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Abstract

An edge-colouring of a graph G is said to be colour-balanced if there are equally
many edges of each available colour. We are interested in finding a colour-balanced
perfect matching within a colour-balanced complete graph Ks,; with a palette of k
colours. While it is not necessarily possible to find such a perfect matching, one can
ask for a perfect matching as close to colour-balanced as possible. In particular, for
a colour-balanced colouring ¢ : E(Ka,,) — [k], we seek to find a perfect matching
M minimising f(M) = Eleﬂc_l(i) NM|—n

The previous best upper bound, due to Pardey and Rautenbach, was
min f(M) < O(kv/nklogk). We remove the n-dependence, proving the existence of
a matching M with f(M) < 4F° for all k.

Mathematics Subject Classifications: 05C15, 05C70

1 Introduction

The problem of finding colour-balanced perfect matchings can be considered a special
case of zero-sum Ramsey theory, which has received significant study in recent years.
While work was initially concerned with zero-sum embeddings over finite groups, Caro
and Yuster [1] initiated the study of zero-sum embeddings over Z. Several variants of this
problem have since been studied; see for example [2, 3].

Embedding perfect matchings in this context was first considered by Caro, Hansberg,
Lauri, and Zarb [4]. They asked whether every two-edge-colouring of a complete graph
on 4n vertices with equally many edges of each colour also contains a perfect matching
with equally many edges of each colour. This question was solved, affirmatively and
independently, by Ehard, Mohr, and Rautenbach [6], and by Kittipassorn and Sinsap
[9]. Beyond solving this problem, Kittipassorn and Sinsap asked about the generalisation
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of this problem to more than two colours. In particular, they [9] asked whether every
colour-balanced k edge-colouring of the complete graph K, admits a colour-balanced
perfect matching. By calling a colouring colour-balanced, we mean that there are equally
many edges of each colour, and we also use the notation [k] = {1,2,... k}. We remark
here that our use of the term ‘colour-balanced’, while following the terminology of [11], is
not entirely standard, and such matchings may also be referred to as equipartite.

Pardey and Rautenbach [11] resolved this question in the negative, giving a colour-
balanced three-colouring of Kg which admits no perfect matching with one edge of each
colour. However, they also relaxed the question to ask merely for an almost colour-
balanced perfect matching, and proposed the following conjecture.

Conjecture 1 ([11, Conjecture 1]). If n and k are positive integers, and ¢: E(Koy,) — [k]
is colour-balanced, then there is a perfect matching M of Ky, with

F(M) < O(k?), (1)
where
k
FM) = Y|l @) 0 M| = . (2)

While they could only resolve their conjecture in the case of k = 3, proving that there
is always some M with f(M) < 2, they could prove the following theorem.

Theorem 2 ([11, Theorem 2|). For positive integers n and k, and colour-balanced
c: E(Kank) — k], there is some perfect matching M of Kopn satisfying

f(M) < 3k+/knlog(2k).

While we cannot achieve the conjectured quadratic dependence on k, we take a signif-
icant step towards Conjecture 1 by removing the n-dependence from Theorem 2, proving
the following uniform bound.

Theorem 3. For positive integers n and k, and colour-balanced c¢: E(Kapn,) — [k], there
is some perfect matching M of Koy satisfying

F(M) < 4¥. (3)

One could also ask about finding colour-balanced perfect matchings in random colour-
ings, and indeed this has been done; first by Frieze 7], who produced results that were
later extended by Chakraborti and Hasabnis [5]. In short, much stronger results are
known for the case of random colourings than in the deterministic case presented here. In
particular, a random (not necessarily balanced) colouring of a complete graph contains a
colour-balanced perfect matching with high probability.

We remark here that the n = 1 cases of Conjecture 1 and Theorem 3 correspond
to finding rainbow matchings in graphs, i.e. matchings in which every edge receives a
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different colour. These objects have been the subject of a great deal of attention, with
one of the most well-known conjectures in the area, the Ryser—Buraldi—Stein conjecture,
having recently been resolved for large even n [10]. While our bound in (3) is not effective
for n = 1, the problem of finding large rainbow matchings in complete graphs has been
studied by Fujita, Kaneko, Schiermeyer, and Suzuki [8].

Before providing a proof of Theorem 3, we first prove a result very similar to Theorem 2
to serve as a warm-up, and introduce some of the ideas we will use in the main proof.

2 A new proof of Theorem 2

In this section we prove the following theorem, which is slightly stronger than Theorem 2,
but still has the crucial dependence on /n. The purpose of Theorem 4 is not the result
itself (as it is superseded by Theorem 3), but rather to introduce the ideas that will be
used in the proof of our main result in Section 3.

Theorem 4. If n and k are positive integers, and c: E(Kay,) — [k] is colour-balanced,
then there is a perfect matching M of Kok, with

F(M) < kV2n.

Before giving the details of the proof, we present some discussion and preliminary
definitions, which will be referred back to in later sections.

The idea in this proof is that, instead of seeking to reduce f(M), the sum of the
absolute deviations from balancedness of a perfect matching M, we seek to minimise the
sum of the deviations squared. To this end, we make the following definitions.

wy(e) =|{e" € M : c(e') =c(e)}. (4)

In words, wy(e) is the number of edges in the matching M with the same colour as
the edge e. We will refer to wy,(e) as the weight of the edge e. We can then also define
the function wy, applied to a set S C E(K), and for convenience we also give a notation
for the average value of w)y.

wpr () ::ZwM(e). (5)

eeS
Wi (S) = wu(S)/|S]. (6)
We make the following simple, but crucial, definition and observation.

k

g(M) = wy (M) = > wale) = Y (mi(M))”, (7)

eeM i=1
where m;(.S) is the number of edges in the set S of colour i, or, formally:
m;i(S) = |{e € S: cle) =1}

We use equality (7) to prove the following claim, which is the main tool in our proof of
Theorem 4.
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Claim 5. For edges wv,zy € M, define M' = (M — {uv,zy}) U {ux,vy}. Then if
wyr(uw) +war(ry) — war(uz) — wa(vy) > 4, then g(M') < g(M).

Proof. Removing edges uv and zy from M decreases the value of g(M) by at least
2(wpr (wv) +wpr(zy) — 2), as we remove the edges with weights wys(uv) and wy(zy), and
either reduce the weights of wy(uv) + wyr(zy) — 2 edges by 1 (when c(uv) # c(xy)),
or reduce the weights of wy/(uv) — 2 edges by 2 (when c(uv) = c(zy)). A similar
calculation gives that adding edges ux and vy increases the value of g(M) by at least
2(wp(uz) + wpr(vy) — 2), again with equality when the colours are equal, and distinct
from the colours of uv and xy. Thus we find that overall,

g(M) — g(M') = 2(wnr(uv) + war(wy) — war(ur) — war(vy) — 4),
from which the claim follows. ]

We will assume throughout the rest of the paper that the situation of Claim 5 does
not occur, and for this reason, we shall refer to uv, xy € M as in the statement of Claim 5
as a contradicting swap. It is worth noting that the condition in Claim 5 depends only
on wyy, not wyy, and so we may determine if a swap M is contradicting from w,,; alone.
We are now ready to prove our warm-up theorem.

Proof of Theorem 4. Throughout this proof, we let K be our complete graph of order 2nk.
Assume that M is some perfect matching minimising the value of g(M). By symmetry,
the average value of

2(wpr (wv) + wy(zy)) — wpr(ux) — wy(uy) — wy(ve) — wp(vy)

over all uv, zy € M is equal to 4(wp (M) —wa (E\M)). Thus if wy (M) —wp (E\M) > 2
there must be some u,v,z,y € V(K) forming a contradicting swap, whereupon Claim 5
applies and we find some M’ with g(M') < g(M), a contradiction.

Therefore we may assume that wy; (M) —wa; (E\ M) < 2. Expanding definitions, this
implies the following.

wpr (M) < > eemn W (e)

< +2.
| M [E\ M|

Substituting in that g(M) = wy (M), |M| = nk, and |E| = (*2*), and using the fact that
E has |E|/k edges of each colour, we deduce the following.

k

I < (3 (%57) ~ mian ) mian + 2.

=1

Noting that 3¢ m;(M) = |[M| = nk and (*2*) — nk = 2nk(nk — 1), the above simplifies
to

2(nk — 1)g(M) < n(2nk — 1)nk — g(M) + dnk(nk — 1).
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This in turn rearranges to

dnk(nk — 1)

M) < n’k
gM) <k + —5 o

If we define the numbers z; by m;(M) = n + z;, so that 3¢ | z; = 0, we see from (7)
that the above implies

§ : 2
A S X
T, X nk 1 < 2nk

Then, by convexity, we see that, if S5 22 is fixed, S5 |z;| is maximised when all
|z;| are equal (dropping the assumption that Zle x; = 0). Therefore, we find that
Zf:1|xi| < kv/2n, as required. O

3 Proof of Theorem 3

We now extend the proof given in Section 2 to remove the n-dependence. The intuition
here is that the equality case in the previous proof, namely that every swap decreases w;,
by 2, cannot actually occur. In fact, as will be shown, it is very far removed from reality.
All notation and terminology from Section 2 will be used throughout this section as well.
As the cases k = 2,3 have been dealt with (as discussed in Section 1), we may assume
that & > 4.

Our proof has several steps. Firstly, in Section 3.1 we provide an algorithm for grouping
colours into sets Ay, ..., A;, so that colours which occur a similar number of times in M
are in the same set. Then in Section 3.2, we define a partial order > on [t] x [t] to record
in which cases swaps between colours in our sets would necessarily be contradicting (i.e.
satisfying the conditions of Claim 5).

In Section 3.3, we prove that > is contained within a larger, simpler partial order.
In particular, we will be able to associate a number a; with each set A; in such a way
that (7,7) ~ (¢, ') if and only if a; + a; = ay + aj. Finally in Section 3.4 we combine
the results of the previous subsections to derive a contradiction, completing the proof of
Theorem 3.

Assume for contradiction that we have a perfect matching M which minimises g(M),
but still has f(M) > 4%

3.1 Collecting similar colours

We iteratively construct sets of colours Ay, ..., A; as follows. Initially set ¢t = k& and each
A; = {i}, assuming, after possibly reordering, that

my(M) = mo(M) = ... = my(M). (8)

ot
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We now iteratively decrease t. Assume that ¢t < ¢ and let ¢ := k — t. If, for some 1,
min{|m, (M) —my(M)| : 2 € 4; and y € A1} < 4Dk, 9)

then we combine sets A; and A, into one set. We also decrease the index of sets A; with
j > i+ 1 so that the indices remain consecutive and the ordering from (8) is preserved.
The process terminates when either t = 1 or no pair of sets satisfy (9).

Note that if the process terminates with ¢ = 1, i.e. all colours are collected into a single
set, then we can bound the values of m;(M) as follows.

k-1
|mi(M) —n| <my(M) —my(M) < Z4jk < gR(k=D+1
=0

From which Theorem 3 quickly follows.

Thus we may assume that the process terminates with at least two distinct sets of
colours remaining. We now make some definitions and observations about the sets A;,
which we will refer back to later.

For any set A C [k], we define

width(A) = max{m;(M) —m;(M) : i,j € A}.
Then we know that for all 7,
t l

D width(4y) <> 4% < 2(4%). (10)

i=1 j=1
Furthermore, as the algorithm for combining the A; halted, we know that if

d(A, B) == min{|m;(M) —m;(M)| : i € A, j € B},
then for all distinct 1, j,
d(A;, Aj) > 4Dk, (11)

where we recall that £ = k —t. Finally, define a(e) € [t] to be such that c(e) € Ay for
any edge e € E. With these notions in hand, we proceed to the rest of the proof.

3.2 Partially ordering pairs of colour sets

We now define a partial order > on [¢] x [t] as follows.

Definition 6. For i,7,7, 5" € [t], let (i,7) = (¢,7") if every swap from colours (z,y) €
A; x Aj to (2',y') € Ay x Aj is contradicting, as in Claim 5. In other words, for all
T € A,y€ Ay’ € Ay, y € Ay, we have wy () + war(y) > wp(2') +wun (y') + 4.
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We now prove some results about the structure of the partial order >. Firstly, define
relations ~ and ~ on [t] x [t] as follows. Set (i,7) ~ (¢, ;) if (i,7) and (¢, j") are >-
incomparable, and then let ~ be the transitive closure of ~. That is, ~ is the minimal
transitive relation extending ~, which is then reflexive, symmetric, and transitive, i.e.
an equivalence relation. Finally, define By, By, ..., Bs to be the equivalence classes of
the equivalence relation ~, ordered so that if ¢ < r, (i,7) € B, and (¢/,j') € B,, then
(1,7) = (¢, 7"); it is natural to write

By > By > --- > B,.
In particular, (1,1) € By and (t,t) € Bs.

Lemma 7. For any x,y, z € [t] with x # y, we have that (x, z) % (y, z) and (z,z) % (2,y).
In particular, s > 2t — 1.

Proof. The arguments in these two cases are entirely similar, so we consider the first case.
Assume for contradiction that (x,z) ~ (y, z). Then there is some sequence

(x,2) = (ag,by) ~ (ar,by) ~ ...~ (ar,b;) = (y, 2),

and we may furthermore assume that we have chosen the triple x,y, z and intermediate
steps (a;, b;) to minimise the value of r amongst all choices with = # y and (z, z) ~ (y, 2).

We see that ag,aq,...,a,,by,b1,...,b,. are all distinct, as otherwise there would be a
different choice of x,y, z resulting in a smaller value of r. Thus by definition of ~ and
(10), we see that for any colours b € A, and ¢ € A, we have the following.

(M) — mo(M)| <) (4 + width(A,,) + width(Ay,))

=0

t
<A(r+1) + ) width(A;)
=1

y4
<A(r+1)+ > o
j=1

< 2(4")
< 4(£+1)k.

Thus we see that the algorithm in Section 3.1 should have collected A, and A, (and any
sets between) into a single set, a contradiction, and the claim is proved. O]

We collect the results of this subsection into the following remark. Recall that a(e) is
the index j of the set A; containing colour c(e), i.e. c(e) € Ay e).

Remark 8. We may assume that there are no edges uv, xy € M, indices i, j,7,j" € [t],
and ¢,r € [s] such that ¢ < r, (a(w),a(zry)) € By, and (a(ux),a(vy)) € B,, as then
(1,7) = (7, 7") and the swap from wv, zy to ux, vy would be contradicting.
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3.3 Approximating > with (R, +)

In this subsection we prove the following lemma.

Lemma 9. There are numbers ay,as,...,a; € R such that a; + a; = ay + ay if and only
if (i,7) ~ (¢, 7"). Furthermore, we may assume that a; > ay > -+ > ay.
Proof. We will think of a = (a1, as,...,a;) as a vector, and find it as an element of the

null space of a certain matrix N. For each relation (i,7) ~ (¢/,j’), we seek to enforce
that a; + a; = ay + a;. To this end, add a row to N with +1 in columns ¢, j, and —1 in
columns #', 7', and 0 in all other columns (or a +2 if i = j or =2 if i’ = j'). We seek a
vector a = (ay, as, . .., a;) such that Na = 0.

If we define

b; == min{m.(M) : ¢ € A;} for each i € [t],

then letting b = (by,bs,...,b;), we have Nb = €, where € = (€1, ¢9,...,&) is a vector of
error terms. This vector b is our starting point for finding a, but we still need to manipulate
it to be exactly in the null space of N. For each r € [t], we have ¢, = b; +b; — by — by
for some (i, j) ~ (¢',j"). Using an entirely similar argument to the proof of Lemma 7, we
discover that

e < 2(4%) for all r € [t]. (12)

We now construct a t x ¢t square matrix 7" based on N. If N has fewer than t rows,
then append additional all-zero rows to the end of N to form the square matrix 7'. If N
has more than ¢ rows then, possibly reordering rows, we may assume that all rows of N
after the first ¢ are in the linear span (over R) of the first ¢ rows. Then we may let T
consist of the first ¢ rows of N.

In either case, note that Th = ¢’, where each component of & equal to either zero or
some component of €; in particular, |[&']|c < ||€]]oo-

If T is the zero matrix, then we can let a = b. Otherwise, if A is the minimal nonzero
eigenvalue of T', then we know by projecting b onto the null space of T' that we can find
some a with T'a = 0 and

||a - bHoo < |/\|_1||5/||00‘

Next, note that the product of the nonzero eigenvalues of an integer matrix must itself be a
nonzero integer (as it appears as a coefficient of the integer polynomial p(z) = det(T—=x1)),
and hence is at least 1 in absolute value. Then, noting that the sum of the absolute value
of the coefficients in any row of N is 4, we see that 4 is an upper bound on the absolute
value of any eigenvalue of T. Thus 4"7'|A\| > 1, and so |\ > 4'7'. Putting this all
together, we discover the following.

la — bllse < A7 (2(4%)) by (12)
< 4'4% /2
< 4Dk /g as k>4 and k > t.
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Now we may further note that inequality (11) gives
AR 19 < min{d(A;, Ajpr) 0 1< <t}/2

and so, as the sequence b; is strictly decreasing, we find that a; is strictly decreasing too,
as required. O

3.4 Deriving a contradiction

We now combine results from previous subsections together with a counting argument
to produce a contradiction. To begin, we make several definitions, each holding for all

i,7 € [t].

Define S to be the set of ordered pairs of ordered edges in the matching M, up to
flipping both edges. y; ; is the number of swaps replacing some pair of edges in M with a
pair of edges with colours in A; and A;.

S = {(uv, zy), (v, yx), (ry, wv), (yr,uwv) : ww,xy € M},
yij = |{(uv,zy) € S : a(uzr) € A;,a(vy) € A}

Next, p; is the number of edges in M of colours in A;, and p;; is a shorthand for the
number of swaps wherein the edges removed from M have colours in A; and A;.

Di = Z mc(M)7

cEA;
2pip; i F#J
2pi(pi — 1) i=j.

Dij -
Finally, z;; measures the difference between y; ; and p; ;; how many swaps start with

colours in A; and A; against how many end there.

Zig = Yij — Pij;
t
gi = E Zi,j'
j=1

Note that both y;; and p; ; count pairs of edges in the matching M; equality (13)
follows immediately from the definitions.

t t t t ’M|
S =Y Yn=lsi=a("y') 19
i=1 j=1 i=1 j=1
And thus we also have the following.
t t t
YD) DETIS S (1
i=1 j=1 i=1

Given the above, we now proceed to state and prove a claim concerning z; ;.
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Claim 10. For any h < s, the following holds.

h

Z Z Zij 20

q=1 (i,j)€Byq

Proof. Assume for contradiction that for some h the claimed inequality did not hold.
Unwrapping the definitions of z; ; and y; ;, this would imply the following.

Yo D Hluway) €5 fe(ua), (o)t = {i i3 <Y D pige (15)

(¢,7)€Bgq q=1 (i,j)€By

Both sides of (15) count elements of S. The right-hand side counts the number of ordered
pairs of ordered edges (uv,zy) € S with colours (c(uv),c(zy)) € By U ---U By, i.e. the
number of swaps from a pair of colours in By U---U By,. The left-hand side of (15) counts
the number of such pairs for which (c(uz), c(vy)) € ByU---U By, i.e. the number of swaps
to a pair of colours in By U---U By. Any swap from a pair of colours in ByU---U By, to a
pair of colours not in By U---U By, is necessarily contradicting, but (15) tells us precisely
that there are more of the former than the latter.

Thus the inequality in (15) implies that there must be a contradicting swap, a contra-
diction, and so the claim holds. O

We now manipulate the definition of &; our goal here is to show that &;/|A4;| is an
increasing function of ¢, from which we will derive our final contradiction. For the sake of
intuition, not much is lost by considering the case when all |A;| = 1, and this may ease
understanding.

Indeed, in the case when all A; have size 1, Z;Zl y;,; counts the number of edges of
colour 7 in £\ M, and 22:1 pij counts (a constant multiple of) the number of edges of
colour ¢ in M, from which it is clear that & should be increasing. We now prove this
generally. We first deal with sums of y; ; and p; ;.

Zyj =|{ee E\M : afe) =i} = |A;n(2nk — 1) — p;. (16)

t

t
Jj=1 J

=1
Now we turn our attention to &;.

t
&i 2.5

1Al = |Ail

1 t t
= 4] (Z Yij — Zpi,j>
j=1 j=1
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= |T1|(|Az|n(2nk — 1) — pi — 2pi(nk — 1)) by (16) and (17)
_ pi2kn = 3)

=n(2kn — 1) Al

Noting that p;/|A;| is a strictly decreasing sequence, we see that &;/|A;| is strictly
increasing. To complete our proof, we consider the following value.

t

i=1 ¢

=1

Define v; to be the sequence formed by |A;| copies of & /|A;|, then |As| copies of
& /] As|, and so on. Thus we may re-write ¢ as follows.

k
¢ = Z a;Vj.
i=1

Then we know that a; is a strictly decreasing sequence, v; is an weakly-increasing not-
entirely-constant sequence with zero sum (due to (14) and that &;/|A;| is strictly increas-
ing), and so we see that ¢ < 0. To reach our contradiction, we now prove the following
claim.

Claim 11. ¢ > 0.

Proof. Consider the weaker situation where instead the numbers z; ; merely form some
zero-sum symmetric matrix satisfying the conclusion of Claim 10; we will show that this
is already enough to deduce that ¢ > 0. In the case when all z; ; = 0, we have ¢ = 0.

Now, any other valid value of z; ; can be formed by starting in the case z;; = 0, and
then performing the following sequence of operations a number of times.

e Select i < j,4' < j' with (4,j) € B, and (¢, j') € B, for some ¢ < .
e Select some weight ¢ > 0, and replace z; ; with z; ; — ¢, and 2y j» with 2y ;7 + C.
e Similarly, move ¢ weight from z;; to z; ; to preserve symmetry.

This sequence of operations decreases §; and &; by ¢ and increases & and & by (. But
as ¢ < r, we know that a; + a; < ay + a;/, so the above increases (or keeps constant) the
value of ¢. Thus ¢ > 0, as required. O

This contradiction completes our proof of Theorem 3.
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4 Conclusion and future work

We have removed the n dependence from Theorem 2 to prove Theorem 3, and thus shown
that for a fixed number of colours, an arbitrarily large colour-balanced complete graph
contains a perfect matching only a constant number of edges away from being colour
balanced itself. However, there is still a significant gap in the k-dependence between
our result and the bound of Conjecture 1. The techniques presented here seem far from
reaching a quadratic dependence on k, and so little effort has been expended in optimising
the bound produced. That said, the author believes that it would be interesting to attempt
to improve the upper bound, and investigate whether quadratic dependence on k is truly
the correct answer.

One particular limitation of the techniques explored here is that they will only find a
matching which locally minimises the function g(M), and cannot directly say anything
about the globally optimal matching. Based on this observation, we ask the following
question.

Question 12. What is the largest value of f(M) in terms of k for which there exists a
colouring of Koy, and a perfect matching M for which any small perturbation of M (i.e.
performing a swap) increases the value of f(M)? In particular, can this be significantly
larger than the global minimum of f over all perfect matchings M?

In terms of lower bounds, we have not discovered any instance of a colour-balanced
complete graph K with

min{f(M) : M a perfect matching of K} > 2.

However, it is not too hard to see that there are balanced colourings and perfect matchings
M forming local minima for ¢ for which f(M) = Q(k?). Tt is for this reason that we believe
it is plausible that the cases of local and global minima are significantly different, in which
case a new approach would be necessary in order to get close to the true bound.

A different direction to extend this work would be to consider almost colour-balanced
H-factors; here we have dealt with the case H = K,. The natural extension in this
direction is, in the author’s opinion, the following question.

Question 13. For which graphs H on r vertices and m edges is it there a function
hyg: Z — 7 with the following property?

For any n and any number k of colours, any colour-balanced ¢: K, — [k] contains
an H-factor F' satisfying

J(F) < hy(k),

where f(F) =S¥ ||¢'(i) N F| — n| measures how far F is from being colour-balanced.

It would appear that approaching the above question requires ideas beyond those
presented in this paper.
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