ho(n) be the least integer such that every generic point set of size at least Ho(n)
contains an o-convex hole of size n. Clearly Ho(n) > No(n) >

1
8
n2. Since every chain

and antichain is an o-convex hole the lemma of Erdős-Szekeres yields the upper bound
Ho(n) 6 (n− 1)2 + 1.

It would be interesting to find reasonable bounds and good examples for the orthogonal
Erdős-Szekeres problem in 3 and higher dimensions.
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