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Abstract

Given a graph F' and a positive integer r > 2, the r-expansion of F', denoted
by F*, is the r-graph obtained from F by enlarging each edge of F' with r-2 new
vertices disjoint from V(F') such that distinct edges of F' are enlarged by distinct
vertices. In this paper, we present some sharp bounds on the spectral radius of K;t—
free linear r-graphs by establishing the connection between the spectral radius and
the number of walks in uniform hypergraphs. For ¢ > 2, we show that the spectral
radius of a K;r ,-free n-vertex linear r-graph is at most g\/ﬁ + O(1), which is
close to being asymptotically optimal when r = 3. Meanwhile, we prove that the
spectral radius of a K;ft—free n-vertex linear r-graph is O(nl_i), where t > s > 2.
The exponent of this upper bound is tight for ¢ > (s — 1)! and r = 3.

Mathematics Subject Classifications: 05C35, 05C65

1 Introduction

An r-uniform hypergraph (or r-graph for short) H = (V(H), E(H)) consists of a vertex
set V(H) and an edge set E(H), where E(H) is a set of r-element subsets of V(E). As
usual, a graph is a 2-uniform hypergraph. Throughout this paper, we default to r» > 2.
For an r-graph H and a family of r-graphs F, we say H is F-free if H does not
contain any member of F as a subgraph. The Turdn number, denoted by ex,(n,F),
is the maximum possible number of edges of an n-vertex F-free r-graph. Determining
the Turan number of r-graphs is one of the central problems in extremal combinatorics.
For nonbipartite graphs, the Turan number was asymptotically solved by the celebrated
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Erdés-Stone-Simonovits Theorem [4, 5]. Nevertheless, there is comparatively little under-
standing of the Turan number of bipartite graphs and hypergraphs. We refer the reader
to the surveys [1, 6, 9, 15, 19] for more details.

An r-uniform hypergraph H is linear if |e; Ney| < 1 for any ey, eo € F(H). Similar
to the Turdn number, for a family of r-graphs F, the linear Turan number ex!(n, F) of
F is the maximum possible number of edges of an n-vertex F-free linear r-graph. The
linear Turdn problem is closely related to the famous Brown-Erdds-Sés problem. Let
(v, e)-configuration be the collection of 3-graphs with e edges and at most v vertices.
Brown-Erd6s-S6s [2] conjectured the number of edges of an n-vertex 3-graph without
(v, €)-configuration is o(n?). It was shown by Solymosi [26] that the Brown-Erd8s-Sés
conjecture is equivalent to proving the linear Turdn number of (v,e)-configuration is
o(n?).

In the past twenty years, the linear Turan number of bipartite hypergraphs has at-
tracted considerable attention. Given a graph F, we say that a hypergraph H is an
element of Berge-F' if there is a bijection f : E(F) — E(H) such that e C f(e) for each
e € E(F). Lazebnik and Verstraéte [17] showed that exi™(n, {Berge-Cs, Berge-Ky5}) =
in¥2 + O(n). For t > 2, Timmons [27] showed that ez (n, {Berge-Cs, Berge-K>,}) <

r—zfjll)n?’/ 2+ O(n). Gerbner, Methuku and Vizer [10] improved Timmons’ result by show-

ing ex!™(n, Berge-Ky,) < 2=Ln3/2 + O(n). Recently, She, Fan and Kang [25] proved

r = r(r-1)
1
S

that ex!™(n, {Berge-C3, Berge-K,;}) < (t;(‘:j))‘ n?~s + O(n* %), which is a generalization

of Timmons’ result. For a graph F' and a positive integer » > 2, the r-expansion of

F, denoted by F't, is the r-graph obtained from F' by enlarging each edge of F' with

r — 2 new vertices disjoint from V' (F') such that distinct edges of F' are enlarged by dis-

tinct vertices. Gao and Chang [11] proved that for all integers » > 2 and t > s > 2,
1

ext™(n, KJ;) < %nz_% + O(n).

The purpose of this paper is to consider the spectral analogues of Turan problems.
The spectral Turan problem is to maximize the spectral radius of n-vertex r-graphs which
do not contain any element of a given hypergraph family F as a subgraph, where the
spectral radius is the maximal absolute value of the eigenvalues of the adjacency tensor
of a uniform hypergraph (see the definitions in Section 2). For graphs, the spectral Turdn
type problem is relatively complete, largely due to a longstanding project of Nikiforov,
see [20] for details. Meanwhile, there are several spectral Turan type results in uniform
hypergraphs. Keevash, Lenz and Mubayi [16] determined the maximum spectral radius
of 3-graphs on n vertices not containing the Fano plane when n is sufficiently large.
Hou, Chang and Cooper [14] proved an upper bound for the maximum spectral radius of
Berge-C)-free linear r-graph on n vertices. Gao, Chang and Hou [12] proved that if H is
a K, -free linear r-graph on n vertices, then p(H) < 2, with equality if and only if r[n
and H is a transversal design with n vertices and r groups. Subsequently, She, Fan, Kang
and Hou [24] generalized Gao-Chang-Hou’s result by showing that if H is an F'-free
linear r-graph on n vertices, then p(H) = (1 — ﬁ)n + o(n), where F' is a color
critical graph with chromatic number x(F') and x(F) > r+1 > 3. Ni, Liu and Kang [21]
determined that the maximum spectral radius of a cancellative hypergraph is achieved by
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the balanced complete tripartite 3-uniform hypergraph. Recently, She, Fan and Kang [25]
proved that for sufficiently large n, the maximum spectral radius of the Berge-K,-free
linear r-graph on n vertices is at most ‘{%\/ﬁ + O(ni), where ¢ > 2. Furthermore, they
also gave an upper bound for the maximum spectral radius of the Berge-{ K, Cs}-free
linear r-graph on n vertices, where 2 < s < ¢.

In this paper, we consider the maximum spectral radius for K : ,~free linear r-graphs.
Firstly, we give an upper bound for spectral radius of K;f -free linear r-graphs, which is
close to being asymptotically optimal for r» = 3.

Theorem 1. Let H be a K{t—free linear r-graph on n vertices, where t > 2. Then

2tr2(3r — 4)
r—1

p(H) <

Since K. j . € Berge-Ks;, our Theorem 1 implies the Theorem 3.3 of She, Fan and Kang
[25], with an improvement on the error term. Moreover, by the result of Cooper and Dutle
[3] that the average degree of an r-graph H is less than or equal to p(H), we can obtain
the following corollary, which recovers a partial result of Gao and Chang in [11].

Corollary 2. Fort > 2,

_ 2 —
oVt 1 nd 4 2tr=(3r 4)n.

lin +
K'y< —
ez, (n, Ksy) r(r—1) r(r—1)

For t = 2, Lazebnik and Verstraéte [17] showed that there is a K2+, ,-free linear 3-graph

with (% + 0(1))71% edges. Since the average degree of an r-graph is less than or equal to
its spectral radius, the upper bound in Theorem 1 is asymptotically optimal for t = 2 and
r=3.

Corollary 3. Let H be an n-vertex K;f o-free linear 3-graph with the maximum spectral
radius. Then

p(H) = 5+ O(1).

Gerbner, Methuku and Vizer [10] showed that there exists a K; ,~-free linear 3-graph
with <1 — = ln%(t — 1)) @n% edges. Hence, we can obtain the following corollary.

Vi—1

Corollary 4. Let H be an n-vertex K{t—free linear 3-graph with the maximum spectral

radius. Then
Vit—1
: V.
7"‘ J—

Furthermore, we give an upper bound for the spectral radius of K Sft—free linear r-
graphs.

p(H) = (1+0,(1))

Theorem 5. Let H be a K;t—free linear r-graph on n vertices, where t > s > 3. Then

2,24 _q 1
o(H) < %n +o(n'h).
7"‘ —
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For t > (s — 1)1, it was proved by Gao and Chang [11] that there is a K ,-free linear
2—

3-graph with Q(n %) edges. Therefore, the exponent of the upper bound in Theorem 5
is tight for t > (s — 1)

Corollary 6. Fort > (s — 1)!, let H be an n-vertex K;ft—free linear 3-graph with the
mazimum spectral radius. Then

The rest of this paper is organized as follows. In the next section, we introduce the
adjacency tensor and spectral radius of uniform hypergraphs. We obtain the connection
between spectral radius and the number of walks of the uniform hypergraphs in Section
3. Finally, we prove our main results in Section 4.

2 Eigenvalues of tensors

In this section, we introduce spectral radius of an uniform hypergarph that will be used
throughout the paper.

In 2005, Qi [22] and Lim [18] independently introduced the concept of tensor eigenval-
ues and the spectra of tensors. An order r dimension n real tensor T = (7;,..;.) consists
of n” real entries T;,..;. for all iy,is,...,4, € [n], where [n] = {1,2,...,n}. Evidently, a
vector of dimension n is a tensor of order 1 and matrix is a tensor of order 2. A tensor
T is called symmetric if the value of T = (7;,..;,) is invariant under any permutation of
the indices iy, i, ..., 1.. Given a vector x € C", we adopt the following notation: 7x" is
a real number and 7x"~! is an n-dimensional vector, where 7x" and the ith component
of Tx"~1 are given by:

Tx" = E , 7;11'2“'7:rxi1x’52 ©r Ty

11,82, ,ir €[n]

(Tx"1); = Z TiigewinTig * * = T

i2,~~-,ir€[n}

If there exist A € C and a nonzero vector x € C" satisfying

Txr—l _ /\X[r—l]’
then \ is called an eigenvalue of 7 and x is its corresponding eigenvector, where x'~1 =
(271 2yt ar )T e €\ {0}. If x is a real eigenvector of 7, surely the corresponding

eigenvalue A is real. In this case, A is called an H-eigenvalue and x is called an H-
eigenvector associated with A. Furthermore, if x is nonnegative and real, we say A is an
H™-eigenvalue of 7. If x is positive and real, ) is said to be an H**-eigenvalue of T.
Throughout this paper, we will refer H-eigenvalues and H-eigenvectors to eigenvalue and
eigenvector, or use both interchangeably. The maximal absolute value of the eigenvalues
of T is called the spectral radius of 7, denoted by p(7T).
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Let T = (T;, .4, ) be a tensor of order  and dimension n. We can associate 7 with
a directed graph D(7) on vertex set [n] such that (i,j) is an arc of D(T) if and only if
there exists a nonzero entry T, ;. satisfying j € {is,...,7.}. Then T is called weakly
irreducible if D(7) is strongly connected; otherwise it is called weakly reducible [7]. A
tensor with all nonnegative entries is called a nonnegative tensor.

It is well known that the Perron-Frobenius theorem for nonnegative matrices plays
a crucial role in the study of spectral graph theory. As an extension of matrices, the
Perron-Frobenius theorem for nonnegative tensors has also been established, see [7, 28].

Theorem 7 (Perron-Frobenius theorem for nonnegative tensors).

(1) (Yang and Yang, 2010 [28]). If T is a nonnegative tensor of order r and dimension
n, then p(T) is an Ht-eigenvalue of T .

(2) (Friedland, Gaubert and Han, 2013 [7]). If furthermore T is weakly irreducible, then

p(T) is the unique H*"-eigenvalue of T, with the unique eigenvector x € R", up to a
positive scaling coefficient.

In 2012, Cooper and Dutle [3] defined the adjacency tensor A(H) of an r-graph H.
The adjacency tensor A(H) of H is an order r dimension n symmetric tensor defined by

e _{ oo if i e B,
1Ll T

0 otherwise.

For an r-graph H, the spectral radius of H is defined as the spectral radius of the
adjacency tensor A(H), denoted by p(H). Obviously, the adjacency tensor A(H) of H is
a nonnegative tensor. Its spectral radius p(H) is an H "-eigenvalue of A(H). Specifically,
Friedland et al [7] proved that an uniform hypergraph H is connected if and only if its
adjacency tensor A(H) is weakly irreducible. By above Perron-Frobenius theorem, if H is
connected, then the eigenvector corresponding to the spectral radius p(H ), known as the
principal eigenvector, can be chosen to be strictly positive. So this allows us to normalize
the principal eigenvector so that the maximum entries of it are 1, and the other entries
are in (0, 1).

Let x be a eigenvector of A(H) and U C V(H). We define x¥ =[], ., ;. Clearly,
for a vector x, we have

AH)x" =1 Z x°.

e€E(H)

3 Walks and spectral radius

In this section, we obtain the connection between spectral radius and the number of walks
of the uniform hypergraphs.

Let H be an r-graph. For a vertex v € V(H), the neighborhood of v is defined as
Ny (v) = {u € V(H)\{v} : {u,v} C e € E(H)}. The degree of a vertex v, denoted by
d(v), is defined as the number of edges containing v. Denote E, = {e € E(H) : v € e}
for a vertex v of H. A walk of length k, denoted by k-walk, is an alternating sequence

o
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of vertices and edges of the form viejv9e9v3 - - - UgepVE L1, Where v; # v;11 and vV C e;
for 1 <i < k. For a vertex u € V(H), we use wi(u) to denote the number of k-walks of
H with starting vertex u. For two vertices u,v € V(H), define wy(u,v) as the number of
k-walks of H starting at u and ending at v. The following two conclusions are obvious.

Proposition 8. Let H be an r-graph and v € V(H). Then for k > 1
wg(v) = Z wi(u,v) = Z wi (v, u).
ueV (H) weV (H)
Proposition 9. Let H be an r-graph and u,v € V(H). Then for k > 1
wi(u, v) Z Z wi—1(w, v)
e€ By wee\{u}

The following lemma strengthens the Lemma 2.5 of [12].

Lemma 10. Let H be an r-graph with n vertices and p be the spectral radius of H. Let

X = (21,79, ...,1,)T be a nonnegative eigenvector of H corresponding to p. Then for any
vertex u € V(H), we have
_ 1 _
prat < o1 Z wy(u,v)x" L
veV (H)

Proof. We use the induction on k to prove the lemma. For k = 1, we have

EAEDIALED BID S

e€by e€ By vee\{u}

1
= T Z wy (u, v)z!

r
veV(H)

where the first inequality follows from the AM-GM inequality.
Suppose Lemma 10 holds for £ — 1, where k > 2. Then

pk r—1 ;0 - pa” r— 1:pk71. er\{u}

eEEu
1
-1 _ _ - k—1
i D DN D
e€Ely wee\{u} e€Fy, wee\{u}
Z wi—1(w,v)x)” !
6€Eu wEe\{u} veV (H

=T_1kZ 2 Z we-(w, v)ay ™

e€Ey wee\{u} veV(H)

E DT Y wwo

UEV (H) e€Ey wee\{u}

:m Z wy(u,v)zh

veV(H)
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where the first inequality follows from the AM-GM inequality, the second inequality fol-

lows from the induction hypothesis and the last equality follows from Proposition 9. This
completes the proof. O

Combining Lemma 10 and Proposition 8, we can obtain the following corollary.

Corollary 11. Let H be an r-graph with n vertices and p be the spectral radius of H. Let

x = (z1,%9,...,7,)T be a nonnegative eigenvector of H corresponding to p. Then
1
k,r—1 r—1
Z P S T > wew)
ueV(H ueV (H)

Proof. By Lemma 10 and Proposition 8, we have

Z prat < Z ﬁ Z wy (u, v)y !

weV (H) ueV(H) veV (H)

Z Zwkuv -1

veV(H) ueV (H)
rT— 1 r—
R > wv)al = e > we(wa O
veV (H) ueV (H)

Corollary 11 implies the connection between spectral radius and the number of walks
of a uniform hypergraph. Next we will show that if the number of walks satisfies some
certain conditions, then the spectral radius can be bounded by an inequality.

Theorem 12. Let H be an r-graph with the spectral radius p and k be a positive integer.
If > cich, Prwi(u) < Py holds for any vertex w € V(H), then

Z Pz’Pi < Py
(r =1k = (r = 1)F

1<i<k

where P; is a parameter independent of the choice of u for all 0 <1 < k.

Proof. Let x = (1,9, ...,7,)T be a nonnegative eigenvector of H corresponding to the
spectral radius p. Then

Py’ r—1 -1
> e Eoate Tt T

1<i<k ueV (H) 1<i<k uEV
<Y e ! Y
5 (r—l)’H' (r—1) o
1<i<k

o XY P

ueV(H) 1<i<k

ToOF 2 T

UGV(H)
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where the first inequality follows from Corollary 11 and the last equality follows from
that the inequality ), Pawi(u) < P holds for any vertex u € V/(H). Since x is

nonnegative, we have '
Py P
DREE L
=1 S =1

1<i<k

which completes the proof. O

By taking k = 2, P, = 1,P, = —P and Fy = (r — 1)@, Theorem 12 recovers the
following Lemma, which is proved by She, Fan and Kang[25].

Lemma 13 ([25]). Let H be an r-graph with the spectral radius p. If we(u) < Pwy(u) +
(r — 1)@ holds for any vertex uw € V(H), then

where P and @) are parameters independent of the choice of u.

Note that for a linear r-graph H and w € V(H), it is easy to see that w;(u) =
(r—1)d(u) and wa(u) = (r —1) 3, cn, ) d(v). Thus, by Lemma 13, we can immediately
deduce the following corollary.

Corollary 14 ([25]). Let H be a linear r-graph with the spectral radius p. Suppose that
> veNyw Uv) < Pd(u) + Q holds for any vertex u € V(H), then

s P Q

where P and Q) are parameters independent of the choice of u.

4 Spectral extremal problems

In this section, we present the proofs of our main results.

Let H be an r-graph. Recall that the neighborhood of a vertex v € V(H) is defined
as Ny(v) = {u € V(H)\{v} : {u,v} C e € E(H)}. For two vertices {u,v} C V(H),
we define Ng(u,v) = {w € V(H) : {u,v,w} C e € E(H)}. For aset X C V(H), let
E(X)={e:ec E(H),|lenX| =t} and e;(X) = |E¢(X)|. Similarly, let E}(X) = {e:e €
E(H),v€e,lenX|=t}and e} (X) = |E/(X)|. For an integer i and a set S, let (f) be the
family of all i-subsets of S. In additional, we say S C V(H) is an independent set if any
pair of vertices of S is not contained in an edge. For a vertex set S = {v1,v2,...,v5} C
V(H), we define N1(5> = ﬂlgigsNH(Ui) and NQ(S) = U1<i<j<sNH(Ui7Uj>- In [11], Gao
and Chang gave the following Lemma.

Lemma 15 ([11]). Let H be a linear r-graph and 2 < s < t. Let S C V(H) be a vertex
set with s vertices. If |[N1(S)\N2(S)| = s*r?t, then we can find a K, C H.
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4.1 Proof of the Theorem 1

Lemma 16. Let H be a K;ft—free linear r-graph on n vertices. Then for any uw € V(H),

t—1
Z d(v) < 2tr*(3r — 4)d(u) + ( 1)n
UGNH ) "
Proof. For any v € Ny (u), it is easy to see that
d(v) = e/(Nu(u)) + > _ e/ (Nu(u)). (1)

Firstly, for any v € Ny (u), we will show that

T

Z e!(Ng(u)) < 4tr?. (2)

=2

Suppose for a contradiction that there is a vertex v € Ny (u) such that Y ;_, e (Ny(u)) >
4tr? + 1. Since H is linear, it is easy to see that only one hyperedge, say hg, in
Ul_,EY(Ny(u)) contains u, and let hq, hsg,--- ,h; be the remaining hyperedges, where
[ > 4tr*. Clearly, for 1 < i < I, |y N (Ng(u)\{v})| = 1. Let S = {u,v}. Then,
|N1(S)\N2(S)| > 1 > 4tr?. Thus, by Lemma 15, we have that H contains a copy of K5,
a contradiction.

For each vertex v € Ny(u), let S, = {w € V(H)\{v}:w e h € EY(Ng(u))}. Clearly,
|Su| = (r = 1)ef (N (u)). By (1) and (2), we have €] (Nu(u)) = d(v) = 3 i, €] (Nu(u)) >
d(v) — 4tr?. Hence,

1Sy| = (r — 1)d(v) — 4(r — 1)tr*. (3)

For 1 <i < d(u), let hY = {u, w14, u24, ..., ur—1,} be a hyperedge incident to w in H, and
define S5; = U?;}Suﬂ. Note that

r—1
1S = U2t Supal 2D 18w = D[S, N Sl (4)
Jj=1 1<p<gsr—1

Since H is K3 -free, by Lemma 15, we can obtain that [S,, , NS, | < 4tr?. Hence,

Ug,i
combining (4), we have

- (T ; 1) Atr?. (5)

Z (r—1)d(v) < Z (ISu] + 4t(r — 1)r?)

'UGNH(U) 'UGNH(U)

= Z S, | + 4t(r — 1)*rd(u).

vENg (u)

il = UL S,

r—1
Jj=1

By (3), we get
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Moreover, by (5), we have

d(u) r—1 d(u)

BRCIES ) SIEWES o (EEY (e I o
vENE (u) i=1 j=1 i=1 2

Next, we give an upper bound of Z )18;] to complete the proof.
Claim 17. Zi:l |S;| < (t—1)n.

Proof. Tt suffices to show that any vertex v € V(H) belongs to at most ¢ — 1 of the
sets S; for any 1 < ¢ < d(u). Suppose for a contradiction that there is a vertex v that
is contained in sets S;,, S;,,...,S; for some distinct iy,4s,...,4; € {1,2,...,d(u)}. For
notational simplicity, we may assume that ¢; = 1,720 = 2, ..., and ¢; = t. This means that
there are ¢ hypergraphs hy, hs, ..., hy € EY(Ng(u)) containing the pairs vzy, vz, ..., vz,
respectively, where z; € hf\{u} = {u1j,uzy, ..., u,—1;} for 1 < j < t. It is easy to see
that the hyperedges hq, ho, ..., hy are distinct and hy N hy N -+ N hy = {v}. Moreover,
for 1 < 4,5 < t, it is easy to see that h¥ N h; = {z} and h¥ N h; = (. Hence, these 2t
hyperedges form a K;f ;» a contradiction. O

Using Calim 17 and (7), we have

Z 1Syl < (t—1)n+ (T ; 1) 4tr2d(u). (8)

vENE (u)

Combining (6) and (8), we get

S (r—1)d(w) < (t—n+ (415(7" )% g (T ; 1) 4tr2) d(u)

vENg (u)
= (t—1)n+2tr*(r — 1)(3r — 4)d(u).
Hence,
t—1
> d(v) < 2tr*(3r — 4)d(u) + %
vENE (u) r
as desired. ]

Proof of Threorem 1. By Lemma 16, taking P = 2tr*(3r —4) and Q =
14, we have

“ in Corollary

9 P Q 5 2tr?(3r — 4) (t—1)n

_ <0.
r—1 p (r—1)2 0

Hence,
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1 P Q
< —

PSa +\/(r—1 r—1
1 P o\
< = 2
e (s
_ Q
_r—1+ —1

2tr*(3r — 4
e )
r—1 r—1
completing the proof. O

4.2 Proof of the Theorem 5

Lemma 18 ([11]). Let H be a KJ,-free linear r-graph with n vertices. For anyv € V(H),
the number of edges h € E(H) with |hN Ny(v)| =2 and v ¢ h is O(d2_$(v)).

Lemma 19 ([8]). Let v,k > 1 be integers and ¢, g, x1,..., 3, be reals. If Yo | (%) <
c(mko), then
in < mock vk + (k — 1)v.

=1

As in [13, 23], an r-graph H is called hm-bipartite if its vertex set has a bipartition
V(H) = V1 UV, such that [enVi| =1 and |[eNVa| =7 —1 for any edge e € E(H). In the
above bipartition, V; is called the head part and V5 is called the mass part. Moreover, if
|Vi| = m and |V3| = n, then we say the above H is (m, n)-hm-bipartite. Given a complete
bipartite graph K;, we denote the two parts of its vertex set by S and T', where |S| = s
and |T'| = t. Let K, be the r-expansion of this K,,. Without any confusion, we define
the s-part of K;ft as S and the t-part of K;ft as T'.

Lemma 20. Let H be an (m,n)-hm-bipartite linear r-graph. If H does not contain a
copy of K;t with the s-part contained in the head part of H and the t-part contained in
the mass part of H, wheret > 2 and s > 2, then

1
s

(s?rt —1) 1os—1
oy <t et
e(H) 1 mn +fr—1

n.

Proof. Let H be an (m,n)-hm-bipartite linear r-graph with the head part V; and the
mass part Va, where |V;| = m and |V,| = n. We distinguish the following two cases.

Case 1. |Vi| > s
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Let
A= {(v,{v1,v2,...,0s}) s v € Vo, {v1,...,u5} C Ng(v)NVi}.

From the definition of hm-bipartite, it is easy to see that V] is an independent set, i.e.,
|No(Vi)| = 0. Since H is KJ-free, by Lemma 15, we have that the number of common
neighbors of any s vertices chosen from V; is at most s*r?t—1. Note that for any e € E(H),
we have |e N Vj| = 1. Thus, by double counting, we have

;2 (diW) = |A| = U;;Sl) NV (U)] < (522 — 1)<|1:1|>‘

By Lemma 19, we can obtain

(r—1)e(H) =Y d(v) < (s** —1)*

Vo175 + (s — 1)|Va).

veEVS
Hence,
(22 —1)s 1 s—1
H < —— s )
e(H) 1 mn + 1"
Case 2. 0 < |Vi| <s—1.
Since H is an hm-bipartite linear r-graph, for any v € V;, we have that d(v) < %
Hence,
Vs s—1 (s2r2t — 1)5 1 os—1
=N "dw) < |V, < < ; . O
Z () |1|r—1 1" r—1 +r—1n
veEV]
Lemma 21. Let H be a K:t -free linear r-graph on n vertices, where 2 < s < t. Then for
anyu € V(H),
-1
Z d(v) < ( —1)sn'r 4 O(nl_sfll)) d(u) + > o
UENH =

Proof. For any u € V(H), we have

Z dv)= Y e(Nu(w) + e (Ny(u)). ()

UGNH UENH(U) ’UGNH(U) 1=2

Firstly, we can see that

T

S Y WVaw) = 3 e N (u)

vENp (u) i=2 =2
- Z ie;(Ng(u)) + re . (Np(u))

+(?”—1)H€ ¢ € Er1(Nu(u)),u ¢ e}| + (r —1)d(u)
Sri{e:lenNu(u)| = 2,u & ef| + (r = 1)d(u),
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Hence, by Lemma 18,

> Ze (Niz(u)) < O(d* 71 (w)) + (r — L)d(u)

vENE (u) 1=2
' 1 (10)

Next, we will give the upper bound for >_ .y ) €i(Nu(u)). Let Hy be a sub-
hypergraph of H such that V(H;) = V(H)\{u} and E(H,) = E;(Ng(u)). Clearly,
H, is a hm-bipartite linear r-graph with the head part V; = Ng(u) and the mass
part Vo = V(H)\(Ng(u) U {u}). It is easy to see that e(H1) = >_,cn, ) €1(Nu(u)),
Vi = (r — 1)d(u) and V3| = n — (r — 1)d(u) — 1. Furthermore, H; contain no copy of
K : , with the s-part contained in V; and the t-part contained in V5. Hence, by Lemma
20, we have

> e€<NH<u>>:e<H1)<ﬂww_, 1y
vENE (u) (11)

1 1 - 1
< (%%t — 1)sn' 7 sd(u) + i — "
Combining (9), (10) and (11), we have
1 1 - 1
Y dw) < ( 1)ttt g O(nl-ﬁ)) d(u) + j —n. O

’UGNH )

Proof of Threorem 5. By Lemma 21, taking P = (s2r%t — 1)+n'~s + O(n ﬁ) and @ =

%n in Corollary 14, we have

e P . Q :pQ_(52r2t—1)in1_i+0(n1_;1)p_(3—1)n<0
r—1 r—1 r—1 (r—1)2\
Hence
<1 + P
PS5 r—l r—1
| p o\
<- P
2 + + 7’—1)
Q
+ -1
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Applying the values of P and @), we have

1
s

(s?r% — 1) 1

, Vs—1

< s O 1_3—1
P r—1 +0(n )+ r—1 Vi
(PPt — 1) | 11
= 1 n s +o(n ),
as desired. O
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