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Abstract

Cops and Robber is a well-studied two-player pursuit-evasion game played on
a graph, where a group of cops tries to capture the robber. The cop number of a
graph is the minimum number of cops required to capture the robber. Gavenčiak
et al. [Eur. J. of Comb. 72, 45–69 (2018)] studied the game on intersection graphs
and established that the cop number for the class of string graphs is at most 15, and
asked as an open question to improve this bound for string graphs and subclasses
of string graphs. We address this question and establish that the cop number of
a string graph is at most 13. To this end, we develop a novel guarding technique.
We further establish that this technique can be useful for other Cops and Robber
games on graphs admitting a representation. In particular, we show that four cops
have a winning strategy for a variant of Cops and Robber, named Fully Active
Cops and Robber, on planar graphs, addressing an open question of Gromovikov
et al. [Austr. J. Comb. 76(2), 248–265 (2020)]. In passing, we also improve the
known bounds on the cop number of boxicity 2 graphs. Finally, as a corollary of our
result on the cop number of string graphs, we establish that the chromatic number
of string graphs with girth at least 5 is at most 14.

Mathematics Subject Classifications: 05C57, 05C10

1 Introduction

Cops and Robber is a two-player perfect information pursuit-evasion game played on
a graph. One player is referred as cop player, who controls a set of cops, and the other
player is referred as robber player and controls a single robber. The game starts with
the cop player placing each cop on some vertex of the graph, and multiple cops may
simultaneously occupy the same vertex. Then, the robber player places the robber on
a vertex of the graph. Afterwards, the cop player and the robber player make alternate
moves, starting with the cop player. In a cop player move, each cop either moves to an
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adjacent vertex (along an edge) or stays on the same vertex. In the robber player move,
the robber does the same. For simplicity, we will say that the cop (resp. robber) moves
in a cop (resp. robber) move instead of saying that the cop (resp. robber) player moves
the cop (resp. robber).

A state in the game where one of the cops occupies the same vertex as the robber is
called a capture. If the cops can capture the robber in a graph, then the cops win, and if
the robber can evade the capture forever, then the robber wins. The cop number of a graph
G, denoted as c(G), is the minimum number of cops that can ensure the capture against
all the strategies of the robber. For a family F of graphs, c(F) = max{c(G) | G ∈ F}.
In this paper, we consider finite, connected1, and simple undirected graphs. We denote
the robber by R.

The game of Cops and Robber was independently introduced by Quilliot [36] and
by Nowakowski and Winkler [30], both in 1983, with just one cop. Aigner and Fromme [3]
generalized the game to multiple cops and defined the cop number for a graph. The notion
of cop number and some fundamental techniques introduced by Aigner and Fromme [3]
have resulted in a plethora of rich results on this topic. For more details, we refer the
reader to the book by Bonato and Nowakowski [9].

The computational complexity of finding the cop number of a graph is a challenging
question in itself. On the positive side, Berarducci and Intrigila [7] provided a backtracking
algorithm that decides whether the cop number of a graph is at most k in O(n2k+1) time;
hence, this is a polynomial-time algorithm for a fixed k. On the negative side, Fomin
et al. [16] proved that determining the cop number of a graph is NP-hard as well as
W[2]-hard. Moreover, the game was shown to be PSPACE-hard by Mamino [29] and
EXPTIME-complete by Kinnersley [26]. Recently, Brandt et al. [12] provided the fine-
grained lower bounds, and proved that the time complexity of any algorithm for Cops
and Robber is Ω(nk−o(1)) conditioned on SETH, and 2Ω(

√
n) conditioned on ETH.

A string representation of a graph is a collection of simple curves on the plane such
that each curve corresponds to a vertex of the graph, and two curves intersect if and
only if the vertices they represent are adjacent in the graph. The graphs that have
string representations are called string graphs. Many important graph families like planar
graphs, chordal graphs, and disk graphs are subfamilies of string graphs [6, 21]. Pach and

Toth [31] proved that the number of string graphs on n labeled vertices is at least 2
3
4(

n
2),

arguing that many graphs are string graphs.
Cops and Robber is well-studied on graphs having a representation either on the

plane or on some surface of higher genus [3, 35, 28, 38]. Further, Andreae [5] established
that in general for any graph H, at most |E(H)| cops suffice to capture the robber on
any graph which does not contain H as a minor. Gavenčiak et al. [19] studied the cop
number of various families of intersection graphs and showed that the cop number for the
class of string graphs is at most 15. We improve this result by giving a winning strategy
using 13 cops for any string graph.

A technique central to all of the above results, including ours, is the isometric path

1The cop number of a disconnected graph is the sum of the cop numbers of its components; hence we
assume connectedness.
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guarding lemma of Aigner and Fromme (Proposition 1). This guarding lemma has found
applications in bounding the cop number of a graph with respect to its structural param-
eters such as treewidth [24] and vertex cover [18]. Similar guarding based techniques have
been used to bound the cop number of graph classes such as AT-free graphs [4], maximal
1-planar graphs [15] and 1-planar graphs with restricted crossing types [10].

Several variations of Cops and Robber have been studied, and they vary mainly
depending on the capabilities of the cops and the robber. Some of these variations are
shown to have correspondence with various width measures of graphs like treewidth [37],
pathwidth [32], tree-depth [20], hypertree-width [2], cycle-rank[20], and directed tree-
width [25]. Moreover, Abraham et al. [1] defined cop-decomposition, which is based on the
cop strategy in Cops and Robber game on minor-free graphs provided by Andreae [5],
and showed that it has significant algorithmic applications in theory.

Gromovikov et al. [23] studied a variation of the game, called Fully Active Cops
and Robber, where the cops, as well as the robber, are forced to move to an adjacent
vertex on their respective turns. We say that a cop (or robber) is active if it has to move
to an adjacent vertex in its every turn. Similarly, we say that a cop (or robber) is flexible
if, in its turn, it can either move to an adjacent vertex or stay on the same vertex. In
Fully Active Cops and Robber, the cops, as well as the robber, are active. The
active cop number of a graph G, denoted ca(G), is the minimum number of cops required
to ensure capture in Fully Active Cops and Robber. Gromovikov et al. [23] studied
this game on various graph classes and suggested determining the active cop number of
planar graphs as an open question. We address this question and show that the active
cop number for the class of planar graphs is at most four. We also consider a variation of
this game where only the cops are forced to be active. Let cA(G) be the minimum number
of active cops required to ensure the capture of a flexible robber in G. Observe that, for
any graph G, ca(G) 󰃑 cA(G). We rather show that for a planar graph G, cA(G) 󰃑 4

1.1 Preliminaries

Let u be a vertex of graph G. We define the open neighbourhood of u, denoted by N(u),
as {v : uv ∈ E(G)}. We define the closed neighbourhood of u, denoted by N [u], as
N(u) ∪ {u}. For a subgraph H of G, define the closed neighbourhood of H, denoted by
N [H], as

󰁖
v∈V (H) N [v]. We also define G−H as the graph induced by the vertices that

are in G but not in H. For a vertex x ∈ V (G), we define G− x as the graph induced by
vertices in V (G) \ {x}.

Consider two arbitrary vertices u, v ∈ V (G). By d(u, v), we denote the distance
between vertices u and v in G. Let P be a path of G with endpoints u and v. We say that
P is a u, v-path. Path P is said to be isometric if P is a shortest u, v-path. Moreover,
path P is said to be convex if every u, v-path Q ∕= P is longer than P . We remark that not
every pair of vertices is guaranteed to have a convex path between them. In this article,
we do a lot of index manipulations on path vertices. Therefore, whenever we mention an
isometric vi, vj-path P , for i < j, then the path is of the form vi, vi+1, . . . , vj−1, vj.

Let H be a subgraph of G. We say that some cops are guarding H if R cannot enter
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a vertex of H without getting captured. Similarly, we define a subset T ⊆ V (G) as the
robber territory if R cannot move to a vertex v /∈ T , without getting captured in the next
move.

Let T ⊆ V (G) be the robber territory. A u0, uk-path P is isometric relative to T , if
there is no shorter u0, uk-path containing at least one vertex of T . An isometric u0, uk-
path P relative to T is a convex path relative to T , if there exists no vertex x ∈ T such
that d(u0, x) = i− 1 and x ∈ N(ui).

G is an intersection graph if each vertex v ∈ V (G) corresponds to a set ψ(v), and
uv ∈ E(G) if and only if ψ(u) ∩ ψ(v) ∕= ∅. A string graph G is an intersection graph of
strings, where each string ψ(v) is a continuous image of the interval [0, 1] into R2. Given
a string graph G, we can generate strings corresponding to each vertex of V such that
two strings intersect if and only if the corresponding two vertices are adjacent in G. These
strings are said to be a representation of graph G. It is a standard assumption that for
any string graph G, we can get a representation where the strings are non self-intersecting.
So, we assume we have a representation where the strings are non self-intersecting.

1.2 Our Results and Techniques Used

It is well established that the cop number of a graph is well related to the geometry of the
graph. This relation was first established by Aigner and Fromme [3], who proved that the
cop number of a planar graph is at most three. To show this, they proved the following
result, which we will also use in this paper.

Proposition 1 ([3]). Let P be an isometric u0, uk-path in G. Then one cop can guard P
after at most k cop moves.

A similar idea was used by Beveridge et al. [8], who showed that three cops can prevent
the robber from crossing an isometric path in any unit disk graph, and using this proved
that nine cops have a winning strategy for unit disk graphs. Later, Gavenčiak et al. [19]
proved that the cop number of string graphs is at most 15. To establish this, they proved
the following result, which we will also use in this paper.

Proposition 2 ([19]). Let u and v be two distinct vertices of G and P be an isometric
u, v-path relative to the robber territory T ⊆ V (G). Then five cops can guard N [P ] after
at most k cop moves.

At a very high level, the idea of the above strategies is the following. The cops play the
game assuming a fixed representation of the graph. The cop player employs three teams
of cops, where each team can prevent the robber from crossing an isometric path. The
cops begin by using one team to guard an isometric path, say P1. Next, the cop player
finds another isometric path, say P2, such that the endpoints of P1 and P2 are the same,
and guard it using the second team. Now, R cannot cross the paths P1 and P2, and hence
is restricted to one of the faces formed by the boundary P1 ∪ P2 in the embedding. Now,
we can delete the part of the graph not accessible to R. In the remaining graph, the cop
player finds another isometric path, say P3, such that the endpoints of P3 are the same as
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the endpoints of P1 and P2, and guard P3 using the third team of the cops. This further
restricts R to either in a face formed by the boundary P1 ∪ P3 or in a face formed by the
boundary P2 ∪ P3. In either case, we can free one team of cops and keep repeating this
process, and in each iteration, the robber territory is strictly reduced. Since the robber
territory is initially the graph G, which is finite, these three teams eventually capture the
robber.

Our main observation is that if an isometric path P is a convex path, then in some
cases, we can employ a smaller number of cops to prevent the robber from crossing P .
More specifically, we have the following lemma, which we prove in Section 2.

Lemma 3. Let u0 and uk be two distinct vertices of G and P be a convex u0, uk-path
relative to the robber territory T ⊆ V (G). Then four cops can guard N [P ], after at most
k cop moves.

Using Lemma 3, we prove that four cops can prevent R from crossing a convex path
in a string graph representation. Then, using some novel techniques, we give a strategy
such that whenever two teams of cops are employed to guard two isometric paths, one of
the teams is guarding a convex path. This directly gives a cop winning strategy using 14
cops for string graphs. We further use some techniques to improve this bound to 13 cops.
We have the following result, which we prove in Section 3.

Theorem 4. If G is a string graph, then c(G) 󰃑 13.

Petr et al. [34] gave an algorithm that, given a graph G, can decide in O(knk+2) time
if c(G) 󰃑 k. Therefore, for any graph family F , if c(F) 󰃑 ℓ, where ℓ ∈ N, then for
any graph G ∈ F , c(G) can be computed in O(nℓ+1) time. Thus, we have the following
corollary.

Corollary 5. If G is a string graph, then c(G) can be computed in O(n14) time.

Aigner and Fromme [3] also showed that for a graph G with girth2 at least five and
minimum degree δ(G), c(G) 󰃍 δ(G). Inspired by this, Gavenčiak et al. [19] established
the following interesting relation between the cop number of a graph G, its degeneracy,
and hence its chromatic number.

Proposition 6 ([19]). Let F be a hereditary class of graphs such that c(F) 󰃑 k, for
k ∈ N. Then, every graph G ∈ F with girth at least five is k-degenerate and therefore,
k + 1-colorable.

Using Proposition 6, they established that every string graph with girth at least five is
16-colorable. Although the results of Fox and Pach [17] imply that the chromatic number
of girth five string graphs is bounded, their results do not mention an explicit numerical
bound. Moreover, it is known that the chromatic number of string graphs with girth four
is unbounded [33]. We also note here that the chromatic number of girth (at least) five
1-string graphs is at most six [27], where 1-string graphs are the graphs with a string
representation where two strings intersect at most once. We have the following corollary
on the chromatic number of string graphs using Proposition 6 and Theorem 4.

2The girth of a graph G is the length of a shortest cycle contained in G.
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Corollary 7. is a string graph with girth at least five, then

Let 2-BOX be the family of intersection graphs of axis-parallel rectangles in R2. It is
known that 2 󰃑 c(2-BOX)󰃑 15 [19]. We improve this result in the following theorem.

Theorem 8. Let 2-BOX be the family of rectangle intersection graphs. Then 3 󰃑 c(2-
BOX)󰃑 13.

Proof. Since 2-BOX is a subclass of string graphs, the upper bound follows from Theo-
rem 4. To prove the lower bound (i.e., 3 󰃑 c(2-BOX)), we observe that the dodecahedron
graph, having cop number three [3], is a boxicity 2 graph. For completeness, we give a
rectangle intersection representation of the dodecahedron graph in Figure 1.

We further show that our technique can be used to attain better bounds for different
variations of the game on other graph classes as well. In particular, we study Fully
Active Cops and Robber on planar graphs. It is known that ca(G) 󰃑 2 ·c(G)[23]. Let
P be the class of planar graphs, then trivially ca(P) 󰃑 6. Gromovikov et al. [23] asked as
open question what is the value of ca(P). We answer this question partially by showing
that ca(P) 󰃑 4. To show this, we prove the following lemma in Section 2.

Lemma 9. Let v0 and vk be two distinct vertices of G and P be a convex v0, vk-path
relative to the robber territory T ⊆ V (G). Then, one active cop can guard P against a
flexible robber, after at most k cop moves.

In Lemma 9, the active cop can guard a convex path even if the robber is flexible.
Therefore, using Lemma 9, and techniques similar to the ones we use for string graph, we
prove the following result in Section 4, a corollary of which is that ca(G) 󰃑 4.

Theorem 10. If G is a planar graph, then cA(G) 󰃑 4.

2 Guarding Convex Paths

In this section, we prove Lemma 3 and Lemma 9. We recall that an isometric u0, uk-path
P is a convex path relative to the robber territory T ⊆ V (G) if there exists no vertex
x ∈ T such that d(u0, x) = i− 1 and x ∈ N(ui). Figure 2 aids the proof of the following
lemma.

Lemma 11. Let u0 and uk be two distinct vertices of G and P be a convex u0, uk-path
relative to the robber territory T ⊆ V (G). Then four cops can guard N [P ], after at most
k cop moves.

Proof. We mark one cop as the sheriff, and the other three cops are said to be its deputies.
The deputies follow the movements of the sheriff such that when the sheriff is at a vertex
uj, for 0 󰃑 j 󰃑 k, the deputies are at vertices uj−2, uj−1 and uj+1. Let the vertex
uk+1 refer to the vertex uk, and let vertices u−1 and u−2 refer to the vertex u0. Let
Dj = {v | d(u0, v) = j, if j < k; and d(u0, v) 󰃍 j, if j = k}. See Figure 2 for an
illustration of the proof.
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Figure 1: The dodecahedron and its boxicity 2 representation. Here each vertex i corre-
sponds to rectangle i.
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u0

u1

uj�2

uj�1

uj

uj+1

uj+2

uk1

uk

D1

Di

Dk�1

Dk

N [P ]

x

P

Figure 2: P is a convex u0, uk path (relative to T ). Here N [P ] is denoted by heavier bold
lines. The vertex x ∈ (N [P ] ∩ Di) \ {ui}. The only two possible edges between x and
vertices of P are denoted by dotted lines.

Since P is an isometric path relative to T , the sheriff can guard P in at most k steps
using Proposition 1. Moreover, it is worth mentioning that the sheriff can do so by staying
on the vertices of P . More specifically, after each move of the sheriff, if R is at a vertex
v ∈ Dj, then the sheriff is at vertex uj. We claim that once the sheriff guards P , these
four cops guard N [P ].

To prove the above claim, we show that if R moves to a vertex x ∈ N [P ] (also x ∈ T ),
then R gets captured by one of the cops. If R moves to a vertex in P , then the sheriff
will capture the robber as it is guarding P . Let R move to a vertex x /∈ V (P ), x ∈ N [P ],
and x ∈ Dj.

Let 1 < j < k. Since x ∈ N [P ], x is adjacent to at least one vertex of P . Now x cannot
be adjacent to a vertex y from {u0, . . . , uj−2}, as through path u0, . . . , y, x the distance
d(u0, x) < j, which is not possible since x ∈ Dj. Moreover, x cannot be adjacent to a
vertex y from {uj+2, . . . uk}, as the path u0, . . . x, y, . . . uk becomes a shorter u0, uk-path
than P , which is a contradiction to the fact that P is an isometric path relative to T .
Also, x cannot be adjacent to uj+1 by the definition of the convex path. Hence, x can
only be adjacent to uj−1 and uj, and is adjacent to at least one of them. Since the sheriff
is guarding P , it can reach uj in this cop move, and hence is at one of the vertices from
{uj−1, uj, uj+1}. In any case, there are cops on both uj and uj−1. Therefore, one of these
cops will capture R whenever R enters x.

Similar arguments hold for j ∈ {0, 1, k}. If j = k, then observe that x can only be
adjacent to uk and uk−1, and both these vertices would be occupied by cops. If j = 1,
then x can only be adjacent to u0 and u1, and both these vertices would be occupied by
cops. If j = 0, then x = u0 and hence x is on P , and since the sheriff is guarding P , it
will capture R.
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Hence, these four cops can guard N [P ] in at most k steps.

Next, we show that for a convex path P relative to the robber territory T , one active
cop can guard P against a flexible robber.

Lemma 12. Let v0 and vk be two distinct vertices of G and P be a convex v0, vk-path
relative to the robber territory T ⊆ V (G). Then, one active cop can guard P against a
flexible robber, after at most k cop moves.

Proof. Let Dj = {v | d(v0, v) = j, if j < k; and d(v0, v) 󰃍 j, if j = k}. We claim that
if the cop C can ensure the following invariant, then C successfully guards P : after each
move of the cop, if the robber is at a vertex in Di, then C is at either vi or vi−1. Assume
that this invariant holds and R moves to enter a vertex vr of P from a vertex u /∈ V (P ).
Observe that, since P is a convex path, u ∈ Dr ∪ Dr+1. Consider the game state just
before this move of R. Due to the invariant condition, since R is at vertex u, the cop C
is either at vr, vr−1, or vr+1. In any of these cases, C can move to capture R if R moves
to vr.

Thus, if C can maintain this invariant, C guards P . Now, it remains to show that
C can always reach this invariant and, once achieved, can always maintain it. C starts
at vertex v0. If R is at vertex u ∈ Di, then C assumes image(R) at vertex vi. Since
image(R) is restricted to P , C can capture image(R) in at most k cop moves. Once C
captures image(R), observe that we get the invariant. After that, C follows the following
strategy:

1. If R moves from a vertex u ∈ Di to a vertex w ∈ Di−1, then C moves to vertex vj−1

from vertex vj.

2. If R moves from a vertex u ∈ Di to a vertex w ∈ Di+1, then C moves to vertex vj+1

from vertex vj.

3. If R moves from a vertex u ∈ Di to a vertex w ∈ Di:

(a) If C is at vi, then it moves to vi−1.

(b) If C is at vi−1, then it moves to vi.

Since the above strategy maintains the invariant, this completes our proof.

3 Cops and Robber on String Graphs

3.1 Definitions and Preliminaries

Segments, Faces and Regions: A set A ⊂ R2 is arc-connected if for any two points
a, b ∈ A, the set A contains a curve with endpoints a and b. Consider a fixed string
representation Ψ of G. If two strings π and π′ intersect at a point p, then we call p as an
intersection point. In a fixed representation of a string graph G, a string can have multiple
intersection points, and two strings can have multiple intersection points in common. A
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B
 (x)

 (y)

 (z)

 (w)

 (v)

(a) Ψ.

B
 (x2)

 (y1)

 (z)

 (w)
 (y2)

 (x1)

 (x3)

(b) ΨB.

Figure 3: Here (a) represents Ψ and (b) represents ΨB. ψ(v) is not in ΨB, ψ(z) is in ΨB.
Further, for ψ(x), strings ψ(x1), ψ(x2), and ψ(x3) are in ΨB; for ψ(y), strings ψ(y1) and
ψ(y2) are in ΨB; and for ψ(w), the string ψ(w1), which is a single point, is in ΨB.

segment s of a string π is a maximal continuous part of the string π that does not contain
any intersection point other than its endpoints. A string containing k intersection points
has k + 1 segments.

A region is an arc-connected area bounded by some segments of a set of strings in a
string representation. A region also includes its boundary. Whenever we mention a region,
it should satisfy our region definition. A face is a region not containing any intersection
point between two strings except on the boundary, and each continuous part of a string in
the region intersects the boundary of the region at most once. It is a standard assumption
that for a finite string graph G, we can have a representation such that the number of
segments, intersection points, and faces is finite.

Representation Restricted to a Region: Consider a region B of representation Ψ.
We define the representation restricted to B, denoted by ΨB, in the following manner. If
a string ψ(v) is completely inside B, then we have ψ(v) in ΨB also. If ψ(v) is completely
outside B, then ψ(v) is not in ΨB. If a string ψ(v) is such that some portion of ψ(v) is
outside B and some portion of ψ(v) is inside B, then we do the following. Let s1, . . . , sk
be the portions of the string ψ(v) such that each endpoint of si, for 0 < i 󰃑 k, is either
on the boundary of B or is an endpoint of the string ψ(v), and si ∈ ΨB. Then, instead
of the string ψ(v), we include k new strings. We consider each portion si, for 0 < i 󰃑 k,
as a new string ψ(vi) in ΨB. See Figure 3 for an illustration. Let GB be the string graph
corresponding to the representation ΨB. Here V (GB) is defined by the strings in ΨB,
and E(GB) is defined by the intersections between these strings. Observe that, though
GB might contain more vertices than G, the number of vertices in GB remains finite.
Moreover, the number of faces and segments in ΨB is not more than that in Ψ. Here, we
also say that GB is the graph G restricted to region B.

We want to note here that if there is a string completely contained in another, we can
safely delete it without changing the cop number of the corresponding graph. To see this
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observe that if a string ψ(x) is contained in ψ(y), then N(x) ⊆ N(y), and hence deletion
of x does not change the cop number of the input graph (see Corollary 3.3 of [7]).

Relating Curves to Paths: Let Ψ be a fixed representation of a string graph G.
Consider a curve π in the representation Ψ. π is composed of some of the segments of
the strings from Ψ. Let π be composed of segments s1, . . . , sℓ. Furthermore, consider
a u1, uk-path P in G. We say that the curve π is related to path P if each segment
s ∈ {s1, . . . , sℓ} is a segment of some string ψ(u), u ∈ {u1, u2, . . . , uk}, and for each string
ψ(u), u ∈ {u1, u2, . . . , uk}, there is a segment s ∈ {s1, . . . , sℓ} such that s is a segment
of ψ(u). Observe that ℓ 󰃍 k. Note that multiple curves may relate to the same path,
and a curve may be related to multiple paths. For example, consider a complete graph
Kn (which is a string graph) and a string representation of Kn, denoted by Ψ(Kn). If we
choose a curve that contains at least one segment from each string of Ψ(Kn), then this
curve corresponds to every path of length n − 1 in Kn. We would also like to mention
here that the order of segments in the curve might not correspond to the order of vertices
in the path.

An isometric curve in Ψ is a curve that is related to an isometric path in G. We have
the following observation that we use implicitly in our arguments.

Observation 13. Although multiple isometric curves can be related to an isometric path,
an isometric curve cannot be related to multiple isometric paths.

Proof. Consider an isometric u1, uk-path P and a curve π related to P . Let s1, . . . , sℓ be
the order of segments in π. Since P is an isometric path, a segment of string ψ(ui) can
only be adjacent to a segment of string ψ(ui−1), ψ(ui), or of string ψ(ui+1) in π.

Let z1, . . . , zk be natural numbers such that z1 = 1, zk = ℓ, and z1 < z2 < · · · < zk.
Then there exists a sequence z1, . . . , zk such that each segment s ∈ {szi , . . . , szi+1

}, for
1 󰃑 i 󰃑 k−2, is a segment of either the string ψ(ui) or the string ψ(ui+1), and the segment
szi+1

is a segment of the string ψ(ui+1). For i = k − 1, each segment s ∈ {szi , . . . , szi+1
},

is a segment of either the string ψ(ui) or the string ψ(ui+1). Thus, π can be related to
only one path u1, u2, . . . , uk. Therefore, an isometric curve relates to a unique isometric
path.

For ease of arguments in later proofs, we define monotone curves in the following
manner. Let π be a curve related to an isometric u1, uk-path P , and let s1, . . . , sℓ be the
order of segments of π. Let z1, . . . , zk+1 be natural numbers such that z1 = 1, zk+1 = ℓ,
and z1 < z2 < · · · < zk+1. Then, curve π is said to be a monotone curve related to
P if there exists a sequence z1, . . . , zk+1 such that each segment s ∈ {szi , . . . , szi+1

}, for
1 󰃑 i 󰃑 k − 1, is a segment of the string ψ(ui). Observe that given any isometric path
P , there is always a monotonic curve related to P . For our results, whenever we consider
an isometric curve related to an isometric path, we always consider a monotone curve,
without mentioning it explicitly.

A curve with endpoints a and b is referred to as an a, b-curve. Two curves are said
to be internally disjoint if they can intersect only at their respective endpoints. Let π
be a curve in a fixed representation Ψ. A curve π′ is said to be a sub-curve of π if π′
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can be formed by some segments of π. We borrow the following topological lemmas by
Gavenčiak et al. [19] that we will use.

Lemma 14 ([19]). Let B be a region. If π is an isometric curve and π′ ⊆ π is a sub-curve
with π′ ⊆ B, then π′ is an isometric curve in ΨB.

Lemma 15 ([19]). Let π1 and π2 be two internally disjoint isometric a, b-curves, with
a ∕= b, bounding a region R. For any simple a, b-curve π3 ⊆ R containing at least one
interior point of R, we have that every arc-connected component of R\(π1 ∪ π2 ∪ π3) is
bounded by two simple and internally disjoint curves π′

i and π′
3 with π′

i ⊆ πi, π
′
3 ⊆ π3 and

i ∈ {1, 2}.

If a curve π is related to an isometric (resp. convex) path P relative to T , then π is
referred to as an isometric (resp. convex ) curve relative to T . We extend Lemma 14 to
accommodate convex curves in the following lemma.

Lemma 16. Let B be a region of Ψ. If π is a convex curve relative to T and π′ ⊆ π is a
sub-curve with π′ ⊆ B, then π′ is a convex curve relative to T in ΨB.

Proof. First, we prove that π′ is a convex curve in Ψ relative to T . Let the curve π
be related to the convex u0, uk-path P in G. Then any sub-curve π′ ⊆ π would relate
to a ui, uj-path P ′ = ui, ui+1, . . . , uj, where 0 󰃑 i 󰃑 j 󰃑 k. For contradiction, let us
assume that π′ is not a convex curve relative to T in Ψ, and hence P ′ is not a convex
path relative to T in G. Thus, there exists a vertex v ∈ (V (T ) \ V (P )) and some
uℓ (where i 󰃑 ℓ 󰃑 j) such that d(ui, v) = d(ui, uℓ) − 1 and uℓ ∈ N [v]. Therefore,
d(u0, ui) + d(ui, v) = d(u0, ui) + d(ui, uℓ)− 1. Hence, we have a vertex v ∈ (V (T ) \ V (P ))
such that d(u0, v) = d(u0, uℓ) − 1 and uℓ ∈ N [v]. This contradicts the fact that P is a
convex path related to the convex curve π, both relative to T . Hence, π′ is a convex curve
in Ψ and P ′ is a convex path in G, both relative to T .

Next, we show that if a curve π′ is a convex curve in Ψ relative to T and π′ ⊆ ΨB (for
some B of Ψ), then π′ is a convex curve in ΨB relative to T . Consider two vertices x and
y of G corresponding to strings ψ(x) and ψ(y) in Ψ, respectively. Let x′ and y′ be two
vertices in GB such that ψ(x′) is a portion of ψ(x) and ψ(y′) is a portion of ψ(y). Then
observe that d(x′, y′) in GB cannot be less than d(x, y) in G.

Now consider a vertex v′ in GB such that v′ /∈ V (P ′), corresponding to string ψ(v′) in
ΨB, such that uℓ ∈ N [v′]. Let ψ(v) be a string in Ψ, corresponding to vertex v such that
v /∈ V (P ), such that ψ(v′) is a portion of string ψ(v) in Ψ. Hence uℓ is also a neighbour of
v in G. Since P ′ is a convex path in G, either d(ui, v) = d(ui, uℓ)+1 or d(ui, v) = d(ui, uℓ)
in G. Hence, d(ui, v) 󰃍 d(ui, uℓ) in G. Since d(x′, y′) in GB cannot be less than d(x, y)
in G, d(ui, v

′) 󰃍 d(ui, uℓ). Thus, there cannot be any vertex v′ in V (GB) \ V (P ′) such
that uℓ ∈ N [v′] and d(ui, v

′) = d(ui, uℓ) − 1. Hence, P ′ is a convex path in GB and π′ is
a convex curve in ΨB, both relative to T .

We note here that if a path P is an isometric (resp. convex) path relative to T ⊆ V (G),
then P is an isometric (resp. convex) path relative to every subset T ′ ⊆ T . Similarly, if
a curve π is an isometric (resp. convex) curve relative to T , then π is an isometric (resp.
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B

Figure 4: Illustration of geometric robber territory. Here the boundary of B is depicted
in bold black, the strings in ΨB that do not intersect with boundary of B are depicted in
green, and the strings that intersect with the boundary of B are depicted in red. ΨB is
the geometric robber territory if: (i) R is on a green string, and (ii) R gets captured if it
moves to a red string. Although parts of red strings are in ΨB, none of these strings are
accessible to R.

convex) curve relative to every subset T ′ ⊆ T . Moreover, for a curve π related to a path
P , we say that π is guarded if N [P ] is guarded.

3.2 Bounding the Robber Region

Geometric Robber Territory: Consider a fixed string representation Ψ of a string
graphG. We extend the definition of robber territory to the representation in the following
manner. Consider a region B. Let R be on a vertex u such that all points of the string
ψ(u) are inside the region B and ψ(u) does not intersect the boundary of B. Then we
say that ΨB is the geometric robber territory if R cannot move to a vertex v such that
the string ψ(v) intersects the boundary of B, without getting captured. We note that
although the strings that intersect the boundary of B might be in ΨB, they are not
accessible to R when we say that ΨB is the geometric robber territory. See Figure 4 for
an illustration. Below, we show three ways to restrict the geometric robber territory.

Let B be a region bounded by two internally disjoint a, b-curves π1 and π2 related to
P1 and P2, respectively. Then we also denote ΨB by Ψπ1,π2 . Note that, here B is the
geometric robber territory if R is on a vertex v ∈ V (GB) \ (N [P1]∪N [P2]) and R cannot
move to a vertex u ∈ N [P1∪P2]. Hence, we have the following observation. See Figure 5a
for an illustration.

Observation 17. Let π1 and π2 be two internally disjoint a, b-curves and R is in the
region Ψπ1,π2. If both curves π1 and π2 are guarded, then R cannot leave the region Ψπ1,π2

without getting captured, and Ψπ1,π2 becomes the geometric robber territory.

Consider a fixed string representation Ψ of a string graph G in R2. We say that a
string ψ(v) is a top-most string (bottom-most string) if some point on ψ(v) has the highest
(lowest) y-coordinate in Ψ. Here, we also say that v is a top-most vertex (bottom-most
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a

b

ω1 ω2

(a) Geometric robber territory Ψπ1,π2 defined by
two internally disjoint a, b-curves π1 and π2.

a

b

ω
!ω,R

(b) Geometric robber territory Ψπ,R defined by
a single top-bottom a, b-curve π.

Figure 5: In both (a) and (b), the curves contain points to highlight the segments that
form them. In both subfigures, R is on a green string and cannot access a red string
without getting captured immediately.

vertex ). Let u and v be (not necessarily distinct) vertices of G such that u is a top-
most and v is a bottom-most vertex. Let a and b be points on strings ψ(u) and ψ(v),
respectively, such that a and b has the highest and lowest y-coordinate in Ψ, respectively.
Then, an a, b-curve π, related to an isometric u, v-path P , is referred to as a top-bottom
curve. Note that this curve may not be unique.

Observe that if a vertex x /∈ N [P ], then ψ(x) lies either completely on the left of π or
completely on the right of π, and ψ(x) does not intersect with π. If a string ψ(x) lies on
the left (or right) of the curve π, then we also say that vertex x lies on the left (or right)
of P . We say that the robber crosses the curve π (or the path P ) if R moves (in some
finite rounds) from a vertex u, completely on the left of π, to a vertex v, completely on
the right of π, or vice versa.

We extend this idea of bounding a region B with two internally disjoint curves π1 and
π2, to bounding the region on the left or the right of a top-bottom curve π. The region
B on the left (right) of the curve π contains the points both on π and on the left (right)
of π. Here ΨB is defined analogously and is also denoted by Ψπ,L (Ψπ,R). We have the
following observation. See Figure 5b for an illustration.

Observation 18. Let π be a top-bottom curve related to an isometric path P . Then five
cops can restrict the geometric robber territory to either Ψπ,L or Ψπ,R.

Proof. The curve π is a continuous curve from a top-most point a to a bottom-most point
b in the string representation. Hence, if a vertex x is on the left of P and a vertex y is on
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a

b

a1
b1

a2

ω1 z!ω→
1,ω

→

!ω,z

!ω→→
1
,ω→→

Figure 6: An illustration of extending an isometric curve. Here, Ψπ1,z is defined by two
a, b-curves π1 and z such that π1 is an isometric curve relative to Ψπ1,z. Moreover, π is
denoted by dotted red curve, and π overlaps with π1 from point a1 to b1 and with z from
points a2 to b. Let a, a1-subcurve of π (resp., π1) be π′ (resp., π′

1) and b1, b-subcurve of π
(resp., π1) be π′′ (resp., π′′

1). If π is an extended curve of π1, then π′
1 and π′′

1 are convex
curves in Ψπ′

1,π
′ and Ψπ′′

1 ,π
′′ , respectively, and π is an isometric curve in Ψπ,z.

the right of P , every path from x to y passes through a vertex of N [P ]. Now, five cops
can guard N [P ] using Proposition 2. This restricts R from crossing the curve π. Hence,
if R was on a vertex x such that ψ(x) is on the left (right) of π, then Ψπ,L (Ψπ,R) becomes
the geometric robber territory.

The following observation provides one more way to bound the robber territory.

Observation 19. Let x be a cut vertex of G such that G−x gives a connected component
G′. If R is on a vertex v ∈ V (G′) and a cop is occupying the vertex x, then R is restricted
to V (G′) and V (G′) becomes the robber territory.

We also define isometric (resp. convex) paths relative to geometric robber territories.
We say that a path P is an isometric (resp. convex ) path relative to ΨB = Ψπ1,π2 if P is
an isometric (resp. convex) path relative to T = V (GB)\V (P1∪P2). Similarly, a curve π
is an isometric (resp. convex ) curve relative to Ψπ1,π2 if π is an isometric (resp. convex)
curve relative to T = V (GB) \ V (P1 ∪ P2).

3.3 Extending an Isometric Path/Curve

Informally speaking, in this section, we show that if one team of cops is guarding an
isometric path and we want to employ a new team of cops to guard another isometric
path, then the new team can always find an isometric path such that in the region bounded
by some specific curves of these paths, the first path is a convex path relative to the region
bounded.
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Consider a fixed representation Ψ of a string graph G. Let Ψπ1,z, where z ∈ {π2, L, R},
be the geometric robber territory. See Figure 6 for an illustration. Let π1 be an isometric
curve relative to Ψπ1,z. Then we say that a curve π ∈ ΨB is an extended curve of π1 if in
the region Ψπ′,π′

1
bounded by any internally disjoint curves π′ ⊆ π and π′

1 ⊆ π1, the curves
π′
1 and π′ are a convex curve and an isometric curve relative to Ψπ′,π′

1
, respectively; and

in the region Ψπ,z, the curve π is an isometric curve relative to Ψπ,z. We also say that
the path P related to π is an extended path of the path P1 related to π1. We would like
to note here that there might be multiple extended paths of an isometric path. In this
section, we show that if 5 cops are guarding N [P1], then using at most 4 extra cops (total
9 cops), we can reduce the geometric robber territory to either Ψπ′,π′

1
or to Ψπ,z. We have

the following lemma.

Lemma 20. Consider a fixed representation Ψ of a string graph G. Let Ψπ1,z, where
z ∈ {π2, L, R}, be the geometric robber territory and let π1 be an isometric curve relative
to Ψπ1,z guarded by 5 cops. If π1 is not a convex curve in Ψπ1,z, then we can find an
extended curve π of π1, and restrict the geometric robber territory to either Ψπ,z or to
Ψπ′,π′

1
where π′ ⊆ π and π′

1 ⊆ π1, using at most 4 extra cops.

Proof. In the first part of this proof, we show how to find an extended curve of π1, if
it exists. Let P1 and P2 be the isometric paths related to the a, b-curves π1 and π2,
respectively; and let u0 and uk be the endpoints of P1 and P2. If z ∈ {L,R}, then let
P2 = φ. If there is no u0, uk-path in Gπ1,z other than P1 and P2, then we say that the
curve π1 cannot be extended. Note that here π1 is a convex curve in Ψπ1,x.

Let GB be the graph corresponding to the geometric robber territory ΨB = Ψπ1,z. If P1

is a convex path relative to Ψπ1,z, then we find a shortest u0, uk-path P in GB other than
P1 and P2. Observe that P is an isometric path relative to Ψπ1,z, and also an extended
path of P1. Here, we can simply free one cop from P1 (since P1 is convex path relative to
Ψπ1,z) and use it along with 4 new cops to guard N [P ], and we are done. Thus, we can
fix any a, b-curve π ⊆ ΨB related to P as an an extended curve of π1.

If P1 is not a convex path relative to Ψπ1,z, then we do the following. Find the least i
such that there is a vertex x ∈ V (GB) \ V (P1 ∪ P2) with d(u0, x) = i− 1 and ui ∈ N(x).
Now consider the string ψ(ui) in Ψπ1,z. Let pu be the intersection point of strings ψ(ui)
and ψ(ui−1) and let pb be the intersection point of strings ψ(ui) and ψ(ui+1), in the curve
π1. We note here that these intersection points pu and pb are well defined since we are
considering monotone curves. Next, we define sub-curves πu, πp, and πb of the curve
ψ(ui). Let πp = π1 ∩ ψ(ui). Let πu be the maximal continuous sub-curve of ψ(ui) such
that πu ∩ π1 = pu. Similarly, let πb be the maximal continuous sub-curve of ψ(ui) such
that πb ∩ π1 = pb. We note here that one or both of πu and πb might be single points.

Let X ⊆ V (GB) \V (P1∪P2) such that X = {x | d(u0, x) = i− 1 and ui ∈ N(x)}. Let
X󰂃 ⊆ X, where 󰂃 ∈ {u, p, b}, such that X󰂃 = {x | ψ(x) ∩ π󰂃 ∕= φ}. Now we find a suitable
vertex v ∈ X in the following manner. See Figure 7 for an illustration.

1. If Xu is not empty, then we find a vertex v ∈ Xu such that an intersection point of
the string ψ(v) and curve πu is closest to the point pu along the curve πu. We mark
this intersection point as p and we set p′ = pu. See Figure 7a for an illustration.
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pu

pb

ωu

ωb

ε(ui) ε(v)

p

(a) Case 1. Here p′ = pu.

a

b

ω1
ω2

pu

pb

ωu

ωb

ε(ui) ε(v)
p

(b) Case 2. Here p′ = p.

a

b

ω1
ω2

pu

pb

ωu

ωb

ε(ui)
ε(v)

p

(c) Case 3. Here p′ = pb.

Figure 7: An illustration for extending an isometric curve. Here π1 is an isometric curve
relative to Ψπ1,π2 . The curve ψ(v) is displayed in red and p is an intersection point of
ψ(v) and ψ(ui).

2. If Xu is empty and Xp is not empty, then we find a vertex v ∈ Xp such that an
intersection point of the string ψ(v) and curve πp is closest to the point pu along
the curve πp. We mark this intersection point as p and we set p′ = p. See Figure 7b
for an illustration.

3. If Xu and Xp are empty, then we find a vertex v ∈ Xb such that an intersection point
of the string ψ(v) and curve πb is closest to the point pb along the curve πb. We mark
this intersection point as p and we set p′ = pb. See Figure 7c for an illustration.

Now consider an isometric u0, v-path Pq relative to Ψπ1,z, and let πq be an isometric
a, p-curve related to path P ′. Moreover, let πr denote the p, p′-curve along ψ(ui), and πs

denote the p′, b-subcurve of the curve π1 We compose the curve π = πq ∪πr ∪πs. Observe
that π is an extended curve of π1, and P (path related to π) is an extended path of P1.

In the next part of the proof, we show that if five cops are guarding the closed neigh-
borhood of P1 (with Ψπ1,π2 being the geometric robber territory), then a total of nine cops
can guard both N [P ] and N [P1] with Ψπ1,π2 being the geometric robber territory.

Recall that if Q is a convex w0, wℓ-path, then four cops can guard N [Q] by the sheriff
guarding the path Q and the deputies being at vertices wj−2, wj−1 and wj+1, when the
sheriff is at vertex wj (due to Lemma 3 and its proof). Similarly, five cops can guard the
closed neighbourhood of an isometric w0, wℓ-path Q, by the sheriff guarding the path Q
and the deputies being at vertices wj−2, wj−1, wj+1 and wj+2, when the sheriff is at vertex
wj. Let us denote the deputy that moves to vertex wj+2 when the sheriff moves at wj as
the special deputy.

Consider the paths P and P1. Note that both paths have the same length. Let
the vertices of the path P be denoted by v0, . . . , vk. Note that u0 = v0 and for ℓ 󰃍 i,
uℓ = vℓ. Now, we have that five cops are guarding P1 (recall that P1 is the isometric path
corresponding to the isometric curve π1). The main idea is that in the u0, ui-subpath of
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path P1, only four cops are required (since it is a convex path), and if we keep the special
deputy at vj+2 when the sheriffs are at uj and vj, then it serves as the special deputy for
both paths P and P1 (because in path P1, the special deputy is required only at vertices
from ui, . . . , uk, and note that these vertices are same as vertices vi, . . . , vk). The extra
four cops move on P such that the sheriff guards P and the deputies are at vj−2, vj−1,
and vj+1, when the sheriff is at vj. When the sheriff successfully guards P , let it be at
the vertex vℓ. If ℓ 󰃍 i, then we have already achieved the goal as the special deputy is
already at vℓ+2 (since vℓ+2 = uℓ+2 in this case). Otherwise ℓ < i, and in this case, the
special deputy is at uℓ+2. Now, the special deputy starts moving towards ui irrespective
of the moves of the sheriffs. Once it reaches ui, it moves aiming to reach vℓ+2 when the
deputies are at uℓ and vℓ. Once the special deputy reaches such a vertex, we have the
desired state.

Now, if R is in the region Ψπ,z, then we can free the cops from π1 and R is restricted
to Ψπ,z. Otherwise R is restricted to the region Ψπ′,π′

1
where π′ ⊆ π and π′

1 ⊆ π1.

3.4 Algorithm for String Graphs

In this section, we show that for a string graph G, c(G) 󰃑 13, by giving a winning strategy
using 13 cops for any string graph. Let Ψ be a fixed representation of G. First, we provide
the intuition for our strategy. We define three “favorable” game states. Then we show
that whenever we are in a favorable game state, 13 cops can force the game to another
favorable game state such that the geometric robber territory gets reduced.

Let R be restricted to ΨB. Moreover, let u and v be two distinct vertices in GB. For
our strategy, first we define three game states, state 1, state 2, and state 3 as follows:

1. State 1 : Let u be a top-most and v be a bottom-most vertex in GB. Then five cops
are guarding the closed neighbourhood of an isometric u, v-path P in GB. Note
that, in ΨB this restricts R to either Ψπ,L or Ψπ,R, where π is a curve related to P
(Observation 18).

2. State 2 : The region B is bounded by two internally disjoint curves π1 and π2 such
that π1 is a convex curve in Ψπ1,π2 and π2 is an isometric curve in Ψπ1,π2 , both
relative to Ψπ1,π2 . Then five cops are guarding π2 and four cops are guarding π1

(total 9 cops).

3. State 3 : Let x be a vertex in G such that GB is a connected component of G − x.
If a cop is occupying the vertex x and R is in GB, then observe that R is restricted
to GB (Observation 19). Let u be a top-most vertex and v be a bottom-most vertex
in GB, and P be an isometric u, v-path relative to T = V (GB). Then one cop is
occupying vertex x and five cops are guarding N [P ]. Moreover, R and ψ(x) are on
the same side of each curve π related to P .

State 1, state 2, and state 3 are referred to as the safe states. We have the following
lemma, which is central to our algorithm.
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Lemma 21. Consider a fixed representation Ψ of a string graph G. Let R be in a region
B of Ψ, and ΨB be the geometric robber territory. Let the game be in a safe state S.
Then 13 cops can force the game to a safe state S ′ and the geometric robber territory to
ΨB′ ⊂ ΨB, in a finite number of moves.

Proof. Depending upon the state S of the game, we do the following:

1. S = state 1: Let u be a top-most and v be a bottom-most vertex in GB, and P
be the isometric u, v-path such that N [P ] is guarded by 5 cops. Let π be a curve
related to path P and let π defines B. Observe that the geometric robber territory
is either Ψπ,L or Ψπ,R. Without loss of generality, let us assume that R is restricted
to the right of π and hence Ψπ,R is the geometric robber territory. We extend the
curve π in Ψπ,R and let π′, related to a path P ′, be an extended curve of π. Now,
one of the following scenarios is possible:

(a) Curve π cannot be extended: It is possible only if there is no u, v-path in GB

other than P . Let R be in a connected component G′ of GB −P . In this case,
we claim that there is a unique vertex x ∈ V (P ) such that x has a neighbor
in G′. For contradiction, assume that there is some other vertex y ∕= x in P
such that y has some neighbor in G′. Then consider the path Q formed by the
vertices of u, x-path along P , followed by a shortest x, y-path in G′ ∪ {u, v},
followed by the y, v-path along P . Here Q is a path other than P , and thus
we have a contradiction. Thus x is a cut vertex such that GB − x gives G′ as
a component.

We guard x using one cop and free other cops from P . Now, find a top-most
vertex u′ and a bottom-most vertex v′ in G′ and an isometric u′, v′-path in
G′. Now, consider a top-down curve π′ corresponding to path P ′ and guard π′

using five cops. If R and x are on the same side of P ′, then we are in the safe
state 3. If R and x are on opposite sides of π′, then we can free cop on x, and
we are in the safe state 1. In both cases, at least the segments corresponding to
the vertices of V (P )−{x} will be removed from the geometric robber territory.

(b) R is on the same side of π and π′: Since π′ is a top-bottom curve and π′ is
guarded by five cops, we can free the cops on curve π. Hence, the geometric
robber territory is now Ψπ′,R (since R is in the right of both π and π′). Also,
Ψπ′,R ⊂ Ψπ,R since the region bounded between π and π′ is in Ψπ,R but not in
Ψπ′,R.

(c) R is in the region bounded by two curves π1 and π′
1 such that π1 ⊆ π and

π′
1 ⊆ π′: By the definition of extended curve, we know that π1 is a convex

curve and π′
1 is an isometric curve, both relative Ψπ1,π′

1
. Hence using Lemma 20,

we can restrict the geometric robber territory to Ψπ1,π′
1
using at most 9 cops.

Hence we are in the safe state 2. For the sake of simplicity, to prove that the
geometric robber territory decreases in this case, we prove it for state 2, and
whenever this case occurs, we execute this Lemma again for state 2.
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2. S = state 2: Let B be bounded by two internally disjoint a, b-curves π and π′, and
Ψπ,π′ be the geometric robber territory. Let π and π′ be related to u, v-paths P and
P ′, respectively. Moreover, let π be a convex curve in Ψπ,π′ and π′ be an isometric
curve in Ψπ,π′ , both relative to Ψπ,π′ . Also, four cops are guarding π and five cops
are guarding π′.

Now, if the curve π′ can be extended, then we extend the curve π′ using Lemma 20.
Let π1 be an extended curve of π′. Also, let P1 be the path related to π1. Now,
using Lemma 20, we can guard both π1 and π′ using at most nine cops. Now, if R
is restricted in Ψπ,π1 , then we can free the cops guarding π′, and we reach safe state
2. Note that the region bounded by curves π′ and π1 is removed from the geometric
robber territory. If R is restricted in Ψπ′′,π′

1
such that π′′ ⊆ π′ and π′

1 ⊆ π1, then
note that we can free the cops guarding π. Observe that the curve π is removed
from the geometric robber territory in this case.

Suppose we cannot extend the curve π′ (that is, there is no u, v-path in GB other
than P and P ′). Then observe that the vertices of the connected component of
GB − (P ∪P ′) containing R can be connected to only one vertex x of P ∪P ′ (proof
is similar to the argument in case 1(a)). We move one cop to vertex x and free all
other cops. Now, we are in a situation similar to that of step 1(a). Hence we follow
the same steps. Note that we also reduce the geometric territory of R in this step.

3. S = state 3: Let x be a vertex such that GB is a connected component of G− x.
Consider the representation Ψ′ ⊂ Ψ such that Ψ′ = {ψ(u) | u ∈ GB}. Let u and
v be a top-most and bottom-most vertex of GB, respectively. Also, let P be the
isometric u, v-path such that N [P ] is guarded by five cops, and one cop is occupying
the vertex x. Moreover, both R and x are on the same side of P . Without loss of
generality, let us assume that they are on the right of P . Since x is occupied by
a cop and N [P ] is guarded by cops, observe that the geometric robber territory is
Ψ′

π,R, where π is a curve related to P . Now, if the curve π can be extended, then
we extend the curve π in Ψ′

π,R (using Lemma 20) and let π1 be the extended curve
of π. Also let P1 be the path related to π1.

If R and x are on the same side of π1, then we can free cops from P , and we are
in the safe state 3. Here, the geometric robber territory is reduced by the region
bounded between π and π1.

If R is in the region bounded by two internally disjoint curves π′ and π′
1 such that

π′ ⊆ π and π′
1 ⊆ π1, then we are in the safe state 2 (by the definition of extended

curves). Now, we free the cop guarding x. Here, the geometric robber territory is
reduced by some segments of ψ(x), at least.

If the curve π cannot be extended in Ψ′
π,R, then there exists a vertex y ∈ V (P ) such

that vertices in GB − y gives a connected component GB′ containing R. If x is not
adjacent to any vertex in V (GB′), then we are in a situation similar to 1(a), and
we follow the same steps. If x is adjacent to some vertex in V (GB′), then We place
one cop on y and free other cops from P . Now, we find a top-most vertex u′ and
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bottom-most vertex v′ in GB′ and find an isometric u′, v′-path P1 in GB′ . Now, five
cops guard N [P ′]. Consider a top-bottom curve π′ related to P ′. Now, either x and
R lie on the same side of π′ or y and R lie on the same side of π′. In both cases, we
are in the safe state 3. Also, observe that each segment s such that s is a segment of
path P and s is not a segment of string ψ(y) is reduced from the geometric robber
territory. Hence the geometric robber territory reduces in this step.

This completes the proof of our lemma.

Now we prove the main result of this section.

Theorem 4. If G is a string graph, then c(G) 󰃑 13.

Proof. We give a cop strategy to prove our claim. Consider a fixed representation Ψ of a
string graph G. We first show that at most 13 cops can force the robber to a safe state.
Initially, let the robber territory be Ψ and GB = G. Cops find a top-most vertex u and
a bottom-most vertex v in GB and find an isometric u, v-path P in GB. Now, five cops
guard N [P ]. This restricts the robber either to the left or to the right of P . Now we are
in the safe state 1.

After this, until the robber is captured, we use Lemma 21 to reduce the geometric
robber territory. Since we have a finite graph with a finite representation and cops can
reduce the geometric robber territory in every iteration of Lemma 21 using at most 13
cops, these 13 cops will eventually capture the robber.

4 Fully Active Cops and Robber on Planar Graphs

In this section, we show that for a planar graph G, ca(G) 󰃑 4. We rather consider the
game where only the cops are forced to be active andR is flexible. In this section, we show
that for a planar graph G, cA(G) 󰃑 4. It is easy to see that for a graph G, c(G) 󰃑 cA(G).
Hence, there exists a planar graph G such that cA(G) 󰃍 3. Here, we argue that four active
cops have a winning strategy for any planar graph. First, we present a straightforward
result.

Lemma 22. Let P be an isometric path of a graph G. Then, two active cops can guard
P , after a finite number of cop moves.

Proof. Let the two cops be denoted as sheriff and deputy. The two cops stay on adjacent
vertices of P . The cops move such that the sheriff can guard P using the strategy to
guard P in Cops and Robber setting using Proposition 1. At some point during the
game, if in the classical game strategy, the sheriff has to stay at a vertex on the cop move,
the two cops switch positions and also switch the role of sheriff and deputy. This way,
the cop that currently is the sheriff guards P .

Using Lemma 22 and the strategy of Aigner and Fromme [3], it is easy to see that
cA(G) 󰃑 6. We use Lemma 9 and Lemma 22 to improve this bound in the following
theorem.

the electronic journal of combinatorics 32(4) (2025), #P4.8 21



Theorem 10. If G is a planar graph, then cA(G) 󰃑 4.

Proof. We can use Lemma 9 and techniques similar to the techniques used for string
graphs in Section 3 to show that four active cops have a winning strategy against a
flexible robber.

Since ca(G) 󰃑 cA(G), we have the following immediate corollary of Theorem 10.

Corollary 23. Let P be a planar graph. Then ca(G) 󰃑 4.

5 Final Remarks and Future Directions

We proved that the cop number of a string graph is at most 13. Very recently, Durocher,
Kryven and Löffler [14] established showed a string graph with cop number 4, improving
upon a long standing lower bound of 3 for the cop number of string graphs. Thus, for the
class of string graphs S, 4 󰃑 c(S) 󰃑 13. One immediate open question is to improve this
bound by either giving a strategy for fewer cops or by giving an explicit construction of
a string graph having cop number more than four. It might also be interesting to tighten
the bounds on the active cop number of planar graphs.

Cops and Robber is also well-studied with regard to graph genus. Quillot [35]
showed that for a graph G having genus g, c(G) 󰃑 2g + 3. He used an “unfolding”
technique where cops find and guard two isometric paths such that “removing” these paths
from the graph reduces the genus of the graph by one. Let g-GENUS STRING be the class of
graphs admitting a string representation on an orientable surface of genus g. Gavenčiak
et al. [19] also used similar unfolding techniques to show that c(g-GENUS STRING) 󰃑
10g + 15. For this purpose, they use 10 cops to unfold a genus by guarding the closed
neighborhood of two appropriate isometric paths, and then finally capturing the robber in
a genus 0 string graph using 15 cops. Theorem 10, along with their unfolding techniques,
gives the following immediate corollary.

Corollary 24. c(g-GENUS STRING) 󰃑 10g + 13.

For graphs having a planar representation on a surface of genus g, better unfolding
techniques have been used. Let G be a graph having genus g. Schroeder [38] showed that
c(G) 󰃑 ⌊3g

2
⌋+ 3. Later, Bowler et al. [11] improved the upper bound further and proved

that c(G) 󰃑 4g
3
+ 10

3
. It will be interesting to see if similar techniques can be used to

improve the bounds on c(g-GENUS STRING). Moreover, we propose the following.

Question 25. Let C be an isometric cycle in G. What is the least number of cops that
can guard N [C] in G?

Observe that if the answer to above question is some constant c < 10, then we can
unfold a genus by c cops and therefore, we have c(g-GENUS STRING) 󰃑 c · g + 13.

Another interesting direction would be to see if the techniques used in this paper can
be used to improve the cop number of unit disk graphs from 9 (Beveridge et al. [8]) to

the electronic journal of combinatorics 32(4) (2025), #P4.8 22



7. Moreover, recently de la Maza and Mohar [22] characterized all 1-guardable graphs
using the notion of “wide shadow”, and used it to show that 3 cops always have a winning
strategy on planar graphs even if at most 2 of the cops can move in one round. It may
be interesting to study if guarding the neighborhoods of wide shadows can help improve
the cop number of several graph classes.
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