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Abstract

We show that the minimal number of skewed hyperplanes that cover the hyper-
cube {0, 1}n is at least n

2 + 1, and there are infinitely many n’s when the hypercube
can be covered with n − log2(n) + 1 skewed hyperplanes. The minimal covering
problems are closely related to the uncertainty principle on the hypercube, where
we also obtain an interpolation formula for multilinear polynomials on Rn of degree
less than bn/mc by showing that its coefficients corresponding to the largest mono-
mials can be represented as a linear combination of values of the polynomial over
the points {0, 1}n whose Hamming weights are divisible by m.

Mathematics Subject Classifications: 06E30, 42C10, 68Q32

1 Introduction

1.1 Covering the hypercube

How many affine hyperplanes are needed to cover the hypercube {−1, 1}n? Notice that
two affine hyperplanes x1 = −1 and x1 = 1 cover the hypercube, and clearly this is the
minimal number. However, if one requires that the affine hyperplanes are skewed, i.e.,
a1x1 + . . .+ anxn + b = 0 with all a1, . . . , an 6= 0, then the problem becomes challenging1.

It follows from Littlewood–Offord inequalities that any skewed hyperplane covers at
most n−1/2 fraction of the points in {−1, 1}n (up to a universal constant factor), therefore,
one needs at least Ω(n1/2) skewed hyperplanes to cover the hypercube. In [7], this lower
bound was improved to Ω(n0.51), and recently in [4] to Ω(n2/3 log(n)−4/3) by the second
named author of the present paper.

aDepartment of Mathematics, University of California, Irvine, Irvine, CA 92697, U.S.A.
(pivanisv@uci.edu, rvershyn@uci.edu).

bSchool of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
(ohadkel@gmail.com).

1In what follows we will omit the word affine and we will be referring to such hyperplanes as skewed
hyperplanes.
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The family of n+ 1 hyperplanes, x1 + . . .+xn = 2k−n for all k = 0, . . . , n, covers the
hypercube. In fact, if n is even, one can cover with n skewed hyperplanes just by replacing
the two hyperplanes corresponding to k = 0 and k = n in the previous example with one
hyperplane x1 + . . .+ xn/2 − xn/2−1 − . . .− xn = 0. Moreover, it follows from [1] that for
even n, the upper bound n on the minimal cover is also a lower bound if one restricts the
covering to the family of “regular” hyperplanes, i.e., the ones ε1x1 + . . . + εnxn + b = 0
with εj = ±1 for all j = 1, . . . , n.

Looking at the results for the case of “regular” hyperplane cover in [1], one may suspect
that in analogy to Littlewood–Offord problem the sharp lower bound on the minimal skew
hyperplane cover should be n. Surprisingly, one can cover the hypercube {−1, 1}5 with
the following 4 skewed hyperplanes

x1 + x2 + x3 + x4 + 2x5 = 0,

x1 + x2 + x3 − x4 + 2x5 = 0,

x1 + x2 + x3 + x4 − 2x5 = 0,

x1 + x2 + x3 − x4 − 2x5 = 0.

Also the hypercube {−1, 1}6 can be covered with 5 skewed hyperplanes (see Section 2.3).
In fact, one can cover the hypercube {−1, 1}n with n − log2(n) + 1 skewed hyperplanes
for infinitely many n’s.

Proposition 1. For any integer m > 1 the hypercube {−1, 1}2m+m−1 can be covered with
2m skewed hyperplanes.

This proposition shows that the skew hyperplane covering problem is genuinely differ-
ent from the original “regular” problem solved in [1].

Question 2. What is the minimal number of skewed hyperplane cover of the hypercube
{−1, 1}n?

We prove the following lower bound.

Theorem 3. The minimal number of skewed hyperplane cover of {−1, 1}n is at least
n
2

+ 1.

There is a close relation between the minimal hyperplane covering problem and the
uncertainty principle on the hypercube. Let p(x) be a polynomial on Rn, and let supp(p) =
{x ∈ Rn : p(x) 6= 0}. Under what conditions on supp(p) ∩ {−1, 1}n and deg(p) does it
follow that p(x) ≡ 0 on {−1, 1}n?

It turns out that the support of a nonzero low degree polynomial cannot be contained
in a skewed hyperplane:

Theorem 4 (Linial–Radhakrishnan [5]). If deg(p) < n
2

and supp(p) ∩ {−1, 1}n belongs
to a skewed hyperplane, then p(x) ≡ 0 on {−1, 1}n.
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Observe that Theorem 3 follows from Theorem 4. Indeed, let H1, . . . , Hk+1 be a
minimal skew hyperplane cover of {−1, 1}n. If H ′js are given via equations `j(x) =
a1jx1 + . . .+ anjxn + bj = 0, for all j = 1, . . . , k + 1, then it follows that p(x)`k+1(x) ≡ 0

on {−1, 1}n, where p(x) =
∏k

j=1 `j(x) is a not identically zero polynomial on {−1, 1}n of
degree at most k. Hence, supp(p)∩{−1, 1}n belongs to Hk+1 and Theorem 4 implies that
k > n/2.

After the current paper was completed, independently and concurrently the paper
[6] appeared on arXiv where Theorem 3 was derived from Theorem 4 proved in [5] (see
Lemma 2 in [5]). The proof of Theorem 4 in [5] in turn is based on either Combina-
torial Nullstellensatz or the spectral properties of the Johnson graph (the authors [5]
attribute the nonsingularity of the Johnson graph to [3]). Our proof of Theorem 4, given
in Section 2.1, is simple and self-contained.

1.2 An interpolation formula

In [1] sharp lower bound n on the minimal number of “regular” hyperplane cover of the
n dimensional hypercube (for even n) was based on the following technical observation:
if a multilinear polynomial p(x) vanishes on all those points of {−1, 1}n which have even
number of 1’s in its coordinates, and deg(p) < n/2, then p is identically zero (see Lemma
2.1 in [1]). This observation suggests that perhaps the coefficients of the multilinear
polynomials of small degree can be reconstructed by its values at sparse points of {−1, 1}n.
The goal of this section is to obtain such an interpolation formula.

Recall that any function f : {−1, 1}n 7→ X, where X is a normed space, has Fourier–
Walsh representation

f(x) =
∑

S⊂{1,...,n}

f̂(S)xS, (1)

for some f̂(S) ∈ X, where x = (x1, . . . , xn), xS =
∏

j∈S xj and x∅ = 1. We say that f

has degree deg(f) if f̂(S) = 0 for all S ⊂ {1, . . . , n} with |S| > deg(f), and there exists

a subset S of cardinality deg(f) such that f̂(S) 6= 0.

Definition 5. For any integer m > 1 the symbol W (m) denotes the subset of {−1, 1}n
consisting of all points x = (x1, . . . , xn) ∈ {−1, 1}n such that #{j : xj = −1} is divisible
by m.

In this section we obtain the following interpolation formula.

Theorem 6. Let f : {−1, 1}n 7→ X and let m > 2 be an integer divisible by 2 such that

deg(f) 6
n

m
− 1

2
. (2)

Then for any S ⊂ [n] with |S| = deg(f), there exists a probability measure dµ(x) supported
on W (m) and a sign function h : W (m) 7→ {−1, 1} such that

f̂(S) =

∫
W (m)

h(x)f(x)dµ(x) (3)
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Both dµ and h depend only on S,m, deg(f), n.

The next corollary follows from the theorem.

Corollary 7. If f : {−1, 1}n 7→ X vanishes on a set W (m) for some even integer m
satisfying (2), then f ≡ 0.

Remark 8. When m = 2, Corollary 7 is the classical result [1, Lemma 2.1].

Remark 9. In the proof of Theorem 6 both the measure dµ and h(x) are constructed
explicitly.

Notice that since f̂(S) = Ef(x)xS then ‖f̂(S)‖ 6 maxx∈{−1,1}n ‖f(x)‖. However, if
f has low degree, then maxx∈{−1,1}n ‖f(x)‖ can be replaced by a maximum over sparse
family of points of {−1, 1}n provided that |S| = deg(f). Indeed, Theorem 6 gives the
following corollary.

Corollary 10. Let f : {−1, 1}n 7→ X, where X is a normed space, be a function whose
degree satisfies (2), then

‖f̂(S)‖ 6 max
x∈W (m)

‖f(x)‖

for all S ⊂ {1, . . . , n} with |S| = deg(f).

2 Proofs

2.1 The proof of Theorem 4

Denote [n] := {1, . . . , n}. Every polynomial p(x) of degree d, when restricted to {−1, 1}n,
can be written as f(x) =

∑
|S|6d cSx

S for some cS ∈ R. The assumption in Theorem 4
that the support of f is contained within a skewed hyperplane means that

∀x ∈ {−1, 1}n : (a1x1 + . . .+ anxn + b)
∑
|S|6d

cSx
S = 0, (4)

where
∀i : ai 6= 0. (5)

When expanding (4), the right hand side means that all coefficients of the monomials xT

must vanish, in particular for degree d+ 1 monomials. This means that∑
j∈T

ajcT\j = 0 (6)

for all T ⊆ [n] with |T | = d+ 1. We can view (6) as a system of linear equations Ac = 0
in c = (cS : S ⊂ [n], |S| = d). It suffices to prove the following lemma.

Lemma 11. We have Ker(A) = 0 as long as n > 2d+ 1.
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The theorem follows from the lemma as follows: The lemma implies that in (4) we
have cS = 0 for all S ⊂ [n] with |S| = d. This means that p(x) is in fact a polynomial
of degree d − 1. Since d was merely defined as the degree of p (and assumed to satisfy
2d+1 6 n), we can repeat and deduce p is of degree d−2 and similarly of degree 0. Once
n > 2 a hyperplane can not cover the entire hypercube, so p must be the zero polynomial,
concluding the proof of Theorem 4.

Proof of Lemma 11. Note that it is sufficient to prove the lemma only for n = 2d + 1,
and it would follow for any n > 2d + 1. To see this, let n > 2d + 1 and let S ⊂ [n] with
|S| = d; we must show cS = 0. Fix a set N ⊂ [n] with S ⊂ N and |N | = 2d + 1, and
focus on equations (6) for T ⊂ N . From the n = 2d+1 case we conclude that all involved
variables cS′ with S ′ ⊂ N are 0, and in particular cS = 0.

Next, we prove the lemma by induction on d for the n = 2d+ 1 case.

Base case: When d = 1 and n = 3, Equation (6) applied on the sets T = {2, 3}, {1, 3},
{1, 2} yields:

a3c2 + a2c3 = 0

a1c3 + a3c1 = 0

a1c2 + a2c1 = 0,

Or in matrix form:  0 a3 a2
a3 0 a1
a2 a1 0

c1c2
c3

 = 0.

The determinant of this 3 × 3 matrix equals 2a1a2a3, which is nonzero by (5). We learn
that ci = 0 and the lemma follows in this case.

Inductive step: Assume that the lemma holds for d−1, we prove it for d and n = 2d+1.
Let c be a solution to (6). In order to complete the induction step, we must show that
c = 0.

Note that the induction hypothesis applied for d − 1 and n − 2 (that has n − 2 =
2(d− 1) + 1) implies that c̄ = 0 is the unique solution to the system of equations

ai1 c̄i2,i3,...,id + ai2 c̄i1,i3,...,id + · · ·+ aid c̄i1,i2,...,id−1
= 0 ∀{i1, . . . , id} ⊂ [n− 2], (7)

where {i1, . . . , id} ranges over all subsets of size d of [n− 2].
Fix j := id+1 ∈ {n − 1, n}, and consider all those linear equations (6) in c that arise

for T = {i1, . . . , id, j} where {i1, . . . , id} ⊂ [n− 2]:

ai1ci2,i3,...,id,j +ai2ci1,i3,...,id,j + · · ·+aidci1,i2,...,id−1,j +ajci1,i2,...,id = 0 ∀{i1, . . . , id} ⊂ [n−2].

Moving the last term into the right hand side, we get:

ai1ci2,i3,...,id,j + ai2ci1,i3,...,id,j + · · ·+ aidci1,i2,...,id−1,j = −ajci1,i2,...,id ∀{i1, . . . , id} ⊂ [n− 2].
(8)
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Compare this system with the one in (7). This is the same system, up to a relabeling of
the variables, and different right hand side. Let Ad−1 be the matrix defining the d − 1
case, then (8) can be written as

Ad−1c̄ = −aju,

where u is the vector of variables ci1,i2,...,id and c̄ is the vector of variables ci1,i2,...,id,j for
{i1, i2, . . . , id} ⊂ [n− 2]. Note that since

(
2d−1
d−1

)
=
(
2d−1
d

)
, the matrix Ad−1 is square, and

is hence invertible by the induction hypothesis. In particular,

c̄ = −ajA−1d−1u.

Note that on the right hand side, the only thing that depends on j is aj. That is, both
Ad−1 and u do not depend on whether j = n− 1 or j = n. By comparing the two options
j = n− 1, and j′ = n, we conclude that for all i1, i2, . . . , id ⊂ [n− 2],

ci1,i2,...,id−1,j/aj = ci1,i2,...,id−1,j′/aj′ . (9)

Note that in (9), we can choose the indices i1, . . . , id, j
′, j arbitrarily so long as they are

distinct.

Claim 12. Equation (9) implies the existence of a single constant K ∈ R such that

cS = K
∏
i∈S

ai, (10)

for all S ⊂ [n] with |S| = d.

Plugging the formula for cS from Claim 12 into the system of equations (6), we get
that for any T ⊂ [n] with |T | = d+ 1,

0 =
∑
j

ajcT\{j} =
∑
j∈T

aj

K ∏
i∈T\{j}

ai

 =
∑
j∈T

K
∏
i∈T

ai = (d+ 1)K
∏
i∈T

ai

In (5), we assumed ai 6= 0 for all i, so it follows that K = 0, and, in particular, cS = 0 for
all S ⊂ [n]. The induction step and the lemma follows.

Proof of Claim 12. Let I ⊂ [n] and J,K ⊂ [n] \ I be sets with |J | = |K| = d − |I|. We
prove by induction on the size of J and K that

cI∪J/
∏
j∈J

aj = cI∪K/
∏
k∈K

ak. (11)

When J,K are of size d, and I = ∅, then we derive (10) and the proof is complete.
Base case: When J,K are of size 0, (11) is obvious as J = K.
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Inductive step: Let J,K ⊂ [n] be of size ` > 1 and let I ⊂ [n] \ (J ∪ K) be of size
d− `. We prove (11). Take j ∈ J and k ∈ K and denote I ′ = I ∪ {j}, J ′ = J \ {j} and
K ′ = K \ {k}. Then (11) follows:

cI∪J/
∏
i∈J

ai =︸︷︷︸
I∪J=I′∪J ′

1

aj
cI′∪J ′/

∏
i∈J ′

ai

=︸︷︷︸
induction

1

aj
cI′∪K′/

∏
i∈K′

ai

=︸︷︷︸
(9)

1

ak
cI∪K/

∏
i∈K′

ai

= cI∪K/
∏
i∈K

ai.

2.2 The proof of Theorem 6

Let d = deg(f) and assume that S = {m, 2m, . . . , dm} (any S with |S| = d is obtained
by relabeling of variables). Recall Equation (1) defining the Fourier representation: for
any u = (u1, . . . , un) ∈ {−1, 1}n we have

f(u) =
∑
|S|6d

f̂(S)uS where uS =
∏
j∈S

uj.

For (y1, . . . , yd) ∈ {−1, 1}d, and (x1, . . . , xn) ∈ {−1, 1}n, we define y ◦ x ∈ {−1, 1}n by
splitting the vector x into disjoint sets of indices I1, I2, . . . , Id, Iextra, Irest, where

I1 = (1, . . . ,m),

I2 = (m+ 1, . . . , 2m),

. . .

Id = ((d− 1)m+ 1, . . . , dm),

Iextra = (md+ 1, . . . ,md+m/2),

Irest = (md+m/2 + 1, . . . , n).

Then, we define
yjxIj := (yjx(j−1)m+1, yjx(j−1)m+2, . . . , yjxjm),
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and finally,

y ◦ x := (y1xI1 , . . . , ydxId , xIextra , xIrest)

= (y1x1, y1x2, . . . , y1xm,

y2xm+1, y2xm+2, . . . , y2x2m,

...

ydx(d−1)m+1, ydx(d−1)m+2, . . . , ydxmd,

xmd+1, xmd+2, . . . , xmd+m−m
2
, . . . , xn)

Note that the variables in Iextra and Irest are unchanged. The coordinates Irest do not play
a role in the proof (and may be empty, e.g. if we have equality in (2)), but the coordinates
Iextra have the important role of “parity” in the proof.

Claim 13. There exists a distribution D for x (on {−1, 1}n) such that

f̂(S) = Ex∼D Ey∼unif({−1,1}d) [f(y ◦ x) · y1 · · · yd] , (12)

and moreover,
y ◦ x ∈ W (m) (13)

for all y ∈ {−1, 1}d and all x ∈ supp(D). D depends only on d,m, n but not on f .

Claim 13 concludes the proof of (3) by using the sign function h = y1 · · · yd and the
measure dµ depicting the distribution2 of y ◦ x where x ∼ D and y ∼ unif({−1, 1}d).

Proof of Claim 13. Observe the formula

Ey∼unif({−1,1}d) [f(y ◦ x) y1 . . . yd] =
∑

T : ∀j : |T∩Ij |=1

f̂(T )xT . (14)

To verify (14), we expand f(y ◦x) on the left hand side as
∑

T f̂(T )(y ◦x)T . The number
of times yj appears in that expression is exactly |T ∩ Ij|. If T ∩ Ij is empty for some j,
then (y ◦ x)T does not depend on yj, and the multiplication by y1 . . . yd in (14) zeroes

out the term f̂(T )(y ◦ x)T . Hence relevant terms are only those with |T ∩ Ij| > 1 for all
j = 1, . . . , d. But since f is of degree d to begin with, we must have |T ∩ Ij| = 1 for all
j = 1, . . . , d.

The distribution D. We describe how each chunk xIj of x ∼ D is drawn. All chunks
are drawn independently of the other chunks, except for xIextra which is chosen last.

2Note that here we define h as a function of y while the measure dµ is of {−1, 1}n. We claim that (12)
implies that y1 · · · yd is uniquely determined from y ◦ x for all y ◦ x having positive probability. To see
this, note that formula (12) does not depend on f , yet for f̃(z) = zS it has 1 on the LHS while the

RHS is bounded by 1 by the triangle inequality. This means f̃(y ◦ x) = y1 · · · yd. Consequently, (3)

holds with h = y1 · · · yd = f̃(y ◦ x), which is a function of y ◦ x.
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• xIj for j = 1, . . . , d:

Pr[xIj = (z1, . . . , zm)] =

=


1/m if z1 = · · · = zm = 1,

1

2( m−2
m/2−1)

if zm = 1 and exactly m/2 among z1, . . . , zm−1 are equal − 1,

0 otherwise.

Note that the sum over all probabilities is 1.

• xIrest : we set xIrest = (1, 1, . . . , 1) always.

• xIextra : Count the total number s of −1’s in all chunks xI1 , xI2 , . . . , xId . Define

xIextra =

{
(1, . . . , 1) if m|s,
(−1, . . . ,−1) otherwise.

(15)

Observe that necessarily s is divisible by m/2, since each choice of xIj adds either
0 or m/2 to s. For this reason, (15) defines x is such a way that x ∈ W (m).
Furthermore, for all y ∈ {−1, 1}d we have y ◦ x ∈ W (m) essentially because signs
do not matter modulo 2.

Finally, in order to deduce (12) from (14), we must check that for all T ⊆ {1, . . . , n}
with ∀j : |T ∩ Ij| = 1 we have

Ex∼D[xT ] =

{
1 if T = S,

0 otherwise.
(16)

The case T = S is immediate, since by design xjm = 1 for all j = 1, . . . , d.

Suppose T 6= S. Focus on a particular coordinate t ∈ T with m - t and let
j ∈ {1, . . . , d} be the index with t ∈ Ij. Since T ∩ Ij = {t}, we have that xT is
xt · xT\{t}. When x ∼ D, xT\{t} is a random variable independent of xt, as we draw
the different chunks independently. Hence Ex∼D[xT ] = Ex∼D[xt] · Ex∼D[xT\{t}]. In
order to deduce (16) and finish the proof we just need to check that Ex∼D[xt] = 0.

Indeed, by definition, the probability that xt = 1 is 1/m +
(m−2
m/2)

2( m−2
m/2−1)

, that is, either

xIj is all 1’s, or we need to choose m/2 locations for −1’s in Ij out of Ij \ {t,mj}.
This probability is 1/2, validating Ex∼D[xt] = 0, concluding the proof.

2.3 The proof of Proposition 1: how to cover the hypercube efficiently

Consider 2m skewed hyperplanes

2m−1∑
j=1

xj +
m−1∑
j=0

±2jx2m+j = 0.
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Since any odd integer k, −(2m − 1) 6 k 6 2m − 1 can be written as a sum
∑m−1

j=0 ±2j

for some choice of signs ±, it follows that these hyperplanes cover the cube {−1, 1}n with
n = 2m +m− 1.

There are other examples that are not produced by the construction above. In par-
ticular, for n = 6 the union of the following 5 skewed hyperplanes

x1 − x2 + 2x3 + x4 + x5 + 2x6 = 0,

x1 − x2 + x3 + x4 + x5 − x6 = 0,

x1 − x2 − x3 + 2x4 − 2x5 + x6 = 0,

x1 + x2 + x3 + x4 + x5 − x6 = 0,

x1 − x2 − 3x3 + x4 + x5 − x6 = 0.

cover the hypercube {−1, 1}6.
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