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Abstract

A hole in a graph is an induced subgraph which is a cycle of length at least
four. A graph is chordal if it contains no holes. Following McKee and Scheinerman
(1993), we define the chordality of a graph G to be the minimum number of chordal
graphs on V (G) such that the intersection of their edge sets is equal to E(G). In
this paper we study classes of graphs of bounded chordality.

In the 1970s, Buneman, Gavril, and Walter, proved independently that chordal
graphs are exactly the intersection graphs of subtrees in trees. We generalize this
result by proving that the graphs of chordality at most k are exactly the intersection
graphs of convex subgraphs of median graphs of tree-dimension k.

A hereditary class of graphs A is χ-bounded if there exists a function f : N → R
such that for every graph G ∈ A, we have χ(G) ⩽ f(ω(G)). In 1960, Asplund and
Grünbaum proved that the class of all graphs of boxicity at most two is χ-bounded.
In his seminal paper “Problems from the world surrounding perfect graphs,” Gyárfás
(1987), motivated by the above result, asked whether the class of all graphs of
chordality at most two, which we denote by C ∩• C, is χ-bounded. We discuss
a result of Felsner, Joret, Micek, Trotter and Wiechert (2017), concerning tree-
decompositions of Burling graphs, which implies an answer to Gyárfás’ question
in the negative. We prove that two natural families of subclasses of C ∩• C are
polynomially χ-bounded.

Finally, we prove that for every k ⩾ 3 the k-Chordality Problem, which asks
to decide whether a graph has chordality at most k, is NP-complete.
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1 Introduction

For basic notions and notation not defined here we refer readers to [35]. In this paper we
consider finite, undirected graphs with no loops or parallel edges. For a set S we denote the
power set of S by 2S, and the set of all size-two elements of 2S by

(
S
2

)
. Let G be a graph.

We denote the complement of G by Gc. We call a subset of V (G) a clique (respectively a
stable set) of G if it is a set of pairwise adjacent (respectively non-adjacent) vertices. A
clique of size three is called a triangle. The clique number of G, denoted by ω(G), is the
maximum size of a clique in G. Let A,B ⊆ V (G). An (A,B)-path in G is a path in G
which has one of its ends in A and its other end in B; if A = {u} we write (u,B)-path
instead of ({u}, B)-path. A non-edge of G is an element of the set

(
V (G)
2

)
\E(G). Given a

graph H we say that G is H-free (respectively contains H) if it contains no (respectively
contains an) induced subgraph isomorphic to H. For a set X ⊆ V (G), we denote by G[X]
the subgraph of G which is induced by X. A class of graphs is hereditary if it is closed
under isomorphism and under taking induced subgraphs.

Let G1, . . . , Gk be graphs. Then, their intersection (respectively union), which we
denote by ∩i∈[k]Gi (respectively ∪i∈[k]Gi), is the graph (∩i∈[k]V (Gi),∩i∈[k]E(Gi)) (respec-
tively (∪i∈[k]V (Gi),∪i∈[k]E(Gi))). Given graph classes G1, . . . ,Gk, we denote by G1∩• . . .∩• Gk

the class {G : ∃Gi ∈ Gi such that G = G1∩ . . .∩Gk}, which we call the graph-intersection
of G1, . . . ,Gk. The graph-union of G1, . . . ,Gk, which we denote by G1 ∪• . . .∪• Gk, is the
class {G : ∃Gi ∈ Gi such that G = G1 ∪ . . . ∪Gk}.

Given a class of graphs A and a graph G, we follow Kratochv́ıl and Tuza [21], and
define the intersection dimension of G with respect to A to be the minimum integer
k such that G ∈ ∩• i∈[k]A if such a k exists, and +∞ otherwise. We remark that the
intersection dimension of graphs with respect to graph classes has been also studied by
by Cozzens and Roberts [9] under a different name: they called a graph property P
dimensional if for every graph G, the intersection dimension of G with respect to the
class A(P ) := {G : G has the property P} is finite. For a positive integer n, we denote
by Kn the complete graph on n vertices, and by K−

n the graph we obtain from Kn by
deleting an edge. It is easy to observe that a graph property P is dimensional if and only
if for every positive integer n, both the graphs Kn and K−

n have the property P .
A hole in a graph G is an induced cycle of length at least four. A graph is chordal if it

contains no holes, and we denote the class of chordal graphs by C. Following McKee and
Scheinerman [25] we call the intersection dimension of a graph G with respect to C the
chordality of G and we denote it by chor(G). Since, for every positive integer n, both the
graphs Kn and K−

n are chordal, it follows that the chordality of every graph is finite (and
upper bounded by the number of its non-edges). To the best of our knowledge, chordality
was first studied by Cozzens and Roberts [9] under the name rigid circuit dimension.

Given a finite family of nonempty sets S, the intersection graph of S is the graph
which has as vertices the elements of S and two vertices are adjacent if and only if they
have a non-empty intersection. Given a graph G and a family S of subgraphs of G, the
intersection graph of S is the intersection graph of the family {V (H) : H ∈ S}.

In the 1970s, Buneman [5], Gavril [15], and Walter [34, 33], proved independently that
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chordal graphs are exactly the intersection graphs of subtrees in trees. Let H be a chordal
graph. A tree T is a representation tree of H if there exists a function β : V (T ) → 2V (H)

such that for every v ∈ V (H), the subgraph T [{t ∈ V (T ) : v ∈ β(t)}] of T is connected,
and H is isomorphic to the intersection graph of the family {{t ∈ V (T ) : v ∈ β(t)} : v ∈
V (H)}. In this case we call the pair (T, β) a representation of H. By the aforementioned
characterization of chordal graphs, it follows that every chordal graph has a representation.
In section 2, we prove a characterization of graphs of chordality at most k which generalizes
the above characterization of chordal graphs. We continue with some definitions before
we state the main result of section 2.

An interval graph is any graph which is isomorphic to the intersection graph of a family
of intervals on the real line. We denote the hereditary class of interval graphs by I. It
is easy to see that the intersection graphs of subpaths in paths are exactly the interval
graphs, and thus every interval graph is also chordal.

Let G be a graph. A chordal completion (respectively interval completion) of G is a
supergraph of G on the same vertex which is chordal (respectively interval). Since every
complete graph is an interval graph, it follows that every graph has an interval and thus
a chordal completion.

A tree-decomposition of G is a representation (T, β) of a chordal completion H of G.
Fix a chordal completion H of G and a representation (T, β) of H. For every t ∈ V (T ), we
call the set β(t) the bag of t. It is easy to see that every bag is a clique of H and that every
clique of H is contained in a bag of T . We say that (T, β) is a complete tree-decomposition
of G if for every t ∈ V (T ), the set β(t) is a clique of G. If T is a path, then H is
an interval completion of G and we call tree-decomposition (T, β) a path-decomposition
of G. It is easy to see that a graph has a complete tree-decomposition (respectively
complete path-decomposition) if and only if it is chordal (respectively interval). The
width of a tree-decomposition is the the clique number of the corresponding chordal com-
pletion minus one1. The tree-width (respectively path-width) of G, denoted by tw(G)
(respectively pw(G)) is the minimum width of a tree-decomposition (respectively path-
decomposition) of G. That is, tw(G) := min{ω(H)−1 : H is a chordal completion of G},
and pw(G) := min{ω(I) − 1 : I is an interval completion of G}. A tree-decomposition
separates a non-edge e if e is a non-edge of the chordal completion which corresponds to
this tree-decomposition. Let T be a family of tree-decompositions of G. We say that T
is a non-edge-separating family of tree-decompositions if for every non-edge e of G, there
exists a tree-decomposition in T which separates e.

Below is the main result of section 2, we postpone some definitions for section 2.

Theorem 1. Let G be a graph and k be a positive integer. Then the following are equiv-
alent:

1. The graph G has chordality k.

2. The minimum size of a non-edge-separating family of tree-decompositions of G is k.

3. k is the minimum integer such that the graph G is the intersection graph of a family

1The “minus one” in the definition of the width serves so that trees have tree-width one.
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of convex subgraphs of the Cartesian product of k trees.

4. k is the minimum integer such that the graph G is the intersection graph of a family
of convex subgraphs of a median graph of tree-dimension k.

5. The graph G has tree-median-dimension k.

In section 3 we focus on the chromatic number of graphs of bounded chordality.
For a positive integer k we denote by [k] the set of integers {1, . . . , k}. A k-coloring of

G is a function f : V (G) → [k] such that for every i ∈ [k] we have that f−1(i) is a stable
set. A graph is k-colorable if it admits a k-coloring, and the chromatic number of a graph
G, denoted by χ(G), is the minimum integer k, for which G is k-colorable.

It is immediate that for every graph G we have χ(G) ⩾ ω(G), and it is easy to see that
there are graphs G for which we have χ(G) > ω(G) (for example odd cycles). Moreover,
the gap between the chromatic number and the clique number can be arbitrarily large.
Indeed, Tutte [11, 12] first proved in the 1940s that there exist triangle-free graphs of
arbitrarily large chromatic number (for other such constructions see also [6, 26, 37]).
Thus, in general, the chromatic number is not upper-bounded by a function of the clique
number.

A graph G is perfect if every induced subgraph H of G satisfies χ(H) = ω(H). Berge
[4] proved in 1960 that chordal graphs are perfect. What can we say for the connection
between χ and ω for graphs of bounded chordality?

In his seminal paper “Problems from the world surrounding perfect graphs”, Gyárfás
[19] introduced the χ-bounded graph classes as “natural extensions of the world of perfect
graphs”. We say that a hereditary classA is χ-bounded if there exists a function f : N → R
such that for every graph G ∈ A, we have χ(G) ⩽ f(ω(G)). Such a function f is called
a χ-bounding function for A. For more on χ-boundedness we refer the readers to the
surveys of Scott and Seymour [31], and Scott [30]. The examples of triangle-free graphs
of arbitrarily large chromatic number that we mention above imply that the class of all
graphs is not χ-bounded.

A natural direction of research on χ-boundedness is to consider operations that we
can apply among graphs of different classes in order to obtain new classes of graphs, and
study (from the perspective of χ-boundedness) graph classes which are obtained via this
way from χ-bounded classes.

Gyárfás [19, Section 5] considered graph-intersections and graph-unions of χ-bounded
graph classes from the perspective of χ-boundedness. Graph-unions of χ-bounded graph
classes are χ-bounded2. The situation with intersections of graphs is different. We refer
the interested reader to [8] where Chaniotis, Koerts, and Spirkl, study further the interplay
between graph-intersection and χ-boundedness, and to [2] where Adenwalla, Braunfeld,
Sylvester, and Zamaraev considered this topic in the context of their broader study on
Boolean combinations of graphs.

2It is easy to observe that for any two graphs G1 and G2, we have χ(G1 ∪G2) ⩽ χ(G1)χ(G2) and that
ω(G1 ∪G2) ⩾ max{ω(G1), ω(G2)}. Thus, if for each i ∈ [k] we have that fi is a χ-bounding function
for a class Gi, then f :=

∏
i∈[k] fi is a χ-bounding function for the class ∪• i∈[k]Gi.
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Since interval graphs are chordal, it follows that they are perfect as well. Following
[28], we define the boxicity of G to be the minimum integer k such that G is isomorphic
to the intersection graph of a family of axis-aligned boxes in Rk. We denote the boxicity
of a graph G by box(G). It easy to see that the boxicity k of a graph is equal to its
intersection dimension with respect to the class of interval graphs.

In 1965, in his Ph.D. thesis [6] Burling introduced a sequence {Bk}k⩾1 of families of
axis-aligned boxes in R3 such that for each k the intersection graph of Bk is triangle-free
and has chromatic number at least k. Thus, for every k ⩾ 3 the class of all graphs of
boxicity at most k, that is, the class ∩• i∈[k]I, is not χ-bounded. Hence, for every k ⩾ 3
the class of graphs of chordality at most k is not χ-bounded.

What about the class C ∩• C? Asplund and Grünbaum [3], in one of the first results
which provides an upper bound of the chromatic number in terms of the clique number for
a class of graphs, proved in 1960 that every intersection graph of axis-aligned rectangles
in the plane with clique number ω is O(ω2)-colorable. Hence the class I∩• I is χ-bounded
(see also [7] for a better χ-bounding function).

Since the class I∩• I is χ-bounded it is natural to ask whether any proper superclasses
of this class are χ-bounded as well. Gyárfás, asked the following question:

Problem 2 (Gyárfás, [19, Problem 5.7]). Is the class C∩• C χ-bounded? In particular, is
C ∩• I χ-bounded?

In subsection 3.1 we discuss a result of Felsner, Joret, Micek, Trotter and Wiechert
[14] which implies that Burling graphs are contained in C ∩• I, and thus that the answer
to Gyárfás’ question is negative.

In the rest of section 3 we consider two families of subclasses of the class C∩• C, which
we prove are χ-bounded. In subsection 3.2 we prove the following:

Theorem 3. Let k1 and k2 be positive integers, and let G1 and G2 be chordal graphs such
that for each i ∈ [2] the graph Gi has a representation (Ti, βi), where pw(Ti) ⩽ ki. If G is
a graph such that G = G1 ∩G2, then G is O(ω(G) log(ω(G)))(k1 + 1)(k2 + 2)-colorable.

We remark that each of the classes which satisfies the assumptions of Theorem 3 is a
proper superclass of I ∩• I.

Let u and v be two vertices of a graph G. Then their distance, which we denote by
dG(u, v), is the length of a shortest (u, v)-path in G; we will often omit the subscript G
from dG(u, v) unless there is ambiguity. A rooted tree is a tree T with one fixed vertex
r ∈ V (T ) which we call the root of T . The height of a rooted tree T with root r is
h(T, r) := max{d(r, t) : t ∈ V (T )}. The radius of a tree T , which we denote by rad(T ), is
the nonnegative integer min{h(T, r) : r ∈ V (T )}. In subsection 3.3 we prove the following:

Theorem 4. Let k be a positive integer, and let G1 and G2 be chordal graphs such that
the graph G1 has a representation (T1, β1) where rad(T1) ⩽ k. If G is a graph such that
G = G1 ∩G2, then χ(G) ⩽ k · ω(G).

In section 4, we consider the recognition problem for the class of graphs of chordality
at most k. The k-Chordality Problem is the following: Given a graph G as an input,
decide whether or not chor(G) ⩽ k. We prove the following:
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Theorem 5. For every k ⩾ 3, the k-Chordality Problem is NP-complete.

Since chordal graphs can be recognized efficiently (see, for example, [16, 24]), the only
open case in order to fully classify the complexity of the k-Chordality Problem, is
the case k = 2. Recently Abueida, Busch and Sritharan [1], independently of our work,
examined the computational complexity of the k-Chordality Problem, and of the
recognition problems for several subclasses of the class of graphs of chordality at most
two. In [1] Abueida, Busch and Sritharan discuss how Theorem 5 follows from a result of
Yannakakis [36]. However they did not resolve whether the 2-Chordality Problem is
NP-complete, and thus this remains an open question.

2 A characterization of the graphs of chordality k

In this section we prove Theorem 1 which provides different characterizations of graphs
of bounded chordality. We also point out how our proof of Theorem 1 can be adapted (in
a straight-forward way) to provided analogous characterizations for graphs of bounded
boxicity.

The key notion that we use for the proof of Theorem 1 is that of the tree-median-
dimension of a graph, introduced by Stavropoulos [32], which we prove is equivalent to
chordality. We introduce the tree-median-dimension of a graph in subsection 2.1. We first
need some definitions.

Let G be a graph. For u, v ∈ V (G), a (u, v)-geodesic is a shortest (u, v)-path. We
denote by IG(u, v) the set of all vertices of G which lie in a (u, v)-geodesic, that is,
IG(u, v) := {x ∈ V (G) | d(u, v) = d(u, x) + d(x, v)}. We will often omit the subscript G
from IG(u, v) unless there is ambiguity. Given three distinct vertices u, v, w ∈ V (G) we
denote by I(u, v, w) the set I(u, v) ∩ I(u,w) ∩ I(v, w).

A graph M is a median graph if it is connected and for every choice of three distinct
vertices u, v, w ∈ V (M), there exists a vertex x with the property that I(u, v, w) = {x}.
In this case, the vertex x is called the median of u, v, w. For three distinct vertices
u, v, w ∈ V (G), we denote their median vertex by median(u, v, w). It is immediate that
trees are median graphs.

Given two graphs G andH, their Cartesian product is the graph G□H := (V,E) where
V := V (G) × V (H) and {(v1, h1), (v2, h2)} ∈ E if and only if v1 = v2 and h1h2 ∈ E(H),
or h1 = h2 and v1v2 ∈ E(G). A graph is G isometrically embeddable into a graph
H if there exists a map ϕ : V (G) → V (H) such that for every u, v ∈ V (G) we have
dG(u, v) = dH(ϕ(u), ϕ(v)). In this case we write G ↪→ H and we call the map ϕ an
isometric embedding . The tree-dimension (respectively path-dimension) of a graph G,
denoted by tdim(G) (respectively pdim(G)) is the minimum k such that G has an isometric
embedding into the Cartesian product of k trees (respectively paths) if such an embedding
exists, and infinite otherwise.

For every positive integer n the hypercube Qn is a graph isomorphic to the Cartesian
product of n copies ofK2. A partial cube is a graph which is isometrically embeddable into
a hypercube. Median graphs form a proper subclass of partial cubes (see, for example,
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[27, Theorem 5.75]). Hence, both the tree-dimension and the path-dimension of every
median graph are finite. We observe that for any graph G, we have tdim(G) ⩽ pdim(G).
We note that the class of median graphs of tree-dimension one is exactly the class of trees.

We say that a set S ⊆ V (G) is geodesically convex or simply convex if for every
u, v ∈ S, we have I(u, v) ⊆ S. We remark that if G is a connected graph and S ⊆ V (G)
is a convex set, then G[S] is connected. A subgraph H of G is a convex subgraph if the
set V (H) is convex. We note that the convex subgraphs of a tree are exactly its subtrees.

2.1 The tree-median-dimension of a graph

In his Ph.D. thesis, Stavropoulos [32] introduced median-decompositions of graphs, and
a variant of those, k-median-decompositions. We find it more convenient for the context
of this paper to use the term k-tree-median-decomposition for the notion of k-median-
decomposition.

Let k be a positive integer. We say that a graph H has the property Mk if H is the
intersection graph of a family of convex subgraphs of a median graph of tree-dimension
at most k. By the characterization of chordal graphs that we discussed in section 1 as
intersection graphs of subtrees of a tree, we have that propertyM1 is the property of being
a chordal graph. A representation of a graph G with the property Mk is a pair (M,γ),
where M is a median graph, and γ : V (M) → 2V (G) is a function such that for every
v ∈ V (G), we have that M [{x ∈ V (M) : v ∈ γ(x)}] is a convex subgraph of M , and G is
isomorphic to the intersection graph of the family {{x ∈ V (M) : v ∈ γ(x)} : v ∈ V (G)}.

Let G be a graph. A k-tree-median-completion of G is a supergraph H of G such
that V (H) = V (G), and H has the property Mk. As we discussed in section 1, every
graph has a chordal completion (the complete supergraph on the same vertex set), thus
every graph has a 1-tree-median-completion, and hence every graph has a k-tree-median-
completion. A k-tree-median-decomposition of G is a representation (M,γ) of a k-tree-
median-completion H of G. For every x ∈ V (M), we call the set γ(x) the bag of x.
We say that (M,γ) is a complete k-tree-median-decomposition of G if every bag of M is
a clique of G. Following Stavropoulos [32], a median-decomposition of a graph G is a
k-tree-median-decomposition for some k. Stavropoulos proved the following:

Theorem 6 (Stavropoulos, [32, Theorem 5.12]). Every graph G has a complete median-
decomposition.

We define the tree-median-dimension of a graph G, denoted by tmd(G), as the mini-
mum integer k such that G has a complete k-tree-median-decomposition. By Theorem 6
it follows that the tree-median-dimension is well defined.

By the following theorem we have that every 1-tree-median-decomposition is a tree-
decomposition, and vice versa.

Theorem 7 (Buneman [5], Gavril [15], and Walter [34, 33]). A graph G is the intersection
graph of subtrees of a tree if and only if G is chordal.

We omit the proof of the following proposition as it follows immediately from the
corresponding definitions.
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Proposition 8. Let G be a graph and k be a positive integer. Then G has a complete
k-tree-median-decomposition if and only if G has the property Mk.

Corollary 9 and Corollary 10 follow immediately by Theorem 7 and Proposition 8.

Corollary 9. A graph G has a complete tree-decomposition if and only if G is chordal.

Corollary 10. Let G be a graph. Then tmd(G) = k if and only if k is the minimum
integer for which G has the property Mk.

2.2 A characterization of the graphs of chordality k

The main ingredient that we need for the proof of Theorem 1 is the following:

Theorem 11. If G is a graph, then the tree-median-dimension of G is equal to its chordal-
ity.

We begin with the following easy observation about chordality.

Lemma 12. Let G be a graph. Then the chordality of G is equal to the minimum size of
a non-edge-separating family of tree-decompositions of G.

Proof of Lemma 12. Let m be the minimum size of a non-edge-separating family of tree-
decompositions of G.

Let k := chor(G), and let G1, . . . , Gk be k chordal graphs such that G =
⋂

i∈[k] Gi. For

each i ∈ [k] let (Ti, βi) be the tree-decomposition of G which is obtained from the chordal
completion Gi, and let T := {(Ti, βi) : i ∈ [k]}. Let {u, v} be a non-edge of G. Then
there exists i such that {u, v} is a non-edge of Gi. Since the bags of (Ti, βi) are cliques in
Gi, it follows that (Ti, βi) separates {u, v}. Thus m ⩽ chor(G).

Let T = {(Ti, βi)}i∈[m] be a non-edge-separating family of tree-decompositions of G
such that |T | is minimized. For each i ∈ [k], let Gi be the chordal completion of G
which corresponds to the tree-decomposition (Ti, βi). Let {u, v} be a non-edge of G and
let (Ti, βi) be the tree-decomposition of G which separates {u, v}. Then {u, v} /∈ E(Gi).
Thus, G =

⋂
i∈[k] Gi, and chor(G) ⩽ m.

In light of Lemma 12, in order to prove Theorem 11, it suffices to prove that the tree-
median-dimension of a graph G is equal to the minimum size of a non-edge-separating
family of tree-decompositions of G. We begin with the following lemma:

Lemma 13. Let M be a median graph, and let T1, . . . , Tk be trees such that there exists an
isometric embedding ϕ : V (M) → T1□· · ·□Tk. Let a, b ∈ V (M), let πi : V (T1□· · ·□Tk) →
V (Ti) be the projection to the i-th coordinate, and let Q = x1, . . . , xl be a shortest (a, b)-
path in M . Then the following hold:

1. Let i ∈ [k]. If πi(ϕ(a)) = πi(ϕ(b)) =: ti, then for every j ∈ [l] we have πi(ϕ(xj)) = ti.
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2. For every i ∈ [k], we have that Wi := πi(ϕ(x1)), . . . , πi(ϕ(xl)) is a sequence of vertices
of Ti which contains exactly the vertices of the (πi(ϕ(x1)), πi(ϕ(xl)))-path=: Pi in Ti,
and these vertices appear in Wi, possibly with repetitions, in the same order as in
Pi.

Proof Sketch of Lemma 13. Let ϕ(a) = (t1, . . . , tk), ϕ(b) = (t′1, . . . , t
′
k), and let P be a

shortest (ϕ(a), ϕ(b))-path in T1 □ · · ·□ Tk. The main observation is the following:

dT1□···□Tk
(ϕ(a), ϕ(b)) =

k∑
i

dTi
(ti, t

′
i).

Intuitively, by the definition of the Cartesian product any two adjacent vertices in a path
correspond to exactly one “move” in exactly one of the factors of the product. Now in a
shortest (ϕ(a), ϕ(b))-path the goal is to “transform” each coordinate of ϕ(a) = (t1, . . . , tk)
to the corresponding coordinate of ϕ(b) = (t′1, . . . , t

′
k) in a way that minimizes the number

of “moves” in each factor, and thus minimizes the sum of the all the “moves”, that is, the
length of the path.

The first statement of our lemma says that if for some i ∈ [k] we have πi(ϕ(a)) =
πi(ϕ(b)), then a shortest path does not waste “moves” on unnecessary changes to the i-th
coordinate of its vertices. The second statement follows from the facts that each factor
in our Cartesian product is a tree, and that in each tree there is a unique path between
two vertices. Thus the changes in the i-th coordinate of the vertices of P follow exactly
the unique (πi(ϕ(x1)), πi(ϕ(xl)))-path in Ti, maybe with some pauses (when an edge of P
corresponds to a change in a coordinate j ̸= i).

Lemma 14. Let G be a graph. If T is a non-edge-separating family of tree-decompositions
of G, then the tree-median-dimension of G is at most |T |.
Proof of Lemma 14. Let T := {(Ti, βi)}i∈[k] be a family of k tree-decompositions of G as
in the statement of the lemma. We construct a complete i-tree-median-decomposition of
G, with i ⩽ k. Let M := T1 □ . . . □ Tk. Then M is a median graph of tree-dimension
at most k. For every i ∈ [k], let πi : V (T1 □ · · · □ Tk) → V (Ti) be the projection to the
i-th coordinate. Let γ : V (M) → 2V (G) defined as follows: for every x ∈ V (M), we have
γ(x) := ∩i∈[k]βi(πi(x)).

We claim that for every v ∈ V (G), the subgraph M [{x ∈ V (M) : v ∈ γ(x)}] of M
is convex. Let v ∈ V (G). Since (Ti, βi) is a tree-decomposition it follows that Ti[{t ∈
V (Ti) : v ∈ βi(t)] is a connected (and thus a convex) subgraph of T . Note that

M [{x ∈ V (M) : v ∈ γ(x)}] = □i∈[k]Ti[{t ∈ V (Ti) : v ∈ βi(t)}].

Our claim now follows by the fact that the Cartesian product of convex graphs is a convex
graph and from Lemma 13.

We claim that for every x ∈ V (M), the bag γ(x) is a clique. Indeed, this follows from
the definition of γ and the fact that for every non-edge of G there exists i ∈ [k] such that
no bag of the tree-decomposition (Ti, βi) contains both u and v.

By the above it follows that (M,γ) is a complete i-tree-median-decomposition of G
which witnesses that tmd(G) ⩽ k.
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In order to complete the proof of Theorem 11, it remains to prove that the minimum
size of a non-edge-separating family of tree-decompositions of a graph G is upper-bounded
by the tree-median-dimension of G. To this end we need some preliminary results. We
begin with the statement of a theorem of Stavropoulos [32] which states that given a k-
tree-median-decomposition of a graph G, one can obtain a family of k tree-decompositions
of G which satisfy certain nice properties. We then show that if we apply this theorem to
a complete k-tree-median-decomposition, then the family of k tree-decompositions that
we get is non-edge-separating.

Theorem 15 (Stavropoulos, [32, Lemma 6.1, Theorem 6.7]). Let G be a graph, and
let (M,γ) be a k-tree-median-decomposition of G. Then there exists a family T =
{(Ti, βi)}i∈[k] of k tree-decompositions of G such that:

1. There exists an isometric embedding ϕ of M to the graph T1 □ · · ·□ Tk.

2. For every i ∈ [k] and for every t ∈ V (Ti), we have ϕ(V (M)) ∩ π−1
i (t) ̸= ∅, where

πi : V (T1 □ · · ·□ Tk) → V (Tj) is the projection to the i-th coordinate.

3. For every x ∈ V (M), we have γ(x) =
⋂

πi(ϕ(x)),i∈[k] βi(πi(ϕ(x))).

4. For every i ∈ [k], and for every t ∈ V (Ti), we have βi(t) =
⋃

{x∈V (M):πi(ϕ(x))=t} γ(x).

Given a set X, we say that a family X := {Xi}i∈I of subsets of X satisfies the Helly
property if for every I ′ ⊆ I the following holds: if Xi ∩ Xj ̸= ∅ for all i, j ∈ I ′, then we
have that

⋂
i∈I′ Xi ̸= ∅. The following is a folklore (see, for example, [18, Proposition

4.7]):

Proposition 16. Every family of subtrees of a tree satisfies the Helly property.

Lemma 17. Let G be a graph, let (T, β) be a tree-decomposition of G, and let {u, v} be
a non-edge of G such that (T, β) does not separate {u, v}. Let t1, t2 ∈ V (T ) be such that
u ∈ β(t1) and v ∈ β(t2), and let P be the (t1, t2)-path in T . Then, there exists p ∈ V (P )
such that {u, v} ⊆ β(p).

Proof of Theorem 17. Since (T, β) does not separate {u, v}, we have that {t ∈ V (T ) : u ∈
β(t)} ∩ {t ∈ V (T ) : v ∈ β(t)} ≠ ∅. Moreover, since u ∈ β(t1) and v ∈ β(t2), we have that
{t ∈ V (T ) : u ∈ β(t)} ∩ V (P ) ̸= ∅ and {t ∈ V (T ) : v ∈ β(t)} ∩ V (P ) ̸= ∅. Hence, by
Theorem 16, it follows that {t ∈ V (T ) : u ∈ β(t)}∩{t ∈ V (T ) : v ∈ β(t)}∩V (P ) ̸= ∅.

We are now ready to prove that the minimum size of a non-edge-separating family of
tree-decompositions of a graph G is upper bounded by the tree-median-dimension of G.

Lemma 18. Let G be a graph, and let (M,γ) be a complete k-tree-median-decomposition
of G. Let T = {(Ti, βi)}i∈[k] be a family of k tree-decompositions of G which satisfies the
conditions of Theorem 15. Then for every non-edge e of G, there exists i ∈ [k] such that
(Ti, βi) separates e.

Proof of Lemma 18. Let us suppose towards a contradiction that the lemma does not
hold. Let {u, v} ∈

(
V (G)
2

)
\ E(G) be such that no tree-decomposition in T separates
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{u, v}, and let ϕ be an isometric embedding of M to the graph T1 □ · · · □ Tk, as in the
statement of Theorem 15. In what follows we show that there exists a vertex of M whose
bag, in (M,γ), contains both the vertices u and v, contradicting the fact that every bag
of M is a clique of G and that {u, v} /∈ E(G).

Claim 19. For every j ∈ [k] there exist, not necessarily distinct a, b ∈ V (M) such that
the following hold:

• u ∈ γ(a) and v ∈ γ(b); and

• for all i ∈ [j], we have πi(ϕ(a)) = πi(ϕ(b)).

Proof of Theorem 19. We prove the claim by induction on j. For the basis of the in-
duction: Since (T1, β1) does not separate the non-edge {u, v}, it follows that there exists
t1 ∈ V (T1) such that {u, v} ⊆ β1(t1). Thus, by Theorem 15 (4), there exist not necessarily
distinct a, b ∈ V (M) such that π1(ϕ(a)) = π1(ϕ(b)) = t1, u ∈ γ(a), and v ∈ γ(b).

Let j ⩾ 1, and let us suppose that there exist a, b ∈ V (M) as in the statement of
the claim. For each i ∈ [j], let ti := πi(ϕ(a)) = πi(ϕ(b)) ∈ V (Ti). Since u ∈ γ(a)
we have that u ∈ βj+1(πj+1(ϕ(a))). Since v ∈ γ(b) we have that v ∈ βj+1(πj+1(ϕ(b))).

Let P be the
(
πj+1(ϕ(a)), πj+1(ϕ(b))

)
-path in Tj+1. Since u ∈ βj+1(πj+1(ϕ(a))), v ∈

βj+1(πj+1(ϕ(b))), and the tree-decomposition (Tj+1, βj+1) does not separate the non-edge
{u, v}, by Theorem 17, it follows that there exists t ∈ V (P ) ⊆ V (Tj+1) such that {u, v} ⊆
βj+1(t). Let tj+1 be such a vertex.

Let Q be a shortest (a, b)-path in M . We claim that there exists z ∈ V (Q) such that
for each i ∈ [j + 1] we have πi(ϕ(z)) = ti. Indeed, by (1) of Lemma 13, we know that for
every vertex q ∈ V (Q) and for every i ∈ [j] we have πi(ϕ(q)) = ti. Since tj+1 lies in P ,
by (2) of Lemma 13, there exists z ∈ V (Q) such that πj+1(ϕ(z)) = tj+1. Let z be such a
vertex. Then z satisfies our claim.

Since {u, v} ⊆ βj+1(tj+1), by Theorem 15 (4), it follows that there exist not necessarily
distinct vertices x, y ∈ V (M) such that u ∈ γ(x), v ∈ γ(y) and πj+1(ϕ(x)) = πj+1(ϕ(y)) =
tj+1.

Let a′ := median(a, x, z). Then, since a′ lies in a shortest (a, x)-path of M and in a
shortest (x, z)-path of M , by Lemma 13, we have that πi(ϕ(a

′)) = ti for all i ∈ [j+1]. Let
U := {w ∈ V (M) : u ∈ γ(w)}, and recall that U is convex. Since a, z ∈ U and a′ lies in a
shortest (a, z)-path of M , it follows that a′ ∈ U . In particular, we have that u ∈ γ(a′).

Let b′ := median(b, y, z). Similarly, with a′, we have that πi(ϕ(b
′)) = ti for all i ∈ [j+1],

and that v ∈ γ(a′). Thus, the vertices a′ and b′ of M witness that the statement of the
claim holds for j+1. This concludes the induction, and thus the proof of Theorem 19. ■

Let a, b ∈ V (M) be such that:

• u ∈ γ(a) and v ∈ γ(b); and

• for all i ∈ [k], we have πi(ϕ(a)) = πi(ϕ(b)).
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Then, by Theorem 15, we have that γ(a) = γ(b). In particular, {u, v} ⊆ γ(a), and, since
γ(a) is a clique of G, we have that {u, v} ∈ E(G), which is a contradiction. This concludes
the proof of Lemma 18.

Corollary 20 follows immediately from Lemma 18 and Lemma 14.

Corollary 20. Let G be a graph. Then the tree-median-dimension of G is equal to the
minimum size of a non-edge-separating family of tree-decompositions of G.

Now Theorem 11, which states that the tree-median-dimension of a graph is equal to
its chordality, follows immediately by Lemma 12 and Corollary 20.

Theorem 1 is an immediate corollary of Theorem 11, Proposition 8, Corollary 10 and
Lemma 12. We remark that Theorem 1 generalizes Theorem 7 and Corollary 9.

The notion of k-path-median-decomposition can be defined similarly with that of k-
tree-median-decomposition, by considering completions which are intersection graphs of
convex subgraphs of median graphs of path-median-dimension k. By modifying the proofs
of this section in a trivial way we can derive the following characterizations of boxicity.

Theorem 21. Let G be a graph and k be a positive integer. Then the following are
equivalent:

1. The graph G has boxicity k.

2. The minimum size of a non-edge-separating family of path-decompositions of G is
k.

3. k is the minimum integer such that the graph G is the intersection graph of a family
of convex subgraphs of the Cartesian product of k paths.

4. k is the minimum integer such that the graph G is the intersection graph of a family
of convex subgraphs of a median graph of path-dimension k.

5. The graph G has path-median-dimension k.

3 Chordality and χ-boundedness

We study classes of graphs of bounded chordality from the perspective of χ-boundedness.

3.1 The class C ∩• I is not χ-bounded

In [13], Dujmovic, Joret, Morin, Norin, and Wood studied graphs which have two tree-
decompositions such that “each bag of the first decomposition has a bounded intersec-
tion with each bag of the second decomposition”. Following [13], we say that two tree-
decompositions (T1, β1) and (T2, β2) of a graph G are k-orthogonal if for every t1 ∈ T1

and t2 ∈ T2, we have |β1(t1) ∩ β2(t)| ⩽ k. Dujmovic, Joret, Morin, Norin, and Wood [13]
proved that this is the case for graphs which belong to a proper minor-closed class, for
string graphs with a linear number of crossings in a fixed surface, and for graphs with
linear crossing number in a fixed surface. In a more recent work Liu, Norin, and Wood [23]
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proved that for graphs which exclude a fixed graph as odd-minor there exists an integer
k such that these graphs have a tree-decomposition and a path-decomposition which are
k-orthogonal. Here we are interested in connections of this concept with the concept of
χ-boundedness.

Observation 22 (Dujmović, Joret, Morin, Norin, and Wood [13, Observation 27]). Let G
be a graph and k be a positive integer. Then G has two k-orthogonal path-decompositions
if and only if G is a subgraph of a graph H such that H has boxicity at most two, and
ω(H) ⩽ k.

Lemma 23. Let G be a graph and k be a positive integer. Then the following hold:

1. The graph G has two k-orthogonal tree-decompositions if and only if G is a subgraph
of a graph H such that H has chordality at most two, and ω(H) ⩽ k.

2. The graph G has a tree-decomposition and a path-decomposition which are k-orthogo-
nal if and only if G is a subgraph of a graph H such that H ∈ C∩• I, and ω(H) ⩽ k.

Proof of Lemma 23. Follows immediately by the corresponding definitions and the facts
that every bag of a tree-decomposition is a clique of the corresponding chordal completion,
and that every clique of a chordal completion is contained in a bag of the corresponding
tree-decomposition.

The following is an immediate corollary of Theorem 22 and Lemma 23.

Proposition 24. Let C be the class of chordal graphs and I be the class of interval graphs.
The following hold:

1. The class I ∩• I is χ-bounded if and only if there exists a function f : N → R such
that for every graph G which has two k-orthogonal path-decompositions, we have
χ(G) ⩽ f(k).

2. The class C ∩• C is χ-bounded if and only if there exists a function f : N → R such
that for every graph G which has two k-orthogonal tree-decompositions, we have
χ(G) ⩽ f(k).

3. The class C ∩• I is χ-bounded if and only if there exists a function f : N → R such
that for every graph G which has a tree-decomposition and a path-decomposition
which are k-orthogonal, we have χ(G) ⩽ f(k).

The authors of [13] posed the following question, for which they conjectured a positive
answer.

Problem 25 (Dujmović, Joret, Morin, Norin, and Wood, [13, Open Problem 3]). Is there
a function f such that every graph G that has two k-orthogonal tree-decompositions is
f(k)-colorable?

By Proposition 24, it follows that the above question is equivalent to the first part of
the question of Gyárfás that we metioned in the Introduction (Problem 2), which asks
whether the class of all graphs of chordality at most two is χ-bounded.
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In [14] Felsner, Joret, Micek, Trotter and Wiechert, answered Problem 25 in the
negative, and in particular they answered Gyárfás’s question (Problem 2), in the negative.

Felsner, Joret, Micek, Trotter and Wiechert [14] proved the following, which answers
in the negative both the questions in Problem 2 and Problem 25.

Theorem 26 (Felsner, Joret, Micek, Trotter and Wiechert, [14, Theorem 2]). For every
positive integer k, there is a graph with chromatic number at least k which has a tree-
decomposition (T, β) and a path-decomposition (P, γ), which are 2-orthogonal. That is,
for every t ∈ V (T ) and for every p ∈ V (P ), we have |β(t) ∩ γ(p)| ⩽ 2.

The following is an immediate corollary of Lemma 23 and Theorem 26.

Corollary 27. For every positive integer k, there exist a graph Hk ∈ C∩• I such that Hk

is triangle-free and has chromatic number at least k.

Corollary 28. The class C ∩• I is not χ-bounded. In particular, since I ⊆ C, it follows
that the class of all the graphs of chordality at most two is not χ-bounded.

3.2 Subclasses of C∩• C: When each chordal graph has a representation tree
of bounded path-width

In subsection 3.1, we saw that the class C∩• I is not χ-bounded. From the characterization
of chordal (respectively interval) graphs as intersection graphs of subtrees (respectively
subpaths) of trees (respectively paths) that we presented in the Introduction, it follows
that I∩• I is the subclass of C∩• C in which each of the two chordal graphs in the intersection
has a representation tree which is a path.

In this subsection we consider the family of subclasses of C ∩• C (and superclasses of
I ∩• I) in which each of the two chordal graphs in the intersection has a representation
tree of bounded path-width. We prove that these classes are χ-bounded.

Theorem 29. Let k1 and k2 be positive integers, and let G1 and G2 be chordal graphs such
that for each i ∈ [2] the graph Gi has a representation (Ti, βi), where pw(Ti) ⩽ ki. If G is
a graph such that G = G1 ∩G2, then G is O(ω(G) log(ω(G)))(k1 + 1)(k2 + 1)-colorable.

The main step towards our proof of Theorem 29 is to prove that the vertex set of a
graph G as in the statement of Theorem 29 can be partitioned into a constant number of
sets so that each of these sets induces a graph of boxicity at most two. Then we use the
fact that the class I∩• I is χ-bounded and we color each of these induced subgraphs with
a different palette of colors.

Lemma 30. Let k1 and k2 be positive integers, and let G1 and G2 be chordal graphs such
that for each i ∈ [2] the graph Gi has a representation (Ti, βi), where pw(Ti) ⩽ ki. If
G is a graph such that G = G1 ∩ G2, then there exists a partition P of V (G) such that
|P| ⩽ (k1 + 1)(k2 + 1) and for every V ∈ P, the graph G[V ] has boxicity at most two.

In 2021, Chalermsook and Walczak [7] provided an improvement on the upper bound
of Asplund and Grünbaum [3] for the chromatic number of graphs of boxicity at most
two.
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Theorem 31 (Chalermsook and Walczak, [7]). Every family of axis-parallel rectangles in
the plane with clique number ω is O(ω log(ω))-colorable, and an O(ω log(ω))-coloring of
it can be computed in polynomial time.

Since Theorem 29 follows immediately by Lemma 30 and Theorem 31, in order to
prove Theorem 29 it remains to prove Lemma 30. The main observation that we need is
that if a graph has path-width at most k, then it can decomposed into a family of k + 1
disjoint subgraphs, each of which is a disjoint union of induced paths.

We first need a result about tree-decompositions. Let G be a graph, and let A,B,X ⊆
V (G). We say that X separates A from B in G if for every (A,B)-path P in G we have
V (P ) ∩X ̸= ∅.

Lemma 32 (Robertson and Seymour [29, (2.4)]). Let G be a graph, (T, β) be a tree-
decomposition of G, let {t1, t2} be an edge of T . If T1 and T2 are the components of T \
{t1, t2}, where t1 ∈ V (T1) and t2 ∈ V (T2), then β(t1)∩ β(t2) separates V1 :=

⋃
t∈V (T1)

β(t)

from V2 :=
⋃

t∈V (T2)
β(t) in G.

Lemma 33. Let G be a connected graph and let k be a positive integer. If G has path-
width at most k, then there exists an induced path Q which is a subgraph of G such that
G \ V (Q) has path-width at most k − 1.

Proof of Lemma 33. Consider a path-decomposition (P, β) of G which realizes its path-
width. Let p1, . . . , pl be the elements of V (P ) enumerated in the order that they appear
in P . Let v1 ∈ V (G)∩ β(p1) and vl ∈ V (G)∩ β(pl), and let Q be an induced (v1, vl)-path
in G. We define the function β′ : V (P ) → 2V (G) as follows: for every p ∈ V (P ) we
have β′(p) := β(p) \ V (Q). Then (P, β′) is a path-decomposition of the graph G \ V (Q).
Moreover, by Lemma 32, it follows that for each i ∈ [l] we have V (Q) ∩ β(pi) ̸= ∅. Thus,
the width of (P, β′) is at most k − 1.

Corollary 34. Let k be a positive integer. If G is a graph of path-width at most k, then
there exist (possibly null) induced subgraphs P1, . . . , Pk+1 of G such that the following hold:

1. For each i ∈ [k + 1], every component of the graph Pi is a path.

2. For each i ∈ [2, k+ 1], we have that Pi is an induced subgraph of G \ (V (P1)∪ . . .∪
V (Pi−1)), and every component of G\∪j<iV (Pj) contains exactly one component of
Pi.

3. V (G) =
⋃

i∈[k+1] V (Pi).

Proof of Corollary 34. We prove the statement by induction on k. If the graph G has
path-width equal to one, then G is the disjoint union of paths, and letting P1 := G we
see that the statement of Corollary 34 holds.

Let k > 1 and suppose that the statement of Corollary 34 holds for every positive
integer k′ < k. Let C1, . . . , Cl be the connected components of G. For each j ∈ [l], we
have that Cj is a connected graph of path-width at most k. Let P j

1 be a subgraph of Cj

which is a path as in the statement of Lemma 33. Let P1 := ∪j∈[l]P
j
1 . Consider the graph

G′ := G \ V (P1) which, by Lemma 33, has path-width at most k′ := k− 1 < k. Then, by
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applying the induction hypothesis to the graph G′, we obtain subgraphs P2, . . . , Pk+1 of
G′ such that the subgraphs P1, . . . , Pk+1 of G satisfy the statement of Corollary 34.

We are now ready to prove Lemma 30.

Proof of Lemma 30. Let P1, . . . , Pk1+1 and Q1, . . . , Qk2+1 be subgraphs of T1 and T2 re-
spectively, chosen as in Corollary 34.

Let X be a subtree of T1. We define the level of X, denoted by L1(X), as follows:

L1(X) := min{i ∈ [k1 + 1] : V (X) ∩ V (Pi) ̸= ∅}.

Similarly, we define the level of a subtree X of T2 as follows:

L2(X) := min{i ∈ [k2 + 1] : V (X) ∩ V (Qi) ̸= ∅}.

Claim 35. Let X and Y be subtrees of T1 such that L1(X) = L1(Y ) = l. Then the
following hold:

1. Both X ∩ Pl and Y ∩ Pl are paths; and

2. V (X) ∩ V (Y ) ̸= ∅ if and only if V (X) ∩ V (Y ) ∩ V (Pl) ̸= ∅.

Similarly for subtrees of T2.

Proof of Claim 35. We prove the claim for T1; the proof for T2 is identical. Since L1(X) =
l, we have that V (X)∩ (V (P1)∪ . . . ∪ V (Pl−1)) = ∅. Thus X is contained in a connected
component of the forest T \ (V (P1) ∪ . . . ∪ V (Pl−1)). Let C be this component. By
Corollary 34, we have that Z := Pl ∩C is a path, and thus X ∩Pl is a path as well. With
identical arguments we get that Y ∩ Pl is a path.

For the second statement of our claim: The reverse implication is immediate. For the
forward implication: Since V (X) ∩ V (Y ) ̸= ∅, both the subtrees X and Y are contained
in the same connected component of the forest T \ (V (P1) ∪ . . . ∪ V (Pl−1)). Let C be
this component. By Corollary 34, we have that Z := Pl ∩ C is a path. Consider the tree
C and its family of subtrees {X, Y, Z}. Since V (X) ∩ V (Z) ̸= ∅, V (Y ) ∩ V (Z) ̸= ∅ and
V (X)∩V (Y ) ̸= ∅, by Theorem 16, it follows that V (X)∩V (Y )∩V (Z) ̸= ∅. In particular
V (X) ∩ V (Y ) ∩ V (Pl) ̸= ∅. This concludes the proof of Claim 35. ■

In what follows in this proof, for every v ∈ V (G) and i ∈ [2], we denote by T v
i the

subtree Ti[{t ∈ V (Ti) : v ∈ βi(t)}] of Ti. For each i ∈ [k1 + 1] and for each j ∈ [k2 + 1],
we define a subset of V (G) as follows:

Vi,j := {v ∈ V (G) : L1(T
v
1 ) = i and L2(T

v
2 ) = j}.

Let P := {Vi,j}i∈[k1+1],j∈[k2+1] and observe that P is a partition of V (G).

Claim 36. For each i ∈ [k1+1] the graph G1[
⋃

j∈[k2+1] Vi,j] is an interval graph. Similarly

for each j ∈ [k2 + 1], and G2[
⋃

i∈[k1+1] Vi,j].
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Proof of Claim 36. We prove the claim for G1; the proof for G2 is identical. Let i ∈
[k1 + 1]. For each vertex v ∈ G1[

⋃
j∈[k2+1] Vi,j], let P

v
i := Pi ∩ T v

1 . Then, by Claim 35, we

have that P v
i is a path. Let u and v be distinct vertices of the graph G1[

⋃
j∈[k2+1] Vi,j].

Then u is adjacent to v in G1[
⋃

j∈[k2+1] Vi,j] if and only if V (T v
1 ) ∩ V (T u

1 ) ̸= ∅. By

Claim 35, we have that V (T v
1 ) ∩ V (T u

1 ) ̸= ∅ if and only if V (T v
1 ) ∩ V (T u

1 ) ∩ V (Pi) ̸= ∅.
Since V (T v

1 ) ∩ V (T u
1 ) ∩ V (Pi) = V (P u

i ) ∩ V (P v
i ), it follows that u is adjacent to v in

G1[
⋃

j∈[k2+1] Vi,j] if and only if V (P u
i ) ∩ V (P v

i ) ̸= ∅.
Hence, the graph G1[

⋃
j∈[k2+1] Vi,j] is the intersection graph of the family {P v

i : v ∈
G1[

⋃
j∈[k2+1] Vi,j]} of subpaths Pi. Since Pi is the disjoint union of paths it follows that

every component of G1[
⋃

j∈[k2+1] Vi,j] is an interval graph, and so G1[
⋃

j∈[k2+1] Vi,j] is an
interval graph as well. ■

Let i ∈ [k1 + 1] and j ∈ [k2 + 1]. Then, by Claim 36, we have G[Vi,j] ∈ I ∩• I. Hence
P is the desired partition.

We remark that, using the arguments of the above proof and induction, we can get
the following:

Lemma 37. Let k1, . . . , kl be positive integers, and let G1, . . . , Gl be chordal graphs such
that for each i ∈ [l] the graph Gi has a representation (Ti, βi), where pw(Ti) ⩽ ki. If G is
a graph such that G = G1 ∩ . . . ∩ Gl, then there exists a partition P of V (G) such that
|P| ⩽

∏
i∈l(ki + 1) and for every V ∈ P, the graph G[V ] has boxicity at most l.

Davies and Yuditsky [10] proved that the Gyárfas-Sumner conjecture holds with poly-
nomial bounds for graphs of bounded boxicity:

Theorem 38 (Davies and Yuditsky [10]). For every positive integer d and forest F , the
class of all F -free graphs of boxicity at most d is polynomially χ-bounded.

Now the following strengthening of Theorem 38 is an immediate corollary of Lemma
37 and Theorem 38.

Theorem 39. Let k1, . . . , kl be positive integers, and let C be the class of all graphs G
for which there exist chordal graphs G1, . . . , Gl such that for each i ∈ [l] the graph Gi has
a representation (Ti, βi), where pw(Ti) ⩽ ki, and G = G1 ∩ . . . ∩Gl. Then, the for every
forest F the class of F -free graphs in C is polynomially χ-bounded.

3.3 Subclasses of C∩• C: When at least one chordal graph has a representation
tree of bounded radius

For each positive integer k we consider the subclass of C ∩• C in which one of the two
chordal graphs in the intersection has a representation tree of radius at most k, and we
prove that this class is χ-bounded.

Theorem 40. Let k be a positive integer, and let G1 and G2 be chordal graphs such that
the graph G1 has a representation (T1, β1) where rad(T1) ⩽ k. If G is a graph such that
G = G1 ∩G2, then χ(G) ⩽ k · ω(G).
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The main observation that we need for the proof of Theorem 40 is the following:

Lemma 41. Let G be a chordal graph and k be a positive integer. If G has a representation
(T, β) such that rad(T ) ⩽ k, then there exists a partition P of V (G) such that |P| ⩽ k
and for each V ∈ P we have that G[V ] is a disjoint union of complete graphs.

We show how Theorem 40 follows from Lemma 41.

Proof of Theorem 40 assuming Lemma 41. Let G be a graph as in the statement of The-
orem 40, and let P be a partition of V (G1) as in the statement of Lemma 41.

We claim that for each V ∈ P , we have χ(G[V ]) ⩽ ω(G). Indeed, let V ∈ P . Then the
graphG1[V ] is a disjoint union of complete graphs. Hence, the graphG[V ] = G1[V ]∩G2[V ]
is the intersection of a chordal graph with a disjoint union of cliques, and thus a chordal
graph. Hence, χ(G[V ]) ⩽ ω(G[V ]) ⩽ ω(G).

For each V ∈ P , we can color the graph G[V ] with a different palette of ω(G) colors,
and obtain a (k · ω(G))-coloring of G. Hence χ(G) ⩽ k · ω(G).

It remains to prove Lemma 41.

Proof of Lemma 41. Let r be a vertex of T which, chosen as a root, realizes the radius of T .
For each vertex v ∈ V (G), we denote by T v the subtree T [{t ∈ V (T ) : v ∈ β(t)}] of T . Fur-
thermore, for each subtree X of T , we denote by L(X) the value min{d(r, x) : x ∈ V (X)},
and by r(X) the root of X, which is the unique element of the set argminx∈V (X) d(r, x).
We refer to the value L(X) as the level of X.

Let S := {T v : v ∈ V (G)}, and for each i ∈ [k], let Li := {X ∈ S : L(X) = i}.
Observe that, since T has radius at most k, we have that {Li}i∈[k] is a partition of S.

The main observation that we need is that two subtrees X and Y of the same level
intersect if and only if they have the same root (and no other common vertex).

Thus, for each level i ∈ [k], the relation of intersection of subtrees is an equivalence
relation in Li, and the corresponding induced subgraph of G is a disjoint union of complete
graphs.

For each i ∈ [k], let Vi := {v ∈ V (G) : T v ∈ Li}. Then P := {Vi : i ∈ [k] and Vi ̸= ∅}
is the desired partition of V (G).

4 The k-Chordality Problem is NP-complete for k ⩾ 3

We recall from the section 1 that for a fixed positive integer k, the k-Chordality
Problem is the following: Given a graph G as an input, decide whether chor(G) ⩽ k.
In this section we study the computational complexity of this problem. For k = 1, the
1-Chordality Problem is to decide whether a given graph is chordal, and there exists
a polynomial-time algorithm for this problem (see, for example, [16, 22]). In this section
we prove Theorem 5 which we restate here.

Theorem 42. For every k ⩾ 3, the k-Chordality Problem is NP-complete.
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For a fixed positive integer k the k-Coloring Problem is the following: Given a
graph G as an input, decide whether G has a k-coloring.

Theorem 43 (Karp, [20, Main Theorem]). For every k ⩾ 3, the k-Coloring Problem
is NP-complete.

We immediately see that for every positive integer k, the k-Chordality Problem is
in NP. We prove Theorem 42 by proving a polynomial-time reduction of the k-Coloring
Problem to the k-Chordality Problem. We first state some preliminary definitions
and results.

Theorem 44 (McKee and Scheinerman, [25, Corollary 4]). Let G be a graph. Then
chor(G) ⩽ χ(G).

Given two graphs G and H, the lexicographic product of G with H, denoted by G ·H,
is the graph which has as vertices the elements of the set V (G) × V (H), and where two
vertices (x1, y1) and (x2, y2) are adjacent if and only if {x1, x2} ∈ E(G), or x1 = x2 and
{y1, y2} ∈ E(H). The graph G ·H can be though as the graph that we obtain if in G we
“substitute” a copy of H for each vertex of G.

Theorem 45 (Geller and Stahl, [17, Theorem 3]). Let G and H be two graphs. If
χ(H) = n, then χ(G ·H) = χ(G ·Kn).

Proposition 46. Let G be a graph. Then χ(G) ⩽ k if and only if chor(G ·Kc
2) ⩽ k.

Proof of Proposition 46. For the forward direction: By Theorem 44 and Theorem 45 we
have that chor(G ·Kc

2) ⩽ χ(G ·Kc
2) = χ(G ·K1) = χ(G) ⩽ k.

For the reverse direction: Suppose that chor(G ·Kc
2) ⩽ k and let H1, . . . , Hk be chordal

graphs such that G·Kc
2 = H1∩. . .∩Hk. Let V (Kc

2) = {1, 2}. Let f : V (G) → [k] be defined
as follows: f(v) = i ∈ [k], where i is chosen so that it satisfies {(v, 1), (v, 2)} /∈ E(Hi). We
claim that f is a proper k-coloring of G. Suppose not. Let {u, v} ∈ E(G) be such that
f(u) = f(v) =: i. Then we have that {(v, 1), (v, 2)} /∈ E(Hi) and {(u, 1), (u, 2)} /∈ E(Hi).
Thus, Hi[{(v, 1), (v, 2), (u, 1), (u, 2)}] is a hole in Hi which is a contradiction.

Corollary 47. Let G be a graph. Then, in polynomial-time in the size of G we can
construct a graph G′ such that the following hold: χ(G) = k if and only if chor(G′) = k.

Now Theorem 42 follows immediately by Theorem 43 and Corollary 47.
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[3] Edgar Asplund and Branko Grünbaum. On a coloring problem. Mathematica Scan-
dinavica, 8:181–188, 1960.

[4] Claude Berge. Les problemes de coloration en théorie des graphes. In Annales
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[15] Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the
chordal graphs. Journal of Combinatorial Theory, Series B, 16(1):47–56, 1974.
doi:10.1016/0095-8956(74)90094-X

the electronic journal of combinatorics 32(4) (2025), #P4.7 20

https://doi.org/10.1016/j.dam.2024.10.010
https://arxiv.org/abs/2412.19551
https://www.jstor.org/stable/24489134
https://hal.science/hal-04092789/document
https://hal.science/hal-04092789/document
https://doi.org/10.1016/0012-365X(74)90002-8
https://www.proquest.com/docview/302137027?pq-origsite=gscholar&fromopenview=true
https://doi.org/10.1137/1.9781611976465.54
https://arxiv.org/abs/2504.00153
https://link.springer.com/article/10.1007/BF01788656
https://arxiv.org/abs/2407.16882
http://www.archim.org.uk/eureka/archive/Eureka-9.pdf
https://doi.org/10.2307/2307489
https://doi.org/10.1137/17M1112637
https://doi.org/10.1016/j.endm.2017.06.068
https://doi.org/10.1016/0095-8956(74)90094-X
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