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Abstract

We study Ramsey numbers via Hilbert’s Nullstellensatz and Alon’s Combina-
torial Nullstellensatz. We give encodings of various types of Ramsey numbers,
from the classical graph theory version to the arithmetic Ramsey numbers of Rado,
Schur, and van der Waerden, as systems of polynomial equations whose solutions
are in bijection to colorings that avoid monochromatic patterns. For example, in
the classical graph theory case the solutions correspond to Ramsey graphs of order
n, those that do not contain a copy of K, or K. When these systems of equa-
tions have no solution for the first time, the Ramsey-type number in question is
attained. We construct Hilbert Nullstellensatz certificates whose degrees are equal
to the restricted online Ramsey numbers introduced by Conlon, Fox, Grinshpun and
He. Similar results apply to many numbers in Ramsey theory, including Rado, van
der Waerden, Schur, and Hales-Jewett numbers. Finally, inspired by work of Alon
and Tarsi, we introduce a new family of numbers that relate to the coefficients of
a certain “Ramsey polynomial” and give lower bounds for Ramsey numbers. Our
work reveals connections to the computational complexity of Ramsey numbers.

Mathematics Subject Classifications: 05D10, 05D40, 05E40, 11B75, 14Q20,
03F20

1 Introduction

Ramsey numbers are some of the most interesting and mysterious combinatorial numbers
[31]. They appear in graph theory, geometry, number theory, and other fields. In this
paper we use Hilbert’s Nullstellensatz to uncover a new algebraic dependence between
Ramsey numbers and restricted online Ramsey numbers [17]. This new dependence ap-
plies for all types of Ramsey-numbers (arithmetic, geometric, graph theoretic). We also

?Department of Mathematics, University of California, Davis (deloera@math.ucdavis.edu).
YDepartment of Mathematics, University of California, San Diego (wjwesley@ucsd.edu).
A less developed version of this paper appeared in [25].

THE ELECTRONIC JOURNAL OF COMBINATORICS 33(1) (2026), #P1.1 https://doi.org/10.37236/12541


https://doi.org/10.37236/12541

use a new “Ramsey polynomial”, in the spirit of Alon’s combinatorial Nullstellensatz [2],
to show lower bounds on Ramsey numbers come from the vanishing of its coefficients.
Overall, we point to algebraic ways to measure the computational complexity of Ramsey
numbers.

In its simplest, most popular form, the graph theory Ramsey number R(r,s) is the
smallest positive integer n such that every 2-coloring of the edges of K,, contains a copy
of K, in the first color or K, in the second color. Ramsey numbers can be general-
ized by allowing more than two colors and graphs other than K, and K. The number
R(G1,Ga,...,Gy) is the smallest positive integer n such that every k-coloring of the
edges of K, contains a copy of G; in color i. If G; = K,, for all i, we simply write
R(ry,79,...,7). All of these numbers are finite by Ramsey’s theorem [58].

In the concrete special case of graph theory, we introduce two interpretations of R(r, s)
and related numbers and graphs using polynomial ideals, varieties, and Hilbert Nullstel-
lensatz identities (see [18] for an introduction). We tie the values and complexity of R(r, s)
to encodings or models using systems of polynomial equations. We show that these en-
codings give interesting information on the computational complexity of Ramsey numbers
and Ramsey graphs. The precise models appear in Section 2. Before we state our main
results, let us recall some relevant prior context and results:

Computing exact values for Ramsey numbers is a challenge. In fact, there are only
nine values of R(r,s) with 3 < r < s whose exact values are currently known, and the
only known non-trivial Ramsey numbers with more than two colors are R(3,3,3) = 17
and R(3,3,4) = 30 [33, 15]. Ramsey numbers as small as R(5,5) remain unknown, and
the best known bounds are 43 < R(5,5) < 46. See [29, 3]. The numbers R(G1,Gs) are
known for some families of graphs, but many cases remain open (see, for example, [57]
for a survey of small Ramsey numbers and their best-known bounds). The best known
asymptotic lower bounds for diagonal Ramsey numbers R(s, s) are given in [62], and the
best upper bounds are from [35], following the breakthrough exponential improvement in
[12].

Although we know that in practice computing Ramsey numbers is extremely difficult
(and considered harder than fighting a war with an alien civilization), it is not clear
what is the appropriate computational complexity class to show theoretical hardness of
computing Ramsey numbers R(r,s). For example, the closely related arrowing decision
problem asks whether, given three graphs F, G, H is there is a red/blue edge-coloring of
F' that contains either a red G or a blue H? This decision problem was shown to be in
co-NP for fixed choices of G, H [10]. Later Schaefer [60] showed that in general it is in
the polynomial hierarchy to answer these queries, but it is not clear what to do with this
complexity question when F, G, H are complete graphs Ky, K, K, because there is only
one value R(r,s) for each input N, r, s, thus it is not clear how it can be hard for any of
the usual classes like NP. See details in [60, 10, 37].

In recent years, Pak and collaborators [54, 42, 55] have proposed that another way to
measure computational complexity is by looking at counting sequences. Here we propose
that their point of view could be another way to assert hardness of R(r,s) by counting
of Ramsey graphs: Ramsey (r,s)-graphs, are graphs with no clique of size r, and no
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independent set of size s. Clearly, the number of vertices of a Ramsey (r, s)-graph is less
than the Ramsey number R(r,s). We are interested in the number of Ramsey graphs on
n vertices denoted by RG(n,r,s). What is the complexity of counting the sequence of
numbers { RG(n,r,s)}>2 ;7 From Ramsey’s theorem this sequence consists of R(r,s) — 1
positive numbers and then an infinite tail of zeroes. We give some examples of RG(n,r, s)
in Table 1, which are computed using the #SAT solver RELSAT [4], following the work
of successful computations in Ramsey theory using SAT solvers in, for example, [39] and
[13] (see also the database at [52]). Thus, the hardness of R(r,s) can then be rephrased
as the following question:

QUESTION: Is the counting function RG(n,r,s) in #P?

Table 1: Table of small values of function RG(n,r, s) counting Ramsey (r, s)-graphs.

n | RG(n,3,3) | RG(n,3,4) | RG(n,3,5) | RG(n,3,6) | RG(n,3,7) | RG(n,4,4)
1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 6 7 7 7 7 8

4 18 40 41 41 41 62

) 12 322 387 388 388 892

6 0 2812 5617 5788 5789 22484

7 0 13842 113949 133080 133500 923012

8 0 17640 2728617 4569085 4681281 55881692
9 0 0 55650276 | 220280031 | 245743539 | 4319387624

Most of the results of this paper are indeed motivated by understanding and counting
the Ramsey graphs as the solutions of a system of polynomial equations.

Our Contributions:

Our first contribution, in Section 2, is to reintroduce the sequence {RG(n,r,s)}>
as the number of solutions of certain zero-dimensional ideals over the polynomial ring
F_g[xl, ..., Zp). The solutions are indicator vectors that yield all Ramsey graphs (note,
here they are not counted up to symmetry or automorphism classes). Some simple prop-
erties of RG(n,r, s), such as the fact that RG(n,r, s) < RG(n,r+1, s), follow immediately
from Theorem 1.

Theorem 1. The Ramsey number R(Gy,...,Gy) is at most n if and only if there is no
solution to the following system over Fy, where K, = (V, E) is the complete graph on n
vertices. Moreover, when the system has solutions, the number of solutions to this system
15 equal to the number of graphs of order n that avoid copies of G; in colori. In particular,
when k =2, G; = K,, and Gy = K, this is the number of Ramsey graphs RG(n,r,s).
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pi= ] wie=0 Vi,1<i<k, VHCK, H=G,, (1)

ecE(H)
k

=1+ @c=0 Ve € E, (2)
i=1

Uije = TieTje =0 Ve € E, Yi,j, i #j. (3)

When k = 2, Gy = K,, and Gy = K, the Ramsey ideal RI(n,r, s) is ideal of the
polynomial ring F2[$17e,$276]6€E(Kn) generated by the polynomials pr, q. and u; ;.. Then
we have

RI(n,r,s) D RI(n,r+1,5) D --- 2 RI(n,n,s) D RI(n,n+1,s) = RI(n,n+2,s) = ...
and

RI(n,r,s) D RI(n,r,s+1)2--- 2D RI(n,r,n) D RI(n,r,n+1) = RI(n,r,n+2) = ...

The very first value of n for which the system of equations has no solution is equal to
the Ramsey number.

One important result for our purposes is the famous Hilbert’s Nullstellensatz, which

states that a system of polynomial equations f; = --- = f,, = 0 over an algebraically
closed field K has no solution if and only if there exist coefficient polynomials 3i,..., G,
such that

Z@z‘fi =L (4)

We call such an identity (4) a Nullstellensatz certificate. The degree of a certificate
is the largest degree of the polynomials ;. Note that in our case the existence of a
Nullstellensatz certificate is equivalent to an upper bound on the Ramsey number. The
strong connection between combinatorial problems and the Hilbert Nullstellensatz has
been investigated in, for example, [11, 51, 23, 20, 24, 21, 48, 22, 56]. Here we show a new
surprising connection of Ramsey numbers to Nullstellensatz certificates.

In Theorem 2 we give a general construction for Nullstellensatz certificates of Ramsey
number upper bounds using the polynomial encoding from Theorem 1. In other words,
assuming the number of vertices of a Ramsey ideal is n and n > R(Gy,...,Gg), we
give upper bounds for the degrees of the Nullstellensatz certificates. Surprisingly, our
construction of Nullstellensatz certificates for the Ramsey ideals are related to a certain
class of games.

So-called “Ramsey games” were studied by Beck in [6], and he went on to introduce the
online Ramsey numbers R(r,s) in [7], though Kurek and Ruciriski independently studied
them in [45]. These numbers are defined in terms of the following Builder-Painter game
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that is played on an infinite set of vertices. Each turn Builder selects one edge e, and
Painter selects a color in [k] and colors e with this color. Builder wins the game once a
monochromatic G; in color i is constructed for some i. The number R(Gy, ..., G}) is the
minimum number of edges Builder needs to guarantee a victory. These numbers, as well
as some closely related variants, have been studied recently in, for example, [16, 28, 14,
38, 34, 61, 1].

Our work yields certificate degrees given by the restricted online Ramsey numbers
R(Gy,...,Gy;n), first introduced by Conlon et al. in [17]. These numbers are defined the
same way as their unrestricted counterparts, but the game is played instead on a finite set
of n vertices. We also use the simplified notation R(ry,...,rg;n) for R(K,,, ... J K n).
It is trivial that R(Gq,...,Gy) < (R(GI’Q'"’Gk)), but it was shown in [30] that in the case

of 2-color classical Ramsey numbers R(r, ;1) < (5) — Q(nlogn) for n = R(r,r). While
this degree bound is linear in the number of variables, k(;‘), it is an improvement over
the upper bounds for the Nullstellensatz given in, for instance, [9, 47]. For other graphs
there are precise results: Briggs and Cox proved that R(TKQ, rKo;n) < n—1, where rKj
is a matching and n = R(rKs,rK,) = 3r — 1, and Dvorak later proved the bound is tight

8, 26].

Theorem 2. If n > R(G,...,Gg), then there is an explicit Nullstellensatz certificate
of degree R(Gy,...,Gy;n) — 1 that the statement R(Gy,...,Gy) > n is false using the
encoding in Theorem 1. In particular, in the case of 2-color classical Ramsey numbers,
this implies that if n > R(r,s), then there exists a Nullstellensatz certificate of degree
R(r,s;n) — 1 that the statement R(r,s) > n is false.

So far we have mostly stated results for graph-theory Ramsey numbers, but it is very
important to stress that Theorem 2 is just one special case of a more general theorem. The
proof of Theorem 2 does not rely on the graph-theoretic properties of Ramsey numbers,
and in fact it applies to the whole of Ramsey theory (arithmetic, geometric, etc). In
particular, we can modify the encoding in Theorem 1 to suit several well-known problems
in Ramsey theory (see, for example, [31, 46]). We now express these problems using the
general framework below.

Definition 3. Let k be a positive integer, and let {S,} be a sequence of sets indexed by
n. For each color ¢ in [k], let PS be a subset of S,,. A triple A := ({S,},{P:};k) is a
Ramsey-type problem if the following hold:

1. 5§, €S,y fore > 1,
2. P, CPi forn>1,1<c<k,

3. There exists an integer N such that for all « > N and every k-coloring of S; there
is a color ¢ and some element X € P{ where each element of X is assigned color c.

The smallest such N is called the Ramsey-type number for A, and is denoted R(A).

o
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Note that the subscript n is merely an index and not necessarily equal to |S,|. More-
over, the sets P need not be equal for different colors c.

We see that in the problem of computing classical Ramsey numbers R(r, s), we have
k = 2 colors, and the index n denotes the number of vertices in the complete graph
whose edges are being 2-colored. Then S,, = E(K,) = {(i,7) : 1 <i < j < n}, and the
families P! and P2 consist of all the sets of edges of induced subgraphs of K,, containing
r and s vertices, respectively. As another example, the problem of computing Schur
numbers asks for the smallest n such that every k-coloring [n] contains a monochromatic
solution to the equation x 4+ y = z. In this case we have S,, = [n], and for all ¢ we have
Pr={{z.y, 2} :{z,y, 2} C [n],x +y = 2}.

As we see in Section 2, the encoding in Theorem 1 can be modified to give bounds
for many other Ramsey-type numbers, including Schur, Rado, van der Waerden, and
Hales-Jewett numbers. We can define numbers analogous to the restricted online Ramsey
numbers for Ramsey-type problems in terms of another Builder-Painter game. We define
this game for a fixed n as follows: For each turn, Builder selects one object from S,, and
Painter assigns it a color in [k]. Builder wins once there is a color ¢ and an element X € P¢
where every element of X is assigned color ¢. Define the number Rk(P%, ..., PFS,) to be
the smallest number of turns for which Builder is guaranteed a victory. In this notation,
the restricted online Ramsey number R(r, s;n) is equal to Ry(PL, P?; S,) with P, and S,
defined as above for the Ramsey number R(r,s). Theorem 4 generalizes Theorems 1 and
2.

Theorem 4. Let A = ({S,},{P:}; k) be a Ramsey-type problem. Then for each n, the
Ramsey-type number for A is strictly greater than n if and only if the following system of
equations has no solution over IFs.

pX7c::Ha:c75:0 VX eP,, 1<c<k,
seX
k
qszzl—i—in,S:O Vs €S,
i=1
Ujjs = Ti,sTjs = 0 Vs € Sn, \V/i,j, 1<i< ] < k.

If n > R(A), then the minimal degree of a Nullstellensatz certificate for this system is
at most Rk(P}N ., PrS) — 1.

Moreover, the number of solutions to this system is equal to the number of k-colorings
of Sn such that for every color c, each set X € P¢ contains an object that is not assigned
color c.

For example, in the case of Schur numbers, the number of solutions to this system is ex-
actly the number of k-colorings of [n] that do not contain any monochromatic solutions to
z+1y = 2. In Section 2 we give some examples of values of R(r, s;n) and R(PL, ..., P S,)
and discuss the Nullstellensatz certificates for the associated polynomial systems.
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Our second contribution is about Alon’s Combinatorial Nullstellensatz method. This
is a popular technique where combinatorial problems are encoded by a single polynomial
f(z1,...,x,), and the combinatorial property of interest is true depending on whether f
vanishes or not at certain testing points. The analysis usually requires finding which co-
efficients are nonzero. This approach has been used with great success in many situations
(see, for example, [2, 36, 27, 63, 43, 41, 59] and the references therein).

We show that lower bounds for Ramsey numbers can be obtained by showing that a
certain Ramsey polynomial f, s, is not identically zero. Its coefficients are new combi-
natorial numbers E), j , g which we call ensemble numbers. We show that E, i, g equals
the number of ways to choose two distinct edges from k-tuples of r-cliques inside K, such
that, every edge in a subgraph H is chosen an odd number of times and every edge in its
complement H is chosen an even number of times. We give a detailed example computing
a value of E, j, g in Section 2.

Theorem 5 shows that the numbers E), ;. g can be used to find lower bounds for the
diagonal Ramsey number R(r,r), and it is an analogue of Theorem 7.2 in [2].

Theorem 5. If

: (5)-+ 2 ()
S ((0-0) w22 (()-6))

k even

for some H, then R(r,7) > n.

2 Ramsey Numbers and Hilbert’s Nullstellensatz

In this section we give several encodings of the problem of finding an upper bound for
R(r,s) in terms of the feasibility of a system of polynomial equations. In the simplest
version of the encoding, the variables correspond to edges in the graph K,, and the
solutions of the system correspond to graph colorings that avoid monochromatic copies
of K, and K,. If the system is infeasible for some n, then no such coloring exists, hence
R(r,s) < n.

Many combinatorial problems can be encoded as a system of polynomial equations,
including colorings, independence sets, partitions, etc. (see, e.g., [11, 5, 19, 23, 24, 40, 49,
51]). A Nullstellensatz certificate for such a combinatorial polynomial system is there-
fore a proof that a combinatorial theorem is true. We are interested on bounding the
Nullstellensatz degree for our Ramsey systems.

There are known general “algebraic geometers” upper bounds for the degree of a
Nullstellensatz certificate, so the above procedure terminates, even when these bounds are
exponential and sharp in general [44]. However, the exponential bounds should not be bad
news for combinatorialists. First, it has been shown [47] that for “combinatorial ideals”,
the bounds are much better, linear in the number of variables. Over finite fields there are
degree bounds that are independent of the number of variables [32], and a recent paper
[53] gives substantial improvements to these bounds. The bounds we give in Theorems 2
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and 4 for our systems of equations are better than the above bounds. Moreover, it has
been documented that in practice the degrees of Nullstellensatz certificates of NP-hard
problems (e.g., non-3-colorability), tend to be small “in practice” (see, for example, [50, 48,
21] and the references therein), especially when the polynomial encodings are over finite
fields. Note also that when we know the degree of the Nullstellensatz certificate, one can
compute explicit coefficients of the Nullstellensatz certificate using a linear algebra system
derived by equating the monomials of the identity. This has been exploited in practical
computation with great success, see [20, 21, 48]. In general, however, certificates are
difficult to compute, and for many of the Ramsey problems in this paper it is impractical
to compute certificates beyond small cases.
We now prove Theorem 1 of our encoding for Ramsey numbers over Fy below.

Proof of Theorem 1. Suppose there is a solution x to the system over Fo. Then we color
each edge of K, with the color indicated by the solution vector x. More precisely, for
each edge e of K, and each color ¢, the system has a variable z;.. The polynomials u; ;.
guarantee that for a given e, at most one variable z; . is nonzero. From the polynomials
¢e, we then see that exactly one index ¢ such that z; . = 1, and let ¢(x) be the coloring x
where y(e) is this index. Color each edge e of K, with the color x(e). In the equations
involving the polynomials py, for each subgraph H of K, with H = G;, there is at least
one edge e in H with z; . = 0. Therefore x(e) # i, so there is no monochromatic copy of
G, in color 1.

Conversely, if we have a coloring y of the edges of K,, with no monochromatic G; in
color 4, then let ¥ (x) be the solution x where

- {1 if x(e) =1,

0 otherwise.

One can check easily that x satisfies the system of equations. The maps ¢ and v are
inverses of each other, and so the number of solutions to the system is equal to the
number of colorings of K,, with no monochromatic G; in color 7.

For the first chain of ideals, observe that for a fixed 4, the polynomial J] . B Tise
divides ], By Tie if and only if H is a subgraph of H'. Since every copy of K, in K,
contains a copy of K, as a subgraph, in the ideal RI(n,r + 1, s), every polynomial of the
form HeeE(H,) x;. with H' = K, is divisible by a generator HeeE(H) zi. of RI(n,r,s)
with H = K,. The ideals in the chain are equal for » > n since in this case K, is not a
subgraph of K,,. The proof for the second chain of ideals is similar. n

Before we prove Theorem 2, we show a special case as a warm-up example. There is
a simple certificate of the fact that R(r,2) < 7.

Example 6. For all r, there exists a Nullstellensatz certificate of degree (;) — 1 of the
statement R(r,2) < r.

Proof. Label the edges of K, from 1 ton = (g) The following identity is a certificate that
R(r,2) < r. Polynomials in parentheses are part of the system of equations in Theorem
1.
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l=1+z11+x21) + 2101+ 212+ 222) +T11212(1 + 213+ 223) + ...
+ 211212 Tip—1 (1 + 21, + T2p)
+ 291 + T11(@22) + T11012(T23) + - F X1 1T12 0 T1n—1(T2n)

+ ($1,1 s 5E1,n)
]

In the proof of Theorem 2, we show how to translate a strategy for Builder into a
Nullstellensatz certificate. This method can be used to construct a certificate for all
(known) upper bounds for R(G1,...,Gs). Notably, better strategies for Builder yield
lower degree certificates. In Example 6, this is not a concern since the order in which
Builder selects edges does not matter, and in fact R(T, 2) = r. Painter can simply color
every edge Builder selects the first color, and Builder wins only when all (g) edges are
selected.

The proofs of Theorems 2 and 4 are similar, and in fact Theorem 2 follows from
Theorem 4, but for the sake of concreteness we begin with Theorem 2.

Proof of Theorem 2. Number the edges of K, from 1 to (g) A t-turn game state g is a
set {(ei;,c1), (€iy,C2), .-, (€, ¢)} of pairs of edges e;; € E chosen by Builder and colors
c; € [k] chosen by Painter. A game is complete if there is some color ¢ € [k] where Painter
has colored a monochromatic G, in color ¢. Let d := [fi(Gl, ..., Gg;n). If Builder follows
an optimal strategy for choosing edges, then the game lasts at most d turns, that is ¢t < d.

For a t-turn game state g, define the monomial 7(g) to be

¢
m(g) = H Tej i,
j=1

Similarly, for any monomial f = H;zl Tej e, with distinct e;;, let o(f) denote the game

state {(e;;, 1), (€4, C2), ..., (€i,,¢) }-
We will describe an algorithm to construct a Nullstellensatz certificate of the form

k

S Buipmi+ > vete = 1. (5)

i=1 H=G,; eck

Denote the left-hand side of Equation 5 by L. For each i € [k], initialize 8y, to 0 for
all H = ;. Initialize 7. to 0 for all edges e except ey, and set 7., := 1. Then repeat the
following;:

1. Expand and simplify L so that L is a sum of monomials. If L = 1, then we are
done.

2. Otherwise, at least one term in L is a nonconstant monomial f.
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3. If o(f) is a completed game state, then py; divides f for some color i and H = G;.
Then set
f

PHi

Bu,i < B, +

This results in L <— L + f, which cancels the original f in the certificate since it is
an expression over [Fy, which has characteristic 2.

4. If o(f) is not a completed game state, then let e be an edge that Builder should
choose in an optimal strategy from the game state o(f). Set

Ye < Ve + f.

Since fq. = f + Zle fzi., we obtain L < L+ f + Zle fwic. This results in
the cancellation of f in L, but adds k additional terms (one for each of Painter’s k
choices for coloring e) to L. Note that if o(f) is a ¢-turn game state, then o(fz; )
is a (t + 1)-turn game state for all .

By the symmetry of K, it is arbitrary which edge Builder selects first. Therefore each
nonconstant term that appears in L corresponds to a game state where Builder (but
not necessarily Painter) has followed an optimal strategy. Since terms that correspond
to completed games are canceled out in step 3, this procedure terminates, resulting in
a Nullstellensatz certificate. Because Builder follows an optimal strategy, the maximal
degree of any term in any -, is d — 1, so the degree of the certificate is d — 1.

O

To illustrate the importance of Builder’s strategy in this method, observe that one
can construct a degree 7 certificate for the statement R(3,3) < 6 using the follow-
ing strategy: For the first five turns, Builder selects each edge incident to some ver-
tex v. No matter how Painter colors these edges, three must be colored the same
color. Call these edges vwy,vws, vws. Then for the next three turns, Builder selects
the edges wywsq, wiws, and wews, and Painter must construct a monochromatic trian-
gle (see Figure 1). However, if Builder plays poorly and selects, for example, the edges
(1,2),(2,3),(3,4),(4,5),(5,6),(1,6),(1,4),(2,5), and (3, 6), then, no matter what Painter
does, there are no monochromatic triangles, and this leads to a higher degree certificate.

The proof of Theorem 2 shows that the polynomials can “simulate” a tree of Builder-
Painter games. However, in general the degrees of certificates can be strictly smaller than
the bounds given in Theorems 2. For example, by a computational search, it can be shown
that ﬁ(3, 3;6) = 8. However, there exists a Nullstellensatz certificate of degree 5 using
the encoding in Theorem 1, which is better than the bound given in Theorem 2. We now
give the proof of Theorem 4.

Proof of Theorem 4. Let A = ({S,.},{P:}; k) be a Ramsey-type problem. A ¢-turn game
state g after ¢ is a set {(s,,¢1), (Siy, C2),s - - -, (8i,,¢) } of objects s € S, chosen by Builder
and colors ¢; € [k] chosen by Painter. A game is complete if there is a color ¢ € [k]
and some element X € P; where Painter has colored all the elements of X color c. Let
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Figure 1: Builder-Painter game for R(3,3). For each turn, the edge selected by Builder
is indicated in black, and Painter colors it either red or blue.

:
L
L

:

Turn 1: Turn 2:

:
L
L

Turn 3: Turn 4:

Turn 5: Turn 6:

:
& <
= <

Turn 7:

:
SASES
SRS

Turn 8:

d:= E’k(Pn; Sy). If Builder follows an optimal strategy for choosing edges, then the game
lasts at most d turns, that is ¢ < d.
For a game state g;, define the monomial 7(g;) to be

¢
7(g:) == H Tejsi, -
j=1

Similarly, for any monomial f = H;:l Teysi, with distinct s;;, let o(f) denote the game

state {(si,,¢1), (Siys €2)s -+, (Si,, 1) }-
We will describe an algorithm to construct a Nullstellensatz certificate of the form

Z ﬁX,ch,c + Z Vsqs = 1. (6>

(X,c)ePn sESK

Denote the left-hand side of Equation 6 by L. Initialize Sx . to 0 for all (X, ¢) € P,.
Let s* be an object that Builder selects first in an optimal strategy. Initialize v, to 1 and
vs to 0 for all other s € S,,. Then repeat the following:
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1. Expand and simplify L so that L is a sum of monomials. If L = 1, then we are
done.

2. Otherwise, at least one term in L is a nonconstant monomial f.

3. If o(f) is a completed game state, then py . divides f for some (X,c) € P,. Then
set
f

PXx.c ‘
This results in L <— L + f, which cancels the original f in the certificate since it is
an expression over [Fo, which has characteristic 2.

BX,C < /BX,C +

4. If o(f) is not a completed game state, then let s be an object that Builder should
choose in an optimal strategy from the game state o(f). Set

Vs Vs + f.

Since fqs = f + Zle fx;s, we obtain L <— L+ f + Zle fxie. This results in
the cancellation of f in L, but adds k additional terms (one for each of Painter’s k
choices for coloring s) to L. Note that if o(f) is a ¢-turn game state, then o(fz; )
is a (t + 1)-turn game state for all 7.

For each nonconstant monomial f that appears in L, its corresponding game state o (L)
is one where Builder (but not necessarily Painter) has followed an optimal strategy. Since
terms that correspond to completed games are cancelled out in step 3, this procedure
terminates and results in a Nullstellensatz certificate. Because Builder follows an optimal
strategy, the maximal degree of any term in any 7, is at most d — 1, so the degree of the
certificate is at most d — 1. O

As an application of Theorem 4, let £ be a linear equation, and let Ry(£) denote
the k-color Rado number for £, the smallest n such that every k-coloring of [n] contains
a monochromatic solution to €. Let X, ¢ be the set of all solutions over [n] to €. Let
P = X, ¢ for all c. If Ry (&) exists, then ({[n]}, {PS}; k) is a Ramsey-type problem, and
we have the following corollary.

Corollary 7. Let £ be the linear equation Z;:1 a;y; = ag with a finite Rado number
Ri(E). Let Xy e = {(my,...,my) : Zj.:l a;m; = ag, 1 < m; < n} be the set of solutions

over [n] to £. Then for every n, the following system has no solution over Fy if and only

t
[T zim, =0 V(my,...,my) € Xne, 1<i<k,
j=1
k

1+in7m:0 1<m<n,
i=1
:Ui,mxj,mzo 1<m<n71<2<]<k
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The degree of a minimal Nullstellensatz certificate for this system has degree at most
Rk(Xn,Sa s 7Xn,8; [TL]) -1

As an example, let £ denote the equation x + 3y = 3z, and let Xy ¢ be the solutions
to £ over [9] as above. It is known that Re(E) = 9 [46]. However, Builder can select,
in order, the integers 4,6,9,3, and 7 to win the Builder-Painter game in at most 5 turns:
since (6,4, 6) is a solution, 4 and 6 must be different colors, and then since (9,6,9) and
(3,3,4) are solutions, 4 and 9 must be one color and 3 and 6 are the other color. But then
(3,6,7) and (9,4,7) are solutions, so there is a monochromatic solution no matter which
color Painter selects for 7. Therefore Ry(Xoe, Xo¢;[9]) < 5, and the minimal degree of a
Nullstellensatz certificate for the system of equations in Corollary 7 is at most 4. In fact,
some computations show the minimal degree is 2.

Similarly, the encoding in Theorem 1 for the Schur number S(2) = Ry(z +y = 2) also
gives an example of Nullstellensatz certificates that are smaller than the ones given by
games. It is well-known that S(2) = 5, and from the encoding in Theorem 4, we have
S(2) < 5 if and only if the following system of equations has no solutions over Fs.

14+, + 22, =0, 1 <n <5,
xi1x;0 = 0, Ziox;4 = 0, .
’ fori=1,2.
Ti12;3Ti4 = 0, Ti1L34T55 = 0, T 2Xi3T45 = 0.

A computer search shows that the number ]%(Xaﬁy:z, Xs,24y=2;[5]) = 5, where
X524y 1S the set of positive integer solutions to z+y = z in [1, 5]. The following identity
(over Fy) is a degree 3 Nullstellensatz certificate for the above system of equations, which
is an improvement on the bound in Theorem 4.

1 = (295 + 14015 + T15%23024) (1 + 211 + 221)+
(11213 + T21%a5 + T1101 5%24 + T11T23T2 5
+ 21321524 + T14%15%21) (1 + 212 + T22)+
(1,1%25 + Toa®15 + T11215024) (1 + T13 + T23)+
(15 + T11%1 3215 + T1101 3%22 + T12T21025) (1 + 214 + T24)+
(1 -+ ZL’1’1{E1’3)(1 + x15 + .T2,5>+
(13 4+ Ta 3T 5 + Toa®15)T11%1,2 + (21215 + T21T25) %1 2%2,4
(25 + T1.4%1 5) 21222 + (11013 + L11%15 + T13%35) T2 2024+
(@15 + To2)®1,101 31 4+
(1121421 5) + Toa(x1 271 31 5) + 21 5(2212,32.4)+

!E1,2(-’E2,1$274$2,5) + $1,1(I2,2$2,3$2,5)-

The van der Waerden number w(t, k) is the smallest n such that every k-coloring of
[n] contains a monochromatic ¢-term arithmetic progression [31]. Let AP,; denote the
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set of all ¢-term arithmetic progressions in [n]. Then setting PS := AP, ; for all ¢, then
({[n]},{P:}; k) is a Ramsey-type problem as well.

Corollary 8. For every n, the following system has no solution over Fy if and only if
n = w(t k).

t
HQTi,mj =0 ‘v’(ml,...,mt) GAPmt, 1<Z<k’,
j=1
k

L+ @i =0 1<m<n,
i=1
TimTjm = 0 1<m<n, 1K<y <k

The minimal degree of a Nullstellensatz certificate for this system is at most

Rk(APn,t7 e 7APn,t; [n]) — 1.

The number of solutions to this system is the number of k-colorings of [n] that contain no
t-term monochromatic arithmetic progressions.

Example 9. It is a well known result that w(3,2) =9, and it can be shown via computer
search that Ro(APy3, APy3) = 6. Therefore the system of equations in Corollary 8 for
n=9,t =3,k = 2 has a Nullstellensatz certificate of degree at most 5.

We give one last consequence of Theorem 4. For fixed parameters ¢ and n, a com-
binatorial line is a nonconstant sequence of points v!, ... v, where v* € [t]" such that
for every coordinate j, the sequence (v%)i_, is either constant or v} = 4 for all i. The
Hales-Jewett number HJ(t, k) is the smallest number n such that every k-coloring of [¢]™
contains a monochromatic combinatorial line [31]. Let L, denote the set of all combi-
natorial lines on t". If we set P, = L;,, for all ¢, then ({[t]",{P:}; k) is a Ramsey-type

problem.

Corollary 10. For every n, the following system has no solution over Fy if and only if
n>= HJ(t k).

wag—O Vo', . v € Ly, 1 <0<k,
j=1
k

L) @i, = v et
i=1

Tiowlijy = 0 v € [t]n7 1<i< j < k.

The number of solutions to this system is the number of k-colorings of [t]" that do not
contain any monochromatic combinatorial lines.
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3 Ramsey Numbers and Alon’s Combinatorial Nullstellensatz

In this section we introduce a way to encode the problem of finding a lower bound for
R(r,s) in terms of properties of a single polynomial. We also define a family of numbers
E, kr.m whose values can provide bounds for R(r,r). The following theorem of Alon, the
“Combinatorial Nullstellensatz,” has been used to solve many problems in combinatorics
and graph theory (see, for example, [2, 27, 41, 36, 63, 43] and the references therein).

Theorem 11 (Alon, [2]). Let F' be a field, and let f € Flxy,...,x,]|. Letdeg(f) => 1 t;
with each t; a nonnegative integer, and suppose the coefficient of [}, xf 1s nonzero. Then
if S1,...,S, are subsets of F' with |S;| > t;, then there exist sy € Sy,...,8, € S, such
that f(si,...,sn) # 0.

Here we apply the Combinatorial Nullstellensatz to show that lower bounds for Ramsey
numbers can be obtained by showing that a certain polynomial is not identically zero.
Consider the following polynomial f(z) = f,n.(x), where K,, = (V, E) is the complete
graph on n vertices:

(s Oz 0) -

Every 2-coloring of the edges of G corresponds to an assignment ¢ : {Z¢}ecp — {—1,1}.
If an edge e is colored with the first color, then we set ¢(z.) = 1, and if e is colored with
the second color, then ¢(z.) = —1. Then f(c(z)) = 0 if and only if G contains an r-clique
in the first color or an s-clique in the second color. Therefore if f(c(z1),...,c(zg)) =0
for all colorings ¢, then R(r,s) < n.

Since we only consider the values of f on {—1,1}/*!, we may instead consider the mul-
tilinear representative of f in the ideal (22 — 1),_,. This representative can be obtained
by deleting each variable with an even exponent from each term in f. By Theorem 11,
this representative is the zero polynomial if and only if R(r,s) < |V].

In the proof of Theorem 5, we focus on the case when r = s and study the polynomial
frrn. Before proving Theorem 5, we give an example of a value of an ensemble number
E, jrm, which are coefficients of the multilinear representative of f,,,. We recall the
definition of E,, ;. m below.

We call a collection of k r-cliques a (k,r)-ensemble. For each clique in the ensemble,
we select exactly two edges, and if each edge in H is selected an odd number of times and
each edge of H is selected an odd number of times, then we call this a valid covering of
a subgraph H. The ensemble number £, ;. g is the total number of valid coverings of H
counted from all (k,r)-ensembles of K,.

If H is the graph on five vertices with edge set {(1,2), (1,5)}, then E5 33 g = 8. Figure
2 depicts all eight ways. Each graph has an associated (3, 3)-ensemble £, and each 3-clique
in £ is assigned a distinct color ¢ € {red,green,blue}. The two edges from that 3-clique
are colored c. Edges colored with more than one color are drawn as multiple edges. In
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Figure 2: Valid coverings of the graph H with edges (1,2) and (1, 5).

@/i\@ @@//i;@ @% @@\@é

@

SXete X

the upper left figure, for example, the associated ensemble is {{1, 2,3}, {1,3,4},{1,4,5}}.
The edges (1,2) and (1, 3) were chosen from the clique {1, 2,3}, the edges (1, 3) and (1,4)
were chosen from the clique {1, 3,4}, and the edges (1,4) and (1, 5) were chosen from the
clique {1,4,5}. The edges of H are chosen exactly once, and all other edges are chosen zero
or two times. Note that for some (3, 3)-ensembles, such as {{1,2,3},{1,2,4},{3,4,5}},
it is impossible to choose edges in H an odd number of times.

We now prove Theorem 5.

Proof of Theorem 5. We will use the symbol = to denote equivalent representatives in
the ideal I := (22 — 1),_,. Consider the product of the two terms in f that arise from a
fixed r-subset S of V. Expanding this product and using the relations 22 = 1 gives

2
r r r r
ee%:a . <2) eg(:s) o (2) 2, dnaet (2> N (2)

{e,e’}G(E;S))

Taking the product of these terms over all r-subsets of V' gives

o= II 3 2m6x6/+(;)—(g)2 | ®)

e si=r \ feede(*§?)

After expanding the product, we may write f as a sum of monomials of the form
[1.cx2be. Two monomials of this form are equivalent modulo I if and only if the parity
of b, is the same for all edges e. If H is a subgraph of G, it follows that every monomial
that satisfies the condition that b. is odd if and only if e € F(H) is equivalent to the
squarefree monomial mg := [].. B() Te- Therefore, f is equivalent to a sum of the form

HCG
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We now calculate the coefficients ay in terms of E,, ., g

In the expansion of the right-hand side of (8), we have the following combinatorial
interpretation of the terms. Each term in the product corresponds to an r-subset S of
V. For each S, the term represents a choice of picking either a pair of edges (one of the
22T terms in the sum), or zero edges (the term () — (2)2) from E(S). Therefore the
coefficient ay is

o = (2)22 ((2) - (2)) T (10

If ay is nonzero for some graph H, then the multilinear representative of f is nonzero,
and by Theorem 11 there exists a coloring of K, that makes f nonzero, and in this case
it follows that R(r,r) > n. Setting the expression (10) to be not equal to zero and
rearranging terms by the parity of k£ concludes the proof. O

As an example, we give the values of E, ;g for n = 5,r = 3, and H a graph
of order five with an even number of edges. We denote by G; the graph with edge set
{{1,2},{1,3},{2,3},{1,4}} and G5 the graph with edge set {{1,2},{2,3},{3,4},{3,5}}.

k
I 01 2 3 4 5 6 7 8 9 10
Ks 1 0 0 20 30 132 220 540 585 460 60
PsUK, 0 1 2 8 44 106 280 496 612 413 86
KoUKyUK; |0 0 4 12 28 124 276 484 628 404 88
K4 0 0 3 4 36 132 242 588 516 428 99
Gy 0 0 2 8 32 120 292 504 592 392 106
Go 0 0 1 10 34 114 292 510 590 390 107
Ps 0 0 1 8 40 112 282 520 592 384 109
Cy UK, 0 0 2 8 28 136 272 504 612 376 110
Ky U Kj3 0 0 0 12 36 108 292 516 588 388 108
K 0 0 0 8 24 120 328 504 552 392 120
Gy 0 0 0 6 30 118 318 514 554 386 122
Gy 0 0 0 4 36 116 308 524 556 380 124
Ps 0 0 0 4 32 132 288 524 576 364 128
Cy UK, 0 0 0 4 36 116 308 524 556 380 124
Ky U K3 0 0 0 4 36 108 348 444 636 340 132
Py UK, 0 0 0 0 24 128 344 512 520 384 136
KoUKyUK; [0 0 0 0 20 144 324 512 540 368 140
Ks 0 0 0 0 0 144 400 480 480 400 144

Unfortunately, we were unable to find any nontrivial patterns in the above data, and it
appears to be difficult to compute the numbers E,, j, g in general.
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