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Abstract

Let D be a weighted oriented graph and I(D) be its edge ideal. In this paper, we
prove that I(D) satisfies the Ratliff (strong persistence) property in the following
three cases: (i) D has an outward leaf; (ii) D has an inward leaf (u, v) ∈ E(D),
where v is a sink vertex; (iii) D has an inward leaf (u, v) ∈ E(D) with w(v) = 1.
We further show that (I(D)2 : I(D)) = I(D) if D contains a vertex with in-degree
less than or equal to 1, and (I(D)3 : I(D)) = I(D)2 when D is either a weighted
oriented cycle, or a tree. Finally, if D contains no source vertex, then any associated
prime of I(D)k, other than the irrelevant maximal ideal, is also an associated prime
of I(D)k+1. In addition, if D contains a vertex of in-degree one and all the vertices
of D have non-trivial weights, we show that the persistence property holds.

Mathematics Subject Classifications: 05E40, 05C22, 05C25, 13B25

1 Introduction

Monomial ideals are fundamental in commutative algebra, serving as a bridge between
algebraic and combinatorial objects. They play a central role in ideal theory, Gröbner
bases, and algebraic geometry, particularly in the study of toric varieties. In combina-
torics, monomial ideals encode properties of graphs and other combinatorial structures.
Additionally, they are used in coding theory and computational complexity, facilitating
the construction of error-correcting codes, providing insights into the complexity of poly-
nomial systems, and solving integer programming problems. Various classes of monomial
ideals are associated with the combinatorics of a graph, including edge ideals and cover
ideals. An edge ideal is a monomial ideal generated by quadratic square-free monomials
associated to the edges of a simple graph. Recently, a generalization of simple graphs
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known as weighted oriented graphs has attracted considerable attention due to its con-
nections with algebraic coding theory. A weighted oriented graph is a directed graph
with weights (natural numbers) associated with each vertex. The edge ideal of a weighted
oriented graph is generated by monomials of the form xixj

wj , where there is a directed
edge from xi to xj and the weight of the vertex xj is wj. Algebraic properties of weighted
oriented graphs such as Cohen-Macaulayness, unmixedness, Castelnuovo-Mumford regu-
larity, etc. have been studied in [4], [5], [6], [10], [13], [15], [17], [24]; whereas symbolic
power has been studied in [1], [8], [16], and [18]. One of the motivations for studying edge
ideals of weighted oriented graphs is their connection to coding theory, particularly in the
study of Reed-Muller-type codes (see [20]).

Let R = K[x1, . . . , xn] be a polynomial ring over a field K, and I ⊆ R be a monomial
ideal. The set of all associated primes of I will be denoted by Ass(R/I). Although the
associated primes of powers of ideals behave erratically, they stabilize for larger powers.
In 1979, Brodmann (see [3]) showed that if I is an ideal in a Noetherian ring, then the
associated primes of In stabilize for large values of n. But in general, for a given ideal, it is
often difficult to determine this stable set or to identify when the sets of associated primes
become stable. Thus, Brodmann’s result suggests the following weaker property, known
as the persistence property of ideals: for which ideals does the containment Ass(R/Ik) ⊆
Ass(R/Ik+1) hold for all k ⩾ 1? This question has attracted much attention in the
literature, and has been investigated for various special classes of monomial ideals (see [2],
[12], [14], [19], [21], [23], [27] etc.). For large k ⩾ 1, Ratliff [26] proved that (Ik+1 : I) = Ik

holds, which in turn implies that Ass(R/Ik) ⊆ Ass(R/Ik+1). An ideal I ⊆ R is said to
satisfy the Ratliff condition (or, the strong persistence property) if (Ik+1 : I) = Ik for all
k ⩾ 1. Hence, the Ratliff condition implies the persistence property. Many interesting
classes of ideals satisfy the Ratliff condition, for instance, edge ideals of simple graphs
[19], normally torsion-free monomial ideals [25], polymatroidal ideals [12], and the cover
ideals of some imperfect graphs, such as, cycle graphs of odd order, wheel graphs of even
order, and helm graphs of odd order greater than or equal to five [22]. On the other hand,
the Ratliff condition and the persistence property are not equivalent, even for the class of
square-free monomial ideals (see Example 10). Continuing this line of investigation, for
the class of edge ideals of weighted oriented graphs, one can ask the following questions.

Question 1. Let D be a weighted oriented graph, and let I(D) denote its edge ideal.

1. Does I(D) satisfy the Ratliff condition?

2. If the answer to the above question is negative, does I(D) still satisfy the persistence
property?

In this article, we primarily study the above two questions for the class of edge ideals of
weighted oriented graphs. We show that the Ratliff condition is satisfied by the following
classes of ideals:

Theorem 2 (Theorem 11, Theorem 12, and Theorem 13). Let D be a weighted oriented
graph, and let I(D) denote the edge ideal of D. Then I(D) satisfies the Ratliff condition
in the following cases:
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1. D contains an edge (u, v) ∈ E(D) such that degD(v) = 1.

2. D contains an edge (u, v) ∈ E(D) with degD(u) = 1 and v is a sink vertex.

3. D contains an edge (u, v) ∈ E(D) with degD(u) = 1 and w(v) = 1.

Next, we establish partial results related to the Ratliff condition and the persistence
property for smaller powers of edge ideals of weighted oriented graphs. In particular, we
show that for any weighted oriented graph D containing a vertex v with indegD(v) ⩽ 1,
the equality (I(D)2 : I(D)) = I(D) holds (see Theorem 16). Moreover, if D is a weighted
oriented tree with an inward leaf edge, or a naturally oriented cycle, then (I(D)3 : I(D)) =
I(D)2 holds (see Theorem 18 and Theorem 19).

While studying the depth function of ideals, Herzog and Hibi [11] constructed mono-
mial ideals whose depth function can be any non-decreasing convergent numerical func-
tion. In particular, they came up with the following family of ideals:

Example 3. ([11, Theorem 4.1] and [9, Example 3.1]) Let S = K[x, y, z]. For any integer
d ⩾ 2, consider

Id = (xd+2, xd+1y, xyd+1, yd+2, xdy2z).

Then m ∈ Ass(S/Ind ) if and only if n ⩽ d− 1.

Let m denote the irrelevant maximal ideal of the polynomial ring R. In general,
the following interesting result was proved by Há, Nguyen, Trung, and Trung [9], which
answers a question raised by Ratliff.

Theorem 4. [9, Corollary 4.2] Let Γ be a set of positive integers which is either finite
or contains all sufficiently large integers. Then there exists a monomial ideal Q in the
polynomial ring R such that m ∈ Ass(R/Qn) if and only if n ∈ Γ, where m is the maximal
homogeneous ideal of R.

Moreover, for the above example, computational evidence suggests that Ass(S/Ikd ) \
{m} ⊆ Ass(S/Ik+1

d )\{m} for all k ⩾ 1. This observation motivates the following definition.

Definition 5. Let I ⊆ R be an ideal. We say that I has the punctured persistence
property if Ass(R/Ik) \ {m} ⊆ Ass(R/Ik+1) \ {m} holds for all k ⩾ 1.

For a sufficiently general class of weighted oriented graphs, we show that if we do
not take the irrelevant maximal ideal m into our consideration, the punctured persistence
property holds. More precisely, we prove the following.

Theorem 6 (Theorem 21). Let D be a weighted oriented graph without any source vertex.
Then I(D) satisfies the punctured persistence property.

This article is organized in the following way. In Section 2, we recall the properties
related to weighted oriented graphs and the persistence property of ideals. Section 3
contains all of our main results. In this section, we show that the Ratliff property holds
for certain classes of edge ideals of weighted oriented graphs (Theorems 11,12, and 13).
We also discuss persistence property for some smaller powers of edge ideals. Finally, we
prove that if a weighted oriented graph D has no source vertices, then the punctured
persistence property holds (Theorem 21).
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2 Preliminaries

In this section, we recall all the known results and properties related to weighted oriented
graphs, as well as the persistence and Ratliff properties of monomial ideals.

Let D be a weighted oriented graph with vertex set V (D) = {x1, . . . , xn}, edge set
E(D) ⊆ V (D) × V (D), and the weight function w : V (D) → N. The edge ideal of D is
denoted by I(D), and is defined by

I(D) = ({xix
w(xj)
j | (xi, xj) ∈ E(D)}).

LetD be an oriented graph, and let x be a vertex ofD. The out-neighborhood of x, denoted
by N+

D (x), consists of all y in V (D) such that (x, y) ∈ E(D). The in-neighborhood of x,
denoted by N−

D (x), is the set of all y in V (D) such that (y, x) ∈ E(D). We define the
out-degree of the vertex x to be outdegD(x) = |N+

D (x)|, and similarly, the in-degree of x
as indegD(x) = |N−

D (x)|. The neighborhood of x is the set ND(x) = N+
D (x)∪N−

D (x). In a
similar manner, if S ⊆ V (D), we define N+

D (S) =
⋃

x∈S N
+
D (x) and N−

D (S) =
⋃

x∈S N
−
D (x).

The degree of the vertex x is degD(x) = |ND(x)|. A non-isolated vertex x ∈ V (D)
is called a source (respectively, a sink) if it has no in-neighbors (respectively, no out-
neighbors). We denote by V ∗(D) the set of vertices of D with non-trivial weight; that
is, V ∗(D) = {x ∈ V (D) | w(x) > 1}. To simplify the notation, we shall write wj to
denote w(xj) for a vertex xj ∈ V (D). To avoid trivial cases, we assume that D contains
no isolated vertices.

Let R = K[x1, . . . , xn] be a polynomial ring over a field K, and I ⊆ R be an ideal.

Definition 7. An ideal I ⊆ R is said to satisfy the persistence property if

Ass(R/Ik) ⊆ Ass(R/Ik+1) for all k ⩾ 1.

Definition 8. An ideal I is said to satisfy the Ratliff condition if (Ik+1 : I) = Ik for
all k ⩾ 1.

The strong persistence property was introduced in [12, Definition 1.1] for arbitrary
ideals in Noetherian rings, and it was later shown to be equivalent to the Ratliff property
[12, Theorem 1.3]. Satisfying the Ratliff condition is a stronger property, which implies
that the ideal has the persistence property.

Lemma 9. [12] Let I ⊆ R be an ideal. If (Ik+1 : I) = Ik for some k ⩾ 1, then
Ass(R/Ik) ⊆ Ass(R/Ik+1). In particular, if I satisfies the Ratliff condition, then I satisfies
the persistence property.

As the following example suggests, the converse is not true even for the class of square-
free monomial ideals.

Example 10. [19, Example 2.18] Let R = K[x1, . . . , x6] and let I be the square-free
monomial ideal

I = (x1x2x5, x1x3x4, x1x2x6, x1x3x6, x1x4x5, x2x3x4, x2x3x5, x2x4x6, x3x5x6, x4x5x6).

Then one can verify that (I2 : I) = I and (I3 : I) ̸= I2. Although, the sets of associated
primes of the powers of I form an ascending chain.
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3 Main Results

This section contains all of our main results and has been subdivided into three subsec-
tions. In the first subsection, we study the Ratliff property of edge ideals of weighted
oriented graphs.

3.1 The Ratliff Condition

The Ratliff condition holds for the edge ideal of a simple graph. On the other hand, there
are many examples of square-free monomial ideals for which even the persistence property
fails. In this subsection, we show that for various classes of edge ideals of weighted oriented
graphs, the Ratliff condition holds. In the following theorem, we show that if there is a
outward leaf edge in a weighted oriented graph D, then the edge ideal I(D) is Ratliff.

Theorem 11. Let D be a weighted oriented graph such that there is an edge (u, v) ∈ E(D)
with degD(v) = 1. Then (I(D)k+1 : I(D)) = I(D)k for all k ⩾ 1.

Proof. Let (xi, xj) ∈ E(D) be such that degD(xj) = 1. Let f ∈ (I(D)k+1 : I(D)). Then

f ·xixj
wj = e1e2 · · · ek+1x

α

for some ei ∈ G(I(D)), 1 ⩽ i ⩽ k + 1, and xα is a monomial. We then consider the
following two cases:
Case 1: If xj

wj | xα, then f ·xi = e1e2 · · · ek+1x
β where xβ = xα

xj
wj . Now if xi | et for some

1 ⩽ t ⩽ k + 1, then f ∈ I(D)k, and if xi ∤ et for all 1 ⩽ t ⩽ k + 1, then xi | xβ which in
turn implies that f ∈ I(D)k+1, and hence f ∈ I(D)k.
Case 2: If xj

wj ∤ xα, then xj | et for some 1 ⩽ t ⩽ k + 1. Without any loss of generality,
assume xj | e1. Then, e1 = xixj

wj as xi is the only neighbor of xj, and hence we have
f = e2 · · · ek+1x

α. This again implies that f ∈ I(D)k.

Next, we consider the case where D contains a leaf that is not directed outward. Under
some additional assumptions, we show that the Ratliff property holds.

Theorem 12. Let D be a weighted oriented graph such that there is an edge (u, v) ∈ E(D)
with degD(u) = 1. If v is a sink vertex, then (I(D)k+1 : I(D)) = I(D)k for all k ⩾ 1.

Proof. Let (xi, xj) ∈ E(D), where degD(xi) = 1, and xj be a sink vertex. Then for any
f ∈ (I(D)k+1 : I(D)), we have

f ·xixj
wj = e1e2 · · · ek+1x

α,

where ei ∈ G(I(D)), 1 ⩽ i ⩽ k + 1, and xα is a monomial. Now, we have the following
two cases:
Case 1: If xj

wj | xα, then fxi = e1 · · · ek+1x
α. Note that either xi | xα, or xi | ei for some

1 ⩽ i ⩽ k+1. So xi divides at most one of e1, . . . , ek+1, yielding the fact that f ∈ I(D)k.
Case 2: Assume that xj

wj ∤ xα. If et = xixj
wj for some t ∈ {1, . . . , k + 1}, then

f = e1 · · · et−1et+1 · · · ek+1x
α, and hence f ∈ I(D)k. Now if xj

wj ∤ xα and xixj
wj ̸= et for
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all t ∈ {1, . . . , k+1}, then xi ∤ et for all t ∈ {1, . . . , k+1}. This implies xi | xα, and xj | es
for some s ∈ {1, . . . , k+1}. Since xj is a sink vertex, es = xℓxj

wj for some xℓ ∈ V (D) with
xℓ ̸= xi, and thus, f = e1 · · · es−1es+1 · · · ek+1x

β for some suitable monomial xβ. Hence
f ∈ I(D)k, which concludes the proof.

Theorem 13. Let D be a weighted graph such that there is an edge (u, v) ∈ E(D) such
that degD(u) = 1 and w(v) = 1, then (I(D)k+1 : I(D)) = I(D)k for all k ⩾ 1.

Proof. Let (xi, xj) ∈ E(D) where degD(xi) = 1 and w(xj) = 1. Suppose f ∈ (I(D)k+1 :
I(D)). Then

f ·xixj = e1 · · · ek+1x
α,

where ei ∈ G(I(D)) for all 1 ⩽ i ⩽ k + 1 and xα ∈ R is a monomial. If xi | et for some
1 ⩽ t ⩽ k + 1, then et = xixj, and hence f = e1 · · · et−1et+1 · · · ek+1x

α ∈ I(D)k. On the
other hand, if xi | xα, then note that xj can divide at most one edge among e1, . . . , ek+1,
say et. Then again, f = e1 · · · et−1et+1 · · · ek+1x

β ∈ I(D)k for some monomial xβ, which
implies that f ∈ I(D)k.

The following remark is a consequence of [27, Theorem 5], which we include here for
the reader’s convenience.

Remark 14. If D is a weighted oriented graph such that all vertices except sink are of
weight 1. Then we have (I(D)k+1 : I(D)) = I(D)k for all k ⩾ 1.

Remark 15. If D is a weighted oriented graph as given in Theorem 11, Theorem 12, or
Theorem 13, then we have Ass(R/I(D)n) ⊆ Ass(R/I(D)n+1) for all n ∈ N.

3.2 Ratliff Condition for Small Powers

In this subsection, we study the persistence property for small powers of edge ideals of
weighted oriented graphs. As observed in the previous section, the existence of a leaf in a
weighted graph plays an important role in ensuring that the Ratliff condition holds. We
now show that, under a weaker structural condition, the Ratliff condition still holds for
the second power of the ideal.

Theorem 16. Let D be an weighted oriented graph such that there is a vertex v ∈ V (D)
with indegD(v) ⩽ 1. Then (I(D)2 : I(D)) = I(D). Consequently, Ass(R/I(D)) ⊆
Ass(R/I(D)2).

Proof. First, let us assume that xi ∈ V (D) be such that indegD(xi) = 0, that is, xi is
a source vertex. Then there is xj ∈ V (D) such that (xi, xj) ∈ E(D). Let f ∈ (I(D)2 :
I(D)). Now we have

f ·xixj
wj = e1e2x

α,

where e1, e2 ∈ G(I(D)), and xα is a monomial. We assume that e1, e2 ̸= xixj
wj and

xj
wj ∤ xα; otherwise, we would have f ∈ I(D), as desired. Without any loss of generality,

assume that xj | e1. Then there is xk ∈ V (D), k ̸= i, j such that e1 = xjxk
wk , or

e1 = xkxj
wj . We now consider the following two cases.
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Case 1: Assume that e1 = xjxk
wk . Then we have f ·xixj

wj = xjxk
wke2x

α. This implies
that xk

wk | f . Set f = xk
wkh for some monomial h. Since xjxk

wk ∈ I(D), we have

f ·xjxk
wk = e′1e

′
2x

β

for some e′1, e
′
2 ∈ G(I(D)) and xβ a monomial. Again if xjxk

wk = e′1, e
′
2, or xk

wk | xβ,
then f ∈ I(D). So assume that none of these happens. Without any loss of generality,
we assume that xk | e′1. Then there is xℓ ∈ V (D), ℓ ̸= j, k such that e′1 = xkxℓ

wℓ or
e′1 = xℓxk

wk . We further consider the following subcases.
Subcase 1: Assume that e′1 = xkxℓ

wℓ . Then we have f ·xjxk
wk = xkxl

wle′2x
β. It is evident

that xℓ
wℓ | f . Therefore, f = hxk

wk = h′xk
wkxℓ

wℓ = h′xk
wk−1e′1 for some monomial h′.

This shows that f ∈ I(D).
Subcase 2: Assume that e′1 = xℓxk

wk . Then we have f ·xjxk
wk = xℓxk

wke′2x
β. It is

evident that xℓ | f . Therefore, f = hxk
wk = h′xk

wkxℓ = h′e′1 for some monomial h′. This
proves that f ∈ I(D).
Case 2: Assume that e1 = xkxj

wj . Then we have f ·xixj
wj = xkxj

wje2x
α. If xi ∤ e2, then

again f ∈ I(D) and we are through. Now assume that xi | e2. Since xi is a source vertex,
there is xm ∈ V (D),m ̸= j such that e2 = xixm

wm . Then we have

f ·xixj
wj = (xkxj

wj)(xixm
wm)xα.

Again, it is evident that xm
wm | f . So, we can write f = hxm

wm for some monomial h.
Now xixm

wm ∈ I(D) and hence, f ·xixm
wm ∈ I(D)2. Thus, f ·xixm

wm = e′1e
′
2x

β for some
e′1, e

′
2 ∈ G(I(D)) and xβ a monomial. Then proceeding similarly as in Case 1, one can

show that f ∈ I(D).
Finally, we assume that indegD(xi) = 1 for some xi ∈ V (D). Let (xj, xi) ∈ E(D) for

some xj ∈ V (D). Let f ∈ (I(D)2 : I(D)). We now have

f ·xjxi
wi = e1e2x

α

where e1, e2 ∈ G(I(D)) and xα a monomial. We assume that e1, e2 ̸= xjxi
wi and xi

wi ∤ xα;
otherwise, we would have f ∈ I(D), as desired. Without any loss of generality, assume
that xi | e1. Since indegD(xi) = 1 and e1 ̸= xjxi

wi , we have e1 = xixk
wk for some

xk ∈ V (D), k ̸= j. Now f ·xjxi
wi = (xixk

wk)e2x
α and this implies that xk

wk | f . Thus we
can write f = hxk

wk for some monomial h. Again since xixk
wk ∈ I(D), we have

f ·xixk
wk = e′1e

′
2x

β

for some e′1, e
′
2 ∈ G(I(D)) and xβ a monomial. To avoid triviality, we assume that

e′1, e
′
2 ̸= xixk

wk and xk
wk ∤ xβ. Without any loss of generality, we may assume that xk | e′1.

Then either e′1 = xkxℓ
wℓ , or e′1 = xℓxk

wk for some xℓ ∈ V (D), ℓ ̸= i. We again consider the
relation f ·e′1 ∈ I(D)2. Then proceeding similarly as in Subcases 1 and 2, we can conclude
that e′1 | f , and hence, f ∈ I(D).

Corollary 17. Let D be a weighted oriented graph such that there is a vertex v ∈ V (D)
with degD(v) = 1. Then (I(D)2 : I(D)) = I(D). Consequently, Ass(R/I(D)) ⊆
Ass(R/I(D)2).
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The assumption that there exists a vertex v ∈ V (D) with indegD(v) ⩽ 1 in essential
in the above theorem. To see this, consider the weighted oriented graph D whose edge
ideal is given by

I(D) = (x2x1
5, x3x2

5, x4x3
5, x4x1

5, x1x3
5, x4x2

5, x5x4
5, x6x4

5, x5x6
5, x1x5

5, x3x6
5, x3x5

5).

A direct computation shows that I(D)k+1 : I(D) ̸= I(D)k for k = 1, 2, 3. Therefore,
in general, the Ratliff condition does not hold for edge ideals of weighted oriented graphs.
Nevertheless, in case of weighted oriented forests, the Ratliff condition is satisfied for the
third power as well.

Theorem 18. Let D be a weighted oriented forest. Then (I(D)3 : I(D)) = I(D)2.
Consequently, Ass(R/I(D)2) ⊆ Ass(R/I(D)3).

Proof. Since D is a weighted oriented forest, there is a vertex xi ∈ V (D) such that
degD(xi) = 1. Let ND(xi) = {xj}. If (xj, xi) ∈ E(D), then it follows from Theorem 11
that (I(D)3 : I(D)) = I(D)2. Now we consider the case when (xi, xj) ∈ E(D). Let
f ∈ (I(D)3 : I(D)). Then

f ·xixj
wj = e1e2e3x

α

where et ∈ G(I(D)), t = 1, 2, 3 and xα ∈ R a monomial. Note that if xi | et for some
1 ⩽ t ⩽ 3, then et = xixj

wj . Then we have f ∈ I(D)2, as desired. So we assume that
xi ∤ et, or equivalently, et ̸= xixj

wj for t = 1, 2, 3. Then note that xi | xα, and we can
rewrite the above equation as f ·xj

wj = e1e2e3x
β, where xβ = xα

xi
. Now again, if xj ∤ et for

all t = 1, 2, 3, or if x
wj

j | et for some t = 1, 2, 3, then we get f ∈ I(D)2. So, without any loss
of generality, assume that xj | e1, e2, and e1 = xjx

wk
k , e2 = xjx

wℓ
ℓ for some xk, xℓ ∈ V (D).

We now consider the following cases.
Case 1: Assume that e1 ̸= e2. Then we have k ̸= ℓ, and from the equality f ·xj

wj =
(xjxk

wk)(xjxℓ
wℓ)e3x

β we get, xk
wkxℓ

wℓ | f . Therefore, f = xk
wkxℓ

wℓh for some monomial
h ∈ R. Since e1 = xjxk

wk ∈ I(D), we get

f ·xjxk
wk = e′1e

′
2e

′
3x

α1 ,

where e′t ∈ G(I(D)) for 1 ⩽ t ⩽ 3 and xα1 ∈ R a monomial. As before, we assume
xk

wk ∤ xα1 or e′t ̸= xjxk
wk for any t = 1, 2, 3. Without any loss of generality, assume that

xk | e′1. Then e′1 = xkxp
wp , or e′1 = xpxk

wk for some xp ∈ V (D), p ̸= j. We now consider
the following subcases:
Subcase 1.1: Assume that e′1 = xkxp

wp . Then we have the equality f ·xjxk
wk =

xkxp
wpe′2e

′
3x

α1 , and it follows that xp
wp | f . Hence f = xk

wkxℓ
wℓh = xk

wkxℓ
wℓxp

wph′

where h′ = h
x
wp
p
. Thus we conclude that f = e′1xk

wk−1xℓ
wℓh′.

Subcase 1.2: Assume that e′1 = xpxk
wk . Then we have the equality f ·xjxk

wk =
xpxk

wke′2e
′
3x

α1 , and it follows that, xp | f . Then f = xk
wkxℓ

wℓh = xk
wkxℓ

wℓxph
′, where

h′ = h
xp
. Hence, f = e′1xℓ

wℓh′.

So, in either of the above subcases, we have f = e′1g, for some monomial g. Thus,
either xkxp

wp | f , or xpxk
wk | f Now, proceeding similarly as in the above subcases with
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e2 = xjx
wℓ
ℓ and f ·xjx

wℓ
ℓ ∈ I(D)3, we would obtain the following: either xℓxq

wq | f , or
xqxℓ

wℓ | f , where xq ∈ V (D) and q ̸= j. Note that p ̸= q, as otherwise the vertices
xj, xk, xp=xq, xl forms a cycle in D, which is a contradiction. Therefore f is divisible by
two disjoint edges of D, which implies that f ∈ I(D)2.
Case 2: Assume that e1 = e2. Then k = ℓ and f ·xixj

wj = (xjxk
wk)2e3x

α. This implies
that xk

2wk | f and hence, f = xk
2wkh for some monomial h ∈ R. Since xjxk

wk ∈ I(D),
we get

f ·xjxk
wk = e′1e

′
2e

′
3x

β

where e′t ∈ G(I(D)) for t = 1, 2, 3 and xβ a monomial. As before, we assume that xwk
k ∤ xβ

and et
′ ̸= xjxk

wk for any t = 1, 2, 3. Without any loss of generality, assume that xk | e′1.
Then e′1 = xkxm

wm or e′1 = xmxk
wk , for some xm ∈ V (D),m ̸= j. We consider the

following subcases:
subcase 2.1: Assume that e′1 = xkxm

wm . Then we have the equality f ·xjxk
wk =

xkxm
wme′2e

′
3x

β. This implies that xm
wm | f and hence f = x2wk

k h = x2wk
k xwm

m h′, where
h′ = h

xwm
m

. We consider the following subcases:
subcase 2.1.1: Assume that xk | e′2e′3. Without any loss of generality, assume that
xk | e′2. Then either e′2 = xkxp

wp , or e′2 = xpxk
wk for some xp ∈ V (D), p ̸= j. In either

case we get f = (xkxm
wm)e′2g for some monomial g, and consequently f ∈ I(D)2.

subcase 2.1.2: Assume that xk ∤ e′2e′3. Now from the equality

f ·xjxk
wk = xkxm

wme′2e
′
3x

β,

observe that xj can divide at most one of the e′2 and e′3. If xj ∤ e′2e′3, then e′2e
′
3 | f and

we are through. Without any loss of generality, assume that xj | e′3. Since xk ∤ e′2, we
have xm

wme′2 | f . Therefore, f = x2wk
k h = x2wk

k xm
wme′2h

′ since xk ∤ xm
wme′2, where h′ is a

monomial. Thus, we can write f = (xkxm
wm)e′2xk

2wk−1, proving that f ∈ I(D)2.
Subcase 2.2: Assume that e′1 = xmxk

wk . Then we have f ·xjxk
wk = xmxk

wke′2e
′
3x

β, and
this implies that

f ·xj = xme
′
2e

′
3x

β.

If xj ∤ e′2e′3, then e′2e
′
3 | f and therefore f ∈ I(D)2. On the other hand, if xj | e′2e′3, then

we may assume that xj | e′2. Then xme
′
3 | f , and hence xm | f

e′3
. Moreover, since x2wk

k | f ,
observe that for any choice of e′3, xmx

wk
k | f

e′3
. Therefore f ∈ I(D)2, and this competes

the proof.

Let D be a weighted oriented cycle with natural orientation, that is, the underlying
simple graph of D is a cycle, and the orientation of the edges of D are either clockwise,
or anticlockwise. More precisely, if V (D) = {x1, . . . , xn}, we set E(D) = {(xi, xi+1) | 1 ⩽
i ⩽ n − 1} ∪ {(xn, x1)}. Note that for every vertex xi ∈ V (D), we have indegD(xi) =
outdegD(xi) = 1. Thus, it follows from Theorem 16 that (I(D)2 : I(D)) = I(D) holds.
In the next result, we show that the Ratliff Condition also holds for the third power.

Theorem 19. Let D be a weighted oriented cycle with natural orientation. Then (I(D)3 :
I(D)) = I(D)2. Consequently, Ass(R/I(D)2) ⊆ Ass(R/I(D)3).
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Proof. Let f ∈ (I(D)3 : I(D)). If wi = 1 for all 1 ⩽ i ⩽ n, then I(D) is the edge ideal
of a simple graph, and hence the assertion follows. Now we take x1x2

w2 ∈ G(I(D)) with
w2 ⩾ 2 and consider

f ·x1x2
w2 = e1e2e3x

α,

where e1, e2, e3 ∈ G(I(D)) and xα a monomial. We assume that ei ̸= x1x
w2
2 for i = 1, 2, 3

and x2
w2 ∤ xα, as otherwise we would have f ∈ I(D)2. Then we have x2 | e1e2e3. Without

any loss of generality, assume that x2 | e1. Then, e1 = x2x3
w3 . Consider the following

cases:
Case 1: Assume that x2 | e2e3. Without any loss of generality, let x2 | e2. Then
e2 = x2x3

w3 . Hence, from the equality f ·x1x2
w2 = (x2x3

w3)2e3x
α we get f = x3

2w3h for
some monomial h. Now consider

f ·x2x3
w3 = e′1e

′
2e

′
3x

β,

where e′i ∈ G(I(D)) for 1 ⩽ i ⩽ 3 and xβ a monomial. As before, we assume that
e′i ̸= x2x3

w3 for i = 1, 2, 3 and x3
w3 ∤ xβ. Then x3 | e′1e′2e′3. Without any loss of generality,

assume that x3 | e′1. Then we have, e′1 = x3x4
w4 and the equality f ·x2x3

w3 = x3x4
w4e′2e

′
3x

β.
Now it follows that x4

w4 | f , and hence we can write f = x3
2w3h = x3

2w3x4
w4h′ for some

monomial h′. We now consider the following subcases:
Subcase 1.1: Assume that x3 | e′2e′3. Without any loss of generality, let x3 | e′2. Then
e′2 = x3x4

w4 . Thus we have f ·x2x3
w3 = (x3x4

w4)2e′3x
β. Then it follows that x4

2w4 | f .
Hence f = x3

2w3h = x3
2w3x4

2w4g for some monomial g, and consequently f ∈ I(D)2.
Subcase 1.2: Assume that x3 ∤ e′2e′3. If x2 ∤ e′2e′3, then e′2e

′
3 | f and we are through. Now

assume that x2 | e′2. Then e′2 = x1x2
w2 and consequently,

f ·x2x3
w3 = (x3x4

w4)(x1x2
w2)e′3x

β.

Since w2 ⩾ 2, it follows that x2 | f , and hence f = x3
2w3x4

w4h′ = x2x3
2w3x4

w4h′′, where
h′′ = h′

x2
. Thus (x2x3

w3)(x3x4
w4) | f , and hence f ∈ I(D)2.

Case 2: Assume that x2 ∤ e2e3. Now if x1 ∤ e2e3, then e2e3 | f and we are through. Now,
assume that x1 | e2e3. Without any loss of generality, x1 | e2. Then e2 = xnx1

w1 and we
have

f ·x1x2
w2 = (x2x3

w3)(xnx1
w1)e3x

α.

We now consider the following subcases:
Subcase 2.1: Let x1 | e3. Then e3 = xnx1

w1 , and f ·x1x2
w2 = (x2x3

w3)(xnx1
w1)2xα. This

gives x1
w1x3

w3xn
2 | f . So, we can write f = x1

w1x3
w3xn

2h for some monomial h. Now, we
consider

f ·xnx1
w1 = e′1e

′
2e

′
3x

β

where e′i ∈ G(I(D)) for 1 ⩽ i ⩽ 3 and xβ ∈ R a monomial. Likewise, we assume
e′i ̸= xnx1

w1 for i = 1, 2, 3 and x1
w1 ∤ xβ, as otherwise, f ∈ I(D)2. Without any loss of

generality assume that, x1 | e′1. Then e′1 = x1x2
w2 and therefore, f ·xnx1

w1 = x1x2
w2e′2e

′
3x

β.
Consequently, x2

w2 | f and hence f = x1
w1x3

w3xn
2h = x1

w1xw2
2 x3

w3xn
2h′, where h′ = h

x
w2
2
.

Thus (xnx1
w1)(x2x3

w3) | f and hence f ∈ I(D)2.
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Subcase 2.2: Assume that x1 ∤ e3. Then since x2 ∤ e3, from the equality f ·x1x2
w2 =

(x2x3
w3)(xnx1

w1)e3x
α, it follows that e3x3

w3 | f . Thus, f = x3
w3xne3h for some monomial

h. Now, consider f ·xnx1
w1 ∈ I(D)3. Then by the same arguments as in Subcase 2.1,

we conclude that x2
w2 | f , and consequently, f = x3

w3xne3h = xw2
2 x3

w3xne3h
′, where

h′ = h
x
w2
2
. Thus (x2x3

w3)e3 | f and hence f ∈ I(D)2.

3.3 Punctured Persistence Property

Let I be an ideal in the polynomial ring R, and let m denote the irrelevant maximal ideal
generated by all the variables of R. We say that I satisfies the punctured persistence
property if

Ass(R/Ik) \ {m} ⊆ Ass(R/Ik+1) \ {m} for all k ⩾ 1.

In this subsection, we show that for a large class of weighted oriented graphs, the punc-
tured persistence property holds. Before going into our main result, we need the following
lemma.

Lemma 20. Let D be a weighted oriented graph, and let P ∈ Ass(R/I(D)k), k ⩾ 1 be
such that xi /∈ P for some xi ∈ V (D). Let D′ be a weighted oriented graph such that

V (D′) = V (D) ∪ {y},
E(D′) = E(D) ∪ {(xi, y)} with w(y) = 1.

If we set R′ = K[x1, . . . , xn, y], then P + (y) ∈ Ass(R′/I(D′)k).

Proof. It is clear that I(D′) = I(D)+(xiy). Since P ∈ Ass(R/I(D)k), there is a monomial
f ∈ R such that P = (I(D)k : f). Now, it suffices to prove the following claim: P +(y) =
(I(D′)k : xif). We first show that xif /∈ I(D′)k. On the contrary, if xif ∈ I(D′)k, then
since y ∤ xif , we have xif ∈ I(D)k, which in turn implies that xi ∈ (I(D)k : f) = P , a
contradiction. Hence, xif /∈ I(D′)k. Now for any xj ∈ P , xjf ∈ I(D)k, which implies
xixjf ∈ I(D)k ⊆ I(D′)k, and thus xj ∈ (I(D′)k : xif). This proves that P ⊆ (I(D′)k :
xif). Also, yxif = f ·xiy ∈ I(D′)k, as f ∈ I(D)k−1 and xiy ∈ I(D′). Hence, we conclude
that P + (y) ⊆ (I(D′)k : xif). On the other hand, if possible, let us assume that
g ∈ (I(D′)k : xif) be a monomial such that g /∈ P + (y). Then xifg ∈ I(D′)k. Note that
y ∤ g and y ∤ f , and therefore xifg ∈ I(D)k. This implies that xig ∈ (I(D)k : f) = P , and
hence, g ∈ P as xi /∈ P . This is a contradiction. Therefore, P + (y) = (I(D′)k : xif), and
this completes the proof of the claim.

The next theorem is one of the main results of this article. We show that if a weighted
oriented graph has no source vertex and if P is an associated prime of I(D)k such that
P ̸= m, then P is also an associated prime of I(D)k+1. In other words, the punctured
persistence property holds for any weighted oriented graph with no source vertex.

Theorem 21. Let D be a weighted oriented graph without any source vertex. Then I(D)
satisfies the punctured persistence property.
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Proof. Let P ∈ Ass(R/I(D)k) be such that P ̸= m. Then there is some xi ∈ V (D) such
that xi /∈ P . Let D′ be the weighted oriented graph where

V (D′) = V (D) ∪ {y},
E(D′) = E(D) ∪ {(xi, y)} with w(y) = 1.

Set R′ = K[x1, . . . , xn, y]. Then, by Lemma 20, P + (y) ∈ Ass(R′/I(D′)k). Since (xi, y)
is an outward leaf in D′, by Theorem 11, I(D′) satisfies the Ratliff condition. Therefore,
P + (y) ∈ Ass(R′/I(D′)k+1). So, there exists a monomial g ∈ R′ and g /∈ I(D′)k+1 such
that P + (y) = (I(D′)k+1 : g). We now make the following claim.
Claim: P + (y) = (I(D′)k+1 : gxi

m) for all m ⩾ 0.
Proof of the claim. We proceed by induction on m. The case m = 0 is true. We assume
m ⩾ 1 and P + (y) = (I(D′)k+1 : gxi

m−1). Since (I(D′)k+1 : gxi
m−1) ⊆ (I(D′)k+1 : gxi

m),
we already have P +(y) ⊆ (I(D′)k+1 : gxi

m). Conversely, let f ∈ (I(D′)k+1 : gxi
m). Then

f ′·gxi
n ∈ I(D′)k+1, and hence f ′xi ∈ (I(D′)k+1 : gxi

n−1) = P + (y) by the induction
hypothesis. But xi /∈ P + (y) implies that f ∈ P + (y), and this completes the proof of
the claim.

We now consider the following cases:
Case 1: Assume that y ∤ g. Then we claim that P = (I(D)k+1 : g). Indeed, if xm ∈ P
then xmg ∈ I(D′)k+1. But y ∤ xmg implies that xmg ∈ I(D)k+1. Therefore xm ∈
(I(D)k+1 : g), and hence P ⊆ (I(D)k+1 : g). On the other hand, if possible, let us take a
monomial f ∈ R such that f ∈ (I(D)k+1 : g) and f /∈ P . Then fg ∈ I(D)k+1 ⊆ I(D′)k+1.
Thus f ∈ (I(D′)k+1 : g), and hence f ∈ P + (y). But this implies that f ∈ P , which is a
contradiction. Therefore in this case, P = (I(D)k+1 : g) and hence, P ∈ Ass(R/I(D)k+1).

Case 2: Assume that y | g. Since y ∈ (I(D′)k+1 : g), we must have xi | g, as otherwise,
if xi ∤ g then yg ∈ I(D′)k+1 implies that g ∈ I(D′)k+1, which is a contradiction. Thus,
xiy | g and assume that g = xiyg

′ for some monomial g′ ∈ R′. Now, D does not have any
source vertex, so there is xm ∈ V (D) such that (xm, xi) ∈ E(D). Set

h = xmxi
wig′ = xmxi

wi
g

xiy
.

Claim: h /∈ I(D′)k+1 and P + (y) = (I(D′)k+1 : h).
Proof of the claim. If possible, let us assume that h = e1 · · · ek+1h

′ for some ei ∈
G(I(D′)), 1 ⩽ i ⩽ k + 1 and h′ ∈ R′. If et = xmxi

wi for some 1 ⩽ t ⩽ k + 1, then
we have

g′ =
h

xmx
wi
i

= e1 · · · et−1et+1 · · · ek+1h
′.

Now, multiply both sides of the this equation by xiy to get back

g = e1 · · · et−1(xiy)et+1 · · · ek+1h
′ ∈ I(D′)k+1,

which is a contradiction. So, we may assume that et ̸= xkxi
wi for all 1 ⩽ t ⩽ k + 1.

Moreover, we may assume that xm ∤ h′, as otherwise, in virtue of Lemma 20, we can assume
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that xwi
i | h′. Then we have xmx

wi
i | h′ and hence h ∈ I(D′)k+2. Which in turn implies

that g = xiy
h

xmx
wi
i

∈ I(D′)k+2, and this is a contradiction. Therefore, xm | e1 · · · ek+1.

Without any loss of generality, assume that xm | e1. Then we can write

h = e2e3 · · · ek+1xmh
′′ = e2e3 · · · ek+1(xmx

wi
i )

h′′

xwi
i

,

where h′′ is a monomial, and the second equality makes sense because of Lemma 20. We
multiply both sides of the above equation by xiy

xmx
wi
i

to get back g, and then it would imply

that g ∈ I(D′)k+1, again a contradiction.
It now remains to show that P + (y) = (I(D′)k+1 : h). Let xℓ ∈ P . Now, xℓh =

xℓxmx
wi
i

g
xiy

= xℓg
xiy

xmx
wi
i . As xℓg ∈ I(D′)k+1, note that xℓg

xiy
∈ I(D′)k. Indeed, in view of

Lemma 20, we can assume that sufficiently large power of xi divides the monomial g, and
moreover, the vertex y can appear in at most one edge in the expression of xℓg ∈ I(D′)k+1.
Thus xℓg

xiy
∈ I(D′)k, and hence xℓ·g

xiy
xmx

wi
i ∈ I(D′)k+1. This proves that P ⊆ (I(D′)k+1 : h).

By similar arguments, one can show that y ∈ (I(D′)k+1 : h). Thus P + (y) ⊆ (I(D′)k+1 :
h). On the other hand, if possible, let us suppose that f ∈ (I(D′)k+1 : h), but f /∈ P+(y).
Then fh ∈ I(D′)k+1, and so there are ei ∈ I(D′), 1 ⩽ i ⩽ k + 1 and h′ ∈ R′ a monomial
such that

fh = e1 · · · ek+1h
′

⇒f(xmx
wi
i )g′ = e1 · · · ek+1h

′.

We now consider the following cases:
Subcase 2.1: Assume that xm ∤ ei for all 1 ⩽ i ⩽ k + 1. Then we have xm | h′, and
by Lemma 20, we can assume that xwi

i | h′. Then multiply both the sides of the above
equation by xiy

xmx
wi
i

to get f(xiy)g
′ = (xiy)e1 · · · ek+1h

′′ where h′′ = h
xmx

wi
i

. Thus, we get

fg ∈ I(D′)k+2 ⊆ I(D′)k+1, and hence, f ∈ P + (y), a contradiction.
Subcase 2.2: Without any loss of generality, assume that xm | e1. We further consider
the following subcases:
Subcase 2.2.1: Assume that e1 = xmx

wi
i . Again, proceeding as in Subcase 2.1, we get

f(xiy)g
′ = (xiy)e2e3 · · · ek+1h

′, which implies that fg ∈ I(D′)k+1. Then again, f ∈ P+(y),
a contradiction.
Subcase 2.2.2: Assume that e1 = xmx

wℓ
ℓ for some xℓ ∈ V (D′) and ℓ ̸= i. So, we have

f(xmx
wi
i )g′ = (xmx

wℓ
ℓ )e2e3 · · · ek+1h

′.

Then multiply both sides of the above equation by xiy

xmx
wi
i

to get

f(xiy)g
′ = (xiy)e2e3 · · · ek+1h

′′,

where h′′ =
x
wℓ
ℓ h′

x
wi
i

. This proves that fg ∈ I(D′)k+1, and hence, f ∈ P+(y), a contradiction.

Subcase 2.2.3: Assume that e1 = xℓx
wm
m for some xℓ ∈ V (D′) and ℓ ̸= i. Then

f(xmx
wi
i )g′ = (xℓx

wm
m )e2e3 · · · ek+1h

′.
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Then multiply both sides of the above equation by xiy

xmx
wi
i

to get

f(xiy)g
′ = (xiy)e2e3 · · · ek+1h

′′,

where h′′ = xℓx
wm−1
m h′

x
wi
i

. This proves that fg ∈ I(D′)k+1, and hence, f ∈ P + (y), a

contradiction. This completes the proof of the claim.
Note that the exponent of y in h is one less than the exponent of y in g. If y ∤ h, then

P +(y) = (I(D′)k+1 : h) implies that P = (I(D)k+1 : h), and hence P ∈ Ass(R/I(D)k+1),
as desired. If y | h, then we continue the above process, and after a finite number of steps,
we arrive at a situation where P +(y) = (I(D′)k+1 : h̃), where h̃ is a monomial with y ∤ h̃.
Then P = (I(D)k+1 : h̃), and this completes the proof of the theorem.

Finally, we prove that if a weighted oriented graph has no source vertex and the weight
of each vertex is at least 2, then the irrelevant maximal ideal m is an associated prime of
I(D)k for all k ⩾ 1.

Theorem 22. Let D be a weighted oriented graph such that w(v) ⩾ 2 for all v ∈ V (D).
Assume that D does not contain any source vertex, and there is a vertex u ∈ V (D) such
that indegD(u) = 1. Then m ∈ Ass(R/I(D)k) for all k ⩾ 1.

Proof. If D does not contain any source vertex and w(v) ⩾ 2 for all v ∈ V (D), then the
assertion m ∈ Ass(R/I(D)) follows from [1, Lemma 3.1]. For our purpose, we shall prove
a stronger statement. Let V (D) = {x1, . . . , xn} and set f =

∏n
i=1 xi

wi−1. We shall show
that m = (I(D) : f). First, note that f /∈ I(D) and thus (I(D) : f) is a proper ideal
contained in m. Now for any 1 ⩽ t ⩽ n,

xtf = xwt
t

∏
i∈[n]
i ̸=t

xi
wi−1.

Since xt is not a source vertex, there is xs ∈ V (D) such that xsxt
wt ∈ I(D), and moreover,

as ws ⩾ 2, it follows that xsxt
wt | xtf . Thus, xtf ∈ I(D) for all 1 ⩽ t ⩽ n, and therefore

m = (I(D) : f).
Since D contains a vertex of in-degree 1, without any loss of generality, assume that

(x1, x2) ∈ E(D) and indegD(x2) = 1. It now suffices to prove the following claim.
Claim: m = (I(D)k+1 : (x1x2

w2)kf).
Proof of the claim. We first show that (x1x2

w2)kf /∈ I(D)k+1. On the contrary, assume
that (x1x2

w2)kf ∈ I(D)k+1. Since wi ⩾ 2, observe that if e ∈ G(I(D)) and e | (x1x2
w2)kf ,

then either e = x1x2
w2 or e = xix1

w1 for some 1 ⩽ i ⩽ n, i ̸= 2. Thus we have

(x1x2
w2)kf = (x1x2

w2)a(xi1x1
w1)b1 · · · (xilx1

w1)blg,

where g is a monomial, 3 ⩽ i1, . . . , il ⩽ n, and a, b1, . . . , bl are positive integers such that
a + b1 + · · · + bl = k + 1. Note that a ̸= k + 1, as otherwise, x

(k+1)w2

2 | (x1x2
w2)kf ,

which is a contradiction. Set b = b1 + · · · + bℓ. Then b ⩾ 1 and it follows from the
above expression that x1

a+bw1 divides (x1x2
w2)kf . But a + bw1 = (k + 1) − b + bw1 =
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(k + w1) + (w1 − 1)(b − 1) ⩾ k + w1 as w1 ⩾ 2 and b ⩾ 1. This is a contradiction since
the exponent of x2 in (x1x2

w2)kf is k + w1 − 1. Therefore, (x1x2
w2)kf /∈ I(D)k+1. It now

remains to show that xi(x1x2
w2)kf ∈ I(D)k+1 for all 1 ⩽ i ⩽ n. Note that xif ∈ I(D)

for all 1 ⩽ i ⩽ n, and therefore, xi(x1x2
w2)kf ∈ I(D)k+1 for all 1 ⩽ i ⩽ n. Thus

m = (I(D)k+1 : (x1x2
w2)kf), and this completes the proof of the claim.

As an immediate consequence of Theorem 21 and the above theorem, we have the
following.

Corollary 23. Let D be a weighted oriented graph as in Theorem 22. Then I(D) has the
persistence property.

Finally, based on the results of this article and the computational evidence, we con-
clude this section with the following conjecture.

Conjecture 24. Let D be a weighted oriented graph and I(D) be the edge ideal. Then
I(D) satisfies the persistence property.
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