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Abstract

Let F, denote a finite field with ¢ elements. Let n,k denote integers with n >
2k > 6. Let V denote a vector space over [F, that has dimension n. The vertex set
of the Grassmann graph J,(n, k) consists of the k-dimensional subspaces of V. Two
vertices of Jy(n, k) are adjacent whenever their intersection has dimension k—1. Let
0 denote the path-length distance function of J,(n, k). Pick vertices x,y of J,(n, k)
such that 1 < 9(z,y) < k. Let Stab(z,y) denote the subgroup of GL(V') that
stabilizes both x and y. In this paper, we investigate the orbits of Stab(x,y) acting
on the local graph I'(z). We show that there are five orbits. By construction, these
five orbits give an equitable partition of I'(x); we find the corresponding structure
constants. In order to describe the five orbits more deeply, we bring in a Euclidean
representation of J,(n, k) associated with the second largest eigenvalue of J,(n, k).
By construction, for each orbit its characteristic vector is represented by a vector
in the associated Euclidean space. We compute many inner products and linear
dependencies involving the five representing vectors.

Mathematics Subject Classifications: 05E30, 05E18

1 Introduction

This paper is about a family of finite undirected graphs known as distance-regular graphs
2, 4, 6, 13]. For any distance-regular graph, there is a construction called a Euclidean
representation. In order to motivate our main topic, we now recall this construction. Let
I' denote a distance-regular graph with vertex set X and path-length distance function 0.
According to [12, Definition 6.1], a Euclidean representation of I" is a nonzero Euclidean
space E together with a map p: X — FE such that

(i) E is spanned by {p(x) | z € X};

(ii) for all z,y € X, the inner product (p(z), p(y)) depends only on d(z,y);

2Department of Mathematics, Williams College, 18 Hoxsey St, Williamstown MA 01267, U.S.A.
(isl1@williams.edu).

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.52 https://doi.org/10.37236/13188


https://doi.org/10.37236/13188

(iii) there exists ¥ € R such that for all z € X,

> o) = vple).
zeX
O(z,x)=1

By [12, Section 6], the scalar ¥ is an eigenvalue of I'. For each eigenvalue 6 of T', the
corresponding eigenspace gives a Euclidean representation of T'.

In this paper we discuss a particular family of distance-regular graphs called the Grass-
mann graphs. We briefly recall the definition of a Grassmann graph. Let IF, denote a
finite field with ¢ elements. Fix an integer n > 1. Let V' denote a vector space over F,
that has dimension n. Let the set P,(n) consist of the subspaces of V. For 0 < k < n let
the set Py consist of the elements of P,(n) that have dimension k. For 1 <k < n —1 the
vertex set of the Grassmann graph Jy(n, k) is P,. Two vertices of J,(n, k) are adjacent
whenever their intersection has dimension k£ — 1. For more information on the Grassmann
graphs, see [5, 8, 9, 10]. For the rest of this section, we assume that I is the Grassmann
graph J,(n, k) with n > 2k > 6.

In what follows, we will use the notation

[m] = (meZ).

By [4, Theorem 9.3.3], the eigenvalues of I' are:
0; = ¢k —il[n — k —i] — [d] (0<i<k).

In [12, Section 4], we used P,(n) to construct a Euclidean representation of I" associated
with 6;. We now recall this construction. Let E denote a Euclidean space with dimension
[n] — 1 and bilinear form (, ). Define a function

s
that satisfies the following conditions (C1) — (C4):
(C1) E =Span{s|se P};

(C2) for s € Py, |[3]]° = [n] — 1

(C3) for distinct s,t € P, <§, %\> =—1;

(C4) > 5=0.

seP;
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Next, extend the function (1) to a function

such that for all u € P,(n),

w
i

S
C

1

)
<

By [12, Section 6], the Euclidean space E, together with the restriction of the map (2)
to X = P, gives a FEuclidean representation of I' that is associated with 6;. By [12,
Lemma 4.2], the GL(V)-action on P,(n) induces a GL(V)-module structure on FE.

We now summarize the results of [12]. For z € X, let I'(x) denote the local graph
of . For the rest of the section, fix z,y € X such that 1 < d(z,y) < k. Let Stab(z,y)
denote the subgroup of GL(V') that stabilizes both x and y. Let Fix(x,y) denote the
subspace of E consisting of the vectors that are fixed by every element of Stab(x,y). In
[12, Lemma 8.3], we showed that the following vectors form a basis for Fix(x,y):

~ o~ —

z, v, zNy, T +y. (3)
We now describe a second basis for Fix(x,y). In [12, Definition 9.1], we defined the sets
By ={z€T(z)]|0(z,y) =0(z,y)+1}, Coy ={2€T(v)]|0(2,y) =0(z,y)—1}.

By [12, Lemma 9.2, 9.4], the sets B,,,C,, are orbits of the Stab(z,y)-action on I'(z). In
[12, Definition 9.5], we defined the vectors

Byy= > % Coy= > 2

ZEngy Zecacy

In [12, Theorem 11.1], we showed that the following vectors form a basis for Fix(z,y):
z, v, Byy, Cay- (4)

In [12, Theorem 11.3], we found the transition matrices between the basis (3) and the
basis (4). We found the inner products between:

(i) any pair of vectors in the basis (3) [12, Theorem 10.4];
(ii) any pair of vectors in the basis (4) [12, Theorem 10.15];
(iii) any vector in the basis (3) and any vector in the basis (4) [12, Theorem 10.9].

In this paper, we investigate the orbits of Stab(x,y) acting on I'(z). As we will see,
there are five orbits. We already mentioned two of the orbits, namely B,, and C,,. We
now describe the other three orbits.
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Define the set
Aey ={2 € I'(z) | 0y, 2) = 0z, y)}-
We partition the set A,, into the following three sets:
AL, ={zcAylz+tz+y2a+y zNznNy=xny},
Agy:{zeAxy lz+z+y=z+y, zNzNy=zNy},
A, ={z€ Ay lz+rt+y=a+y, z2NzNy S rNy}.
We show that the sets

Aiy? Agy? A;y
are orbits of the Stab(x,y)-action on I'(z). Hence,
Bxya C$y7 A;:i_ya Aggﬁ A;y (5>

are the five orbits of the Stab(z, y)-action on I'(x). By construction, (5) is a partition of
['(x) that is equitable in the sense of [11, p. 159]. We call this partition the y-partition of
[(x).
Define the vectors
Al =D 2 A= > 7 Ay =) % (6)
ZGAL z€AY, 2€EALy

We show that A}, A2 , A, are contained in Fix(z,y). We write each vector in (6) as a
linear combination of the vectors in (3) and also the vectors in (4). We find the inner

products between:

(i) any vector in (6) and any vector in the basis (3);
(ii) any vector in (6) and any vector in the basis (4);

(iii) any pair of vectors in (6).

We mentioned that the y-partition of I'(x) is equitable. We compute the corresponding
structure constants. In the table below, for each orbit O in the header column, and each
orbit NV in the header row, the (O, N )-entry gives the number of vertices in N that are
adjacent to a given vertex in O. Write i = d(x, y).

Buy Cay Al Az Az
Bay | syl 0 qli] 0 qli]
Cay 0 2q[i =1 ¢ n—k—i  (¢-D2E-1)  ¢k—1]
Ab L gtk =] [i] gln — k] —q—1 (¢ — D] 0
A), 0 2] -1 ¢n—k—1d (¢—-1)(2(]-1)—-1 ¢ k-1
Az, | @ Hn =k =] [i] 0 (¢ — D] qlk] —q—1
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Let M, denote the 5 x 5 matrix from the table above. We display the eigenvalues for M,.
For each eigenvalue, we give a corresponding row eigenvector and column eigenvector. We
show that the eigenvalues of M, are the same as the eigenvalues of the local graph I'(z).

This paper is organized as follows. In Sections 2 and 3, we present some preliminaries
on the Grassmann graph J,(n, k) and the projective geometry P,(n). In Section 4, we
represent the elements of P,(n) as vectors in the Euclidean space E. In Section 5, we
present some results about Stab(x,y) and Fix(x,y). In Section 6, we find all the orbits
of the Stab(z, y)-action on I'(z). In Sections 7 and 8, we define the vectors A, A) A
and write these vectors in terms of the basis (3) and the basis (4). We also obtain inner
products between the vectors 7, y, Buy, Cuy A7, Agy, Az, In Section 9, we use the matrix
M, to describe the adjacency between the Stab(x,y)-orbits. We find the eigenvalues of
M, and their corresponding row eigenvectors and column eigenvectors. We also show

that the eigenvalues of M, are the same as the eigenvalues of I'(z).

2 The Grassmann graph T

Let T' = (X, &) denote a finite undirected graph that is connected, without loops or
multiple edges, with vertex set X, edge set £, and path-length distance function 9. Two
vertices x,y € X are said to be adjacent whenever they form an edge. The diameter d of
' is defined as d = max{d(z,y) | z,y € X}. For x € X and an integer ¢ > 0, define the
set I'y(x) = {y € X | O(x,y) = i}. We abbreviate I'(x) = I';(z). The subgraph induced
on I'(z) is called the local graph of x.

We say that ' is regular with valency k whenever |F<I)‘ = k for all z € X. We say
that I' is distance-reqular whenever for all integers h,, 5 such that 0 < h,7,5 < d and all
x,y € X such that O(z,y) = h, the cardinality of the set {z € X | d(x, z) =14,0(y, 2) = j}
depends only on h,7,7. This cardinality is denoted by pzj. For the rest of this section,
we assume that I is distance-regular with diameter d > 3. Observe that I' is regular with
valency & = p{ ;. Define

b =pli (0<i<d), a; =pi; (0<i<d), ¢ =pl, 1 (0<i<d).
Note that by = K, ag = 0, ¢c; = 1. Also note that
bi—l—(li—f—cizli (Oéléd),

where cg = 0 and by = 0. We call b;, a;, ¢; the intersection numbers of T'.

By the eigenvalues of I' we mean the roots of the minimal polynomial of the adjacency
matrix. Since I is distance-regular, by [4, p. 128], " has d + 1 eigenvalues; we denote
these eigenvalues by

Oy > 01 >--- >0,
d
=0’
where {Qi}?:(] are the eigenvalues of I" and m; the dimension of the 6;-eigenspace (0 < i <
d).

By [4, p. 129], 6y = k. By the spectrum of T we mean the set of ordered pairs {(6’1-, mz)}

o
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This paper is about a class of distance-regular graphs called the Grassmann graphs.
These graphs are defined as follows. Let F = F, denote a finite field with ¢ elements,
and let n, k denote positive integers such that n > k. Let V' denote an n-dimensional
vector space over F. The Grassmann graph J,(n, k) has vertex set X consisting of the
k-dimensional subspaces of V. Vertices x,y of J,(n, k) are adjacent whenever x Ny has
dimension k — 1.

According to [4, p. 268], the graphs J,(n, k) and J,(n,n — k) are isomorphic. Without
loss of generality, we may assume n > 2k. Under this assumption, the diameter of
Jy(n, k) is equal to k. (See [4, Theorem 9.3.3].) The case n = 2k is somewhat special, so
throughout this paper we assume that n > 2k. For the rest of this paper, we assume that
I' is the Grassmann graph J,(n, k) with £ > 3.

In what follows, we will use the notation

qg" —1

[m] = i1 (m € Z).

By [4, Theorem 9.3.2], the valency of T is
k= q[k][n — k].

By [4, Theorem 9.3.3], the intersection numbers of I" are

bi = ¢k —il[n — k — 1), ci = [i]? (0<i<k). (7)
By [4, Theorem 9.3.3], the eigenvalues of I" are

0; = ¢k —i][n — k — 1] — [i] (0<i<k). (8)

The given ordering of the eigenvalues is known to be @Q-polynomial in the sense of [4,
Theorem 8.1.1].
3 The projective geometry P,(n)

To study the graph I'; it is helpful to view its vertex set X as a subset of a certain poset
P,(n), which is defined as follows.

Definition 1. Let the poset P,(n) consist of the subspaces of V', together with the partial
order given by inclusion. This poset P,(n) is called the projective geometry.

For the rest of the paper, we abbreviate P = P,(n). In this section we present some
lemmas about the poset P.

Lemma 2. [1, p. 47] For u,v € P we have

dimu + dimv = dim (v Nv) + dim (v + v) .
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Lemma 3. [12, Lemma 3.3] Let u,v € P. Let the subset R CV form a basis for uNwv.
Extend the basis R to a basis R US for u, and extend the basis R to a basis R UT for
v. Then RUSUT forms a basis for the subspace u + v.

For 0 < ¢ < n, let the set P, consist of the /-dimensional subspaces of V. Note that
X = P;. Also note that By = {0} and P, = {V'}.

Lemma 4. For x,y € X the following (i), (i) hold:
(i) [4, p. 269] the dimension of x Ny is k — O(z,y);
(ii) [12, Lemma 3.5] the dimension of x +y is k + 0(x,y).

Definition 5. For u € P define the set
Qu) ={se P |sCu}.
Note that Q(V) = P;. By [12, Section 3], the following (i)—(ii) hold:

(i) for all u € P,

where u € P,,;

(i) [Py = [n].

We now comment on the symmetries of P. Recall that the general linear group GL(V)
consists of the invertible F-linear maps from V' to V. The action of GL(V') on V induces a
permutation action of GL(V') on the set P. This permutation action respects the partial
order on P. The orbits of the action are P, for 0 < £ < n. By [12, Lemma 3.9], the action
of GL(V') on X preserves the path-length distance 0.

4 Representing P using a Euclidean space E

In [12, Section 4] we described how to represent the elements of P as vectors in a Euclidean

space. Our goal in this section is to summarize the description. The material in this
section will be used to state and prove our main results later in the paper.

There are two stages to representing the elements of P as vectors in a Euclidean space.

In the first stage we consider the elements of P;. Let E denote a Euclidean space with

dimension [n] — 1 and bilinear form ( , ). Recall the notation ||v|* = (v, v) for any v € E.

We define a function
P— F
SS

that satisfies the following conditions (C1) — (C4):

(9)

(C1) E=Span{5|se P };
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(C2) for s € Py, ||§H2 = [n] — 1;
(C3) for distinct s,t € Py, <§, tA> =—1;

(1) S 5=0.
sePy

Next, we extend the function (9) to a function

P—F

=

iZzEfsi

s€Q(u)

such that for all u € P,

Note that u =0if u € Py or u € P,.
Next we present a lemma that involves the map (10).

Lemma 6. The following (1)—(vi) hold:

(i) [12, Lemma 6.2] for u,v € P,

where
1 = dimu, 7 =dimwv,

(ii) [12, Lemma 6.3] for u € P,
[al]* = ¢'fi)fn — i,

where 1 = dim u;

(iii) [12, Lemma 6.4] for x,y € X,

where i = 0(x,y);
(iv) [12, Lemma 6.5] for z € X,

(v) [12, Lemma 6.6] for z € X,

where 0y is from (8);
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(vi) [12, Lemma 6.7] the vector space E is spanned by {Z |z € X }.

By [12, Section 6], the Euclidean space E, together with the restriction of the map
(10) to X gives a Euclidean representation of I" in the sense of [12, Definition 6.1]. This
representation is associated with the eigenvalue #;. By [12, Lemma 4.2], the Euclidean
space E becomes a GL(V')-module such that for all u € P and 0 € GL(V),

—

o(a) =o(u).

By [12, Section 6], the Euclidean space E is irreducible as a GL(V')-module.

5 The stabilizer of some elements in X

In this section, we consider some stabilizer subgroups of GL(V'). These subgroups are the
stabilizer of a vertex in X, and the stabilizer of two distinct vertices in X. We obtain
some results about these stabilizers that will be used later in the paper.

For z € X, let Stab(x) denote the subgroup of GL(V') consisting of the elements that
fix x. We call Stab(x) the stabilizer of x in GL(V).

Lemma 7. [12, Lemma 5.1] For v,v' € P and x € X, the following are equivalent:
(i) dimv =dimv’ and dim (v N z) = dim (v N z);
(ii) the subspaces v and v’ are contained in the same orbit of the Stab(x)-action on P.

Pick distinct x,y € X. Let Stab(z,y) denote the subgroup of GL(V') consisting of the
elements that fix both  and y. We call Stab(z,y) the stabilizer of x and y in GL(V).
Let Fix(z,y) denote the subspace of E consisting of the vectors that are fixed by every
element of Stab(z,y).

Lemma 8. [12, Theorem 8.3] Pick distinct x,y € X. In the table below, we display
vectors that form a basis for Fix(x,y).

Case basis for Fix(z,y)

—

1<0(x,y) <k | 2, ¥y  xNy,  T+y

Az, y) =k 0 Tty

Definition 9. Pick distinct z,y € X. By the geometric basis for Fix(z,y), we mean the
basis displayed in Lemma 8.

Note that the case d(z,y) = k is special. The case d(z,y) = 1 is also special; see [12,
Definition 9.1, 9.5]. For the rest of the paper, we assume that 1 < d(x,y) < k.
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6 The y-partition of I'(x)

Pick z,y € X such that 1 < J(z,y) < k. In this section we describe the orbits of
Stab(z,y) acting on I'(z). We will show that there are five orbits. The partition of I'(x)
into these five orbits will be called the y-partition of I'(z).

Definition 10. For x,y € X such that 1 < d(z,y) < k, define

Bwy = {Z S F(‘T) | (9(y,z) = 8(m,y) + 1}7
Cwy = {Z S F(‘T) | (9(y,z) = 8(m,y) - 1}7
Awy = {2 €T(2) | 0y, 2) = 0(x,y)}-

Observe that
‘Bajy‘ == bi; ‘ny‘ = Gy, |Az‘y| = a; (Z = a(:]j’ y))

Lemma 11. [12, Lemma 9.2, 9.4] For z,y € X such that 1 < 0(x,y) < k, the sets By,
and C,y are orbits of the Stab(z,y)-action on I'(x).

Definition 12. For z,y € X such that 1 < d(z,y) < k, define the vectors
Byy= Y 7 Coy= Y _ 72 A= Y %
2€Bgy 2€Czy 2€ALy

Note that B, Cyy, A,y are contained in E. We call By, Cyy, Ay, the characteristic vectors
of By, Cyy, Asy respectively.

Lemma 13. [12, Theorem 11.1] For x,y € X such that 1 < d(z,y) < k, the following
vectors form a basis for Fix(x,y):

37 @\7 B:):ya ny- (11)

Definition 14. Let z,y € X satisfy 1 < d(z,y) < k. By the combinatorial basis for
Fix(z,y), we mean the basis formed by the vectors in (11).

Next we focus on the set A,,. This set turns out to be the disjoint union of three
orbits of the Stab(z,y)-action on I'(z). Our next general goal is to describe these three
orbits.

Definition 15. For x,y € X such that 1 < d(z,y) < k, define

.A;fy:{zEAxy!z—irx—l—ygx—i—y,zﬂxmy:xmy},
‘Agy:{ZGAxy’Z+$+y:$+y,2ﬂ$ﬂy:xﬂy},

We are going to show that the three sets in Definition 15 are orbits of Stab(z,y). First
we have a few remarks.
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Lemma 16. For z,y € X such that 1 < 0(z,y) < k, the set A, is the disjoint union of
the sets A}, A}, Ay,

xYy? xy?

Proof. By linear algebra, the set {z cAy |l z+r+yDo+y, 2NNy C xﬂy} is
empty. The result follows. O

Lemma 17. For xz,y € X such that 1 < d(z,y) < k,
AL =a -k =4, A =@ D AL =Tk —d, (12)
where i = 0(z,y).
Proof. Routine from counting. O
Observe that the values in (12) depend only on d(z,y).

Definition 18. We refer to Lemma 17. For 1 < < k, define

ai = |A$y , a) = ‘Agy , a; = }A;y}, (13)
where i = 9(z,y). Note that a +a? +a; =a; for 1 <i < k.
Our next goal is to show that A9, is an orbit of Stab(x,y).
Lemma 19. For x,y € X such that 1 < 0(x,y) <k, let z € Agy. Then
Ny C(z+z)Ny.
Moreover,
dim (z Ny) + 1 =dim ((z + z) Ny).
Proof. Routine from the definition of Agy and linear algebra. O

Lemma 20. For z,y € X such that 1 < d(x,y) < k, let z € A),. Then there exist
vectors

Y E(z+x)Ny, ne z, 0EX
such that
Y g xny, n¢zNw, o&zNu,
Y=n+o.

Proof. Pick ¢ € (z + x) Ny such that ¢ ¢ x Ny. Note that ¢ € z + x. Also note that
¥ & xand Y € z. Hence, 1) is a linear combination of some nonzero vector n € z and some
nonzero vector o € x. We assume without loss that v = 1+ 0. Assume that n € z N x.
Then ¢ = n+ o € x, which is a contradiction. Hence, n € z N x. Assume that p € z N x.
Then ¢ = n + p € 2z, which is a contradiction. Hence, ¢ &€ z N z. The result follows. []
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Lemma 21. For z,y € X such that 1 < 0(z,y) < k, let z € Agy. Let the vectors 1, n, o
be from Lemma 20. Then

z+Fy =2+, z+Fo=2z+ux, (zNx)+Fn=z, (14)
r+Fy =24z, r+Fn=z+uz, (zNz)+Fo=uz, (15)
(xNy)+Fyp=(z2+2x)Ny. (16)

Moreover, for each equation in (14), (15), (16) the sum on the left is direct.
Proof. Immediate from linear algebra. O]

Lemma 22. For z,y € X such that 1 < 0(x,y) < k, the set A3, is an orbit of the
Stab(x, y)-action on I'(x).

Proof. By Lemma 7, the set Agy is a disjoint union of orbits of Stab(z,y). We now
show that A}, is a single orbit. Let z,2" € AJ, . It suffices to show that there exists
o € Stab(z,y) that sends z +— 2. Let the vectors ¢, 7, 0 be from Lemma 20. Let the
subset R C V form a basis for z N y. Extend the basis R for x Ny to a basis R U S for
zNz. By the third equation in (14), RUSU{n} forms a basis for z. By the third equation
in (15), RUSU{p} forms a basis for . By (16), RU{¢} forms a basis for (z+z)Ny. By
the first equation in (15), RUSU{%, o} forms a basis for z+x. Extend the basis RU{v¢}
for (z4+2)Ny to a basis RUQU{¢} for y. By Lemma 3, RUSU QU {1, o} forms a basis
for x +y. Extend the basis RUSU QU {¢, o} for z +y to a basis RUSUQUW U {¥, o}
for V.

Recall the element 2’ € Agy. Consider the corresponding vectors ¢/, /', ¢’ from Lemma
20. Extend the basis R for Ny to a basis R U S’ for 2z’ N x. By the third equation in
(14), RUS'U{n'} forms a basis for z’. By the third equation in (15), RUS'U{¢'} forms
a basis for . By (16), R U {w’} forms a basis for (z’ + x) Ny. By the first equation in
(15), RUuS'U {z//, Q’} forms a basis for 2/ + z. Extend the basis R U {w’} for (z’ —|—x) Ny
to a basis RUQ'U {w’} for y. By Lemma 3, RUS'UQ'U {1/1’, g’} forms a basis for z +y.
Extend the basis RUS U Q U {¢/,¢'} for z + y to a basis RUS'UQ UW U {¢/, '}
for V.

By linear algebra, there exists 0 € GL(V') that sends S — &', Q — Q' W — W/,
v = ¢, 0 — ¢ and acts as the identity on R. By construction, o is contained in
Stab(z,y) and sends z + z’. The result follows. O

Lemma 23. For z,y € X such that 1 < 0(z,y) < k, the sets A}, A;, are orbits of the
Stab(x,y)-action on I'(x).

Proof. Similar to Lemma 22. O

Theorem 24. For x,y € X such that 1 < 0(x,y) < k, the following sets are orbits of the
Stab(z, y)-action on I'(x):

By, Cay, A,

xYy?

A° A (17)

TY) TY

Furthermore, these orbits form a partition of I'(x).
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Proof. For the first assertion, combine Lemmas 11, 22, 23. The second assertion is im-
mediate from Lemma 16 and the fact that the disjoint union of By, C,y, Asy is equal to
[(z). O

Definition 25. Let z,y € X satisfy 1 < d(z,y) < k, and consider the partition of I'(z)
given in (17). By construction, this partition is equitable in the sense of [11, p. 159]. We
call this partition the y-partition of I'(z).

AO

xy’

7 The vectors AT

xy’

A;y

Pick z,y € X such that 1 < 9(z,y) < k. Recall the sets A} A

Ty’ Ty’

15. In this section we use these sets to define some vectors A} , Agy,

A, from Definition

Az, in the Euclidean
space E. We show that A7  A) AL are contained in Fix(z,y). We write A}, A)

Ty’ TTy) Ty :cy?Ac;y
in terms of the geometric basis for Fix(z,y) and also the combinatorial basis for Fix(z, y).

Definition 26. For x,y € X such that 1 < d(z,y) < k, define the vectors

Al =D 7 A= > 7 Ay =) % (18)

2€AL, z€AY, 2€EALy

Note that A}, A} , A, are contained in E. We call Af, A) | A7 the characteristic vectors

Y’ Y’ xy? xy?
of At AY,, A, respectively. By Lemma 16, A,, = AY + A) + A,

Lemma 27. For z,y € X such that 1 < O(x,y) < k, the vectors A, A, A, are
contained in Fix(x,y).

Proof. Pick o € Stab(z,y). Since A¥ A% A~ are orbits of the Stab(z,y)-action on

zyr Y ey ey
I'(z), the map o fixes A, A}, A,,. The result follows. O

Our next goal is to write Af  A) AL in terms of the geometric basis for Fix(z,y).
To do this, we recall the inner products that involve the vectors in the geometric basis

for Fix(z,y).

Lemma 28. [12, Theorem 10.4] Let x,y € X satisfy 1 < d(x,y) < k. In the following
table, for each vector u in the header column, and each vector v in the header row, the
(u,v)-entry of the table gives the inner product (u,v). Write i = 0(x,y).

() T y Ny Tty

T FHn—k  [lk—i-K?  Fk—illn—k] g+ k] n—k—i]
v [n] [k —i]—[]? q* [k][n—k] q* [k—i][n—k] q*+ (k] [n—k—i]
TOY | dh—ilnkl  Fh—iln=kl ¢ ilk—illn—ktd kil ki)
Ty | dHn—k—i]  FHRR—k—i] ¢t k—iln—k—i] ikl [—k—]
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For 1 < i < k let M; denote the matrix of inner products in Lemma 28.

Lemma 29. [12, Lemma 10.10] For 1 < i < k the inverse of the matriz M; is given by

¢ 1 —q -1
M = - - i i qilk]—[s
RO R < o
q'[n—k]—|i
-1 -1 1 q?*n—k—1]

Next we find inner products that involve the vectors A}, A) A7 .

Lemma 30. For z,y € X such that 1 < d(z,y) < k, we have

(42, ) = ¢ illn — ke — i) ([l k — 1) = k7). (19)
(48,.%) = (a = DI (e - 1] - K2) (20)
(A5, @) = " illk — 1) (Inllk — 1] - K%, (21)

where i = 0(z,y).
Proof. We first prove (19). Using the first equation in (18), we obtain
<A;;y,§> - 3 (z3). (22)
2€ A,
Pick z € AY . By the definition of A} and Lemma 6(iii),
(2.2) = Il — 1]~ 23

By the above comments,
(b, 7) = AL | (Inllk = 1) = [K]?) (24)

In (24), we evaluate | A | using (12); this yields (19).
We have now verified (19). Equations (20) and (21) are obtained in a similar
fashion. 0

Lemma 31. For z,y € X such that 1 < d(z,y) < k, we have

(4% 5) = il — k=] ([l — o] — [K]?), (25)
(48,.5) = (= VB (Inllk — i) - &), (26)
{4z ) = ik — i) ([m)lk — i) = [4]?)), (27)

where i = 0(z,y).
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Proof. We first prove (25). Using the first equation in (18), we obtain

z€AL,
Pick z € A}, . By the definition of A} and Lemma 6(iii),
(2,9) = [n]lk — ] — [K]*. (29)

By the above comments,

(AL, 5) = |45 (Inllk — i) — []?). (30)

In (30), we evaluate |A | using (12); this yields (25).
We have now Verlﬁed (25). Equations (26) and (27) are obtained in a similar
fashion. O

Lemma 32. For z,y € X such that 1 < d(z,y) < k, we have

<Axy,xﬂy> il — k — ik — d)[n — K], (31)
(4, 7009) = ¢ (a = DIl — illn — 4], (32)
(Az @ T5) = il — i) ([l — i — 1) = [k = 2][K]) (33)

where i = 0(z,y).
Proof. We first prove (31). Using the first equation in (18), we obtain
<A$y, N y> 3 <zx/m\y> (34)
z€AL,

Pick z € Af . By the definition of A} and Lemma 6(i),

(z.209) = llk — i] - [K][k — ] = ¢*[k = i][n — k). (35)

By the above comments,

<A;y,xmy> AL | [k —il[n — k). (36)

In (36), we evaluate |Af | using (12); this yields (31).
We have now verified (31). Equation (32) is obtained in a similar fashion.
Next we prove (33). Using the last equation in (18), we obtain

<Azy, x N y> Z <?, x/\ﬂy> (37)
2€AZy
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Pick z € A7,. By the definition of A;, and Lemma 2,
dim(zNnzNy)=k—i—1
By (38) and Lemma 6(i),
(Z.20y) = Inllk — i — 1] = [k — i][&].
By the above comments,
<Azy,a: my> \AMK i1 =k i][k:]).
In (40), we evaluate |A | using (12); this yields (33).

Lemma 33. For z,y € X such that 1 < d(z,y) < k, we have

(Afy %) = ¢ il — k= i) ([n]lk = 1) = [K][k+3]).

(A% 7T y) = " g = VPR — k=],
(Any, 75 0) = ¢k — 1)kl [n — b — i),
where i = 0(z,y).
Proof. We first prove (41). Using the first equation in (18), we obtain

<A;Fy,x +y> = Z <’z\,:1:/+\y>

zGA:y
Pick z € Af . By the definition of A} and Lemma 2,
dim (2N (z+y)) =k —1.

By (45) and Lemma 6(i),

By the above comments,
(Ab, &7 3) = [AL | (Illk = 1] = Rk + 1),

In (47), we evaluate | A7 | using (12); this yields (41).
Next we prove (42). Usmg the second equation in (18), we obtain

<Agy,m> = <zas/+\y>
2€ A9,
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Pick z € A),. By the definition of A)

Y’
2N (x+y) ==z (49)
By (49) and Lemma 6(i),
(2.2009) = [nllk] = )lk + ) = ¢***[klln — k — ] (50)
By the above comments,
(48,75 5) = |4, | ¢ Iklln— & — ] (51)
In (51), we evaluate | A | using (12); this yields (42).
We have now verified (42). Equation (43) is obtained in a similar
fashion. ]

Theorem 34. Let z,y € X satisfy 1 < 0(x,y) < k. In the following table, for each vector
w in the header column, and each vector v in the header row, the (u,v)-entry of the table
gives the inner product (u,v). Write i = 0(z,y).

(,) AL ALy Azy
T | ekl (nlh—1=k2)  (@=DER(lh-1-k2) ¢ ikl (el =1~ [k]2)
v ¢ i) In—k—d)([nlk—i]—[k]2)  (a=D)[i](In]lk—i]-[k]?) g 1) (k—i) ([n] [k—i] - [k]?)
x/ﬂ\y g i) [n—k—i] [k—i][n—k] " (q-D)[i]P[k—il[n—k] " T [i][k—d]([n][k—i—1]—[k—d][k])
T4y | ekl k1=K @ (=) Kl n—k—i " [k~ i] (K] [n—k—i]
Proof. Combine Lemmas 30-33. m

In the next result, we write A, A9 A7 in terms of the geometric basis for Fix(z,y).

Theorem 35. For x,y € X such that 1 < 0(x,y) < k, we have

AL =g n =k —illi — U + ¢%[n— k — iz Ny — [il7 + 0, (52)
A = (¢i-1U-[)ZT—¢ T+ zny+q 'z +y, (53)
A, =k —illi - 107 — ¢l 0y + 'k — i)z +, (54)

where i = 0(z,y).

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(4) (2025), #P4.52 17



Proof. Write

Af, =aZ+ By +yzNy+0z+y, (55)
Al =dZ+BF+~TNy+ 0T +y, (56)
- s 1" "~ "o

Ay, =T+ By +y"eNy+d"z +y, (57)

for a, B,7,0,d,6',+",8,a", 5",4",0" € R. Let N; denote the matrix of inner products
from Theorem 34. In each of (55) (56), (57) we take the inner product of either side with
each of Z,y, TNy Y, T Tty y to obtain

/ "
«

/6//
7
’gl/

=

M;

2 R
S

Il

=

~

The matrix M; is invertible by Lemma 29, so

Q O[/ a//
/6 /8/ /8// B
o~ ’7/ ’7” = Mi 1Ni-
5 5/ 5//
Using Lemma 29 and matrix multiplication we obtain

¢ n—k—idli—1] ¢'[i—1] =[] ¢k —qdli—1]

_ 0 —q! 0
’ ¢'[n —k—i] ¢ —q'[i]
—[i] ¢! q'[k — 1]
The result follows. [

Fix z,y € X such that 1 < d(z,y) < k. Our next goal is to write A;y,Agy,A* in
terms of the combinatorial basis for Fix(z,y). To do this, we write Ty, +y in terms

of the combinatorial basis for Fix(z, y).

Lemma 36. [12, Theorem 11.4] For x,y € X such that 1 < 0(z,y) < k, we have

m:[k—i][n—k—l],x\_l_ [k — 1] 7
q"1n — 2k] gkt — 1][n — 2k]
1 B [k — 1]
T2 T i~ 1 — 28]
x/—i—\y:—[k_l][n_k_i]fc\— [n—k — i ;
gt —1[n — 2k] gF=2+1[; — 1][n — 2K] |
—i—;B [n—k —1i] C.

T — 2] = 1] — 24
where i = 0(z,y).
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Theorem 37. For z,y € X such that 1 < 0(x,y) < k, we have

Jr7[k:—1][71—19—2’][n—k]f K]ln —k—14]
Az = ¢*=—1[n — 24] =241 — 1][n — Qk]y 58)
-, Hn—k—i
¢Fln —2k] 7 g = 1)[n — 2]
P
A, = —i] s l]y + i1 Chrys (59)
_ _[k—i][/{:][n—k—l]f_ [k —illn—Fk] .
Ay = ¢——1n — 2k] ¢—2+1[; — 1][n — 2k] Y 60)
R P T
¢Fln—2k] " ghifi = 1)[n — 2k]

where i = 0(z,y).

Proof. We first prove (58). In the equation (52), eliminate z Ny and Z + y using Lemma
36 and simplify the result.

We have now verified (58). Equations (59) and (60) are obtained in a similar
fashion. ]

8 Some inner products involving the y-partition of I'(x)

Pick z,y € X such that 1 < d(z,y) < k. In this section we calculate the inner prod-
ucts between the vectors , ¥, Buy, Cuy, A7, Agy, Az~ We begin by recalling some inner
products from [12].

Lemma 38. [12, Theorem 10.9] Let x,y € X satisfy 1 < d(x,y) < k. In the following
table, for each vector u in the header column, and each vector v in the header row, the
(u,v)-entry of the table gives the inner product (u,v). Write i = d(x,y).

{(,) T y zNy T4y
T g~ [K][n—F] [n][e—i] — k]2 g~ k—i][n—k] g+ k] [n—k—i]
y [n] [k —i]—[]? g~ [k][n—k] q* [k—i][n—k] g+ [k][n—k—i]
B ¢ h—ilin—k—i]. ¢ [k—illn—k—] G k—illn—k—i].  ¢**! [k—i][n—k—i]
2y | ([n]lk—1]—[k]?) (llk—i—1]-[%]2)  (llk—i—1]—[k—il[k])  ([n]lk—1]—[k][k-+i])
Coy | @ (mk-1-152) @2 (llk—i+)=(02)  @*[2h—ill—k] R n—k—i]

Lemma 39. [12, Theorem 10.15] Let x,y € X satisfy 1 < d(x,y) < k. In the following
table, for each vector u in the header column, and each vector v in the header row, the
(u,v)-entry of the table gives the inner product (u,v). Write i = 0(x,y).
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{(,) x y By, Cay
~ 21+ [k—i][n—k—1]-
7 i k=il 412 ) P ([lle—11- )
~ 2141 [k—i][n—k—1]-
G| ke i o)) ()11 412
2L oiln—k—i)-  q* [k—il[n—k—] O 241 ][k
q —i][n—k—1]- q —i][n—k—1]- k=2 (Th—g] 4+ T h—i q —i|[n—k—1]-
Bay | " (ik-1-12)  (Inllk—i—1]-[412) (q, =D () )
Uil [n—k—i) ] [k—2] —[K]2) )
Cy | G2(Inlk—1-[42) @2 ([n)lk—i+1]-[k)%) @ lh—illn—k—i] 62 (¢~ 2ln) 2ali— 1o 1)+
o 2 (=21 [41%) 2 (Inlih—21 - [412) )

Theorem 40. Let z,y € X satisfy 1 < 0(x,y) < k. In the following table, for each vector
w in the header column, and each vector v in the header row, the (u,v)-entry of the table
gives the inner product (u,v). Write i = 0(z,y).

(,) AL, A3y Agy
T | @k (mlk-1-K2) @ DER(Rk--K2) g ki) (] 1) [k]2)
7 | atamk-(mE--2) (D@ (WE--R2) g k] (ki - [£]2)
¢+ 2[i] k] [n—k—i] g2+ 2[i] k] [n—h—i]

¢** (q—1)[k—d][n—k—i]

k—i]— nllk—2]—[k]2
[i]2([n] [k—2]—[k]?) ((‘1[ 1-1) ([l [k—2]—[k]?)

B,, | ((gim=r=i-1)(me—2-1?)
+(Inlk—11—[k12) )

+(In)k=11—[k12) )

¢ [n—k—il[i]? (¢~ D12 (¢* 2 (20i]-1) g k] [i)

Coy | (g2 (imlie—2)-412)) ciE (-2 -p2)) (2 m (-2 k2))

Proof. The entries in the first two rows are immediate from Theorem 34. Next we calculate
the inner product <Bxy, A;y>. Using (52),

<B$y, A;;y> = ¢ =k —i)[i — 1(Bay, &) + ¢¥[n — k — ¢]<Bzy, m> - [¢]<Bzy, :ﬂ\y>

In the above equation, evaluate the right-hand side using Lemma 38.
We have now calculated the inner product <B$y, Ajy>. For the other inner products

the calculations are similar, and omitted. O

Theorem 41. Let z,y € X satisfy 1 < 0(x,y) < k. In the following table, for each vector
w in the header column, and each vector v in the header row, the (u,v)-entry of the table
gives the inner product (u,v). Write i = 0(z,y).
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< ) > A:c_y Agy A;y

I (S G DI ¢ (q—1) [n—k—i][i]2 2 h—i][n—k—i]
i) k=] ([ (~2)— k1)) (¢"=2n+1i) (In)lk—21~ K]2) ) [i)2 ([] [k—2)—[k]? )
40 g1 (g~ 1)[n—k—i][i)? (g=1)[i? (qH["l (2ta-v1+1) ¢+ (g—1)[k—i][i]?

vy | (g5 =2 )+l () k—2)-[K]2) ) (¢" 2+l ([l (k-2 - [K)2) )

+(g=D)[i?([n] [k—Q]—[k]2)>

@*2[k—i][n—k—i] g (g=1)[k—d[)? > 2 [i][k—i] (qk’i’Q[n} (]

Agy [1]2 ([n] (k—2]—[k]?) (¢* =2+ (nl k-2~ K12)) il k=] ((n)k—21~ K]2) )

Proof. We will calculate the inner product <A+ A;y>. Using (52),

xy?

<A+ A;y> — =k —i][i — 1]<A+ 55> g% —k— ¢]<A;y,m> - [i]<A:y, ﬂ\y>

Ty Ty’
In the above equation, evaluate the right-hand side using Theorem 34.
We have now calculated the inner product <A;y, A;y>. For the other inner products

the calculations are similar, and omitted. O

9 Some combinatorics and algebra involving the y-partition of
I'(x)

Let z,y € X satisfy 1 < d(z,y) < k. In (17) we partitioned I'(z) into five orbits for
Stab(x,y). In this section, we describe the edges between pairs of orbits in this partition.
In this description we use a 5 by 5 matrix. We find the eigenvalues of this matrix. For
each eigenvalue we display a row eigenvector and column eigenvector.

Theorem 42. Let x,y € X satisfy 1 < 0(x,y) < k, and consider the orbits of Stab(z,y)
on I'(xz). Referring to the table below, for each orbit O in the header column, and each
orbit N in the header row, the (O, N)-entry gives the number of vertices in N that are
adjacent to a given vertex in O. Write i = 0(x,y).

B.y Cay A7 A, AL,
Bay | syt 00 qli] 0 qli]
Cay 0 2q[i—1] ¢ n—k—i  (¢-DEE-1)  ¢[k—1]
A | @R ] [ gln—k-q-1 (¢ = 1D 0
A), 0 2l =1 ¢n—k—4 (¢—12[]-1)-1 ¢ k-1
Ay L d®n—k—i [ 0 (¢ — 1] qlk] —q—1
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Proof. We will verify the (Bmy, Bxy)—entry of the table. Pick a vertex w € B,,. Let #
denote the number of vertices in B,, that are adjacent to w. Note that # is independent
of the choice of w, because the partition (17) is equitable.

We now compute #. By construction, each vertex in B,, is at distance at most 2 from
w. Using Lemma 6(iii), (iv) we obtain

(@,Buy)y = Y (@.2) = " K)in — K] + # ([l k — 1] = [K)?)
2E€Byy (61)

v <}Bmy\ o 1) <[n][k _9 - W).

By construction,
(Buy, Buy) = | Buy|{W, Byy). (62)

We now evaluate (62). The left-hand side is evaluated using the (Bj,, B,,)-entry in the
table of Lemma 39. The right-hand side is evaluated using (61) and b; = ’Ba,y ; the value
of b; is given in (7). After evaluating (62), we solve the resulting equation for #; this yields
the (Bzy, Bmy)—entry of the table. The other entries are obtained in a similar fashion. [

Definition 43. For 1 < i < k let M; denote the 5 x 5 matrix in Theorem 42.
Note that M; is not symmetric. We now give the transpose M:.

Lemma 44. For 1 < i < k, we have M} = DM; D", where D = diag(b;, ¢;, a;,al, a;).
Recall b;, ¢; from (7) and af,a?,a; from (13).

Proof. Immediate. O]

Our next goal is to find the eigenvalues of M;. For each eigenvalue we display a row
eigenvector and a column eigenvector.

Lemma 45. For 1 <1 < k, the eigenvalues of the matrix M; are
a;,  qn—k-q-1,  qk[-¢-1, -1, —¢-1,
where a; = q[k] +q[n — k] —q— 1.
Proof. Routine. O]

Lemma 46. For 1 < ¢ < k we consider the matriz M;. In the table below, for each
eigenvalue of M;, we display a corresponding row eigenvector and column eigenvector.
Recall b;, ¢; from (7) and af,a?, a; from (13).

) 2
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Figenvalue of M; | corresponding row eigenvector | corresponding column eigenvector
a (bi,civaf,al, a;) (1,1,1,1,1)t
gln =kl —q—1 (af, —ci, —ai, —af, qc;) (qei, —a;, —a;, —a7, qc;)’
qlk] —q—1 (a;, —c;i,qci, —al, —a; ) (gci, —af, qei, —a, —a;r)t
-1 (0,1,0,—1,0) (0,g—1,0,—1,0)"
—q—1 (¢,1,-¢,9—1,—q) (qeis b, —a; by, —a;)'
Proof. Routine. m

Remark 47. [3, 5, 7] For « € X the spectrum of the local graph I'(z) is given in the table
below. Recall a; = q[k] + q[n — k] —q — 1.

Eigenvalue Multiplicity
ap 1
gln =k —q—1 k] =1
qlk] —q—1 [n =k -1
-1 (¢ = DIK][n — K]
—q—1 Clk—1)[n—k—1]
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