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Abstract

A vertex-girth-regular vgr(n, k, g, \)-graph is a k-regular graph of girth ¢ and
order n in which every vertex belongs to exactly A cycles of length g. While all
vertex-transitive graphs are necessarily vertex-girth-regular, the majority of vertex-
girth-regular graphs are not vertex-transitive. Similarly, while many of the smallest
k-regular graphs of girth g, the so-called (k, g)-cages, are vertex-girth-regular, in-
finitely many vertex-girth-regular graphs of degree k and girth g exist for many pairs
k,g. Due to these connections, the study of vertex-girth-regular graphs promises
insights into the relations between the classes of extremal, highly symmetric, and
locally regular graphs of given degree and girth. This paper lays the foundation
to such study by investigating the fundamental properties of vgr(n, k, g, A)-graphs,
specifically the relations necessarily satisfied by the parameters n,k,g and A to
admit the existence of a corresponding vertex-girth-regular graph, by presenting
constructions of infinite families of vgr(n, k, g, A)-graphs, and by establishing lower
bounds on the number n of vertices in a vgr(n, k, g, A)-graph. It also includes com-
putational results determining the orders of smallest cubic and quartic graphs of
small girths.

Mathematics Subject Classifications: 05C07, 05C35, 05C38

1 Introduction

The motivation for considering vertex-girth-regular graphs comes from two seemingly
disconnected areas.

The first is the Cage Problem; a part of Extremal Graph Theory where one searches
for k-regular graphs of girth g, (k, g)-graphs, of the smallest possible order; called (k, g)-
cages [7]. Even though this problem has a large number of practical applications (e.g.,
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in Network Design) and has been studied since the 1940’s, very few orders of (k,g)-
cages are known. This is due, among other reasons, to our lack of understanding of the
structure of cages as well as the considerable size of the search spaces associated with
searching for smallest graphs of given parameters k,g. To fill the existing void, it is
often useful to rely on heuristics — observations based on the structure of known cages or
smallest known (k, g)-graphs. One such insight is that small (k, g)-graphs often exhibit
a high level of regularity and tend to look similar with respect to each of their vertices.
Transforming this observation into a structural description suggests for example that each
vertex of a small (k, g)-graph is contained in a similar number of girth-cycles; cycles of
length ¢g. This ultimately leads to the study of (k,g) vertex-girth-regular graphs which
are k-regular graphs of girth ¢ in which every vertex is contained in the same number of
girth-cycles; which we shall usually denote by A. Since our partial aim is to shed light on
structural properties of small (k, g)-graphs, we also address the question of smallest orders
of vertex-girth-regular graphs for a given triple k, g and A. Similar questions concerning
girth-regularity of regular graphs have been studied in a series of papers focusing on the
orders of smallest k-regular graphs of girth g in which every edge is contained in the same
number of girth-cycles, called edge-girth-reqular graphs egr(n,k,g,\) [5, 10], and in the
paper [16] where the authors consider girth-reqular graphs gr(n,k,g,a): k-regular graphs
of girth g having the property that the signature of every vertex is the same, where the
signature a = {aj,as,...,a;} of a vertex u represents the number of times the k edges
adjacent to u are contained in girth-cycles. Clearly, both of the above classes of graphs are
also vertex-girth-regular. However, in our definition, we do not make any assumptions
about the distribution of girth-cycles among the edges adjacent to a vertex. It is also
worth noting that the number of girth-cycles through any vertex in an edge-girth-regular
graph is necessarily a multiple of half of the degree, g

The second source of inspiration for our study of vertex-girth-regular graphs is the class
of vertex-transitive graphs which are necessarily vertex-girth-regular (and much more;
since they have the property that the number of cycles of any specific length through
each vertex is the same). Thus, in some sense, the study of vertex-girth-regular graphs
is the study of the connection between vertex-transitivity and girth-regularity much the
same way as the study of edge-girth-regular graphs is connected to edge-transitivity. It
is important to note that neither edge- nor vertex-girth-regularity imply edge- or vertex-
transitivity; as amply exhibited by our example of an edge-girth-regular tetravalent graph
on 20 vertices which has a trivial automorphism group (see Fig. 1).

2 Preliminaries and notation

We first recall the Moore bound M (k, g), which provides a lower bound for the order of
a (ka g)_graph:
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Figure 1: An egr(20,4,4, 1)-graph which is asymmetric (it only has the trivial automor-
phism).

Observation 1 (Folklore). Let G be a (k, g)-graph of order n. Then, we have:

(9—3)/2 i -
3 i) = LS5, KN e
Yol (k1) if g is even.

If a (k, g)-graph attains this bound, we call it a Moore graph. This lower bound holds
because every (k, g)-graph contains a (k, g)-Moore tree as a subgraph, which we will now
define. Alongside the definition of a (k,g)-Moore tree, we will also define some other
notation that we will later refer to.

Definition 2 ((k, g)-Moore tree). Let G be a (k, g)-graph. We now consider two cases:
(i) g is odd and (ii) g is even.

(i): Consider a vertex u; € V(G) and let 7,";_, be a subgraph of G such that V(7;_.)
’2 72
consists of all vertices which are at distance at most 9%1 from u; and E(7";_,) contains
2

all edges of E(G) between vertices of V(7",_,) except for edges between vertices at
"2

distance % from u;. Since G has girth g, T i1 is a tree (called a (k, g)-Moore tree) and
2
VT = Mk, g)
(ii): Consider an edge ujuy € E(G) and let 7,°;™" be the subtree of G' consisting of
)
the edge uyuy and two disjoint trees rooted at u; and us, respectively, such that the leaves
1,Uu2

of the two trees are at distance § — 1 from wu; and us, respectively. We call V/(7,"5"%)
12

a (k,g)-Moore tree (note that |V(7;“%f21)| = M(k,g)). Let D,, and D,, be the sets of

leaves of 7,57 at distance 2 — 1 from u; and uy, respectively. Let vi, v, ..., v4—1 be the
12

k —1 neighbors of u; distinct from wuy and let Dy, 1, Dy, 2, - .., Dy, k-1 be the sets of leaves

at distance § — 2 from v, vy, ..., vx_1, respectively. The set of girth-cycles containing u,

can be partitioned in three sets A,,, B,, and C,,, where A,, is the set of girth-cycles that
contain exactly one edge with an endpoint in D,, and one endpoint in D,,, B, is the set
of girth-cycles that contain exactly two edges with one of their endpoints in D,, and a
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shared endpoint in D,,, and C,, is the set of girth-cycles that contain exactly two edges
with one endpoint in D,,, and one endpoint in V(G) \ V(7 1’“2)

As we already stated in the Introduction, for integers n, k, g and A, a vertex-girth-
regular vgr(n, k, g, \)-graph is a k-regular graph with girth g on n vertices such that every
vertex is contained in exactly A cycles of length g.

It is important to note that not every triple (k, g, \) admits the existence of a
ver(n, k, g, \)-graph. For example, we can derive the following obvious upper bounds on
A. Several of the proofs in this paper will follow the same setup as the proof of the
following proposition.

g

k(k—1)L2]

5 with equality if and

Proposition 3. Let G be a vgr(n, k, g, \)-graph. Then A <
only if G is a Moore graph.

Proof. We first prove the result for (i) g odd and then for (ii) g even.
(i): Let uy and 7'“1 be chosen as in Definition 2. Now there is a one-to-one correspon-

dence between glrth cycles of G containing u; and edges whose endpomts are both leaves
of 7;7”;; Since each vertex of G has degree k and T“g; has k(k—1)"z leaves, we obtain

that the number of edges between two leaves of T“ o1 is bounded from above by

and this bound is attained if and only if G is a Moore graph.
(ii): The even girth case uses a similar setup as the odd girth case, but requires different
arguments.

Let wyug, T3, Auys Buys Cuiy Duys Dugs Duyty Duyas -y Dy -1 be chosen as in
Definition 2. NoQte that each girth-cycle in A,, contains the edge ujuy, whereas none
of the girth-cycles in B,, and C,, contain ujuy. Since every vertex in G has degree
k and |D,,| = (k — 1)ﬁ, we obtain |A,,| < (k — 1)2. Since G has girth g, each
vertex v € (V(G) \ V(T, 1’"2)) U D,, is adjacent to at most one vertex in D, ;, for
each integer 1 < i < k — 1. Therefore, every vertex v € (V(G) \ V(7,'5"3)) U Dy, is
adjacent to at most £ — 1 vertices in D,,. Since each vertex in G has2 degree k, we
obtain |B,,| 4 [Cuy| < (k — 1) E=0E22 0 This vields A = [Ay,| + |Bu| + [Cu| <
(k—1)% + (k- 1)%(]“_1)2(]“_2) = k(kgl)% and if equality occurs, |A,,| = (k — 1)% and
therefore |B,, | = (k— 1)5%2% and |C,, | = 0, which implies that G is a Moore graph.

Conversely, if G' is a Moore graph, we have |A,, | = (k—1)%, |B,,| = (k — 1)9%2(]“*1)2&,

|Cu1]:()and)\:w. O

Beside the upper bounds on A derived from the properties of cages stated in Proposi-
tion 3, vertex-girth-regular graphs also do not exist in cases when A is close to the upper
bounds stated in there.

For example, when considering cubic vertex-girth-regular graphs of girth 3, it is easy
to see that Ky is a vgr(4, 3, 3, 3)-graph. Moreover, it is the unique 3-regular graph of girth
3 and A = 3, which is the maximal A in any vgr(n, 3,3, A)-graph. Also, it is not very hard
to construct a 3-regular graph of girth 3 and A = 1, as shown in Fig. 2.
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Figure 2: A vgr(6,3, 3, 1)-graph.

However, there is no cubic vertex-girth-regular graph of girth 3 in which every vertex
belongs to 2 girth-cycles. This is a consequence of the following lemma.

Lemma 4. Let k > 3. There is no integer n such that a vgr(n, k, 3, (’2“) — 1)-graph ezists.

Proof. 1t i:?C ee.tsy to see that the complete graph Kjyq is a ver(k + 1, k, 3, (g) )-graph, and
that A < (2) in a vgr(n, k, 3, \)-graph.

Consider a potential vgr(n,k, 3, (g) — 1)-graph G. Let u be a vertex in G, and let
V1, Vs, . ..,V be the neighbors of w. Similarly as in Ky, 1, each pair of distinct neighbors
of u, except for one, must be adjacent (recall that u is assumed to be contained in
(’;) — 1 triangles). Without loss of generality, we may assume that v; and vy are the
neighbors of u that are non-adjacent. As v, is assumed to be of degree k, it must have a
neighbor w distinct from the vertices u, vy, vo, . .., v;. Furthermore, note that each triangle
containing v; must contain two adjacent neighbors of vy, while w is not adjacent to any
of the vertices u,vs,...,v; as they are already assumed to be of degree k. Note that w
may be adjacent to vy, but this does not yield a triangle containing v;. This means that
v; is contained in at most (kgl) triangles. Since k > 3, (kgl) < (’;) — 1. Therefore G is

not a vgr(n, k, 3, (g) — 1)-graph; which completes the argument. O

Thus, unlike the case of (k, g)-graphs which exist for every pair of parameters k, g > 3
[17], the question of the existence of at least one vgr(n, k, g, \)-graph for a given triple
(k,g,A) necessarily precedes the question of the order of a smallest such graph. That is
why we begin our paper with Section 3 in which we show the existence of vgr(n, k, g, \)-
graphs for large classes of triples (k, g, A). This is followed by Section 4 where we derive
several natural lower bounds on the orders of vgr(n, k, g, A)-graphs. In analogy to the Cage
Problem, we define n(k, g, \) to be the smallest integer n such that a vgr(n, k, g, \)-graph
exists (or oo otherwise), and similarly, ny(k, g, A) to be the smallest integer n such that a
bipartite vgr(n, k, g, \) exists (and oo otherwise). We then present further non-existence
results in Section 5, and conclude the paper with a number of computational results in
which we determine the orders of smallest vertex-girth-regular graphs for various sets of
small parameter triples (k, g, A).

Before exiting this section, let us revisit Lemma 4. As shown by the existence of a
ver(6, 3,3, 1)-graph, at least in case of k = 3, the lemma cannot be strengthened. Even
though we were unable to find a general proof for the claim that no vgr(n, k, 3, (’;) —€)-
graphs exist for 0 < e < %, the result appears feasible (especially in view of the analogous
Theorem 17). However, as shown by the existence of a vgr(6,4,3,4)-graph, the upper
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bound € < % is sharp and cannot be replaced by € < % appearing in Theorem 17.
Finally note that vgr(2k,k, 3, (];) — (k — 1))-graphs exist for all & > 3. They can be
constructed in the same way as the vgr(6,3,3,1)-graph depicted above by joining two
copies of the complete graph K via a perfect matching connecting each vertex in one of

the copies to exactly one vertex in the other.

3 Existence results

In contrast to Lemma 4, we will show in this section that vgr(n, k, g, \)-graphs exist in
many cases. We start by showing, based on the idea of generalized truncation, that one
can construct vertex-girth-regular graphs of increasing degree starting from an arbitrary
vgr(n, k, g, A)-graph (based on a similar idea as the one discussed in [17]).

Proposition 5. If a vgr(n, k, g, \)-graph exists, then there exist infinitely many integers
n' such that vgr(n', k + 1, g, \)-graphs also exist.

Proof. Let G be a vgr(n, k, g, \)-graph. Consider an n-regular graph G’ of girth strictly
larger than g/2 (such a graph exists for any choice of n and g as shown in [17]). Construct
the graph H by generalized truncation: H is obtained by replacing every vertex in G’ by a

copy of the graph G (if u is a vertex of G’ with neighbors wy, ws, ..., w, and 1, xs, ..., x,
are the vertices of GG in an arbitrary order, then the vertex u is replaced by the graph G
and the edges wyxy, wozs, ..., w,x, are added). An example with G = Cy and G' = Kj

is given in Fig. 3.

Figure 3: A graph H obtained by generalized truncation by taking G = C, and G' = K.

Now each cycle in H corresponds either to a cycle in G or to a cycle in G’ in which
each vertex is replaced by a path consisting of at least two vertices. Therefore H is a
(k+1)-regular graph with girth ¢ such that each vertex is contained in A girth-cycles. [
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Since every girth-cycle of a graph containing a vertex u contains exactly two edges
incident with u, every edge-girth-regular graph is also vertex-girth-regular.

Observation 6. If G is an egr(n, k, g, \)-graph, then G is a vgr(n, k, g, %)—gmph.

We now recall three theorems from [10] concerning existence of edge-girth-regular
graphs that we will use later:

Theorem 7 (Th. 3.4 in [10]). For every k > 3 and every g > 6, there exist infinitely
many egr(n, k, g, 2)-graphs.

Theorem 8 (Th. 4.1 in [10]). The Cartesian product of an egr(ny, k1,3, X)-graph and an
egr(ng, ka, 3, \)-graph is an egr(ning, ki + ko, 3, X)-graph.

Theorem 9 (Th. 4.3 in [10]). For every r > 2 and g > 3, there ezist infinitely many
egr(n,2", g,1)-graphs.

We are now ready to prove the main existence theorem of this section which shows
that vertex-girth-regular graphs exist for many k, g and A:

Theorem 10. There are infinitely many integers n such that a vgr(n, k, g, \)-graph exists:
(i) for A =1 and all integers k,g > 3;
(i1) for A\ =2 and all integers k >4, g > 3;

(11i) for all integers A =23, k> X\, g >3, g ¢ {4,5}.

Proof. (i) By repeatedly applying Proposition 5 to cycles (i.e., vgr(g,2, g, 1)-graphs), we
obtain the existence of infinitely many vgr(n, k, g, 1)-graphs for all integers k, g > 3.
(ii) By applying Theorem 9 for r = 2, we obtain the existence of infinitely many
egr(n, 4, g, 1)-graphs for all ¢ > 3 and thus infinitely many vgr(n, 4, g, 2)-graphs by apply-
ing Observation 6. Finally, repeatedly applying Proposition 5 to these graphs proves (ii).
(iii) We first deal with the case g = 3. As discussed in [8], there exist an egr(4, 3, 3, 2)-
graph G, an egr(6, 4, 3, 2)-graph G5 and an egr(12, 5, 3, 2)-graph G5 (these are respectively
the 1-skeleta of the tetrahedron, the octahedron and the icosahedron). For all integers
k > 6, one can construct the graph Gj._s by taking the Cartesian product of G; and Gj,_s5.
Due to Theorem 8, the graphs Gy_s (k > 3) are egr(n, k, 3, 2)-graphs for some n, and by
Observation 6, they are also vgr(n, k, 3, k)-graphs. By repeatedly applying Proposition 5
to these graphs, we obtain infinitely many vgr(n, k, 3, \)-graphs and we are done with the
girth 3 case.

We can combine Theorem 7 and Observation 6 to obtain the existence of a
vegr(n, k, g, k)-graph for each ¢ > 6 and k£ > 3. Finally, by repeatedly applying Propo-
sition 5 to these graphs, we obtain the existence of infinitely many ver(n, k, g, A)-graphs
for each choice of (k,g,\) with & > X\ > 3 and g > 6. O
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4 Lower bounds on n(k, g, \)

In this section, we present lower bounds on the order of extremal vertex-girth-regular
graphs (i.e., vertex-girth-regular graphs of the smallest order). We get the lower bounds
by generalizing already existing bounds for edge-girth-regular and girth-regular graphs
[1, 5, 13]. We will use the fact that every vertex of a vgr(n, k, g, \)-graph has an edge
that is contained in at least/at most % distinct girth-cycles. In order to prove this fact,
we choose an arbitrary vertex w and denote its signature by a = {ay,...,ax}, where
ay = ags = -+ > ag. The sum of these numbers is two times the number of girth-cycles
through u, which is equal to \ by definition. Hence, the average of the signature is 2.

k
Therefore

%g{%ﬁ<{%1<ay (1)

First, we present a generalization of the combinatorial lower bounds.

Theorem 11. Let G be a vgr(n, k, g, \)-graph, where g = 2h is an even number and

k> 3. Then
(k—nh—1+{ﬂk—nh—zﬁﬂw

nz

k—2 k
Moreover, if G is bipartite then

n>2@i£é;i+2{%_li_t%q.

Proof. There is an edge that is contained in A < L%J distinct girth-cycles. For that
particular edge, we follow the proof of Theorem 2.3 and Theorem 5.1 in [5], and we
immediately get the lower bound: we consider the set of vertices that are at distance
h — 1 from the chosen edge. The number of edges with both endpoints in the set of these
vertices equals the number of girth-cycles through the chosen edge, which is precisely A.
Hence, the number of edges that leave the Moore tree is 2(k — 1) — 2A. The graph is
k-regular, so we can give a lower bound on the number of vertices outside the Moore tree:

(k=1 —1 [2(k—1)"—2A
nz2TTy +{ I W
(k—1"—1 [2(k—1)"—2]2]
Z2 +{ I W'

In the bipartite case, there is a slight improvement on the lower bound. There are 2(k —
1)" — 2A edges that leave the Moore tree. Half of them have an endpoint in one part of
the graph, and the rest of them have an endpoint in the other part. Hence

n>2w+2[ww

k—2 k
>2@i£§fi+2{%_li_t%q.
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]

Theorem 12. Let G be a vgr(n, k, g, \)-graph, where g = 2h + 1 is an odd number and
k> 3. Then

0> nlk.g.h) > k(k—1)h—2 Fg(k—l)h—zw .

k—2 k

Proof. We can apply the same argument as in Theorem 2.3 in [5]: we choose an arbitrary
vertex v and consider the set of vertices that are at distance h from v. Then, the number
of girth-cycles through v equals the number of edges with both endpoints in this set,
which is exactly A\. Hence, we can give a lower bound on the number of vertices outside
the Moore tree. Thus, the order of the graph is at least

k(k—1)h -2 N [k(k— 1)’1—2AW ‘

k—2 k -

n=n(k,g,A) >

The next lower bound for even girth is a combinatorial one that gives a lower bound
on the number of vertices outside the Moore tree. It is a straightforward generalization
of Theorem 4.4 in [1]. The proof is based on counting the number of girth-cycles through
an arbitrary vertex avoiding one of its edges.

Theorem 13. Let G be a vegr(n, k, g, \)-graph, where g = 2h is an even number, k > 3
and G is not a Moore graph. Suppose that there exists an edge that is contained in A
distinct girth-cycles. Then

(k—1D"—1 ((k—1)" = )
k—2 2A—3A+(lc—1)h—QHW(O’{2A—2_AD

(k—1)(h=1) 2

n=?2

Moreover, we have

A < max ((k— 1)L (e — 1y <\/i + ﬁ _ %)) |

Proof. We follow the same argument as in the proof of Theorem 4.4 in [1]. Choose an
arbitrary edge uv that is contained in exactly A distinct g-cycles. We define the set D, of
vertices as follows: w € D, if and only if the length of the shortest uw-path is h — 1, and
the length of the shortest vw-path is h (i.e., the distance of w from v is h and at least one
of the shortest paths from w to v contains the edge uwv). Similarly, w € D, if and only if
the length of the shortest vw-path is h — 1, and the length of the shortest uw-path is h.
The number of edges between D,, and D, is exactly A. Hence, the number of girth-cycles
through u that do not contain the edge uv is A — A. There are two types of such cycles:
the ones that contain a vertex in D, and the ones that contain a vertex at a distance h
from u and outside of D,. Denote the latter set of such vertices with M (see Fig. 4), and
note that the vertices in M do not belong to the Moore tree containing uwv, and therefore

n>= M(k,g) + |M|, (2)
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Figure 4: The sets D,, D, and M.

where M(k,g) = 2% is the Moore bound. In what follows, we let m denote the

cardinality |M].

We derive a lower bound for the number of the first type of the above discussed cycles
to give an upper bound for the number of the second type of such cycles. There are
(k — 1)}‘_1 vertices in D,. For each vertex w € D,, let y, be the number of neighbors
that w has in D,. Clearly, >, p, Yw = A. For each vertex w € D,,, we have (y; ) possible
choices to form a girth-cycle containing both v and w, but not containing the edge uv.
Hence, the number of girth-cycles of the first type is

y 1 1 1 A
S CHEEDIEED TR D SRS
wWE Dy wE Dy, we D, wE D,

The inequality between the arithmetic and quadratic means for the multiset {y,, | w € D,}
gives a lower bound on the number of such cycles:

1 , A A2 A
5 Yo~ 5 Z 57 100 5
2 27 2(k— )0 2

For small values of A, this lower bound is negative. Hence, we have the following lower

bound: )
% (5) 2 (0 a3 )

’LUGD'U
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For each vertex w € M, let x,, be the number of neighbors of w in the set D,. We obtain
a girth-cycle if we choose such a vertex w, two of its neighbors, w; and w, in D,, and their
unique (h — 1)-paths to the vertex u. Therefore the number of girth-cycles of the second
type is exactly >\, (g‘”) Now, we have the following upper bound on the number of
such cycles:

I M ) R Gt i)

weM wWE Dy,

We use this inequality to give a lower bound for m, but first, we need to rearrange the
terms. We also use the fact that > _,, z, = (k —1)" — A. Now, we have that

in:22<x2w>+zscw

weM weM weM

< (k- 1)+ 22— 34— 2max (0, |- A
S P 2k —nen T 2]

By using the inequality between the arithmetic and quadratic mean again, we get a lower
bound for m:

(Cuen @)’ ((k—1)" = A)"

2 wenm T 2\ —3A + (k= 1)" — 2max (07 [ﬁ—%b

m =

Note that the denominator is strictly positive, because G is not a Moore graph and
therefore M is not empty. Combining this lower bound with inequality (2) yields the
desired lower bound stated in the first part of our theorem.

For the second part of the theorem, recall that:

O o e ]

If A< (k—1)""1, then clearly the upper bound stated in the theorem holds. Otherwise
we have
A? A

TSGR

A? A

< \X—-A—- |-
OsA-a [20{—1)(“) 2

—‘ <A—-A-

Since the quadratic function in A appearing on the right side of the above inequality is
concave, any A for which its value is non-negative must lie between the two roots of the
corresponding quadratic equation, and must therefore be smaller than the larger of the

two roots. Hence,
1 2\ 1
A< (k=1)h! -+ —=]. O]
(k=1) (\/4+ k=1 2)
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By definition, we do not have any assumption on the signature of a vertex-girth-regular
graph. We only know the average of the signature that we can use to obtain a general
lower bound on the order of vertex-girth-regular graphs.

Theorem 14. Let G be a vgr(n, k, g, \)-graph, where g = 2h is an even number, k > 3
and G is not a Moore graph. Then

(k—1)"—1
S A
" k—2
E—1)" —A)?
-+ max (( ) ) -
Ae{lT2T) [ 20 = 3+ (k= 1) — 2max (0, g — 4)

Proof. First of all, recall that G must contain an edge which is contained in at most L%J
girth cycles and an edge which is contained in at least (%W girth cycles. Consider the

second term of the lower bound in Theorem 13 as a function of A:

_ ((k=1)" )’
g(x) == 2\ — 3z 4 (k — 1)» — 2max (07 {236—2 N ﬂ)

(k—1)(h=1) 2

Now also consider
B ((k— 1) —z)*
2A—&Hwk—nh—2mm<0——ﬁ———§)

f(@):

1 2(k—1)(h=1)

Our proof is based on a careful investigation of the properties of f(z) and g(z) on the
intervals containing admissible values of A. We clearly have f(z) < g(z) for all real x for

which both denominators are strictly positive. Let b = (k — 1)} (, /}L + # — %)

Since Theorem 13 asserts that every edge is contained in at most max((k — 1)"~1,b)
girth cycles and every edge is clearly also contained in at most A girth cycles, we are
interested in the behaviour of f(x) on the interval [0, min(\, max((k — 1)"~1 b))]. For
x € [0, (k — 1)"71], we have:

_ (k=1 —2)?
2\ — 3z + (k— 1A’

f(x) = filz) :
In this case, the second derivative is given by:

8 ((k—1)" = \)?

{0 = T or s

Since f]'(z) > 0 for all z € [0,min(\, (k — 1)"1)], f(z) is convex in this interval. If
A< (k—=1)"1or b< (k—1)""1 we can conclude that f is convex on the whole interval
[0, min(\, max((k — 1)1, 0))].
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Otherwise (if (k — 1)"' < min(\, b)), we also consider the case when z € [(k —
1)"=1 min(\, b)], in which case we have:

((k—1)"—z)”
2\ — 2z + (k — 1)k

fx) = folx) ==

—_— —$2
(k—1)(h—1)

The second derivative f5(x) is given by a very tedious expression (which can be
explicitly computed using Wolfram Alpha for example) such that fJ(z) > 0 for all
(k — 1)1 < 2 < min(\, b). Hence, f(z) is convex on the interval [(k — 1)"~% min(, b)].
Now the first derivative of fi(x) is given by:

(k= 1D" =) ((k—1)"+ 3z — 4X)

file) = (k= 1)" — 32+ 2))°

and the first derivative of fy(x) is given by:
20k — 1)*" ((k — 1)" — z) (kx — 2))
20k — Dha + (k — 1)a2 — (k— D" ((k — 1) +2)))°
Since fi((k — 1)"71) < fi((k — 1)*71), we can again conclude that f(z) is convex on the

whole interval [0, min(\, max((k — 1)"=1 b))].
In both cases, f(x) is convex on the whole interval and therefore

(k—1)"—1

(@) =

n =2 + max f(A
=2 Cae BPTey W
Finally, we conclude by rounding up f(z), since n is always an integer. O

Next, using spectral graph theory, we generalize a lower bound for the order of
edge-girth-regular graphs that appeared in [13]. Consider the adjacency matrix of a
vegr(n, k, g, \)-graph and denote its eigenvalues by Ay > ... > A,. Since the graph is
k-regular, the largest eigenvalue is k. If the graph is bipartite, then the smallest eigen-
value is —k. Moreover, the sum of the /-th powers of the eigenvalues is the sum of the
numbers of closed walks of length ¢ rooted at the vertices of the graph (summed through
all vertices of the graph). We note that in a k-regular graph of girth g, the number of
cycle-free closed walks of length ¢ < g rooted at any vertex is independent of the choice
of the vertex. We denote the number of cycle-free closed walks of length ¢ < g rooted
at a(ny) vertex by c(¢, k), and observe that ¢(¢, k) = 0 for odd ¢ < g. For even ¢, it is
an g—th degree polynomial of k. For example, the first four ¢(¢, k) polynomials (for even
lengths /) can be easily shown to be equal to the following:

c(2,k) =k,

c(4,k) = 2k* — k,

c(6, k) = 5k — 6k* + 2k,

c(8, k) = 14k* — 28k® + 20> — 5k
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In particular, using the polynomials ¢(, k), if g is even, the number of closed walks of
length ¢g/2 in a (k, g)-graph is

od = e (L)
Z)\i =n-c (2,k: ,
=1
and the number of closed walks of length ¢ in a vgr(n, k, g, \)-graph is equal to

Z)\f:n-(c(g,k)vLQ)\).

Next, we apply the inequality between the quadratic and arithmetic means to the set

{)\g/z, ..., M\¥?} to obtain a lower bound on the order n of a vgr(n, k, g, \)-graph of even
girth. For the bipartite case, we repeat the process for the set {)\g/ L )\%/_2 1} because
An = —k. We obtain the following theorem, which is a direct generalization of Theorem
3.14 in [13].

Theorem 15. Let G be a vgr(n, k, g, \)-graph, where g is even and k > 3.
If g =0 (mod 4), then

(g, k) +2X + k9 — 2c(4, k)k?
C(g>k>_02(%7k)+2)\ ’

n(k,g,\) >

(g, k) + 2\ + k9 — 2c(4, k)k?
C(gv k) - CQ(%J k) + 2A

n2(k797 >‘) = 2

If g =2 (mod 4), then
c(g, k) + 2\ + k9

k > :
2k9
n2<k797 >\) = m

Finally, we remark that these lower bounds can often be improved by noticing that for
a vgr(n, k, g, \)-graph, nk is even because of the handshaking lemma and n\ must be a
multiple of g since each vertex is contained in precisely A girth-cycles and each girth-cycle
contains precisely g vertices. This leads to the following observation.

Observation 16. There are "?)‘ cycles of length g in a vgr(n, k, g, \)-graph.

In other words, if n(k,g,\) = n, but n does not satisfy these divisibility conditions,
then n(k, g, \) > n+ 1 (and we can repeatedly apply this argument).
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5 Non-existence results

Our first result in this section is a generalization of Lemma 4 and is reminiscent of a similar
result proven in [11] for k-regular graphs in which all vertices have the same signature;
and hence also for edge-girth-regular graphs. Since vertex-girth-regular graphs are not
necessarily signature-regular, our result requires an independent proof which is based on
ideas different from those in [11]. Moreover, we prove both the odd and the even girth
cases, whereas [11] only covers the even girth case.

For k >3 and g =2s+1 > 3, let nc(k,g) = @ Then, the number of girth-cycles
through a vertex of a (k, g)-graph is at most nc(k, g), and this number is equal to nc(k, g)

if and only if the graph is a (k, g)-Moore graph (see Proposition 3).

Theorem 17. Letk >3, g=2s+12>27, and 0 < e < % be integers. Then there is no
vegr(n, k, g,nc(k, g) — €)-graph.

Proof. Suppose k, g and € satisfy the above requirements, and, by means of contradiction,
let us assume that G is a vgr(n, k, g,nc(k, g) — €)-graph. Let u be an arbitrary vertex of
G, and let G% be the subgraph of G induced by the union of the sets Ng(u,i) = {v €
V(G) | dg(u,v) =i}, 0 < i < s. Let us call the edges of G¥ connecting two vertices at
distance s from u horizontal with respect to u and note that the number of g-cycles through
u is equal to the number of such horizontal edges with respect to u. Since the number of
g-cycles through wu is assumed to be equal to nc(k, g) — €, the number of horizontal edges
with respect to u is also nc(k, g) —e. Since G is assumed to be k-regular, there must exist
2¢ edges connecting vertices at distance s from u to vertices at distance s + 1, i.e., edges
between Ng(u,s) and Ng(u, s+ 1). To simplify our arguments, let us call the vertices of
G? black, and the rest of the vertices of G white. Thus G contains exactly 2e black-white
edges (i.e., having different colored endpoints) and all the other edges are either black
(both ends are black) or white (both ends are white). Let v be a black vertex incident
to a black-white edge, and consider the induced subgraph G: induced by the union of
the sets Ng(v,17), 0 < i < s. Once again, the number of g-cycles containing v is equal to
the number of horizontal edges with respect to v (i.e., edges connecting two vertices from
Ng(v,s)). Our aim is to show that the number of horizontal edges with respect to v in
G? is smaller than the required nc(k, g) — e.

Let wy,ws, ..., wy be the neighbors of v. Let Gj ., 1 < i < k, denote the induced
subgraphs of G ‘rooted’” at the vertices w;. These are vertex disjoint subgraphs induced
by the unions of vertices in Ng(v,7) N Ng(w;,j — 1), 1 < j < s, or, in other words,
subgraphs each consisting of a root w; and vertices at distance at least 2 and at most
s from v whose shortest path toward v contains w;. We may assume without loss of
generality that the vertices wy, ws, ..., wy, where 1 < ¢, are white (since v was chosen to
be incident with at least one black-white edge), and that the vertices wei1, weia, ..., wy
are black, where ¢ < k (since v is at distance s from u, and therefore adjacent to at least
one black vertex).

To complete our argument, let us consider the neighbors w; 1, w; 9,...,w; z—1 of the
white vertex w; distinct from v. Each of the vertices wy 1, w2, ..., w; -1 determines an
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induced subgraph Gj , wis of Gy, consisting of wy, the edge wjw;, and the subgraph
of G}, induced by the subset of vertices of G* w, comprised of vertices at distance at
least 2 from v whose shortest path to v contains w; ;. Each two of these subgraphs share
exactly one vertex, namely the vertex w.

There are the total of 2¢ < k — 1 black-white edges contained in GG. Let r denote the
number of subgraphs G7 , ., ., 1 < ¢ <k —1, that contain no black-white edges. Note
that 7 > 1 as otherwise the subgraphs G i L <4< k—1, would contain at least k—1
black-white edges (recall that these graphs only share one vertex) which together with
the black-white vw; would make for at least k black-white edges. Since w; is white and it
is contained in each of these subgraphs, the r > 1 subgraphs G7 | g LSS k—1, that
do not contain a black-white edge must consist entirely of white vertices. Each of them
contains (k — 1)*~2 vertices at distance s from v, and hence there are at least r(k — 1)572
white vertices at distance s from v whose shortest path to v contains w;.

Next, let us apply this same kind of argument to the k —1 subgraphs Gj ., 2 < i < k.
Since v is black and vw, is black-white, at least one of these subgraphs must not contain
a black-white edge, and must consist entirely of black vertices (if at least one vertex in
G}, 1s white, either vw; is black-white or an edge in the subgraph G, is black-white).
Let us denote the number of subgraphs G? . ., 2 < i < k, that contain exclusively black
vertices by t. We have argued that 1 < t.

Let us inspect the number of horizontal edges with respect to v contained in G;. Since
the girth of G is assumed to be equal to 2s +1 > 7, for each vertex x of the at least
r(k — 1)*~% white vertices from Ng(v,s) N Ng(wi, s — 1), there can be at most one edge
between = and the subgraph Gj . (for each 2 < i < k, with ¢t > 1 of them consisting
entirely of black vertices). The number of horizontal edges with respect to v in G7 is
bounded from above by nc(k, g) = @, which is precisely half the number of pairs (z, j)
such that z € Ng(v,s) N Ng(w;, s — 1) and 1 < 4,5 < k, i # j (i.e., it counts the number
of potential arcs with an endpoint z € V(G ,,) and another endpoint in V(G5 )). Let
H be the set of such pairs (x,j) where z is white and G ., consists entlrely of black
vertices, and let H' be the set of pairs (z,7) € H such that there is an edge between x
and G}, . Since there are at least r(k — 1)°~2 white vertices in Ng(v, s) N Ng(wi, s — 1)
and there are ¢ subgraphs G . (2 <14 < k) consisting entirely of black vertices, we have
|H| > tr(k —1)*"2. Furthermore, since there are at least (k — 1 — r) black-white edges in
G o, at least (k—1—1) black-white edges among vw; and the edges of G ,,. (2 < i < k)
and the edge vw; is black-white, it follows that |H'| <2e—(k—1—7r)—(k—1—1) — 1.
Therefore, the number of horizontal edges with respect to v in G is at most

v, w;?

k(k—1)°
nc(k,g) — |H\ H'| < %—tr(kz—1)5_2+26—(k—1—r)—(k—l—t)—l.
This means that the total number of horizontal edges with respect to v contained in G%
is smaller than **=1° by at least tr(k — 1)" 2 —2e+ (k—1—r) 4+ (k—1—1t) + 1.

Recall that we assume that 2s4+1 > 7, and hence s > 3 and s —2 > 1. Since s,k > 3,
r,t > 1, and 2¢ < k — 1, the expression

tr(k—1)2 =2+ k—-1-r)+(k—1—-1)+1
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is minimized when s = 3, 2¢ = kK — 1 and r,t = 1. Therefore, we obtain

| H\H'|>tr(k—1)"2=2e+(k—-1-—7r)+(k—1—1t)+1
>k-1)—(k-1D)4+(k—-2)+(k—-2)+1=2k—-32k>e

The final contradiction now follows from the fact that the number of girth-cycles
through v is the number of horizontal edges with respect to v, which is smaller than
nc(k, g) — e. This contradicts the assumption that G is a
vegr(n, k, g,nc(k, g) — €)-graph. O

Next, consider k£ > 3 and g = 2s > 4. Once again, the number of girth-cycles through
a vertex of a (k, g)-graph is at most nc(k, g) = k(k;) , and it is equal to nc(k, g) if and
only if the graph is a (k, g)-Moore graph.

Theorem 18. Let k > 3, g =2s > 4, and 0 < € < k — 1 be integers. Then there is no
vegr(n, k, g,nc(k, g) — €)-graph.

Proof. In similarity to the proof of Proposition 3, the argument for the even girth case
is quite different from the argument used in the proof of Theorem 17. For the sake of
obtaining a contradiction, let G' be a vgr(n, k, g,nc(k, g) — €)-graph and 0 < € < k — 1.
Let wqus, k%fi, Dy, Dyy, Dy, 1,Dy,2,..., Dy, k-1, Ay, By, and C,, be chosen as in
Definition 2. For each vertex w € D,,, let y,, be the number of neighbors that w has in

D,,. For each vertex w € V(G) \ V( k%fi), let x,, be the number of neighbors of w in

the set D,,. Let H be the set of pairs (z,y) such that x € D,,, y € {1,...,k—1} and x
has no neighbor in D, ,.
Since € > 0, H is non-empty and therefore |A,,| < (k —1)* and |B,,| < ((k—1)*"! —

D (*;H+(*,?). We now claim that the maximum of the sum | A, |+|By, |+|C., | is attained

. . s s k— _
when |H| = 1, in which case, |A,,| = (k—1)* = 1, |By,| = (k — 1) = 1)(*;") + (*}7),
and |C,,| = 0.

This can be seen as follows: the number of girth cycles containing u; is given by
"Am ‘+‘BU1‘+‘CU1| = ZweDu2 yw"_Z:weDu2 (y;)—i_zweV(G)\VU;:l%’f) (zgw) Note that Loy = k

for some w € V(G)\ V( kéq_”l) is impossible, because of the girth constraint. Since every

vertex in G has degree k, we have z,, < k—1 (for w € V(G) \ V( k%fi)) and y,, < k—1

(for w € Dy,). Since |[H| > 1, we have 3 cp 9w < (k—1)° — 1. Finally, since all
(k—1)*"! vertices in D,,, also have degree k, we have ZweDuz yw+zwev(G)\v(T:1%,i21) Ty =

(k—1)°. Now indeed we see that |A,, |+ |Bu,| + |Cu, | subject to the previous inequalities
is maximized when y,, = k — 1 for all except for one w € D,, (and in this exceptional
case we need y, = k — 2).

Thus, the number of girth-cycles containing u; is bounded from above by (k — 1)° —
1+ ((k =1t = 1)(";") + (%,%) = nc(k, g) — (k — 1). This leads to a contradiction with
the assumption that € < k — 1, and therefore no such G can exist. O

Interestingly, we could not prove Theorem 17 for the case s = 2. Consulting the tables
at the end of our article suggests that no vgr(n, 3,5, A)-graphs exist for A =4 or A = 5,
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ie., fore =1 or e =2 (where 1 < %) This suggests that Theorem 17 might hold for
s =2 (i.e., g = 5) as well. In addition, Observation 6 suggests that the theorem may even
hold for s =1 (i.e., g = 3). Maybe even more intriguingly, inspecting our computational
results summarized at the end of this article opens space for further non-existence results
for cases when A is not particularly close to nc(k,g). Similar results exist in case of
edge-girth-regular graphs, where, for example, it has been shown in [6] that no (3,7,6)
and no (3,8,14) edge-girth-regular graphs exist. This raises the possibility of finding
further arithmetic conditions that would yield the non-existence of vgr(n, k, g, A)-graphs.
Having brought up the connections between edge-girth-regular, girth-regular, and vertex-
girth-regular graphs, we also wish to point out that non-existence results concerning
vertex-girth-regular graphs yield the non-existence of corresponding edge-girth-regular
and girth-regular graphs as well.

6 Exhaustive generation algorithm

Goedgebeur and the second author [8] described an algorithm to exhaustively generate all
egr(n, k, g, \)-graphs for given integers n, k, g and A. In the current paper, we adapt this
algorithm to generate all vgr(n, k, g, \)-graphs and add a different heuristic and pruning
rule that speed up the algorithm without affecting the exhaustiveness guarantee.

The algorithm (pseudo code shown in Algorithm 1 and 2) expects as input four integers
n, k, g and A and works as follows: the algorithm starts from a (k, g)-Moore tree and
adds isolated vertices until there are n vertices in total (note that this graph occurs as
a subgraph of every vgr(n, k, g, \)-graph). The algorithm then recursively adds edges to
this graph in all possible ways such that no vgr(n, k, g, \)-graphs are excluded from the
search space.

In order to obtain an efficient algorithm, a heuristic is used for the order in which the
edges are added as well as several pruning rules that allow the algorithm to backtrack as
soon as a graph is encountered for which the algorithm can decide that it cannot occur
as a subgraph of any vgr(n, k, g, A\)-graph. For each edge that the algorithm considers, it
will branch into two possibilities (adding the edge in the first branch and not adding the
edge in the second branch) and the algorithm keeps track of which edges can potentially
be added to the graph. The new heuristic that the algorithm employs is to choose the
next edge to consider as an edge which is incident to the vertex u for which the difference
between the number of potential valid edges that could be added incident with v and k
minus the degree of w is minimized. For example, if £ = 5 and u has degree 3 and there
are only 2 possibilities for edges that could potentially be added incident with u, then the
difference will be equal to 0 and the algorithm will add these two missing edges as soon
as possible. This heuristic works well, because these two edges must be added eventually
and adding them sooner further constrains the search space. After each iteration, the
algorithm will mark potential edges to add as invalid if their addition would result in
either:

e a graph with girth smaller than g;
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Algorithm 1 recursivelyAddEdges(Integer n, Integer k, Integer g, Integer A, Graph
G = (V, E), Set validEdgesToBeAdded)

—_ =
WY = O

14:
15:
16:
17:
18:
19:
20:

// Each call adds one edge to G
if One of the pruning rules can be applied then
return
end if
// G has the right number of edges
if |E| = ”—2’“ then
if G is a vgr(n, k, g, \)-graph then
Output G
end if
return

: end if
. // Apply heuristic for choosing the next edge e to consider
DU 4= arg MiNyey (@) degs(w)<k([{e € validEdgesToBeAdded and e incident with w}| —

(k — degg(w)))

e < arbitrary edge from validEdgesToBeAdded incident with u
// Option 1: add this edge to G

G < (V,EU{e})

newValidEdgesToBeAdded <— update(validEdgesToBeAdded, G")
recursivelyAddEdges(n, k, g, A, G', newValidEdgesToBeAdded)

// Option 2: do not add this edge to G

recursivelyAddEdges(n, k, g, A, G, validEdgesToBeAdded \ {e})

Algorithm 2 generateAllVertexGirthRegularGraphs(Integer n, Integer k, Integer g, In-
teger \)

—_

—_
o

. // This function generates all vgr(n, k, g, A)-graphs

: T < (k, g)-Moore tree

: // There are no vgr(n, k, g, A)-graphs if n is too small
 if n < |V(T')| then

return
end if
// Add n — |V (T)| isolated vertices

: G < addlsolated Vertices(T,n — |V (T)|)
. validEdgesToBeAdded <« calculateValidEdgesToBeAdded(G)
. recursivelyAddEdges(n, k, g, A, G, validEdgesToBeAdded)

e a graph in which some vertex has degree larger than k;
e a graph in which some vertex is contained in more than A\ girth-cycles.

In each of these cases, the resulting graph can be excluded from the search space,

because adding more edges will never lead to a vgr(n, k, g, \)-graph.
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Additionally, the algorithm prunes the current graph if it is isomorphic with a graph
that was encountered previously during the search, because this cannot result in any
new vgr(n, k, g, A\)-graphs which were not previously generated. Moreover, the algorithm
prunes the current graph if it has a vertex u of degree less than k for which the number
of potential edges that can be added incident with w is strictly smaller than & minus the
degree of u, because this means that v cannot obtain degree k anymore. Finally, we also
employ a new pruning rule based on the following proposition.

Proposition 19. Let G be a graph and let cyc(G, g,u) denote the number of cycles in
G of length g containing the vertex u. If, for given integers g, k and \, there is a vertex
u € V(G) with degree k such that

(k= 2)A+2cye(G gu) — > cye(G,g,u) <0,

u' €Ng(u)

or
(k —2)A +cyc(G,g,u) — Z cye(G,g,v')+ min (cye(G,g,u')) <0,

WeNg(u) u' €Ng(u)
then G does not occur as a subgraph of any vgr(n, k, g, \)-graph.

Proof. Suppose for the sake of obtaining a contradiction that v € V(G) is vertex with
degree k satisfying the first or the second condition from the proposition and G occurs
as a subgraph of a vgr(n, k, g, \)-graph G’. There are precisely A — cyc(G, g,u) cycles
of length ¢ in G’ which contain v and contain some edge from E(G’) \ E(G) (i.e., they
are not cycles of GG). Clearly, each of these cycles contains precisely two neighbors of
u. Since each vertex in G’ is contained in precisely A girth-cycles, this implies that
2(A —eye(Gog,u) < X engw (A — eye(G,g,v)) and thus (k — 2)A + 2cye(G, g, u) —
Y we Ne () cyc(G,g,u’) = 0. Hence, if the first condition of the lemma is satisfied, we
immediately obtain a contradiction. Thus let us assume that the second condition holds.
Each girth-cycle containing u in G’ contains precisely two neighbors of u. There are
at most >, i) (A — eve(G, g,u')) — maxyeng ) (A — cye(G, g, u')) girth-cycles in G’
containing u which are not cycles of G. Hence, we have A — cyc(G, g,u) < Y. )(/\ —
cyc(G, g,u')) — maxyengw) (A — cye(G, g,u')) and so

uw' ENg(u

(k - 2))\ + CyC(G> g, 'LL) - E CyC<G7 g, ul) + I’I]ifln( )(CYC(G, g, u/)) > 0.
uw'E€Ng(u
u' ENg(u)

We again obtain a contradiction by assuming that the second condition holds. O

7 Computational lower and upper bounds for n(k, g, \)

We implemented the algorithm from Section 6 to exhaustively generate vertex-girth-
regular graphs and used it to obtain lower and upper bounds for n(k, g, ). More specif-
ically, if the algorithm does not generate any vgr(n', k, g, A)-graphs for all n’ < n, then
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n(k,g,\) = n since the algorithm is exhaustive. On the other hand, if the algorithm
generates at least one vgr(n, k, g, A)-graph, then clearly n(k, g, \) < n. We ran the algo-
rithm for £ =3, 3 < g <8 and k =4, 3 < g < 6. The bounds that we obtained from
the computations described in this section are summarized in Tables 1 (cubic case) and 2
(quartic case). Bold values indicate cases where the lower bound is equal to the upper
bound.

Apart from running the algorithm from Section 6, we also ran the algorithm GEN-
REG [12] for generating all connected k-regular graphs of girth g on n vertices and filtered
out those graphs which are vertex-girth-regular. The lower bounds that we obtained in
this way could sometimes also be further improved by applying Observation 16 (i.e., the
order n must be such that nA is a multiple of the girth g). Moreover, we also applied
the lower bounds from Section 4 and filled the table with best lower bounds among the
previously discussed methods.

For improving the upper bounds in cases where our algorithm and GENREG were
unable to find any graphs, we also filtered out vertex-girth-regular graphs from known lists
of regular graphs (with additional symmetry properties). More specifically, we consulted
the list of all vertex-transitive graphs until order 47 [9], cubic vertex-transitive graphs
until order 1280 [14], cubic arc-transitive graphs until order 2048 [2] and quartic arc-
transitive graphs until order 640 [14, 15]. Additionally, we also applied the construction
from Proposition 5 to obtain upper bounds. The total CPU-time for all computations in
this paper amounts to approximately 2 CPU-years (the computations were executed on
the hardware of the Flemish Supercomputer Center). We make all code and data related
to this paper publicly available at https://github.com/JorikJooken/vertexGirth
RegularGraphs. The graphs that we found can also be downloaded from the House of
Graphs [4] by searching for the term “vertex-girth-regular”.

We now briefly discuss some observations and remarkable graphs that we found based
on these computations. From Tables 1 and 2 it is clear that often n(k, g, \) = n(k, g, \+1),
as one could intuitively expect (e.g. Moore graphs occur for the maximal value of A).
However, this inequality does not always hold. For example, we showed that n(3,8,8) =
42 < n(3,8,9) = 48. The corresponding graphs achieving these bounds are shown in
Fig. 5. These two graphs are also among the largest graphs for which we were able to
prove that they are extremal.

We also remark that several famous graphs appear as (extremal) vertex-girth-regular
graphs. Among others we mention all Moore graphs and several cages [7], the Platonic
solids, several incidence graphs, the Pappus graph (a vgr(18,3,6,6)-graph), the Coxeter
graph (a vgr(28,3,7,6)-graph), the burnt pancake graph BP(3) (a vgr(48, 3,8, 6)-graph)
and the generalized Petersen graph G(13,5), which is a vgr(26, 3,7, 7)-graph (see Fig. 6)
and appears for example in [3] as the cubic graph of girth 7 on 26 vertices with the most
connected induced subgraphs among all such graphs.

For the cage problem, all known cages of even girth are bipartite and an important
open question asks whether this is always the case [7]. We remark that there are several
non-bipartite extremal vertex-girth-regular graphs of even girth (e.g. the vgr(42, 3,8, 8)-
graph shown in Fig. 5 is such an example). Hence, the analogous question for vertex-
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Figure 5: An extremal vgr(42, 3,8, 8)-graph (left) and an extremal vgr(48, 3, 8,9)-graph
(right).

Figure 6: The generalized Petersen graph G(13,5) is a vgr(26, 3,7, 7)-graph.

girth-regular graphs has a negative answer. In fact, there are plenty of non-bipartite
extremal vertex-girth-regular graphs of even girth, for example 25 pairwise non-isomorphic
vegr(20,4,4, 1)-graphs.

In Section 1 we mentioned that several subclasses of vertex-girth-regular graphs have
received attention before in the literature (e.g. vertex-transitive graphs [9], edge-girth-
regular graphs [5, 10] and graphs in which each vertex has the same signature [16]).
We remark that many of the extremal vertex-girth-regular graphs that we found do not
belong to any of these subclasses. For example, the graph shown in Fig. 7 is an extremal
vertex-girth-regular graph in which 20 vertices have signature {5,4,4,3} and 5 vertices
have signature {4,4,4,4}. In total, we found 98 extremal vertex-girth-regular graphs
which were not vertex-transitive (91 of these were not edge-girth-regular and 47 of these
contained vertices with different signatures). Another interesting example to mention is
again related to the cage problem. The smallest known cubic graph of girth 13 has 272
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vertices [7]. This graph is not edge-girth-regular, but it is vertex-girth-regular (and in
fact even vertex-transitive; every vertex has signature {18,18,16}).

Figure 7: An extremal vgr(25,4, 5, 8)-graph for which 20 vertices have signature {5, 4, 4,3}
and 5 vertices have signature {4,4,4,4}.

7.1 Sanity checks

The bounds obtained in this section rely on the outcome of the authors’ implementation
of the algorithm from Section 6. Therefore, it is very important to take extra measures
to ensure the correctness of our implementation, since an incorrect implementation would
invalidate the obtained bounds. We first remark that, as expected, the bounds obtained by
all different methods described in the previous paragraphs are in complete agreement with
each other. Moreover, we also compared the outcome of our algorithm with the outcome
of filtering the vertex-girth-regular graphs from all graphs produced by GENREG for
orders that are larger than n(k, g, \) (where often there are many ver(n, k, g, A)-graphs
for a fixed n) and obtained exactly the same graphs in each case. We were also able
to independently find many graphs that belong to subclasses of vertex-girth-regular that
received attention in the literature before [8, 16].

8 Conclusion

Throughout our paper, we have repeatedly referred to the tables below. They can be
simultaneously viewed as a list of best results obtained in the area so far, but also as a
source of ideas and inspiration.

For example, consulting the information concerning n(3,7,3), we see a gap between
the lower bound of 42 on the order of any vgr(n, 3,7, 3)-graph and the order of a smallest
vegr(n, 3,7, 3)-graph found to day; equal to 56. While we do not know whether a smaller
vegr(n, 3,7, 3)-graph exists, we note that the vgr(56,3,7,3)-graph is a celebrated graph
in topological graph theory. It is the underlying graph of the Klein map, a regular
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ETg] A nkgX)=]nkgN<
31711 42 56
31 7| 2 42 00
3171 3 42 56
Flg[ X [nkg N> [ nlkgN< 3|7 4 42 o0
3731 6 6 3| 7| 5 42 00
313 | 2 o0 o0 3176 28 28
3171 7 26 26
3131 3 4 4
3|7 8 42 00
31411 12 12
31719 42 00
3141 2 8 8
37110 42 00
3141 3 8 8
3|17 |11 (e oo
314 4 30 00
314 5 o o 37|12 e’ oo
31811 56 64
3141 6 6 6
3181 2 52 64
3151 20 20
3181 3 48 64
3151 2 20 20
3181 4 48 50
315 3 20 20
3181 5 48 64
3|15| 4 40 00
3181 6 48 48
315 5 32 0
3|18 7 48 00
31516 10 10
318 8 42 42
316 1 24 24
31819 48 48
3161 2 24 24
318110 44 44
3161 3 24 24
31811 40 40
316 4 24 24
31812 40 40
3161 5 36 00
31813 48 00
3161 6 18 18
3|18 14 48 00
316 7 18 18
3| 8|15 48 00
3168 36 00
38|16 48 00
31619 16 16
3|8 |17 48 00
316110 36 00
3| 8|18 48 00
316 |11 o0 o0 318119 48 0
31612 14 14 31820 48 00
318 |21 48 00
a)3<g<6
(a) 3<g< 30822 48 0
3|8 |23 o0 o0
318124 30 30

Table 1: An overview of the best lower and upper bounds for n(3, g, A).
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ETg ] X nlkgXN=]nkg<

116 1 54 1152

416 | 2 51 84
4161 3 50 1152

416 4 48 96

4161 5 48 )

ET g X [nlkgN> ] nkgN< 4161 6 46 60
1131 9 416 | 7 48 648
413 | 2 9 9 416 8 45 60
4|31 3 7 7 4161 9 44 512
4131 4 6 6 4|6 | 10 42 81
4 3 5 oo oo 4 6 11 42 o)
4131 6 5 5 416 |12 40 64
T4 1 20 20 4|6 | 13 42 oo
4141 2 18 18 41614 39 60
41 41| 3 16 16 416115 38 )
4141 4 13 13 46| 16 39 48
4141 5 12 12 41617 42 )
4141 6 14 14 41618 35 35
414 |7 24 24 46| 19 36 oo
41 4| 8 11 11 41620 36 48
4141 9 12 12 46|21 36 44
4|41 10 10 10 41622 36 42
44|11 24 oo 46| 23 36 42
4|41 12 10 10 46| 24 36 40
4|41 13 24 oo 416125 36 42
44| 14 22 ) 4|6 | 26 36 42
41415 24 ) 41627 36 38
41 4| 16 oo oo 46|28 36 42
44|17 oo oo 416 |29 36 )
4| 4118 8 8 41630 35 35
I 15 1 35 120 46|31 36 36
4|51 2 30 30 41632 36 36
4|51 3 30 40 4|6 | 33 36 36
415 | 4 30 30 4|6 | 34 36 36
4151 5 28 30 416 |35 36 oo
4|51 6 30 55 416 | 36 32 32
4|51 7 30 oo 4|6 | 37 36 oo
4|51 8 25 25 4|6 | 38 36 oo
41519 25 25 41639 32 32
4|51 10 24 24 416 |40 36 oo
415 |11 30 30 416|441 36 )
415 |12 20 20 41642 30 30
4|51 13 30 oo 46|43 30 30
45| 14 30 o0 4|6 | 44 36 oo
4|51 15 28 oo 416145 36 )
45| 16 30 ) 4|6 | 46 36 oo
415 |17 30 0o 4|6 |47 36 o)
4|5 18 oo oo 46|48 28 28
46|49 36 oo

<ag< 416 |50 36 )

() 3<g<5 416 |51 36 )

4 6 52 oo oo

4 6 53 oo [o’e)

46|54 26 26

(b)g=6

Table 2: An overview of the best lower and upper bounds for n(4, g, A).
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polyhedron of type (7,3) and genus 3, whose polyhedral representation was described by
Schulte and Wills in 1985 [18]. The relevance of the polyhedral representation lies in the
fact that locally each vertex v of the map is adjacent to three faces of the polyhedron, all
of which are of length 7 and their borders constitute the only 7-cycles passing through v.
Since 7 is also the girth of the underlying graph of the Klein map, the graph represents
a specific example of a connection between vgr(n, k, g, k)-graphs and maps of type (g, k).
This connection certainly deserves further investigation.
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