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Abstract

Let Fq denote a finite field with q elements. Let n, k denote integers with n >
2k > 6. Let V denote a vector space over Fq that has dimension n. The vertex set
of the Grassmann graph Jq(n, k) consists of the k-dimensional subspaces of V . Two
vertices of Jq(n, k) are adjacent whenever their intersection has dimension k−1. Let
∂ denote the path-length distance function of Jq(n, k). Pick vertices x, y of Jq(n, k)
such that 1 < ∂(x, y) < k. Let Stab(x, y) denote the subgroup of GL(V ) that
stabilizes both x and y. In this paper, we investigate the orbits of Stab(x, y) acting
on the local graph Γ(x). We show that there are five orbits. By construction, these
five orbits give an equitable partition of Γ(x); we find the corresponding structure
constants. In order to describe the five orbits more deeply, we bring in a Euclidean
representation of Jq(n, k) associated with the second largest eigenvalue of Jq(n, k).
By construction, for each orbit its characteristic vector is represented by a vector
in the associated Euclidean space. We compute many inner products and linear
dependencies involving the five representing vectors.

Mathematics Subject Classifications: 05E30, 05E18

1 Introduction

This paper is about a family of finite undirected graphs known as distance-regular graphs
[2, 4, 6, 13]. For any distance-regular graph, there is a construction called a Euclidean
representation. In order to motivate our main topic, we now recall this construction. Let
Γ denote a distance-regular graph with vertex set X and path-length distance function ∂.
According to [12, Definition 6.1], a Euclidean representation of Γ is a nonzero Euclidean
space E together with a map ρ : X → E such that

(i) E is spanned by {ρ(x) | x ∈ X};

(ii) for all x, y ∈ X, the inner product
〈
ρ(x), ρ(y)

〉
depends only on ∂(x, y);
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(iii) there exists ϑ ∈ R such that for all x ∈ X,∑
z∈X

∂(z,x)=1

ρ(z) = ϑρ(x).

By [12, Section 6], the scalar ϑ is an eigenvalue of Γ. For each eigenvalue θ of Γ, the
corresponding eigenspace gives a Euclidean representation of Γ.

In this paper we discuss a particular family of distance-regular graphs called the Grass-
mann graphs. We briefly recall the definition of a Grassmann graph. Let Fq denote a
finite field with q elements. Fix an integer n > 1. Let V denote a vector space over Fq

that has dimension n. Let the set Pq(n) consist of the subspaces of V . For 0 6 k 6 n let
the set Pk consist of the elements of Pq(n) that have dimension k. For 1 6 k 6 n− 1 the
vertex set of the Grassmann graph Jq(n, k) is Pk. Two vertices of Jq(n, k) are adjacent
whenever their intersection has dimension k−1. For more information on the Grassmann
graphs, see [5, 8, 9, 10]. For the rest of this section, we assume that Γ is the Grassmann
graph Jq(n, k) with n > 2k > 6.

In what follows, we will use the notation

[m] =
qm − 1

q − 1
(m ∈ Z).

By [4, Theorem 9.3.3], the eigenvalues of Γ are:

θi = qi+1[k − i][n− k − i]− [i] (0 6 i 6 k).

In [12, Section 4], we used Pq(n) to construct a Euclidean representation of Γ associated
with θ1. We now recall this construction. Let E denote a Euclidean space with dimension
[n]− 1 and bilinear form 〈 , 〉. Define a function

P1 → E

s 7→ ŝ
(1)

that satisfies the following conditions (C1) − (C4):

(C1) E = Span
{
ŝ | s ∈ P1

}
;

(C2) for s ∈ P1,
∥∥ŝ∥∥2

= [n]− 1;

(C3) for distinct s, t ∈ P1,
〈
ŝ, t̂
〉

= −1;

(C4)
∑
s∈P1

ŝ = 0.
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Next, extend the function (1) to a function

Pq(n)→ E

u 7→ û
(2)

such that for all u ∈ Pq(n),

û =
∑
s∈P1
s⊆u

ŝ.

By [12, Section 6], the Euclidean space E, together with the restriction of the map (2)
to X = Pk, gives a Euclidean representation of Γ that is associated with θ1. By [12,
Lemma 4.2], the GL(V )-action on Pq(n) induces a GL(V )-module structure on E.

We now summarize the results of [12]. For x ∈ X, let Γ(x) denote the local graph
of x. For the rest of the section, fix x, y ∈ X such that 1 < ∂(x, y) < k. Let Stab(x, y)
denote the subgroup of GL(V ) that stabilizes both x and y. Let Fix(x, y) denote the
subspace of E consisting of the vectors that are fixed by every element of Stab(x, y). In
[12, Lemma 8.3], we showed that the following vectors form a basis for Fix(x, y):

x̂, ŷ, x̂ ∩ y, x̂+ y. (3)

We now describe a second basis for Fix(x, y). In [12, Definition 9.1], we defined the sets

Bxy = {z ∈ Γ(x) | ∂(z, y) = ∂(x, y)+1}, Cxy = {z ∈ Γ(x) | ∂(z, y) = ∂(x, y)−1}.

By [12, Lemma 9.2, 9.4], the sets Bxy, Cxy are orbits of the Stab(x, y)-action on Γ(x). In
[12, Definition 9.5], we defined the vectors

Bxy =
∑
z∈Bxy

ẑ, Cxy =
∑
z∈Cxy

ẑ.

In [12, Theorem 11.1], we showed that the following vectors form a basis for Fix(x, y):

x̂, ŷ, Bxy, Cxy. (4)

In [12, Theorem 11.3], we found the transition matrices between the basis (3) and the
basis (4). We found the inner products between:

(i) any pair of vectors in the basis (3) [12, Theorem 10.4];

(ii) any pair of vectors in the basis (4) [12, Theorem 10.15];

(iii) any vector in the basis (3) and any vector in the basis (4) [12, Theorem 10.9].

In this paper, we investigate the orbits of Stab(x, y) acting on Γ(x). As we will see,
there are five orbits. We already mentioned two of the orbits, namely Bxy and Cxy. We
now describe the other three orbits.
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Define the set
Axy = {z ∈ Γ(x) | ∂(y, z) = ∂(x, y)}.

We partition the set Axy into the following three sets:

A+
xy = {z ∈ Axy | z + x+ y ) x+ y, z ∩ x ∩ y = x ∩ y},
A0

xy = {z ∈ Axy | z + x+ y = x+ y, z ∩ x ∩ y = x ∩ y},
A−xy = {z ∈ Axy | z + x+ y = x+ y, z ∩ x ∩ y ( x ∩ y}.

We show that the sets
A+

xy, A0
xy, A−xy

are orbits of the Stab(x, y)-action on Γ(x). Hence,

Bxy, Cxy, A+
xy, A0

xy, A−xy (5)

are the five orbits of the Stab(x, y)-action on Γ(x). By construction, (5) is a partition of
Γ(x) that is equitable in the sense of [11, p. 159]. We call this partition the y-partition of
Γ(x).

Define the vectors

A+
xy =

∑
z∈A+

xy

ẑ, A0
xy =

∑
z∈A0

xy

ẑ, A−xy =
∑

z∈A−
xy

ẑ. (6)

We show that A+
xy, A

0
xy, A

−
xy are contained in Fix(x, y). We write each vector in (6) as a

linear combination of the vectors in (3) and also the vectors in (4). We find the inner
products between:

(i) any vector in (6) and any vector in the basis (3);

(ii) any vector in (6) and any vector in the basis (4);

(iii) any pair of vectors in (6).

We mentioned that the y-partition of Γ(x) is equitable. We compute the corresponding
structure constants. In the table below, for each orbit O in the header column, and each
orbit N in the header row, the (O,N )-entry gives the number of vertices in N that are
adjacent to a given vertex in O. Write i = ∂(x, y).

Bxy Cxy A+
xy A0

xy A−xy

Bxy qi+1[k−i]
+qi+1[n−k−i]−q−1

0 q[i] 0 q[i]

Cxy 0 2q[i− 1] qi+1[n− k − i] (q − 1)
(
2[i]− 1

)
qi+1[k − i]

A+
xy qi+1[k − i] [i] q[n− k]− q − 1 (q − 1)[i] 0

A0
xy 0 2[i]− 1 qi+1[n− k − i] (q − 1)

(
2[i]− 1

)
− 1 qi+1[k − i]

A−xy qi+1[n− k − i] [i] 0 (q − 1)[i] q[k]− q − 1
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LetMi denote the 5×5 matrix from the table above. We display the eigenvalues forMi.
For each eigenvalue, we give a corresponding row eigenvector and column eigenvector. We
show that the eigenvalues of Mi are the same as the eigenvalues of the local graph Γ(x).

This paper is organized as follows. In Sections 2 and 3, we present some preliminaries
on the Grassmann graph Jq(n, k) and the projective geometry Pq(n). In Section 4, we
represent the elements of Pq(n) as vectors in the Euclidean space E. In Section 5, we
present some results about Stab(x, y) and Fix(x, y). In Section 6, we find all the orbits
of the Stab(x, y)-action on Γ(x). In Sections 7 and 8, we define the vectors A+

xy, A
0
xy, A

−
xy

and write these vectors in terms of the basis (3) and the basis (4). We also obtain inner
products between the vectors x̂, ŷ, Bxy, CxyA

+
xy, A

0
xy, A

−
xy. In Section 9, we use the matrix

Mi to describe the adjacency between the Stab(x, y)-orbits. We find the eigenvalues of
Mi and their corresponding row eigenvectors and column eigenvectors. We also show
that the eigenvalues of Mi are the same as the eigenvalues of Γ(x).

2 The Grassmann graph Γ

Let Γ = (X, E) denote a finite undirected graph that is connected, without loops or
multiple edges, with vertex set X, edge set E , and path-length distance function ∂. Two
vertices x, y ∈ X are said to be adjacent whenever they form an edge. The diameter d of
Γ is defined as d = max{∂(x, y) | x, y ∈ X}. For x ∈ X and an integer i > 0, define the
set Γi(x) = {y ∈ X | ∂(x, y) = i}. We abbreviate Γ(x) = Γ1(x). The subgraph induced
on Γ(x) is called the local graph of x.

We say that Γ is regular with valency κ whenever
∣∣Γ(x)

∣∣ = κ for all x ∈ X. We say
that Γ is distance-regular whenever for all integers h, i, j such that 0 6 h, i, j 6 d and all
x, y ∈ X such that ∂(x, y) = h, the cardinality of the set {z ∈ X | ∂(x, z) = i, ∂(y, z) = j}
depends only on h, i, j. This cardinality is denoted by phi,j. For the rest of this section,
we assume that Γ is distance-regular with diameter d > 3. Observe that Γ is regular with
valency κ = p0

1,1. Define

bi = pi1,i+1 (0 6 i < d), ai = pi1,i (0 6 i 6 d), ci = pi1,i−1 (0 < i 6 d).

Note that b0 = κ, a0 = 0, c1 = 1. Also note that

bi + ai + ci = κ (0 6 i 6 d),

where c0 = 0 and bd = 0. We call bi, ai, ci the intersection numbers of Γ.
By the eigenvalues of Γ we mean the roots of the minimal polynomial of the adjacency

matrix. Since Γ is distance-regular, by [4, p. 128], Γ has d + 1 eigenvalues; we denote
these eigenvalues by

θ0 > θ1 > · · · > θd.

By [4, p. 129], θ0 = κ. By the spectrum of Γ we mean the set of ordered pairs
{

(θi,mi)
}d
i=0

,

where {θi}di=0 are the eigenvalues of Γ and mi the dimension of the θi-eigenspace (0 6 i 6
d).
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This paper is about a class of distance-regular graphs called the Grassmann graphs.
These graphs are defined as follows. Let F = Fq denote a finite field with q elements,
and let n, k denote positive integers such that n > k. Let V denote an n-dimensional
vector space over F. The Grassmann graph Jq(n, k) has vertex set X consisting of the
k-dimensional subspaces of V . Vertices x, y of Jq(n, k) are adjacent whenever x ∩ y has
dimension k − 1.

According to [4, p. 268], the graphs Jq(n, k) and Jq(n, n−k) are isomorphic. Without
loss of generality, we may assume n > 2k. Under this assumption, the diameter of
Jq(n, k) is equal to k. (See [4, Theorem 9.3.3].) The case n = 2k is somewhat special, so
throughout this paper we assume that n > 2k. For the rest of this paper, we assume that
Γ is the Grassmann graph Jq(n, k) with k > 3.

In what follows, we will use the notation

[m] =
qm − 1

q − 1
(m ∈ Z).

By [4, Theorem 9.3.2], the valency of Γ is

κ = q[k][n− k].

By [4, Theorem 9.3.3], the intersection numbers of Γ are

bi = q2i+1[k − i][n− k − i], ci = [i]2 (0 6 i 6 k). (7)

By [4, Theorem 9.3.3], the eigenvalues of Γ are

θi = qi+1[k − i][n− k − i]− [i] (0 6 i 6 k). (8)

The given ordering of the eigenvalues is known to be Q-polynomial in the sense of [4,
Theorem 8.1.1].

3 The projective geometry Pq(n)

To study the graph Γ, it is helpful to view its vertex set X as a subset of a certain poset
Pq(n), which is defined as follows.

Definition 1. Let the poset Pq(n) consist of the subspaces of V , together with the partial
order given by inclusion. This poset Pq(n) is called the projective geometry.

For the rest of the paper, we abbreviate P = Pq(n). In this section we present some
lemmas about the poset P .

Lemma 2. [1, p. 47] For u, v ∈ P we have

dimu+ dim v = dim (u ∩ v) + dim (u+ v) .
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Lemma 3. [12, Lemma 3.3] Let u, v ∈ P . Let the subset R ⊆ V form a basis for u ∩ v.
Extend the basis R to a basis R ∪ S for u, and extend the basis R to a basis R ∪ T for
v. Then R∪ S ∪ T forms a basis for the subspace u+ v.

For 0 6 ` 6 n, let the set P` consist of the `-dimensional subspaces of V . Note that
X = Pk. Also note that P0 = {0} and Pn = {V }.

Lemma 4. For x, y ∈ X the following (i), (ii) hold:

(i) [4, p. 269] the dimension of x ∩ y is k − ∂(x, y);

(ii) [12, Lemma 3.5] the dimension of x+ y is k + ∂(x, y).

Definition 5. For u ∈ P define the set

Ω(u) = {s ∈ P1 | s ⊆ u}.

Note that Ω(V ) = P1. By [12, Section 3], the following (i)–(ii) hold:

(i) for all u ∈ P , ∣∣Ω(u)
∣∣ = [m],

where u ∈ Pm;

(ii) |P1| = [n].

We now comment on the symmetries of P . Recall that the general linear group GL(V )
consists of the invertible F-linear maps from V to V . The action of GL(V ) on V induces a
permutation action of GL(V ) on the set P . This permutation action respects the partial
order on P . The orbits of the action are P` for 0 6 ` 6 n. By [12, Lemma 3.9], the action
of GL(V ) on X preserves the path-length distance ∂.

4 Representing P using a Euclidean space E

In [12, Section 4] we described how to represent the elements of P as vectors in a Euclidean
space. Our goal in this section is to summarize the description. The material in this
section will be used to state and prove our main results later in the paper.

There are two stages to representing the elements of P as vectors in a Euclidean space.
In the first stage we consider the elements of P1. Let E denote a Euclidean space with
dimension [n]−1 and bilinear form 〈 , 〉. Recall the notation ‖ν‖2 = 〈ν, ν〉 for any ν ∈ E.
We define a function

P1 → E

s 7→ ŝ
(9)

that satisfies the following conditions (C1) − (C4):

(C1) E = Span
{
ŝ | s ∈ P1

}
;
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(C2) for s ∈ P1,
∥∥ŝ∥∥2

= [n]− 1;

(C3) for distinct s, t ∈ P1,
〈
ŝ, t̂
〉

= −1;

(C4)
∑
s∈P1

ŝ = 0.

Next, we extend the function (9) to a function

P → E

u 7→ û
(10)

such that for all u ∈ P ,

û =
∑

s∈Ω(u)

ŝ.

Note that û = 0 if u ∈ P0 or u ∈ Pn.
Next we present a lemma that involves the map (10).

Lemma 6. The following (i)–(vi) hold:

(i) [12, Lemma 6.2] for u, v ∈ P , 〈
û, v̂
〉

= [n][h]− [i][j],

where
i = dimu, j = dim v, h = dim (u ∩ v) ;

(ii) [12, Lemma 6.3] for u ∈ P , ∥∥û∥∥2
= qi[i][n− i],

where i = dimu;

(iii) [12, Lemma 6.4] for x, y ∈ X,〈
x̂, ŷ
〉

= [n][k − i]− [k]2,

where i = ∂(x, y);

(iv) [12, Lemma 6.5] for x ∈ X, ∥∥x̂∥∥2
= qk[k][n− k];

(v) [12, Lemma 6.6] for x ∈ X, ∑
z∈Γ(x)

ẑ = θ1x̂,

where θ1 is from (8);
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(vi) [12, Lemma 6.7] the vector space E is spanned by
{
x̂ | x ∈ X

}
.

By [12, Section 6], the Euclidean space E, together with the restriction of the map
(10) to X gives a Euclidean representation of Γ in the sense of [12, Definition 6.1]. This
representation is associated with the eigenvalue θ1. By [12, Lemma 4.2], the Euclidean
space E becomes a GL(V )-module such that for all u ∈ P and σ ∈ GL(V ),

σ
(
û
)

= σ̂(u).

By [12, Section 6], the Euclidean space E is irreducible as a GL(V )-module.

5 The stabilizer of some elements in X

In this section, we consider some stabilizer subgroups of GL(V ). These subgroups are the
stabilizer of a vertex in X, and the stabilizer of two distinct vertices in X. We obtain
some results about these stabilizers that will be used later in the paper.

For x ∈ X, let Stab(x) denote the subgroup of GL(V ) consisting of the elements that
fix x. We call Stab(x) the stabilizer of x in GL(V ).

Lemma 7. [12, Lemma 5.1] For v, v′ ∈ P and x ∈ X, the following are equivalent:

(i) dim v = dim v′ and dim (v ∩ x) = dim
(
v′ ∩ x

)
;

(ii) the subspaces v and v′ are contained in the same orbit of the Stab(x)-action on P .

Pick distinct x, y ∈ X. Let Stab(x, y) denote the subgroup of GL(V ) consisting of the
elements that fix both x and y. We call Stab(x, y) the stabilizer of x and y in GL(V ).
Let Fix(x, y) denote the subspace of E consisting of the vectors that are fixed by every
element of Stab(x, y).

Lemma 8. [12, Theorem 8.3] Pick distinct x, y ∈ X. In the table below, we display
vectors that form a basis for Fix(x, y).

Case basis for Fix(x, y)

1 6 ∂(x, y) < k x̂, ŷ, x̂ ∩ y, x̂+ y

∂(x, y) = k x̂, ŷ, x̂+ y

Definition 9. Pick distinct x, y ∈ X. By the geometric basis for Fix(x, y), we mean the
basis displayed in Lemma 8.

Note that the case ∂(x, y) = k is special. The case ∂(x, y) = 1 is also special; see [12,
Definition 9.1, 9.5]. For the rest of the paper, we assume that 1 < ∂(x, y) < k.
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6 The y-partition of Γ(x)

Pick x, y ∈ X such that 1 < ∂(x, y) < k. In this section we describe the orbits of
Stab(x, y) acting on Γ(x). We will show that there are five orbits. The partition of Γ(x)
into these five orbits will be called the y-partition of Γ(x).

Definition 10. For x, y ∈ X such that 1 < ∂(x, y) < k, define

Bxy =
{
z ∈ Γ(x) | ∂(y, z) = ∂(x, y) + 1

}
,

Cxy =
{
z ∈ Γ(x) | ∂(y, z) = ∂(x, y)− 1

}
,

Axy =
{
z ∈ Γ(x) | ∂(y, z) = ∂(x, y)

}
.

Observe that∣∣Bxy∣∣ = bi,
∣∣Cxy∣∣ = ci,

∣∣Axy

∣∣ = ai
(
i = ∂(x, y)

)
.

Lemma 11. [12, Lemma 9.2, 9.4] For x, y ∈ X such that 1 < ∂(x, y) < k, the sets Bxy
and Cxy are orbits of the Stab(x, y)-action on Γ(x).

Definition 12. For x, y ∈ X such that 1 < ∂(x, y) < k, define the vectors

Bxy =
∑
z∈Bxy

ẑ, Cxy =
∑
z∈Cxy

ẑ, Axy =
∑

z∈Axy

ẑ.

Note that Bxy, Cxy, Axy are contained in E. We call Bxy, Cxy, Axy the characteristic vectors
of Bxy, Cxy,Axy respectively.

Lemma 13. [12, Theorem 11.1] For x, y ∈ X such that 1 < ∂(x, y) < k, the following
vectors form a basis for Fix(x, y):

x̂, ŷ, Bxy, Cxy. (11)

Definition 14. Let x, y ∈ X satisfy 1 < ∂(x, y) < k. By the combinatorial basis for
Fix(x, y), we mean the basis formed by the vectors in (11).

Next we focus on the set Axy. This set turns out to be the disjoint union of three
orbits of the Stab(x, y)-action on Γ(x). Our next general goal is to describe these three
orbits.

Definition 15. For x, y ∈ X such that 1 < ∂(x, y) < k, define

A+
xy =

{
z ∈ Axy | z + x+ y ) x+ y, z ∩ x ∩ y = x ∩ y

}
,

A0
xy =

{
z ∈ Axy | z + x+ y = x+ y, z ∩ x ∩ y = x ∩ y

}
,

A−xy =
{
z ∈ Axy | z + x+ y = x+ y, z ∩ x ∩ y ( x ∩ y

}
.

We are going to show that the three sets in Definition 15 are orbits of Stab(x, y). First
we have a few remarks.
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Lemma 16. For x, y ∈ X such that 1 < ∂(x, y) < k, the set Axy is the disjoint union of
the sets A+

xy,A0
xy,A−xy.

Proof. By linear algebra, the set
{
z ∈ Axy | z + x + y ) x + y, z ∩ x ∩ y ( x ∩ y

}
is

empty. The result follows.

Lemma 17. For x, y ∈ X such that 1 < ∂(x, y) < k,∣∣A+
xy

∣∣ = qi+1[i][n− k − i],
∣∣A0

xy

∣∣ = (q − 1)[i]2,
∣∣A−xy∣∣ = qi+1[i][k − i], (12)

where i = ∂(x, y).

Proof. Routine from counting.

Observe that the values in (12) depend only on ∂(x, y).

Definition 18. We refer to Lemma 17. For 1 < i < k, define

a+
i =

∣∣A+
xy

∣∣, a0
i =

∣∣A0
xy

∣∣, a−i =
∣∣A−xy∣∣, (13)

where i = ∂(x, y). Note that a+
i + a0

i + a−i = ai for 1 < i < k.

Our next goal is to show that A0
xy is an orbit of Stab(x, y).

Lemma 19. For x, y ∈ X such that 1 < ∂(x, y) < k, let z ∈ A0
xy. Then

x ∩ y ⊆ (z + x) ∩ y.

Moreover,
dim (x ∩ y) + 1 = dim

(
(z + x) ∩ y

)
.

Proof. Routine from the definition of A0
xy and linear algebra.

Lemma 20. For x, y ∈ X such that 1 < ∂(x, y) < k, let z ∈ A0
xy. Then there exist

vectors
ψ ∈ (z + x) ∩ y, η ∈ z, % ∈ x

such that
ψ 6∈ x ∩ y, η 6∈ z ∩ x, % 6∈ z ∩ x,

ψ = η + %.

Proof. Pick ψ ∈ (z + x) ∩ y such that ψ 6∈ x ∩ y. Note that ψ ∈ z + x. Also note that
ψ 6∈ x and ψ 6∈ z. Hence, ψ is a linear combination of some nonzero vector η ∈ z and some
nonzero vector % ∈ x. We assume without loss that ψ = η + %. Assume that η ∈ z ∩ x.
Then ψ = η + % ∈ x, which is a contradiction. Hence, η 6∈ z ∩ x. Assume that % ∈ z ∩ x.
Then ψ = η + % ∈ z, which is a contradiction. Hence, % 6∈ z ∩ x. The result follows.
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Lemma 21. For x, y ∈ X such that 1 < ∂(x, y) < k, let z ∈ A0
xy. Let the vectors ψ, η, %

be from Lemma 20. Then

z + Fψ = z + x, z + F% = z + x, (z ∩ x) + Fη = z, (14)

x+ Fψ = z + x, x+ Fη = z + x, (z ∩ x) + F% = x, (15)

(x ∩ y) + Fψ = (z + x) ∩ y. (16)

Moreover, for each equation in (14), (15), (16) the sum on the left is direct.

Proof. Immediate from linear algebra.

Lemma 22. For x, y ∈ X such that 1 < ∂(x, y) < k, the set A0
xy is an orbit of the

Stab(x, y)-action on Γ(x).

Proof. By Lemma 7, the set A0
xy is a disjoint union of orbits of Stab(x, y). We now

show that A0
xy is a single orbit. Let z, z′ ∈ A0

xy. It suffices to show that there exists
σ ∈ Stab(x, y) that sends z 7→ z′. Let the vectors ψ, η, % be from Lemma 20. Let the
subset R ⊆ V form a basis for x ∩ y. Extend the basis R for x ∩ y to a basis R ∪ S for
z∩x. By the third equation in (14), R∪S∪{η} forms a basis for z. By the third equation
in (15), R∪S∪{%} forms a basis for x. By (16), R∪{ψ} forms a basis for (z+x)∩y. By
the first equation in (15), R∪S∪{ψ, %} forms a basis for z+x. Extend the basis R∪{ψ}
for (z+x)∩y to a basis R∪Q∪{ψ} for y. By Lemma 3, R∪S ∪Q∪{ψ, %} forms a basis
for x+ y. Extend the basis R∪S ∪Q∪{ψ, %} for x+ y to a basis R∪S ∪Q∪W ∪{ψ, %}
for V .

Recall the element z′ ∈ A0
xy. Consider the corresponding vectors ψ′, η′, %′ from Lemma

20. Extend the basis R for x ∩ y to a basis R ∪ S ′ for z′ ∩ x. By the third equation in
(14), R∪S ′∪

{
η′
}

forms a basis for z′. By the third equation in (15), R∪S ′∪
{
%′
}

forms
a basis for x. By (16), R ∪

{
ψ′
}

forms a basis for
(
z′ + x

)
∩ y. By the first equation in

(15), R∪S ′ ∪
{
ψ′, %′

}
forms a basis for z′+x. Extend the basis R∪

{
ψ′
}

for
(
z′+x

)
∩ y

to a basis R∪Q′∪
{
ψ′
}

for y. By Lemma 3, R∪S ′∪Q′∪
{
ψ′, %′

}
forms a basis for x+y.

Extend the basis R ∪ S ′ ∪ Q′ ∪
{
ψ′, %′

}
for x + y to a basis R ∪ S ′ ∪ Q′ ∪W ′ ∪

{
ψ′, %′

}
for V .

By linear algebra, there exists σ ∈ GL(V ) that sends S 7→ S ′, Q 7→ Q′, W 7→ W ′,
ψ 7→ ψ′, % 7→ %′ and acts as the identity on R. By construction, σ is contained in
Stab(x, y) and sends z 7→ z′. The result follows.

Lemma 23. For x, y ∈ X such that 1 < ∂(x, y) < k, the sets A+
xy,A−xy are orbits of the

Stab(x, y)-action on Γ(x).

Proof. Similar to Lemma 22.

Theorem 24. For x, y ∈ X such that 1 < ∂(x, y) < k, the following sets are orbits of the
Stab(x, y)-action on Γ(x):

Bxy, Cxy, A+
xy, A0

xy, A−xy. (17)

Furthermore, these orbits form a partition of Γ(x).
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Proof. For the first assertion, combine Lemmas 11, 22, 23. The second assertion is im-
mediate from Lemma 16 and the fact that the disjoint union of Bxy, Cxy,Axy is equal to
Γ(x).

Definition 25. Let x, y ∈ X satisfy 1 < ∂(x, y) < k, and consider the partition of Γ(x)
given in (17). By construction, this partition is equitable in the sense of [11, p. 159]. We
call this partition the y-partition of Γ(x).

7 The vectors A+
xy, A

0
xy, A

−
xy

Pick x, y ∈ X such that 1 < ∂(x, y) < k. Recall the sets A+
xy,A0

xy,A−xy from Definition
15. In this section we use these sets to define some vectors A+

xy, A
0
xy, A

−
xy in the Euclidean

space E. We show that A+
xy, A

0
xy, A

−
xy are contained in Fix(x, y). We write A+

xy, A
0
xy, A

−
xy

in terms of the geometric basis for Fix(x, y) and also the combinatorial basis for Fix(x, y).

Definition 26. For x, y ∈ X such that 1 < ∂(x, y) < k, define the vectors

A+
xy =

∑
z∈A+

xy

ẑ, A0
xy =

∑
z∈A0

xy

ẑ, A−xy =
∑

z∈A−
xy

ẑ. (18)

Note that A+
xy, A

0
xy, A

−
xy are contained in E. We call A+

xy, A
0
xy, A

−
xy the characteristic vectors

of A+
xy,A0

xy,A−xy respectively. By Lemma 16, Axy = A+
xy + A0

xy + A−xy.

Lemma 27. For x, y ∈ X such that 1 < ∂(x, y) < k, the vectors A+
xy, A

0
xy, A

−
xy are

contained in Fix(x, y).

Proof. Pick σ ∈ Stab(x, y). Since A+
xy,A0

xy,A−xy are orbits of the Stab(x, y)-action on
Γ(x), the map σ fixes A+

xy,A0
xy,A−xy. The result follows.

Our next goal is to write A+
xy, A

0
xy, A

−
xy in terms of the geometric basis for Fix(x, y).

To do this, we recall the inner products that involve the vectors in the geometric basis
for Fix(x, y).

Lemma 28. [12, Theorem 10.4] Let x, y ∈ X satisfy 1 < ∂(x, y) < k. In the following
table, for each vector u in the header column, and each vector v in the header row, the
(u, v)-entry of the table gives the inner product 〈u, v〉. Write i = ∂(x, y).

〈 , 〉 x̂ ŷ x̂ ∩ y x̂+ y

x̂ qk[k][n−k] [n][k−i]−[k]2 qk[k−i][n−k] qk+i[k][n−k−i]

ŷ [n][k−i]−[k]2 qk[k][n−k] qk[k−i][n−k] qk+i[k][n−k−i]

x̂ ∩ y qk[k−i][n−k] qk[k−i][n−k] qk−i[k−i][n−k+i] qk+i[k−i][n−k−i]

x̂+ y qk+i[k][n−k−i] qk+i[k][n−k−i] qk+i[k−i][n−k−i] qk+i[k+i][n−k−i]
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For 1 < i < k let Mi denote the matrix of inner products in Lemma 28.

Lemma 29. [12, Lemma 10.10] For 1 < i < k the inverse of the matrix Mi is given by

M−1
i =

1

qk−i(q − 1)[i]2[n]


qi 1 −qi −1
1 qi −qi −1

−qi −qi qi[k]−[i]
[k−i] 1

−1 −1 1 qi[n−k]−[i]
q2i[n−k−i]

 .

Next we find inner products that involve the vectors A+
xy, A

0
xy, A

−
xy.

Lemma 30. For x, y ∈ X such that 1 < ∂(x, y) < k, we have〈
A+

xy, x̂
〉

= qi+1[i][n− k − i]
(

[n][k − 1]− [k]2
)
, (19)〈

A0
xy, x̂

〉
= (q − 1)[i]2

(
[n][k − 1]− [k]2

)
, (20)〈

A−xy, x̂
〉

= qi+1[i][k − i]
(

[n][k − 1]− [k]2
)
, (21)

where i = ∂(x, y).

Proof. We first prove (19). Using the first equation in (18), we obtain〈
A+

xy, x̂
〉

=
∑

z∈A+
xy

〈
ẑ, x̂
〉
. (22)

Pick z ∈ A+
xy. By the definition of A+

xy and Lemma 6(iii),〈
ẑ, x̂
〉

= [n][k − 1]− [k]2. (23)

By the above comments, 〈
A+

xy, x̂
〉

=
∣∣A+

xy

∣∣([n][k − 1]− [k]2
)
. (24)

In (24), we evaluate
∣∣A+

xy

∣∣ using (12); this yields (19).
We have now verified (19). Equations (20) and (21) are obtained in a similar

fashion.

Lemma 31. For x, y ∈ X such that 1 < ∂(x, y) < k, we have〈
A+

xy, ŷ
〉

= qi+1[i][n− k − i]
(

[n][k − i]− [k]2
)
, (25)〈

A0
xy, ŷ

〉
= (q − 1)[i]2

(
[n][k − i]− [k]2

)
, (26)〈

A−xy, ŷ
〉

= qi+1[i][k − i]
(

[n][k − i]− [k]2
)
, (27)

where i = ∂(x, y).
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Proof. We first prove (25). Using the first equation in (18), we obtain〈
A+

xy, ŷ
〉

=
∑

z∈A+
xy

〈
ẑ, ŷ
〉
. (28)

Pick z ∈ A+
xy. By the definition of A+

xy and Lemma 6(iii),〈
ẑ, ŷ
〉

= [n][k − i]− [k]2. (29)

By the above comments, 〈
A+

xy, ŷ
〉

=
∣∣A+

xy

∣∣([n][k − i]− [k]2
)
. (30)

In (30), we evaluate
∣∣A+

xy

∣∣ using (12); this yields (25).
We have now verified (25). Equations (26) and (27) are obtained in a similar

fashion.

Lemma 32. For x, y ∈ X such that 1 < ∂(x, y) < k, we have〈
A+

xy, x̂ ∩ y
〉

= qk+i+1[i][n− k − i][k − i][n− k], (31)〈
A0

xy, x̂ ∩ y
〉

= qk(q − 1)[i]2[k − i][n− k], (32)〈
A−xy, x̂ ∩ y

〉
= qi+1[i][k − i]

(
[n][k − i− 1]− [k − i][k]

)
, (33)

where i = ∂(x, y).

Proof. We first prove (31). Using the first equation in (18), we obtain〈
A+

xy, x̂ ∩ y
〉

=
∑

z∈A+
xy

〈
ẑ, x̂ ∩ y

〉
. (34)

Pick z ∈ A+
xy. By the definition of A+

xy and Lemma 6(i),〈
ẑ, x̂ ∩ y

〉
= [n][k − i]− [k][k − i] = qk[k − i][n− k]. (35)

By the above comments, 〈
A+

xy, x̂ ∩ y
〉

=
∣∣A+

xy

∣∣ qk[k − i][n− k]. (36)

In (36), we evaluate
∣∣A+

xy

∣∣ using (12); this yields (31).
We have now verified (31). Equation (32) is obtained in a similar fashion.
Next we prove (33). Using the last equation in (18), we obtain〈

A−xy, x̂ ∩ y
〉

=
∑

z∈A−
xy

〈
ẑ, x̂ ∩ y

〉
. (37)
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Pick z ∈ A−xy. By the definition of A−xy and Lemma 2,

dim (z ∩ x ∩ y) = k − i− 1. (38)

By (38) and Lemma 6(i),〈
ẑ, x̂ ∩ y

〉
= [n][k − i− 1]− [k − i][k]. (39)

By the above comments,〈
A−xy, x̂ ∩ y

〉
=
∣∣A−xy∣∣([n][k − i− 1]− [k − i][k]

)
. (40)

In (40), we evaluate
∣∣A−xy∣∣ using (12); this yields (33).

Lemma 33. For x, y ∈ X such that 1 < ∂(x, y) < k, we have〈
A+

xy, x̂+ y
〉

= qi+1[i][n− k − i]
(

[n][k − 1]− [k][k + i]
)
, (41)〈

A0
xy, x̂+ y

〉
= qk+i(q − 1)[i]2[k][n− k − i], (42)〈

A−xy, x̂+ y
〉

= qk+2i+1[i][k − i][k][n− k − i], (43)

where i = ∂(x, y).

Proof. We first prove (41). Using the first equation in (18), we obtain〈
A+

xy, x̂+ y
〉

=
∑

z∈A+
xy

〈
ẑ, x̂+ y

〉
. (44)

Pick z ∈ A+
xy. By the definition of A+

xy and Lemma 2,

dim
(
z ∩ (x+ y)

)
= k − 1. (45)

By (45) and Lemma 6(i), 〈
ẑ, x̂+ y

〉
= [n][k − 1]− [k][k + i]. (46)

By the above comments,〈
A+

xy, x̂+ y
〉

=
∣∣A+

xy

∣∣([n][k − 1]− [k][k + i]
)
. (47)

In (47), we evaluate
∣∣A+

xy

∣∣ using (12); this yields (41).
Next we prove (42). Using the second equation in (18), we obtain〈

A0
xy, x̂+ y

〉
=
∑

z∈A0
xy

〈
ẑ, x̂+ y

〉
. (48)
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Pick z ∈ A0
xy. By the definition of A0

xy,

z ∩ (x+ y) = z. (49)

By (49) and Lemma 6(i),〈
ẑ, x̂ ∩ y

〉
= [n][k]− [k][k + i] = qk+i[k][n− k − i]. (50)

By the above comments,〈
A0

xy, x̂+ y
〉

=
∣∣A0

xy

∣∣ qk+i[k][n− k − i]. (51)

In (51), we evaluate
∣∣A0

xy

∣∣ using (12); this yields (42).
We have now verified (42). Equation (43) is obtained in a similar

fashion.

Theorem 34. Let x, y ∈ X satisfy 1 < ∂(x, y) < k. In the following table, for each vector
u in the header column, and each vector v in the header row, the (u, v)-entry of the table
gives the inner product 〈u, v〉. Write i = ∂(x, y).

〈 , 〉 A+
xy A0

xy A−xy

x̂ qi+1[i][n−k−i]([n][k−1]−[k]2) (q−1)[i]2([n][k−1]−[k]2) qi+1[i][k−i]([n][k−1]−[k]2)

ŷ qi+1[i][n−k−i]([n][k−i]−[k]2) (q−1)[i]2([n][k−i]−[k]2) qi+1[i][k−i]([n][k−i]−[k]2)

x̂ ∩ y qk+i+1[i][n−k−i][k−i][n−k] qk(q−1)[i]2[k−i][n−k] qi+1[i][k−i]([n][k−i−1]−[k−i][k])

x̂+ y qi+1[i][n−k−i]([n][k−1]−[k][k+i]) qk+i(q−1)[i]2[k][n−k−i] qk+2i+1[i][k−i][k][n−k−i]

Proof. Combine Lemmas 30–33.

In the next result, we write A+
xy, A

0
xy, A

−
xy in terms of the geometric basis for Fix(x, y).

Theorem 35. For x, y ∈ X such that 1 < ∂(x, y) < k, we have

A+
xy = qi+1[n− k − i][i− 1]x̂+ q2i[n− k − i]x̂ ∩ y − [i]x̂+ y, (52)

A0
xy =

(
qi[i− 1]− [i]

)
x̂− qi−1ŷ + q2i−1x̂ ∩ y + qi−1x̂+ y, (53)

A−xy = qi+1[k − i][i− 1]x̂− qi[i]x̂ ∩ y + qi[k − i]x̂+ y, (54)

where i = ∂(x, y).
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Proof. Write

A+
xy = αx̂+ βŷ + γx̂ ∩ y + δx̂+ y, (55)

A0
xy = α′x̂+ β′ŷ + γ′x̂ ∩ y + δ′x̂+ y, (56)

A−xy = α′′x̂+ β′′ŷ + γ′′x̂ ∩ y + δ′′x̂+ y, (57)

for α, β, γ, δ, α′, β′, γ′, δ′, α′′, β′′, γ′′, δ′′ ∈ R. Let Ni denote the matrix of inner products
from Theorem 34. In each of (55), (56), (57) we take the inner product of either side with
each of x̂, ŷ, x̂ ∩ y, x̂+ y to obtain

Mi


α α′ α′′

β β′ β′′

γ γ′ γ′′

δ δ′ δ′′

 = Ni.

The matrix Mi is invertible by Lemma 29, so
α α′ α′′

β β′ β′′

γ γ′ γ′′

δ δ′ δ′′

 = M−1
i Ni.

Using Lemma 29 and matrix multiplication we obtain

M−1
i Ni =


qi+1[n− k − i][i− 1] qi[i− 1]− [i] qi+1[k − i][i− 1]

0 −qi−1 0
q2i[n− k − i] q2i−1 −qi[i]
−[i] qi−1 qi[k − i]

 .

The result follows.

Fix x, y ∈ X such that 1 < ∂(x, y) < k. Our next goal is to write A+
xy, A

0
xy, A

−
xy in

terms of the combinatorial basis for Fix(x, y). To do this, we write x̂ ∩ y, x̂+ y in terms
of the combinatorial basis for Fix(x, y).

Lemma 36. [12, Theorem 11.4] For x, y ∈ X such that 1 < ∂(x, y) < k, we have

x̂ ∩ y =
[k − i][n− k − 1]

qk−1[n− 2k]
x̂+

[k − i]
qk−i+1[i− 1][n− 2k]

ŷ

− 1

qk+i[n− 2k]
Bxy −

[k − i]
qk[i− 1][n− 2k]

Cxy,

x̂+ y = − [k − 1][n− k − i]
qk−i−1[n− 2k]

x̂− [n− k − i]
qk−2i+1[i− 1][n− 2k]

ŷ

+
1

qk[n− 2k]
Bxy +

[n− k − i]
qk−i[i− 1][n− 2k]

Cxy,

where i = ∂(x, y).
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Theorem 37. For x, y ∈ X such that 1 < ∂(x, y) < k, we have

A+
xy =

[k − 1][n− k − i][n− k]

qk−i−1[n− 2k]
x̂+

[k][n− k − i]
qk−2i+1[i− 1][n− 2k]

ŷ

− [n− k]

qk[n− 2k]
Bxy −

[k][n− k − i]
qk−i[i− 1][n− 2k]

Cxy,

(58)

A0
xy = −[i]x̂− qi−1[i]

[i− 1]
ŷ +

qi−1

[i− 1]
Cxy, (59)

A−xy = − [k − i][k][n− k − 1]

qk−i−1[n− 2k]
x̂− [k − i][n− k]

qk−2i+1[i− 1][n− 2k]
ŷ

+
[k]

qk[n− 2k]
Bxy +

[k − i][n− k]

qk−i[i− 1][n− 2k]
Cxy,

(60)

where i = ∂(x, y).

Proof. We first prove (58). In the equation (52), eliminate x̂ ∩ y and x̂+ y using Lemma
36 and simplify the result.

We have now verified (58). Equations (59) and (60) are obtained in a similar
fashion.

8 Some inner products involving the y-partition of Γ(x)

Pick x, y ∈ X such that 1 < ∂(x, y) < k. In this section we calculate the inner prod-
ucts between the vectors x̂, ŷ, Bxy, Cxy, A

+
xy, A

0
xy, A

−
xy. We begin by recalling some inner

products from [12].

Lemma 38. [12, Theorem 10.9] Let x, y ∈ X satisfy 1 < ∂(x, y) < k. In the following
table, for each vector u in the header column, and each vector v in the header row, the
(u, v)-entry of the table gives the inner product 〈u, v〉. Write i = ∂(x, y).

〈 , 〉 x̂ ŷ x̂ ∩ y x̂+ y

x̂ qk[k][n−k] [n][k−i]−[k]2 qk[k−i][n−k] qk+i[k][n−k−i]

ŷ [n][k−i]−[k]2 qk[k][n−k] qk[k−i][n−k] qk+i[k][n−k−i]

Bxy
q2i+1[k−i][n−k−i]·
([n][k−1]−[k]2)

q2i+1[k−i][n−k−i]·
([n][k−i−1]−[k]2)

q2i+1[k−i][n−k−i]·
([n][k−i−1]−[k−i][k])

q2i+1[k−i][n−k−i]·
([n][k−1]−[k][k+i])

Cxy [i]2
(

[n][k−1]−[k]2
)

[i]2
(

[n][k−i+1]−[k]2
)

qk[i]2[k−i][n−k] qk+i[i]2[k][n−k−i]

Lemma 39. [12, Theorem 10.15] Let x, y ∈ X satisfy 1 < ∂(x, y) < k. In the following
table, for each vector u in the header column, and each vector v in the header row, the
(u, v)-entry of the table gives the inner product 〈u, v〉. Write i = ∂(x, y).
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〈 , 〉 x̂ ŷ Bxy Cxy

x̂ qk[k][n−k] [n][k−i]−[k]2
q2i+1[k−i][n−k−i]·
([n][k−1]−[k]2) [i]2([n][k−1]−[k]2)

ŷ [n][k−i]−[k]2 qk[k][n−k]
q2i+1[k−i][n−k−i]·
([n][k−i−1]−[k]2) [i]2([n][k−i+1]−[k]2)

Bxy
q2i+1[k−i][n−k−i]·
([n][k−1]−[k]2)

q2i+1[k−i][n−k−i]·
([n][k−i−1]−[k]2)

q4i+2[k−i][n−k−i]·(
qk−i−2[n]([k−i]+[n−k−i])+

[k−i][n−k−i]([n][k−2]−[k]2)
) q2i+1[k−i][n−k−i]·

[i]2([n][k−2]−[k]2)

Cxy [i]2([n][k−1]−[k]2) [i]2([n][k−i+1]−[k]2)
q2i+1[k−i][n−k−i]·
[i]2([n][k−2]−[k]2)

[i]2
(
qk−2[n](2q[i−1]+q+1)+

[i]2([n][k−2]−[k]2)
)

Theorem 40. Let x, y ∈ X satisfy 1 < ∂(x, y) < k. In the following table, for each vector
u in the header column, and each vector v in the header row, the (u, v)-entry of the table
gives the inner product 〈u, v〉. Write i = ∂(x, y).

〈 , 〉 A+
xy A0

xy A−xy

x̂ qi+1[i][n−k−i]([n][k−1]−[k]2) (q−1)[i]2([n][k−1]−[k]2) qi+1[i][k−i]([n][k−1]−[k]2)

ŷ qi+1[i][n−k−i]([n][k−i]−[k]2) (q−1)[i]2([n][k−i]−[k]2) qi+1[i][k−i]([n][k−i]−[k]2)

Bxy

q2i+2[i][k−i][n−k−i](
(qi[n−k−i]−1)([n][k−2]−[k]2)

+([n][k−1]−[k]2)
) q2i+1(q−1)[k−i][n−k−i]

[i]2([n][k−2]−[k]2)

q2i+2[i][k−i][n−k−i](
(qi[k−i]−1)([n][k−2]−[k]2)

+([n][k−1]−[k]2)
)

Cxy

qi+1[n−k−i][i]2(
qk−2[n]+[i]([n][k−2]−[k]2)

) (q−1)[i]2
(
qk−2[n](2[i]−1)

+[i]2([n][k−2]−[k]2)
) qi+1[k−i][i]2(

qk−2[n]+[i]([n][k−2]−[k]2)
)

Proof. The entries in the first two rows are immediate from Theorem 34. Next we calculate

the inner product
〈
Bxy, A

+
xy

〉
. Using (52),〈

Bxy, A
+
xy

〉
= qi+1[n− k− i][i− 1]

〈
Bxy, x̂

〉
+ q2i[n− k− i]

〈
Bxy, x̂ ∩ y

〉
− [i]

〈
Bxy, x̂+ y

〉
.

In the above equation, evaluate the right-hand side using Lemma 38.

We have now calculated the inner product
〈
Bxy, A

+
xy

〉
. For the other inner products

the calculations are similar, and omitted.

Theorem 41. Let x, y ∈ X satisfy 1 < ∂(x, y) < k. In the following table, for each vector
u in the header column, and each vector v in the header row, the (u, v)-entry of the table
gives the inner product 〈u, v〉. Write i = ∂(x, y).
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〈 , 〉 A+
xy A0

xy A−xy

A+
xy

q2i+2[i][n−k−i]
(
qk−i−2[n][n−k]

+[i][n−k−i]([n][k−2]−[k]2)
) qi+1(q−1)[n−k−i][i]2(

qk−2[n]+[i]([n][k−2]−[k]2)
) q2i+2[k−i][n−k−i]

[i]2([n][k−2]−[k]2)

A0
xy

qi+1(q−1)[n−k−i][i]2(
qk−2[n]+[i]([n][k−2]−[k]2)

) (q−1)[i]2

(
qk−2[n]

(
2(q−1)[i]+1

)
+(q−1)[i]2([n][k−2]−[k]2)

) qi+1(q−1)[k−i][i]2(
qk−2[n]+[i]([n][k−2]−[k]2)

)

A−xy
q2i+2[k−i][n−k−i]
[i]2([n][k−2]−[k]2)

qi+1(q−1)[k−i][i]2(
qk−2[n]+[i]([n][k−2]−[k]2)

) q2i+2[i][k−i]
(
qk−i−2[n][k]

+[i][k−i]([n][k−2]−[k]2)
)

Proof. We will calculate the inner product
〈
A+

xy, A
+
xy

〉
. Using (52),〈

A+
xy, A

+
xy

〉
= qi+1[n− k− i][i− 1]

〈
A+

xy, x̂
〉

+ q2i[n− k− i]
〈
A+

xy, x̂ ∩ y
〉
− [i]

〈
A+

xy, x̂+ y
〉
.

In the above equation, evaluate the right-hand side using Theorem 34.

We have now calculated the inner product
〈
A+

xy, A
+
xy

〉
. For the other inner products

the calculations are similar, and omitted.

9 Some combinatorics and algebra involving the y-partition of
Γ(x)

Let x, y ∈ X satisfy 1 < ∂(x, y) < k. In (17) we partitioned Γ(x) into five orbits for
Stab(x, y). In this section, we describe the edges between pairs of orbits in this partition.
In this description we use a 5 by 5 matrix. We find the eigenvalues of this matrix. For
each eigenvalue we display a row eigenvector and column eigenvector.

Theorem 42. Let x, y ∈ X satisfy 1 < ∂(x, y) < k, and consider the orbits of Stab(x, y)
on Γ(x). Referring to the table below, for each orbit O in the header column, and each
orbit N in the header row, the (O,N )-entry gives the number of vertices in N that are
adjacent to a given vertex in O. Write i = ∂(x, y).

Bxy Cxy A+
xy A0

xy A−xy

Bxy qi+1[k−i]
+qi+1[n−k−i]−q−1

0 q[i] 0 q[i]

Cxy 0 2q[i− 1] qi+1[n− k − i] (q − 1)
(
2[i]− 1

)
qi+1[k − i]

A+
xy qi+1[k − i] [i] q[n− k]− q − 1 (q − 1)[i] 0

A0
xy 0 2[i]− 1 qi+1[n− k − i] (q − 1)

(
2[i]− 1

)
− 1 qi+1[k − i]

A−xy qi+1[n− k − i] [i] 0 (q − 1)[i] q[k]− q − 1
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Proof. We will verify the
(
Bxy,Bxy

)
-entry of the table. Pick a vertex w ∈ Bxy. Let #

denote the number of vertices in Bxy that are adjacent to w. Note that # is independent
of the choice of w, because the partition (17) is equitable.

We now compute #. By construction, each vertex in Bxy is at distance at most 2 from
w. Using Lemma 6(iii), (iv) we obtain

〈
ŵ, Bxy

〉
=
∑
z∈Bxy

〈
ŵ, ẑ

〉
= qk[k][n− k] + #

(
[n][k − 1]− [k]2

)
+
(∣∣Bxy∣∣−#− 1

)(
[n][k − 2]− [k]2

)
.

(61)

By construction, 〈
Bxy, Bxy

〉
=
∣∣Bxy∣∣〈ŵ, Bxy

〉
. (62)

We now evaluate (62). The left-hand side is evaluated using the
(
Bxy, Bxy

)
-entry in the

table of Lemma 39. The right-hand side is evaluated using (61) and bi =
∣∣Bxy∣∣; the value

of bi is given in (7). After evaluating (62), we solve the resulting equation for #; this yields
the

(
Bxy,Bxy

)
-entry of the table. The other entries are obtained in a similar fashion.

Definition 43. For 1 < i < k let Mi denote the 5× 5 matrix in Theorem 42.

Note that Mi is not symmetric. We now give the transpose Mt
i.

Lemma 44. For 1 < i < k, we haveMt
i = DMiD

−1, where D = diag
(
bi, ci, a

+
i , a

0
i , a
−
i

)
.

Recall bi, ci from (7) and a+
i , a

0
i , a
−
i from (13).

Proof. Immediate.

Our next goal is to find the eigenvalues of Mi. For each eigenvalue we display a row
eigenvector and a column eigenvector.

Lemma 45. For 1 < i < k, the eigenvalues of the matrixMi are

a1, q[n− k]− q − 1, q[k]− q − 1, −1, −q − 1,

where a1 = q[k] + q[n− k]− q − 1.

Proof. Routine.

Lemma 46. For 1 < i < k we consider the matrix Mi. In the table below, for each
eigenvalue of Mi, we display a corresponding row eigenvector and column eigenvector.
Recall bi, ci from (7) and a+

i , a
0
i , a
−
i from (13).
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Eigenvalue ofMi corresponding row eigenvector corresponding column eigenvector

a1

(
bi, ci, a

+
i , a

0
i , a
−
i

)
(1, 1, 1, 1, 1)t

q[n− k]− q − 1
(
a+
i ,−ci,−a+

i ,−a0
i , qci

) (
qci,−a−i ,−a−i ,−a−i , qci

)t
q[k]− q − 1

(
a−i ,−ci, qci,−a0

i ,−a−i
) (

qci,−a+
i , qci,−a+

i ,−a+
i

)t
−1 (0, 1, 0,−1, 0) (0, q − 1, 0,−1, 0)t

−q − 1 (q, 1,−q, q − 1,−q)
(
qci, bi,−a−i , bi,−a+

i

)t
Proof. Routine.

Remark 47. [3, 5, 7] For x ∈ X the spectrum of the local graph Γ(x) is given in the table
below. Recall a1 = q[k] + q[n− k]− q − 1.

Eigenvalue Multiplicity

a1 1

q[n− k]− q − 1 [k]− 1

q[k]− q − 1 [n− k]− 1

−1 (q − 1)[k][n− k]

−q − 1 q2[k − 1][n− k − 1]
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