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Abstract

Given a graph F and a positive integer r > 2, the r-expansion of F , denoted
by F+, is the r-graph obtained from F by enlarging each edge of F with r-2 new
vertices disjoint from V (F ) such that distinct edges of F are enlarged by distinct
vertices. In this paper, we present some sharp bounds on the spectral radius of K+

s,t-
free linear r-graphs by establishing the connection between the spectral radius and
the number of walks in uniform hypergraphs. For t > 2, we show that the spectral

radius of a K+
2,t-free n-vertex linear r-graph is at most

√
t−1
r−1
√
n + O(1), which is

close to being asymptotically optimal when r = 3. Meanwhile, we prove that the
spectral radius of a K+

s,t-free n-vertex linear r-graph is O(n1− 1
s ), where t > s > 2.

The exponent of this upper bound is tight for t > (s− 1)! and r = 3.

Mathematics Subject Classifications: 05C35, 05C65

1 Introduction

An r-uniform hypergraph (or r-graph for short) H = (V (H), E(H)) consists of a vertex
set V (H) and an edge set E(H), where E(H) is a set of r-element subsets of V (E). As
usual, a graph is a 2-uniform hypergraph. Throughout this paper, we default to r > 2.

For an r-graph H and a family of r-graphs F , we say H is F -free if H does not
contain any member of F as a subgraph. The Turán number, denoted by exr(n,F),
is the maximum possible number of edges of an n-vertex F -free r-graph. Determining
the Turán number of r-graphs is one of the central problems in extremal combinatorics.
For nonbipartite graphs, the Turán number was asymptotically solved by the celebrated
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Erdős-Stone-Simonovits Theorem [4, 5]. Nevertheless, there is comparatively little under-
standing of the Turán number of bipartite graphs and hypergraphs. We refer the reader
to the surveys [1, 6, 9, 15, 19] for more details.

An r-uniform hypergraph H is linear if |e1 ∩ e2| 6 1 for any e1, e2 ∈ E(H). Similar
to the Turán number, for a family of r-graphs F , the linear Turán number exlinr (n,F) of
F is the maximum possible number of edges of an n-vertex F -free linear r-graph. The
linear Turán problem is closely related to the famous Brown-Erdős-Sós problem. Let
(v, e)-configuration be the collection of 3-graphs with e edges and at most v vertices.
Brown-Erdős-Sós [2] conjectured the number of edges of an n-vertex 3-graph without
(v, e)-configuration is o(n2). It was shown by Solymosi [26] that the Brown-Erdős-Sós
conjecture is equivalent to proving the linear Turán number of (v, e)-configuration is
o(n2).

In the past twenty years, the linear Turán number of bipartite hypergraphs has at-
tracted considerable attention. Given a graph F, we say that a hypergraph H is an
element of Berge-F if there is a bijection f : E(F ) → E(H) such that e ⊂ f(e) for each
e ∈ E(F ). Lazebnik and Verstraëte [17] showed that exlin3 (n, {Berge-C3,Berge-K2,2}) =
1
6
n3/2 + O(n). For t > 2, Timmons [27] showed that exlinr (n, {Berge-C3,Berge-K2,t}) 6
√
t−1

r(r−1)n
3/2 +O(n). Gerbner, Methuku and Vizer [10] improved Timmons’ result by show-

ing exlinr (n,Berge-K2,t) 6
√
t−1

r(r−1)n
3/2 + O(n). Recently, She, Fan and Kang [25] proved

that exlinr (n, {Berge-C3,Berge-Ks,t}) 6 (t−s−1)
1
s

r(r−1) n
2− 1

s +O(n2− 1
s ), which is a generalization

of Timmons’ result. For a graph F and a positive integer r > 2, the r-expansion of
F , denoted by F+, is the r-graph obtained from F by enlarging each edge of F with
r − 2 new vertices disjoint from V (F ) such that distinct edges of F are enlarged by dis-
tinct vertices. Gao and Chang [11] proved that for all integers r > 2 and t > s > 2,

exlinr (n,K+
s,t) 6

(t−1)
1
s

r(r−1)n
2− 1

s +O(n).
The purpose of this paper is to consider the spectral analogues of Turán problems.

The spectral Turán problem is to maximize the spectral radius of n-vertex r-graphs which
do not contain any element of a given hypergraph family F as a subgraph, where the
spectral radius is the maximal absolute value of the eigenvalues of the adjacency tensor
of a uniform hypergraph (see the definitions in Section 2). For graphs, the spectral Turán
type problem is relatively complete, largely due to a longstanding project of Nikiforov,
see [20] for details. Meanwhile, there are several spectral Turán type results in uniform
hypergraphs. Keevash, Lenz and Mubayi [16] determined the maximum spectral radius
of 3-graphs on n vertices not containing the Fano plane when n is sufficiently large.
Hou, Chang and Cooper [14] proved an upper bound for the maximum spectral radius of
Berge-C4-free linear r-graph on n vertices. Gao, Chang and Hou [12] proved that if H is
a K+

r+1-free linear r-graph on n vertices, then ρ(H) 6 n
r
, with equality if and only if r|n

and H is a transversal design with n vertices and r groups. Subsequently, She, Fan, Kang
and Hou [24] generalized Gao-Chang-Hou’s result by showing that if H is an F+-free
linear r-graph on n vertices, then ρ(H) = 1

r−1(1 − 1
χ(F )−1)n + o(n), where F is a color

critical graph with chromatic number χ(F ) and χ(F ) > r+ 1 > 3. Ni, Liu and Kang [21]
determined that the maximum spectral radius of a cancellative hypergraph is achieved by
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the balanced complete tripartite 3-uniform hypergraph. Recently, She, Fan and Kang [25]
proved that for sufficiently large n, the maximum spectral radius of the Berge-K2,t-free

linear r-graph on n vertices is at most
√
t−1
r−1
√
n+O(n

1
4 ), where t > 2. Furthermore, they

also gave an upper bound for the maximum spectral radius of the Berge-{Ks,t, C3}-free
linear r-graph on n vertices, where 2 6 s 6 t.

In this paper, we consider the maximum spectral radius for K+
s,t-free linear r-graphs.

Firstly, we give an upper bound for spectral radius of K+
2,t-free linear r-graphs, which is

close to being asymptotically optimal for r = 3.

Theorem 1. Let H be a K+
2,t-free linear r-graph on n vertices, where t > 2. Then

ρ(H) 6

√
t− 1

r − 1

√
n+

2tr2(3r − 4)

r − 1
.

Since K+
2,t ∈ Berge-K2,t, our Theorem 1 implies the Theorem 3.3 of She, Fan and Kang

[25], with an improvement on the error term. Moreover, by the result of Cooper and Dutle
[3] that the average degree of an r-graph H is less than or equal to ρ(H), we can obtain
the following corollary, which recovers a partial result of Gao and Chang in [11].

Corollary 2. For t > 2,

exlinr (n,K+
2,t) 6

√
t− 1

r(r − 1)
n

3
2 +

2tr2(3r − 4)

r(r − 1)
n.

For t = 2, Lazebnik and Verstraëte [17] showed that there is a K+
2,2-free linear 3-graph

with (1
6

+ o(1))n
3
2 edges. Since the average degree of an r-graph is less than or equal to

its spectral radius, the upper bound in Theorem 1 is asymptotically optimal for t = 2 and
r = 3.

Corollary 3. Let H be an n-vertex K+
2,2-free linear 3-graph with the maximum spectral

radius. Then

ρ(H) =
1

2

√
n+O(1).

Gerbner, Methuku and Vizer [10] showed that there exists a K+
2,t-free linear 3-graph

with
(

1− c√
t−1 ln

3
2 (t− 1)

) √
t−1
6
n

3
2 edges. Hence, we can obtain the following corollary.

Corollary 4. Let H be an n-vertex K+
2,t-free linear 3-graph with the maximum spectral

radius. Then

ρ(H) = (1 + ot(1))

√
t− 1

r − 1

√
n.

Furthermore, we give an upper bound for the spectral radius of K+
s,t-free linear r-

graphs.

Theorem 5. Let H be a K+
s,t-free linear r-graph on n vertices, where t > s > 3. Then

ρ(H) 6
(s2r2t− 1)

1
s

r − 1
n1− 1

s + o(n1− 1
s ).

the electronic journal of combinatorics 32(4) (2025), #P4.53 3



For t > (s− 1)!, it was proved by Gao and Chang [11] that there is a K+
s,t-free linear

3-graph with Ω(n2− 1
s ) edges. Therefore, the exponent of the upper bound in Theorem 5

is tight for t > (s− 1)!.

Corollary 6. For t > (s − 1)!, let H be an n-vertex K+
s,t-free linear 3-graph with the

maximum spectral radius. Then

ρ(H) = Θ(n1− 1
s ).

The rest of this paper is organized as follows. In the next section, we introduce the
adjacency tensor and spectral radius of uniform hypergraphs. We obtain the connection
between spectral radius and the number of walks of the uniform hypergraphs in Section
3. Finally, we prove our main results in Section 4.

2 Eigenvalues of tensors

In this section, we introduce spectral radius of an uniform hypergarph that will be used
throughout the paper.

In 2005, Qi [22] and Lim [18] independently introduced the concept of tensor eigenval-
ues and the spectra of tensors. An order r dimension n real tensor T = (Ti1···ir) consists
of nr real entries Ti1···ir for all i1, i2, . . . , ir ∈ [n], where [n] = {1, 2, . . . , n}. Evidently, a
vector of dimension n is a tensor of order 1 and matrix is a tensor of order 2. A tensor
T is called symmetric if the value of T = (Ti1···ir) is invariant under any permutation of
the indices i1, i2, . . . , ir. Given a vector x ∈ Cn, we adopt the following notation: T xr is
a real number and T xr−1 is an n-dimensional vector, where T xr and the ith component
of T xr−1 are given by:

T xr =
∑

i1,i2,··· ,ir∈[n]

Ti1i2···irxi1xi2 · · ·xir .

(T xr−1)i =
∑

i2,··· ,ir∈[n]

Tii2···irxi2 · · ·xir .

If there exist λ ∈ C and a nonzero vector x ∈ Cn satisfying

T xr−1 = λx[r−1],

then λ is called an eigenvalue of T and x is its corresponding eigenvector, where x[r−1] =
(xr−11 , xr−12 , . . . , xr−1n )T ∈ Cn\{0}. If x is a real eigenvector of T , surely the corresponding
eigenvalue λ is real. In this case, λ is called an H-eigenvalue and x is called an H-
eigenvector associated with λ. Furthermore, if x is nonnegative and real, we say λ is an
H+-eigenvalue of T . If x is positive and real, λ is said to be an H++-eigenvalue of T .
Throughout this paper, we will refer H-eigenvalues and H-eigenvectors to eigenvalue and
eigenvector, or use both interchangeably. The maximal absolute value of the eigenvalues
of T is called the spectral radius of T , denoted by ρ(T ).
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Let T = (Ti1...ir) be a tensor of order r and dimension n. We can associate T with
a directed graph D(T ) on vertex set [n] such that (i, j) is an arc of D(T ) if and only if
there exists a nonzero entry Tii2...ir satisfying j ∈ {i2, . . . , ir}. Then T is called weakly
irreducible if D(T ) is strongly connected; otherwise it is called weakly reducible [7]. A
tensor with all nonnegative entries is called a nonnegative tensor.

It is well known that the Perron-Frobenius theorem for nonnegative matrices plays
a crucial role in the study of spectral graph theory. As an extension of matrices, the
Perron-Frobenius theorem for nonnegative tensors has also been established, see [7, 28].

Theorem 7 (Perron-Frobenius theorem for nonnegative tensors).
(1) (Yang and Yang, 2010 [28]). If T is a nonnegative tensor of order r and dimension
n, then ρ(T ) is an H+-eigenvalue of T .
(2) (Friedland, Gaubert and Han, 2013 [7]). If furthermore T is weakly irreducible, then
ρ(T ) is the unique H++-eigenvalue of T , with the unique eigenvector x ∈ Rn

++, up to a
positive scaling coefficient.

In 2012, Cooper and Dutle [3] defined the adjacency tensor A(H) of an r-graph H.
The adjacency tensor A(H) of H is an order r dimension n symmetric tensor defined by

Ai1···ir =

{ 1
(r−1)! if {i1, . . . , ir} ∈ E,
0 otherwise.

For an r-graph H, the spectral radius of H is defined as the spectral radius of the
adjacency tensor A(H), denoted by ρ(H). Obviously, the adjacency tensor A(H) of H is
a nonnegative tensor. Its spectral radius ρ(H) is an H+-eigenvalue of A(H). Specifically,
Friedland et al [7] proved that an uniform hypergraph H is connected if and only if its
adjacency tensor A(H) is weakly irreducible. By above Perron-Frobenius theorem, if H is
connected, then the eigenvector corresponding to the spectral radius ρ(H), known as the
principal eigenvector, can be chosen to be strictly positive. So this allows us to normalize
the principal eigenvector so that the maximum entries of it are 1, and the other entries
are in (0, 1).

Let x be a eigenvector of A(H) and U ⊂ V (H). We define xU =
∏

vi∈U xi. Clearly,
for a vector x, we have

A(H)xr = r
∑

e∈E(H)

xe.

3 Walks and spectral radius

In this section, we obtain the connection between spectral radius and the number of walks
of the uniform hypergraphs.

Let H be an r-graph. For a vertex v ∈ V (H), the neighborhood of v is defined as
NH(v) = {u ∈ V (H)\{v} : {u, v} ⊂ e ∈ E(H)}. The degree of a vertex v, denoted by
d(v), is defined as the number of edges containing v. Denote Ev = {e ∈ E(H) : v ∈ e}
for a vertex v of H. A walk of length k, denoted by k-walk, is an alternating sequence
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of vertices and edges of the form v1e1v2e2v3 · · · vkekvk+1, where vi 6= vi+1 and vivi+1 ⊆ ei
for 1 6 i 6 k. For a vertex u ∈ V (H), we use wk(u) to denote the number of k-walks of
H with starting vertex u. For two vertices u, v ∈ V (H), define wk(u, v) as the number of
k-walks of H starting at u and ending at v. The following two conclusions are obvious.

Proposition 8. Let H be an r-graph and v ∈ V (H). Then for k > 1,

wk(v) =
∑

u∈V (H)

wk(u, v) =
∑

u∈V (H)

wk(v, u).

Proposition 9. Let H be an r-graph and u, v ∈ V (H). Then for k > 1,

wk(u, v) =
∑
e∈Eu

∑
w∈e\{u}

wk−1(w, v).

The following lemma strengthens the Lemma 2.5 of [12].

Lemma 10. Let H be an r-graph with n vertices and ρ be the spectral radius of H. Let
x = (x1, x2, . . . , xn)T be a nonnegative eigenvector of H corresponding to ρ. Then for any
vertex u ∈ V (H), we have

ρkxr−1u 6
1

(r − 1)k
·
∑

v∈V (H)

wk(u, v)xr−1v .

Proof. We use the induction on k to prove the lemma. For k = 1, we have

ρxr−1u =
∑
e∈Eu

xe\{u} 6
∑
e∈Eu

∑
v∈e\{u}

xr−1v

r − 1

=
1

r − 1
·
∑

v∈V (H)

w1(u, v)xr−1v ,

where the first inequality follows from the AM-GM inequality.
Suppose Lemma 10 holds for k − 1, where k > 2. Then

ρkxr−1u = ρk−1 · ρxr−1u = ρk−1 ·
∑
e∈Eu

xe\{u}

6 ρk−1 · 1

r − 1

∑
e∈Eu

∑
w∈e\{u}

xr−1w =
1

r − 1

∑
e∈Eu

∑
w∈e\{u}

ρk−1xr−1w

6
1

r − 1

∑
e∈Eu

∑
w∈e\{u}

1

(r − 1)k−1
·
∑

v∈V (H)

wk−1(w, v)xr−1v

=
1

(r − 1)k

∑
e∈Eu

∑
w∈e\{u}

∑
v∈V (H)

wk−1(w, v)xr−1v

=
1

(r − 1)k

∑
v∈V (H)

∑
e∈Eu

∑
w∈e\{u}

wk−1(w, v)xr−1v

=
1

(r − 1)k

∑
v∈V (H)

wk(u, v)xr−1v ,
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where the first inequality follows from the AM-GM inequality, the second inequality fol-
lows from the induction hypothesis and the last equality follows from Proposition 9. This
completes the proof.

Combining Lemma 10 and Proposition 8, we can obtain the following corollary.

Corollary 11. Let H be an r-graph with n vertices and ρ be the spectral radius of H. Let
x = (x1, x2, . . . , xn)T be a nonnegative eigenvector of H corresponding to ρ. Then∑

u∈V (H)

ρkxr−1u 6
1

(r − 1)k
·
∑

u∈V (H)

wk(u)xr−1u .

Proof. By Lemma 10 and Proposition 8, we have∑
u∈V (H)

ρkxr−1u 6
∑

u∈V (H)

1

(r − 1)k
·
∑

v∈V (H)

wk(u, v)xr−1v

=
1

(r − 1)k
·
∑

v∈V (H)

∑
u∈V (H)

wk(u, v)xr−1v

=
1

(r − 1)k
·
∑

v∈V (H)

wk(v)xr−1v =
1

(r − 1)k
·
∑

u∈V (H)

wk(u)xr−1u .

Corollary 11 implies the connection between spectral radius and the number of walks
of a uniform hypergraph. Next we will show that if the number of walks satisfies some
certain conditions, then the spectral radius can be bounded by an inequality.

Theorem 12. Let H be an r-graph with the spectral radius ρ and k be a positive integer.
If
∑

16i6k Piwi(u) 6 P0 holds for any vertex u ∈ V (H), then∑
16i6k

Piρ
i

(r − 1)k−i
6

P0

(r − 1)k
,

where Pi is a parameter independent of the choice of u for all 0 6 i 6 k.

Proof. Let x = (x1, x2, . . . , xn)T be a nonnegative eigenvector of H corresponding to the
spectral radius ρ. Then∑

16i6k

Piρ
i

(r − 1)k−i

∑
u∈V (H)

xr−1u =
∑
16i6k

Pi
(r − 1)k−i

∑
u∈V (H)

ρixr−1u

6
∑
16i6k

Pi
(r − 1)k−i

· 1

(r − 1)i
·
∑

u∈V (H)

wi(u)xr−1u

=
1

(r − 1)k

∑
u∈V (H)

∑
16i6k

Piwi(u)xr−1u

6
P0

(r − 1)k

∑
u∈V (H)

xr−1u ,
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where the first inequality follows from Corollary 11 and the last equality follows from
that the inequality

∑
16i6k Piwi(u) 6 P0 holds for any vertex u ∈ V (H). Since x is

nonnegative, we have ∑
16i6k

Piρ
i

(r − 1)k−i
6

P0

(r − 1)k
,

which completes the proof.

By taking k = 2, P2 = 1, P1 = −P and P0 = (r − 1)Q, Theorem 12 recovers the
following Lemma, which is proved by She, Fan and Kang[25].

Lemma 13 ([25]). Let H be an r-graph with the spectral radius ρ. If w2(u) 6 Pw1(u) +
(r − 1)Q holds for any vertex u ∈ V (H), then

ρ2 − P

r − 1
ρ− Q

r − 1
6 0,

where P and Q are parameters independent of the choice of u.

Note that for a linear r-graph H and u ∈ V (H), it is easy to see that w1(u) =
(r− 1)d(u) and w2(u) = (r− 1)

∑
v∈NH(u) d(v). Thus, by Lemma 13, we can immediately

deduce the following corollary.

Corollary 14 ([25]). Let H be a linear r-graph with the spectral radius ρ. Suppose that∑
v∈NH(u) d(v) 6 Pd(u) +Q holds for any vertex u ∈ V (H), then

ρ2 − P

r − 1
ρ− Q

r − 1
6 0,

where P and Q are parameters independent of the choice of u.

4 Spectral extremal problems

In this section, we present the proofs of our main results.
Let H be an r-graph. Recall that the neighborhood of a vertex v ∈ V (H) is defined

as NH(v) = {u ∈ V (H)\{v} : {u, v} ⊂ e ∈ E(H)}. For two vertices {u, v} ⊂ V (H),
we define NH(u, v) = {w ∈ V (H) : {u, v, w} ⊂ e ∈ E(H)}. For a set X ⊂ V (H), let
Et(X) = {e : e ∈ E(H), |e∩X| = t} and et(X) = |Et(X)|. Similarly, let Ev

t (X) = {e : e ∈
E(H), v ∈ e, |e∩X| = t} and evt (X) = |Ev

t (X)|. For an integer i and a set S, let
(
S
i

)
be the

family of all i-subsets of S. In additional, we say S ⊂ V (H) is an independent set if any
pair of vertices of S is not contained in an edge. For a vertex set S = {v1, v2, . . . , vs} ⊂
V (H), we define N1(S) = ∩16i6sNH(vi) and N2(S) = ∪16i<j6sNH(vi, vj). In [11], Gao
and Chang gave the following Lemma.

Lemma 15 ([11]). Let H be a linear r-graph and 2 6 s 6 t. Let S ⊆ V (H) be a vertex
set with s vertices. If |N1(S)\N2(S)| > s2r2t, then we can find a K+

s,t ⊂ H.
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4.1 Proof of the Theorem 1

Lemma 16. Let H be a K+
2,t-free linear r-graph on n vertices. Then for any u ∈ V (H),∑

v∈NH(u)

d(v) 6 2tr2(3r − 4)d(u) +
(t− 1)n

r − 1
.

Proof. For any v ∈ NH(u), it is easy to see that

d(v) = ev1(NH(u)) +
r∑
i=2

evi (NH(u)). (1)

Firstly, for any v ∈ NH(u), we will show that

r∑
i=2

evi (NH(u)) 6 4tr2. (2)

Suppose for a contradiction that there is a vertex v ∈ NH(u) such that
∑r

i=2 e
v
i (NH(u)) >

4tr2 + 1. Since H is linear, it is easy to see that only one hyperedge, say h0, in
∪ri=2E

v
i (NH(u)) contains u, and let h1, h2, · · · , hl be the remaining hyperedges, where

l > 4tr2. Clearly, for 1 6 i 6 l, |hi ∩ (NH(u)\{v})| > 1. Let S = {u, v}. Then,
|N1(S)\N2(S)| > l > 4tr2. Thus, by Lemma 15, we have that H contains a copy of K+

2,t,
a contradiction.

For each vertex v ∈ NH(u), let Sv = {w ∈ V (H)\{v} : w ∈ h ∈ Ev
1 (NH(u))}. Clearly,

|Sv| = (r− 1)ev1(NH(u)). By (1) and (2), we have ev1(NH(u)) = d(v)−
∑r

i=2 e
v
i (NH(u)) >

d(v)− 4tr2. Hence,
|Sv| > (r − 1)d(v)− 4(r − 1)tr2. (3)

For 1 6 i 6 d(u), let hui = {u, u1,i, u2,i, . . . , ur−1,i} be a hyperedge incident to u in H, and
define Si = ∪r−1j=1Suj,i . Note that

|Si| = | ∪r−1j=1 Suj,i | >
r−1∑
j=1

|Suj,i | −
∑

16p<q6r−1

|Sup,i ∩ Suq,i|. (4)

Since H is K+
2,t-free, by Lemma 15, we can obtain that |Sup,i ∩ Suq,i | 6 4tr2. Hence,

combining (4), we have

|Si| = | ∪r−1j=1 Suj,i | >
r−1∑
j=1

|Suj,i | −
(
r − 1

2

)
4tr2. (5)

By (3), we get ∑
v∈NH(u)

(r − 1)d(v) 6
∑

v∈NH(u)

(
|Sv|+ 4t(r − 1)r2

)
=

∑
v∈NH(u)

|Sv|+ 4t(r − 1)2r2d(u).
(6)
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Moreover, by (5), we have

∑
v∈NH(u)

|Sv| =
d(u)∑
i=1

r−1∑
j=1

|Suj,i | 6
d(u)∑
i=1

(
|Si|+

(
r − 1

2

)
4tr2

)
. (7)

Next, we give an upper bound of
∑d(u)

i=1 |Si| to complete the proof.

Claim 17.
∑d(u)

i=1 |Si| 6 (t− 1)n.

Proof. It suffices to show that any vertex v ∈ V (H) belongs to at most t − 1 of the
sets Si for any 1 6 i 6 d(u). Suppose for a contradiction that there is a vertex v that
is contained in sets Si1 , Si2 , . . . , Sit for some distinct i1, i2, . . . , it ∈ {1, 2, . . . , d(u)}. For
notational simplicity, we may assume that i1 = 1, i2 = 2, . . . , and it = t. This means that
there are t hypergraphs h1, h2, . . . , ht ∈ Ev

1 (NH(u)) containing the pairs vz1, vz2, . . . , vzt,
respectively, where zj ∈ huj \{u} = {u1,j, u2,j, . . . , ur−1,j} for 1 6 j 6 t. It is easy to see
that the hyperedges h1, h2, . . . , ht are distinct and h1 ∩ h2 ∩ · · · ∩ ht = {v}. Moreover,
for 1 6 i, j 6 t, it is easy to see that hui ∩ hi = {zi} and hui ∩ hj = ∅. Hence, these 2t
hyperedges form a K+

2,t, a contradiction.

Using Calim 17 and (7), we have∑
v∈NH(u)

|Sv| 6 (t− 1)n+

(
r − 1

2

)
4tr2d(u). (8)

Combining (6) and (8), we get∑
v∈NH(u)

(r − 1)d(v) 6 (t− 1)n+

(
4t(r − 1)2r2 +

(
r − 1

2

)
4tr2

)
d(u)

= (t− 1)n+ 2tr2(r − 1)(3r − 4)d(u).

Hence, ∑
v∈NH(u)

d(v) 6 2tr2(3r − 4)d(u) +
(t− 1)n

r − 1
,

as desired.

Proof of Threorem 1. By Lemma 16, taking P = 2tr2(3r−4) and Q = (t−1)n
r−1 in Corollary

14, we have

ρ2 − P

r − 1
ρ− Q

r − 1
= ρ2 − 2tr2(3r − 4)

r − 1
ρ− (t− 1)n

(r − 1)2
6 0.

Hence,
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ρ 6
1

2

 P

r − 1
+

√(
P

r − 1

)2

+ 4
Q

r − 1


6

1

2

 P

r − 1
+

√√√√( P

r − 1
+ 2

√
Q

r − 1

)2


=
P

r − 1
+

√
Q

r − 1

=

√
t− 1

r − 1

√
n+

2tr2(3r − 4)

r − 1
,

completing the proof.

4.2 Proof of the Theorem 5

Lemma 18 ([11]). Let H be a K+
s,t-free linear r-graph with n vertices. For any v ∈ V (H),

the number of edges h ∈ E(H) with |h ∩NH(v)| > 2 and v /∈ h is O(d2−
1

s−1 (v)).

Lemma 19 ([8]). Let v, k > 1 be integers and c, x0, x1, . . . , xv be reals. If
∑v

i=1

(
xi
k

)
6

c
(
x0
k

)
, then

v∑
i=1

xi 6 x0c
1
k v1−

1
k + (k − 1)v.

As in [13, 23], an r-graph H is called hm-bipartite if its vertex set has a bipartition
V (H) = V1 ∪ V2 such that |e∩ V1| = 1 and |e∩ V2| = r− 1 for any edge e ∈ E(H). In the
above bipartition, V1 is called the head part and V2 is called the mass part. Moreover, if
|V1| = m and |V2| = n, then we say the above H is (m,n)-hm-bipartite. Given a complete
bipartite graph Ks,t, we denote the two parts of its vertex set by S and T , where |S| = s
and |T | = t. Let K+

s,t be the r-expansion of this Ks,t. Without any confusion, we define
the s-part of K+

s,t as S and the t-part of K+
s,t as T .

Lemma 20. Let H be an (m,n)-hm-bipartite linear r-graph. If H does not contain a
copy of K+

s,t with the s-part contained in the head part of H and the t-part contained in
the mass part of H, where t > 2 and s > 2, then

e(H) 6
(s2r2t− 1)

1
s

r − 1
mn1− 1

s +
s− 1

r − 1
n.

Proof. Let H be an (m,n)-hm-bipartite linear r-graph with the head part V1 and the
mass part V2, where |V1| = m and |V2| = n. We distinguish the following two cases.

Case 1. |V1| > s.
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Let
A = {(v, {v1, v2, . . . , vs}) : v ∈ V2, {v1, . . . , vs} ⊂ NH(v) ∩ V1}.

From the definition of hm-bipartite, it is easy to see that V1 is an independent set, i.e.,
|N2(V1)| = 0. Since H is K+

s,t-free, by Lemma 15, we have that the number of common
neighbors of any s vertices chosen from V1 is at most s2r2t−1. Note that for any e ∈ E(H),
we have |e ∩ V1| = 1. Thus, by double counting, we have∑

v∈V2

(
d(v)

s

)
= |A| =

∑
U∈(V1

s )

|N1(U)| 6 (s2r2t− 1)

(
|V1|
s

)
.

By Lemma 19, we can obtain

(r − 1)e(H) =
∑
v∈V2

d(v) 6 (s2r2t− 1)
1
s |V1||V2|1−

1
s + (s− 1)|V2|.

Hence,

e(H) 6
(s2r2t− 1)

1
s

r − 1
mn1− 1

s +
s− 1

r − 1
n.

Case 2. 0 6 |V1| 6 s− 1.

Since H is an hm-bipartite linear r-graph, for any v ∈ V1, we have that d(v) 6 |V2|
r−1 .

Hence,

e(H) =
∑
v∈V1

d(v) 6 |V1|
|V2|
r − 1

6
s− 1

r − 1
n 6

(s2r2t− 1)
1
s

r − 1
mn1− 1

s +
s− 1

r − 1
n.

Lemma 21. Let H be a K+
s,t-free linear r-graph on n vertices, where 2 6 s 6 t. Then for

any u ∈ V (H),∑
v∈NH(u)

d(v) 6
(

(s2r2t− 1)
1
sn1− 1

s +O(n1− 1
s−1 )

)
d(u) +

s− 1

r − 1
n.

Proof. For any u ∈ V (H), we have∑
v∈NH(u)

d(v) =
∑

v∈NH(u)

ev1(NH(u)) +
∑

v∈NH(u)

r∑
i=2

evi (NH(u)). (9)

Firstly, we can see that∑
v∈NH(u)

r∑
i=2

evi (NH(u)) =
r∑
i=2

iei(NH(u))

=
r−2∑
i=2

iei(NH(u)) + rer(NH(u))

+ (r − 1)|{e : e ∈ Er−1(NH(u)), u /∈ e}|+ (r − 1)d(u)

6 r|{e : |e ∩NH(u)| > 2, u /∈ e}|+ (r − 1)d(u),
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Hence, by Lemma 18,

∑
v∈NH(u)

r∑
i=2

evi (NH(u)) 6 O(d2−
1

s−1 (u)) + (r − 1)d(u)

6 O(n1− 1
s−1 )d(u) + (r − 1)d(u)

= O(n1− 1
s−1 )d(u).

(10)

Next, we will give the upper bound for
∑

v∈NH(u) e
v
1(NH(u)). Let H1 be a sub-

hypergraph of H such that V (H1) = V (H)\{u} and E(H1) = E1(NH(u)). Clearly,
H1 is a hm-bipartite linear r-graph with the head part V1 = NH(u) and the mass
part V2 = V (H)\(NH(u) ∪ {u}). It is easy to see that e(H1) =

∑
v∈NH(u) e

v
1(NH(u)),

|V1| = (r − 1)d(u) and |V2| = n − (r − 1)d(u) − 1. Furthermore, H1 contain no copy of
K+
s,t with the s-part contained in V1 and the t-part contained in V2. Hence, by Lemma

20, we have

∑
v∈NH(u)

ev1(NH(u)) = e(H1) 6
(s2r2t− 1)

1
s

r − 1
|V1||V2|1−

1
s +

s− 1

r − 1
|V2|

6 (s2r2t− 1)
1
sn1− 1

sd(u) +
s− 1

r − 1
n.

(11)

Combining (9), (10) and (11), we have∑
v∈NH(u)

d(v) 6
(

(s2r2t− 1)
1
sn1− 1

s +O(n1− 1
s−1 )

)
d(u) +

s− 1

r − 1
n.

Proof of Threorem 5. By Lemma 21, taking P = (s2r2t− 1)
1
sn1− 1

s +O(n1− 1
s−1 ) and Q =

s−1
r−1n in Corollary 14, we have

ρ2 − P

r − 1
ρ− Q

r − 1
= ρ2 − (s2r2t− 1)

1
sn1− 1

s +O(n1− 1
s−1 )

r − 1
ρ− (s− 1)n

(r − 1)2
6 0.

Hence,

ρ 6
1

2

 P

r − 1
+

√(
P

r − 1

)2

+ 4
Q

r − 1


6

1

2

 P

r − 1
+

√√√√( P

r − 1
+ 2

√
Q

r − 1

)2


=
P

r − 1
+

√
Q

r − 1
.
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Applying the values of P and Q, we have

ρ 6
(s2r2t− 1)

1
s

r − 1
n1− 1

s +O(n1− 1
s−1 ) +

√
s− 1

r − 1

√
n

=
(s2r2t− 1)

1
s

r − 1
n1− 1

s + o(n1− 1
s ),

as desired.
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