Small Ramsey Numbers for Books, Wheels,
and Generalizations

Bernard Lidicky* Gwen McKinley® Florian Pfender®
Steven Van Overberghe?

Submitted: Nov 13, 2024; Accepted: Oct 21, 2025; Published: Dec 12, 2025
©) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We describe applications of a range of different computational methods to Ram-
sey numbers. We use flag algebras, local search, bottom-up generation, and enu-
meration of polycirculant graphs.

These methods are applied to Ramsey numbers for books and wheels. We also
initiate the study of generalized small Ramsey numbers. Let GR(r, K4,t) denote
the minimum number of vertices n such that any r-edge-coloring of K, has a copy
of K, with at most t colors.

We establish over 20 new bounds including exact determination of the Ramsey
numbers R(W5, Wy) = 15, R(W5,Wy) = 18, R(Bsy,Bg) = 21, R(Bs,B7) = 20,
GR(3,K4,2) = 10, and GR(4, K4, 3) = 10.

Mathematics Subject Classifications: 05D10, 05C55, 68R07

1 Introduction

The most classical problem in Ramsey theory deals with cliques in 2 colors: namely, it
asks us to find the Ramsey number R(Kj, K;), the smallest number n guaranteeing that
any red-blue edge-coloring of K, must contain a red copy of K or a blue copy of K;.
Equivalently, one may ask for the largest n such that there exists a red-blue edge-coloring
of K, 1 avoiding the “forbidden” subgraphs K, in red and K, in blue. There are many
generalizations of this problem, including to larger numbers of colors, and forbidden sub-
graphs other than cliques. A dynamic survey by Radziszowski [31] tracks the state of
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Figure 1: Wheel Wy and book Bj.

knowledge in this area.

Here, we will focus on Ramsey numbers where the forbidden subgraphs are wheels or
books. The wheel W), consists of a cycle on k — 1 vertices, together with a central vertex
adjacent to all vertices of the cycle. The book By, consists of k + 2 vertices, an edge uv
(the “spine”), and k vertices each adjacent only to u and v. See Figure 1 for an illustration.

There are a number of results on Ramsey numbers for books and wheels, summarized in
the dynamic survey [31]. In particular, the first and third authors proved upper bounds
for a variety of small Ramsey numbers, including for books and wheels, using the flag
algebra method [25]; we establish most of the upper bounds here using the same method.
The fourth author established a variety of lower bounds for graphs including wheels by ex-
plicit enumeration of circulant and polycirculant (or “block-circulant”) graphs [19]; here,
we use the same technique to establish a number of new lower bounds for books. In other
recent papers, Ghebleh, Al-Yakoob, Kanso, and Stevanovi¢ [16] have used reinforcement
learning and Wesley [38] has used SAT solvers to give Ramsey lower bound constructions
for books and wheels.

We also explore a generalization of Ramsey numbers introduced by Erdés and Shelah [9,
10]. In classical Ramsey problems, one is looking for a monochromatic copy of a graph
H in an r-edge-coloring of a graph K. The generalization asks for a copy of H with at
most t colors for a fixed t. We investigate the case where H is a clique. Let GR(r, K, t)
denote the minimum number of vertices n such that any r-edge-coloring of K,, has a copy
of K, with at most ¢ colors. Observe

GR(r,Ks,1) = R(K, ..., K).
———
These generalized Ramsey numbers have been studied asymptotically; for some of the
literature, see [4, 20, 11, 30, 8]. For small values of r,s,t, GR(r, K,,t) has previously
remained unexplored.
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In the next section, we summarize our results. In Section 3 we describe our methods in
more detail (bottom-up generation, flag algebras, polycirculant graphs, and tabu search).
We finish with open questions.

2 Results

We prove the bounds presented in Table 1 below; asterisks indicate bounds that are tight,
and the methods used to produce each bound are marked by letters as described in the
caption of Table 1.

Note: we have recently become aware of independent work by Yanbo [40] establishing
the same (tight) lower bound on R(Wj5, Wy) using an explicit construction. In [39], some
of the results below on Ramsey numbers for books are also proven, and there is also a
generalization of the second case of Theorem 1 to an infinite family. Specifically, a tight
lower bound on R(B,,_1, B,) is given when 2n — 1 is a prime power congruent to 1 modulo
4.

Lower (new) Upper (new) | Lower (old)  Upper (old)
R(Ws, W5) 5% (b/f) | 15 [38] 16 [25]
R(Ws,Wy) | 18* (b/p/t) 18* (b) 17 [31]
R(B,,Bs) | 21% (b/p/t) 21% (b) 19 [34] 22 [14]
R(Bs,By) |22 (p/t) 21 [34] 24 [14]
R(Bs, Bio) 25 (p) 23 [34] 26 [14]
R(ByBr) | 200 (pft)  20° (F)
R(By, Br) 22 (p/t) 23 ()
R(Bs,Bs) | 29* (p/t) 23 [34]
R(Bg, Br) 27* (p/t) 27 [34]
R(Bg, Bs) 29* (p) 29 [34]
R(By,Bs) | 31* (p) 31 [34]
R(Bs, Bg) 33% (p) 33 [34]
GR(3,K4,2) | 10* (b/t) 10* (b/f)
GR(3,K5,2) | 20 (%) 23 (f)
GR(3,Kg,2) | 32 (t) 54 (f)
GR(4,K4,2) | 15 (%) 17 (f)
GR(4,K4,3) | 10* (b/t) 10* (b/f)

Table 1: New upper and lower bounds on Ramsey numbers. Letters indicate the method
used to produce each bound: (b) bottom-up generation, (f) flag algebras, (p) polycirculant
graph generation, and (t) tabu search. When more than one letter is given, the bound
was produced independently by the corresponding methods.
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We also prove the following result covering the diagonal and almost-diagonal cases for
some additional sizes of books. Note that some of these bounds are also included above
in Table 1 for readers’ convenience.

Theorem 1. For all 4 < n < 21 we have
e in —3 < R(B,_2,By)
o R(B,_1,B,) =4n—1
e in+1< R(B,,By) <4n+2

Note that it was also already known that R(B, 2, B,) < 4n — 3 if n = 2 (mod 3), and
that R(B,, B,) < 4n+ 1 if 4n 4+ 1 is not the sum of two squares.

2.1 Overview of methods and further details

Each of the lower bounds in Table 1 above is established by a construction provided
in Appendix A. The constructions were found using tabu search or as polycirculant
graphs, and verified independently in SageMath [35]; the code for books and wheels is
available at https://github.com/gwen-mckinley/ramsey-books-wheels and https:
//github.com/Steven-V0/circulant-Ramsey. The additional lower bounds given in
Theorem 1 were also established by polycirculant graph constructions, which are avail-
able in the same repository. The majority of the upper bounds were found by semidefinite
programming using the flag algebra method, as described in [25]. The certificates for the
upper bounds are available at http://1lidicky.name/pub/gr. And several upper bounds
are from “bottom-up generation,” as described below.

Here is more detail on the structure of some lower bound constructions for generalized
Ramsey numbers: for GR(3, K4, 2), one extremal coloring is composed of the Paley graph
on 9 vertices in the first color, and the other two colors are 3 triangles each, see Figure 2(a).
This is the only coloring with more than 6 symmetries. For GR(4, K4, 3), the only max-
imal graph is isomorphic to 3K3 in every color, see Figure 2(b). Joining two arbitrary
colors, we find the graph described for GR(3, K4,2). One example for GR(3, K5, 2) is the
coloring composed of the (isomorphic) circulant graphs C(19,[1,7,8]), C(19,[2,3,5]) and
C(19,[4,6,9]), see Figure 2(c).

3 Methods

3.1 Bottom-up generation

For small Ramsey numbers, it is possible to generate all Ramsey graphs by starting from
a trivial case (for example the graph on one vertex) and repeatedly adding an extra ver-
tex in every possible way without creating a subgraph isomorphic to one of the avoided
graphs. For two-color Ramsey numbers this can be achieved efficiently with the program
geng from the nauty package written by Brendan McKay [28]. We wrote a custom plugin
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Figure 2: (a) A coloring of Ko showing GR(3, K4,2) > 10. (b) The coloring of Ky showing
GR(4,K4,3) > 10. (¢) A coloring of Ky showing GR(3, K5,2) > 20. Edges of one color
omitted in all drawings for readability.

for generating Ramsey graphs avoiding wheels and books. This allowed us to find the
values of R(Ws5, W) and R(W5, Wy) in 90 CPU-seconds and 36 CPU-hours respectively.
The computation of R(Bs, Bg) was significantly heavier and required approximately 2
years of CPU time. The counts of Ramsey graphs produced by bottom-up generation are
presented in Table 2. To test the latter program, we also generated all R(Bs, Bg)-graphs
(which requires only a trivial modification to the program) and verified that the results
were identical to those in [6] by Black, Leven, and Radziszowski.

For the generalized Ramsey numbers, multiple colors are needed, which is not directly sup-
ported by nauty. We used a simple implementation in SageMath [35] to do the generation;
the code is available at: https://github.com/gwen-mckinley/ramsey-books-wheels.
Both GR(3, K4,2) and GR(4, K4, 3) could be solved in less than one minute in this way.

3.2 Flag Algebras

The new upper bounds (except for R(Bs, Bs) and R(W5, Wy)) were obtained (indepen-
dently) using the flag algebra method. This method was developed by Razborov [32] in
a very general setting of model theory. To a graph theorist, a flag algebra is an algebra
of subgraph densities in an unknown limit object of a sequence of graphs related to a
question. In this algebra, one sets up a semidefinite program to find new bounds, certified
by a typically large semidefinite matrix. This certificate is then translated into a sum of
squares to save space and effort. Part of the input is the size of the small subgraphs one
considers. Larger subgraphs usually allow for better bounds, but the program quickly
reaches the limits of computational power due to combinatorial explosion, even for large
computers.

o
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The flag algebra method is naturally applicable to problems where one is interested in
asymptotic results as it operates on the limit object. For example, the Turan density of
small hypergraphs and its variants [5] is a group of problems where flag algebras led to
many new improvements.

The Ramsey problems in this paper are not asymptotic, but instead deal with fixed-sized
graphs; so the flag algebra method does not apply directly. Instead, we consider a bal-
anced blow-up of the Ramsey graph to transfer the problem from a small finite setting
into a limit object, using an additional edge color inside the blow-up sets. All forbidden
subgraphs in the Ramsey problem are still forbidden in the blow-up, and the order of the
Ramsey graph corresponds to the edge density of the additional color. This approach was
developed by the first and third author in [25], we refer to that paper for more details.
Here, we utilize the machinery developed there to obtain additional upper bounds. To
solve the semidefinite programs, we used CSDP [7] and MOSEK [3]. The solvers produce
numerical results, and we created tools to transform these results into exact arithmetic
solutions in SageMath [35].

The main limitation of the flag algebra method is obtaining the solutions to the semidefi-
nite programs. Typically, the semidefinite programs coming from applications of the flag
algebra method can be solved when the number of unlabeled graphs, after application
of color symmetry, is up to few hundred thousand when using a supercomputer. For
generalized Ramsey numbers, we were able to compute on up to 7 vertices. For books
and wheels, we were able to use 9 vertices. The semidefinite programs and lists of config-
urations used to construct them are available at https://lidicky.name/pub/gr. Most
calculations needed less than one week of time. The largest one was for GR(3, K, 2). It
has 389,794 configurations on 7 vertices and took several months to solve using CSDP.

3.3 Polycirculant graphs

k-polycirculant graphs are graphs of order n that have a non-trivial automorphism « such
that all vertex orbits under o have the same size n/k. For many Ramsey numbers, there
exist extremal graphs that are polycirculant. One might also believe that if an extremal
graph is unique, it is more likely to have some symmetries. For example, the unique
Ramsey-(Bs, Bg)-graph on 20 vertices has 240 automorphisms and is 4-polycirculant.

We used the exhaustive algorithm outlined by Goedgebeur and the fourth author in [19]
and adapted it slightly to generate all polycirculant Ramsey graphs avoiding books. With
this generator, it is for example easy to show that there are exactly seven 2-polycirculant
Ramsey-(Bs, By)-graphs on 20 vertices and exactly one 3-polycirculant Ramsey-(Bsy, Big)-
graph on 24 vertices (up to isomorphism). For every generated graph, we checked whether
it could be extended with an extra vertex such that the Ramsey property still holds, but
this was never the case for the largest-found polycirculant graphs.
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Proof of Theorem 1. The upper bounds were proven in [34]. The lower bounds are wit-
nessed by 2-polycirculant graphs (as was in fact one of the examples in [34]), which
are available at: https://github.com/gwen-mckinley/ramsey-books-wheels. The
code used to generate these examples is available at: https://github.com/Steven-V0/
circulant-Ramsey. [

Note: the polycirculant graph constructions we found (regarding Theorem 1) all have the
extra property that the first circulant block (the subgraph induced by the first vertex-
orbit of the 2-polycirculant automorphism) is isomorphic to the complement of the second
circulant block. For most cases there were many 2-polycirculant Ramsey graphs with this
property. For example: there are 581 non-isomorphic 2-polycirculant (Bis, By3)-graphs on
50 vertices. Most of these graphs had no extra automorphisms besides the ones implied
by being 2-polycirculant. This makes it hard to deduce a pattern in these graphs that
could generalize to an infinite family.

3.4 Tabu search

Tabu search is a widely-used metaheuristic algorithm for solving combinatorial optimiza-
tion problems, introduced by Glover [17]; for a survey of this method, see [18] or [15]. In
this section, we give a description of tabu search in the context of Ramsey numbers, and
discuss the details of how we used it to prove lower bounds.

3.4.1 Tabu search details

To prove a Ramsey lower bound n, our goal is to construct an edge-coloring of K,,_;
avoiding forbidden monochromatic subgraphs (or, in the case of the generalized Ramsey
numbers, forbidden subgraphs with too few edge colors). For simplicity, we will restrict
the discussion here to the traditional 2-color case, but the ideas are exactly the same for
the generalized problem.

In this setting, tabu search works roughly as follows: we start with a random 2-edge-
coloring of K, (equivalently, a random graph on n — 1 vertices), and count the number
of monochromatic substructures we are trying to avoid — this is the “score” of the graph.
Then at each step, we re-color one edge, choosing whichever would produce the lowest-
scoring graph, while rejecting any choice that would produce a graph already visited. This
restriction is enforced by use of a “tabu set,” which may consist either of forbidden moves
(edges recently edited) or of whole graphs/colorings already visited. Here we take the
second approach; more details and discussion are given below. For general background
on tabu search, see

There are many variants of tabu search used in practice, but the one implemented here
is very simple, and has two main features:

1. We do not restrict the length of the tabu — i.e., we reject any moves that would
produce a graph already visited at any point during the search.
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2. We allow the search to run indefinitely. We run several instances of the search in
parallel, starting from independently sampled random graphs.

This approach has two main advantages: first, because this algorithm has no hyperpa-
rameters to tune, it is simple and usable “out of the box” for new problems. Second,
by allowing the search to run indefinitely, we avoid inadvertently restarting too quickly.
Empirically, it seems that the number of steps required to find a successful construction
grows quickly with the problem parameters, and it is not immediately obvious how to
predict this value. If we “bid low” and restart the search too quickly, we may consistently
cut it short before it is able to reach a promising area of the search space. On the other
hand, we observed no clear empirical disadvantage in allowing the search to continue!.
Indeed, under some conditions, local search algorithms provably achieve optimal speedup
via parallelization (as opposed to restarts); this is dependent on the runtime distribution
of the particular algorithm. See Section 4.4 and Chapter 6 of [21] for further discussion
and related empirical results.

We now return to the details of the choice of tabu set. Most variants of tabu search used
in the literature store only a list of recent moves (e.g., edges recently edited), rather than
whole graphs/configurations, due in large part to memory constraints [18, 21]. However,
if only moves are stored, it is important to limit the length of the tabu set — otherwise
all possible moves will quickly be forbidden. On the other hand, storing a full represen-
tation of each graph visited (and checking the result of each possible move against this
set) is very computationally expensive. To avoid this issue, we instead store the graphs
by hashing — see below for further details. This offers a much lower computational cost,
while still allowing us to avoid all graphs previously visited. (It should be noted, however,
that hash collisions may cause us to avoid some other graphs as well — we did not observe
issues with this in practice, but it may be worth further study.) This general strategy
has been seen very occasionally in the literature (see [26] by Lu, Martinez-Gavara, Hao,
and Lai); but again, it is more common to store a tabu set of recent moves, in which case
the length of the tabu is an important hyperparameter, which must be tuned correctly or
dynamically updated for good performance.

Here are some additional details about our hashing-based strategy: in implementing this
approach, an important design decision is the specific choice of hash function. In this
algorithm, we must very often re-compute the hash of a graph after editing the color
of one edge; to make this operation as efficient as possible, we chose the following hash
function on edge-colored graphs. For each edge (7, ) in the graph, we record its color ¢
and compute a hash? of the tuple ((7,7),c). Then, to combine these into a hash for the
whole graph, we compute the bitwise XOR of the hashes of the individual (colored) edges.
Notice that the hash of the graph can be updated quickly: if we change the color of an
edge (i,7) from ¢ to ¢, we can update the graph’s hash by simply computing the bitwise

IThere are a number of open-source hyperparameter tuning tools supporting this kind of experimenta-
tion; here, we used Optuna [1].
2In our implementation, we simply used the default Python hash function for tuples.
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XOR of the old hash with the “tuple hashes” of ((4,7),c) and ((i,7),c).

As a final note, even after hashing, memory will eventually become a limitation if the
search runs for a very large number of steps. In practice, we did not find this to be a
major obstacle, but it is worth bearing in mind; and for very long searches, some additional
effort may be needed to control memory usage.

3.4.2 Scoring functions

An important ingredient in any local search algorithm is an efficient “scoring” function;
here, this means counting the number of “forbidden” substructures in a graph. In fact,
rather than re-scoring the entire graph at each step, it is generally more efficient to com-
pute the change in score at each step, since most of the graph will be unaffected by editing
a single edge.

For books By, both the “scoring” and “score change” operations are quite efficient, and
the cost is basically independent of k for £ > 2. Explicitly, choosing a copy of B in a
graph G reduces to first choosing a “spine” (u,v) € E(G), then choosing any k vertices
from the common neighborhood N(u) N N(v); see Figure 3.

u N(u) N N(v)

Figure 3: Book By in a graph.

Notice that for the purpose of counting, we do not need to list all such sets of k vertices; we
just need to compute the binomial coefficient ('N(“)QN(””). Given the value |N(u) NN (v)|,
this operation is very efficient (certainly O(|V(G)]|)), and in practice, all relevant values
of the binomial coefficient can simply be stored in a lookup table. Using similar observa-
tions, we can also efficiently compute the “score change” for one step in the search (i.e.,
the change in the number of books from re-coloring an edge), though the details of the
implementation are more involved.

For wheels W}, we don’t exploit any especially “nice tricks,” and the cost of our scoring
and score change functions are Q(|V(G)|*) and Q(|V(G)|*2) respectively — i.e., roughly
the cost of enumerating over all subgraphs of the relevant size (where n is the number
of vertices in the host graph ). Note, however, that significant improvement may be
possible; counting wheels reduces largely to counting cycles, where surprisingly efficient
algorithms are known ( see [2] by Alon, Yuster, Raphael, and Zwick).
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For generalized Ramsey numbers G R(r, K, t), the situation is slightly different; here, we
need to count copies of K with at most ¢ colors (in an r-edge-colored complete graph G).
Because clique counting is a well-studied problem in non-edge-colored graphs, we use the
following strategy: (1) reduce to clique counting in a collection of non-edge-colored graphs,
then (2) apply the “Pivoter” algorithm for fast clique-counting by Jain and Seshadhri [24]
to each graph in the collection. This algorithm also facilitates counting cliques that con-
tain a particular edge, which is useful for our “score change” computations. (Note: our
code implementing this strategy is a rough prototype, so we have not made it publicly
available, but it requires relatively minimal adaptations of the code for books and wheels.
There is also an open-source implementation of the Pivoter clique-counting algorithm
available online by Jain [23].)

In slightly more detail, we define the scoring function for the generalized Ramsey problem
as follows: for each possible set C of ¢ colors, we construct the (non-edge-colored) graph
G¢ consisting of edges whose colors in the original coloring G belong to C. Then we take
the “score” of G to be the sum of the number of cliques K in each of these graphs, that
is, Zce([?)(# copies of K in G¢). Notice that if a copy of K in G uses strictly fewer

than t colors, it will be counted multiple times by this scoring function, once for each set
C containing its colors. This could be avoided, for example by using inclusion-exclusion,
but at a higher computational cost. Also, it is reasonable and perhaps even desirable that
this scoring function more heavily penalizes copies of K using smaller numbers of colors
— that is, copies that are further from satisfying the desired constraint.

4 Open questions

4.1 Upper bounds

In the flag algebras applications, we used the most straightforward version of the approach
introduced in [25], which generalizes easily. But when calculating an upper bound for a
particular Ramsey number, it is also possible to incorporate more constraints. In partic-
ular, one could try to include constraints on smaller graphs implied by smaller Ramsey
numbers. For example when bounding R(5,5), one may use R(4,5) = 25 when looking
at neighborhoods of a fixed vertex. This approach has been explored by Volec [37], but
it requires considerably more effort.

4.2 Lower bounds

4.2.1 Polycirculant graphs

It is interesting to ask whether Theorem 1 can be extended to larger values of n. We
proved this lemma by starting a new search for polycirculant graphs for each n. There
was no indication that the pattern would stop at n > 22; the generation simply started to
take a lot of time. It seems plausible that there is some unified family of graphs giving this
bound for all n. But again, as noted in Section 3.3, most of the graphs have no additional
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symmetry beyond being polycirculant, making it difficult to discern any larger pattern.
Note that a partial answer to this question was given by Wesley [39] where the lemma is
generalized to an infinite family consisting of orders that are twice a prime power (that
is 1 modulo 4).

4.2.2 Tabu search

To extend the tabu search approach used here for finding lower bounds, there are a number
of natural directions to explore. Perhaps most obvious would be to implement everything
in a lower-level language — all the code for wheels and books is currently written in Python.
In particular, the score-change functions dominate the total cost, and speeding them up
would almost certainly improve performance; relevant here is an extensive literature on
subgraph counting (see [33]), and it may be possible to simply incorporate existing open-
source solutions.

Another small but potentially effective change could be to incorporate weights in the
scoring function — that is, to penalize copies of one forbidden subgraph more than an-
other, depending on their respective sizes and/or how recently they have been edited.
This approach has often been used for Ramsey lower bounds, but there appears to be no
clear theoretical justification for any particular choice of weights, and some papers have
even arrived at contradictory conclusions [27, 13]. This question has been studied more
extensively in the SAT literature (see [36, 22]), and it is possible some of this approach
could be fruitfully adapted here.

Last but not least, one could try to be more strategic in choosing where to start a local
search. One common approach is to build up from smaller graphs: we first find a con-
struction on a smaller number of vertices avoiding “bad” subgraphs, then add a vertex,
and run our local search starting from this new graph (as opposed to starting from a
random graph), an approach successfully applied by McKay and Radziszowski [29] and
Exoo [12]. The hope is that by doing this, we direct the search to a promising area of the
(very large) search space. We also tried this method, with limited success, but it is likely
worth further exploration.
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A Counts and constructions

n | R(Bs,Bs) | R(Ws,Wy) R(Ws, W) | GR(3,K4,2) GR(4, Ky,3)
1 1 1 1 1 1
2 2 2 2 1 1
3 4 4 4 3 3
4 9 11 11 9 7
5 22 31 31 34 11
6 69 130 130 154 12
7 255 675 723 428 1
8 1301 4868 6456 556 1
9 9297 38059 87977 263 1
10| 96618 951377 1627532 0 0
11| 1405777 | 878658 27891376

12| 25330324 | 932411 250459368

13 | 443322144 | 141871 509767930

14 | 5130080404 | 1161 139131233

15 ? 0 46736023

16 ? 18956337

17 ? 272891

18 ? 0

19 A1

20 1

21 0

Table 2: Number of Ramsey graphs by order. The multicolor numbers are given up to
color-swapping isomorphism. Because the calculations for R(Bs, Bg) had to be split up
into multiple processes, we have no accurate counts for some orders.

To display the graph6 strings below, we recommend utilizing drawing by House of Graphs
at https://houseofgraphs.org/draw_graph.

R(Ws5,W7) > 15.
graph6 format of a 14-vertex graph with no W; as a subgraph and no W5 in the comple-
ment:

Mav?Hwu] “ySZpyyg?
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R(Ws5,Wy) > 18.
graph6 format of a 17-vertex graph with no Wj as a subgraph and no Wy in the comple-
ment:

PIL{eMI~Jqp[gXkp_|zx0aww

R(By, Bs) > 21.
graph6 format of a 20-vertex graph with no B, as a subgraph and no By in the complement:

SXgcISrdSaJQBJs_jp@CWFOV?q}HWOPbc

R(Ba, By) > 22.
graph6 format of a 21-vertex graph with no B, as a subgraph and no By in the complement:

TXhJ?ScLQoHAO]EhcLe_G_nAEXuiBSnW?] 7w

R(Bsy, Byy) = 25.
graph6 format of a 24-vertex graph with no B, as a subgraph and no Bjg in the comple-
ment:

W?bFFbw~@{BwgDsA171gQU_c1@G1DGUacDih?1TKApSgDgh

R(Bs, By) > 20.
graph6 format of a 19-vertex graph with no Bjs as a subgraph and no By in the complement:

REf 0cBMI@ozZSyaMGil?ABm_o| jO0

R(B4, By) > 22.
graph6 format of a 21-vertex graph with no By as a subgraph and no By in the complement:

TgmoKUaoq\bAK | ] oMgORPWJYMCxGye ™ EmTcY

R(Bs, Bg) > 23.
graph6 format of a 22-vertex graph with no Bj as a subgraph and no By in the complement:

U_Ya{gHmOv}QfaSGkhXLXoN]krJgbE~?dvdCkHso

R(Bs, B7) > 25.
graph6 format of a 24-vertex graph with no Bs as a subgraph and no By in the complement:

WlteicYQkY[EQsKWEJqIIde] ® "BZr?zwhGnwaCv LUHF_UJ
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R(Bg, B7) > 27.
graph6 format of a 26-vertex graph with no By as a subgraph and no By in the complement:

YMQcwl ™ gEBbKaZK{SbPhN~"BNnaA\Q_YyVQ{A] uwEoemTUhkBdkk\TQY_

R(Bs, Bg) > 29.
graph6 format of a 28-vertex graph with no By as a subgraph and no By in the complement:

[CpdagkTdUYKYKLUQEmOtXB] qEYQE\XBNUORYqIX jGhbUTRBUTR jAhgYsiXBVdR

R(By, Bs) > 31.
graph6 format of a 30-vertex graph with no B; as a subgraph and no Bg in the complement:

lUWsqWecqRCeceqRKcsDjoUn_1J_1LoUd [Dxj_jMmAkl [FX1 [BXUmDkdjbZG1l [ZXAtplcDjrZG

R(Bs, Bg) > 33.
graph6 format of a 32-vertex graph with no Bg as a subgraph and no By in the complement:

_UzrpylRpNQ]qlxN]Rrq] ‘DnAJ"~AJJ ‘DewPXvAHJ [GsuwPhUwRhJ [JsavB|KUwNhPZa}cavD|GavD|GPZq}c

GR(3, Ky,2) = 10.

Adjacency matrix of a 3-edge-colored 9-vertex graph with each K, containing more than
2 colors. There are 263 such colorings (up to color permutations). See Figure 2(a) for
another example.

(fo,2,3,3,3,1,1,1,2]
[2,0,1,1,2,1,3,3,2]
[3,1,0,2,3,1,3,2,1]
[3,1,2,0,1,3,1,2,3]
[3,2,3,1,0,2,2,3,1]
[1,1,1,3,2,0,2,3,3]
[1,3,3,1,2,2,0,1,3]
[1,3,2,2,3,3,1,0,1]
[2,2,1,3,1,3,3,1,0]1]
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o GR(4,K,;,2) > 15

Adjacency matrix of a 4-edge-colored 14-vertex graph with each K4 containing more than

2 colors.

(fo,4,3,1,2,3,4,3,2,2,4,1,4,1]

(4,0,2,4,1,1,1,3,4,3,2,2,3,1]
(3,2,0,2,2,3,1,1,4,1,3,3,4,4]
[1,4,2,0,4,2,2,3,1,3,4,3,1,2]

[2,1,2,4’0,4,324,2,1,1’3’2,1]

(3,1,3,2,4,0,1,4,1,2,2,4,1,3]
(4,1,1,2,3,1,0,4,3,2,3,3,4,2]

(3,3,1,3,4,4,4,0,2,2,1,2,2,1]

(2,4,4,1,2,1,3,2,0,4,1,1,3,3]
[2,3,1’3)1,2,2’274,053!1’1,4]

[4’2,3:4:1’2,3’1:1,3,0’4’2,3]

[1,2,3,3,3,4,3,2,1,1,4,0,4,1]

(4,3,4,1,2,1,4,2,3,1,2,4,0,2]

(1,1,4,2,1,3,2,1,3,4,3,1,2,0]]

10

Adjacency matrix of a 4-edge-colored 9-vertex graph with each K, containing more than

3 colors. There is only one such graph on 9 vertices. See Figure 2(b).

o GR(4,K,,3)

((0,2,3,3,1,4,2,1,4]

[2,0,1,4,3,3,2,4,1]
[3,1,0,3,4,2,4,2,1]
[3,4,3,0,2,1,1,4,2]
[1,3,4,2,0,3,4,1,2]
[4,3,2,1,3,0,1,2,4]
[2,2,4,1,4,1,0,3,3]
[1,4,2,4,1,2,3,0,3]

(4,1,1,2,2,4,3,3,0]]

18
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o GR(3,K;5,2) > 20

Adjacency matrix of a 3-edge-colored 19-vertex graph with each K5 containing more than

2 colors.

(fo,1,2,2,3,2,3,1,1,3,3,1,1,3,2,3,2,2,1],

(1,0,1,2,2,3,2,3,1,1,3,3,1,1,3,2,3,2,2],

(2,1,0,1,2,2,3,2,3,1,1,3,3,1,1,3,2,3,2],

(2,2,1,0,1,2,2,3,2,3,1,1,3,3,1,1,3,2,3],

[3,2,2,110,1,222’3,2,3’1’1,3,3’1,1,3,2] b

2,3,2,2,1,0,1,2,2,3,2,3,1,1,3,3,1,1,3],

(3,2,3,2,2,1,0,1,2,2,3,2,3,1,1,3,3,1,1],

[1,3,2,3,2,2,1,0,1,2,2,3,2,3,1,1,3,3,11,

[1,1,3,2,3,2,2,1,0,1,2,2,3,2,3,1,1,3,3],

[3,1,1,3’2,3,2’271,03122’2,3,2’3,1,1,3] b

[3’3,1’1:3’2,3’2:2,130’1’2,2:3’2’3,1:1] >

(1,3,3,1,1,3,2,3,2,2,1,0,1,2,2,3,2,3,1],

(1,1,3,3,1,1,3,2,3,2,2,1,0,1,2,2,3,2,3],

(3,1,1,3,3,1,1,3,2,3,2,2,1,0,1,2,2,3,2],

[2’3,1,1’3,3,1’173,2,3,2’2,13021’2,2,3] b

[3,2,3’1,1,3,3’1,1,3,2’3’2,2’11051,2’2] b

2,3,2,3,1,1,3,3,1,1,3,2,3,2,2,1,0,1,2],

[2,2,3,2,3,1,1,3,3,1,1,3,2,3,2,2,1,0,1],

[1,2,2,3,2,3,1,1,3,3,1,1,3,2,3,2,2,1,0]]

19
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o GR(3,Ks,2) > 32

Adjacency matrix of a 3-edge-colored 31-vertex graph with each K¢ containing more than

2 colors.

(fo,s,s,3,3,2,1,2,1,1,1,1,3,1,3,2,2,2,3,3,1,3,2,1,2,2,3,3,2,1,1]
(3,0,2,1,3,2,3,2,2,1,2,2,2,1,1,1,2,2,2,2,1,3,3,3,1,1,1,1,3,3,2]
(3,2,0,2,1,1,3,3,1,3,2,2,3,3,2,2,1,1,3,1,3,2,1,3,3,1,1,1,1,2,2]

(3,1,2,0,1,3,1,3,3,1,1,2,3,1,2,3,1,1,1,3,1,2,2,3,2,2,3,3,3,2,1]
(s,3,1,1,0,1,1,2,1,1,2,1,1,2,3,2,1,2,3,2,2,3,2,2,1,2,1,3,3,3,2]
2,2,1,3,1,0,1,2,2,3,1,3,2,2,3,3,1,3,2,2,1,3,2,3,1,1,1,3,1,1,3]
(1,3,3,1,1,1,0,1,1,2,3,1,3,3,2,2,3,1,1,3,2,2,3,1,1,3,2,2,1,3,1]
[2,2,3,3,2,2,1,0,2,3,2,3,3,3,1,1,2,2,1,2,3,1,1,3,1,1,3,2,3,2,1]
(+,2,1,3,1,2,1,2,0,2,2,1,2,2,1,3,1,2,2,3,2,1,2,1,3,2,3,1,1,3,3]
(+,1,3,1,1,3,2,3,2,0,2,2,3,1,3,1,1,1,1,1,2,1,3,3,3,2,2,2,3,2,1]
[1,2,2,1,2,1,3,2,2,2,0,2,2,2,2,2,3,2,3,3,1,2,3,1,1,3,1,3,2,1,2]
[1,2,2,2,1,3,1,3,1,2,2,0,1,3,3,3,1,3,1,2,3,1,1,1,1,2,1,2,3,2,3]

(3,2,3,3,1,2,3,3,2,3,2,1,0,3,1,2,1,1,2,1,3,1,1,3,1,2,1,1,2,2,2]

(1,1,3,1,2,2,3,3,2,1,2,3,3,0,1,1,1,3,2,2,3,2,2,2,2,1,1,1,3,1,3]
(3,1,2,2,3,3,2,1,1,3,2,3,1,1,0,1,2,3,3,1,2,2,1,2,3,3,2,1,1,3,3]
(2,1,2,3,2,3,2,1,3,1,2,3,2,1,1,0,3,3,3,3,1,1,3,3,1,1,3,2,2,3,2]
(2,2,1,1,1,1,3,2,1,1,3,1,1,1,2,3,0,2,3,2,2,3,3,2,2,3,1,3,2,3,1]
(2,2,1,1,2,3,1,2,2,1,2,3,1,3,3,3,2,0,1,1,3,3,2,2,2,1,1,3,1,1,3]
(s,2,3,1,3,2,1,1,2,1,3,1,2,2,3,3,3,1,0,2,3,3,2,2,2,3,1,3,1,2,1]
(3,2,1,3,2,2,3,2,3,1,3,2,1,2,1,3,2,1,2,0,2,1,1,2,3,1,3,1,1,2,2]
[1,1,3,1,2,1,2,3,2,2,1,3,3,3,2,1,2,3,3,2,0,2,1,1,1,1,2,2,3,1,3]
(3,3,2,2,3,3,2,1,1,1,2,1,1,2,2,1,3,3,3,1,2,0,1,3,1,1,2,3,3,3,1]
(2,3,1,2,2,2,3,1,2,3,3,1,1,2,1,3,3,2,2,1,1,1,0,2,2,3,1,1,3,3,1]
(1,3,3,3,2,3,1,3,1,3,1,1,3,2,2,3,2,2,2,2,1,3,2,0,2,2,2,3,3,1,2]
(2,1,3,2,1,1,1,1,38,3,1,1,1,2,3,1,2,2,2,3,1,1,2,2,0,1,3,3,2,3,3]
(2,1,1,2,2,1,3,1,2,2,3,2,2,1,3,1,3,1,3,1,1,1,3,2,1,0,1,3,2,2,2]
(s,1,1,3,1,1,2,3,3,2,1,1,1,1,2,3,1,1,1,3,2,2,1,2,3,1,0,2,3,1,1]
(3,1,1,3,3,3,2,2,1,2,3,2,1,1,1,2,3,3,3,1,2,3,1,3,3,3,2,0,1,2,1]
2,s,1,3,3,1,1,3,1,3,2,3,2,3,1,2,2,1,1,1,3,3,3,3,2,2,3,1,0,3,2]
(1,3,2,2,3,1,3,2,3,2,1,2,2,1,3,3,3,1,2,2,1,3,3,1,3,2,1,2,3,0,3]

(1,2,2,1,2,3,1,1,3,1,2,3,2,3,3,2,1,3,1,2,3,1,1,2,3,2,1,1,2,3,0]]

20
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