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Jan Hladkýa Daniel Il’kovičb Jared Leónc Xichao Shub

Submitted: Jan 14, 2025; Accepted: Nov 17, 2025; Published: Jan 9, 2026

©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

In this short note, we study the notion of cospectral graphons, paralleling the
notion of cospectral graphs. As in the graph case, we give three equivalent def-
initions: by equality of spectra, by equality of cycle densities, and by a unitary
transformation. We also give an example of two cospectral graphons that cannot
be approximated by two sequences of cospectral graphs in the cut-distance.

Mathematics Subject Classifications: 05C50, 05C60, 05C80

1 Introduction

In this paper, we deal with finite, undirected, simple graphs, and graphons as their limit
counterparts. Cospectrality, which is the focus of this paper, is a certain way of grouping
graphs (or graphons, as we will see later) into equivalence classes. This grouping actually
follows a broad scheme, and we will first introduce it abstractly from two perspectives.
Let G and H be two graphs on vertex set [n].

(F1) Suppose that Mn ⊂ Cn×n is a monoid with respect to matrix multiplication. We
say that G and H are Mn-similar for the adjacency matrix AG of G and for the
adjacency matrix AH of H if there exists a suitable n×n matrix T ∈ Mn such that
TAH = AGT .

(F2) Suppose that F is a (finite or infinite) family of graphs. We say that G and H are
F-indistinguishable if hom(F,G) = hom(F,H) for all F ∈ F .1
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1Recall that a homomorphism of a graph F to a graph G is any map h : V (F ) → V (G) such that
h(u)h(v) ∈ E(G) for every uv ∈ E(F ). The symbol hom(F,G) denotes the size of the set of all
homomorphisms from F to G.
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Note that Mn-similarity and F -indistinguishability are equivalence relations. Even
though (F1) and (F2) look very different, several prominent equivalence relations can
be expressed in both ways. These equivalence relations are graph isomorphism, fractional
isomorphism, cospectrality, and quantum isomorphism. Let us give details and specify
the families of matrices Mn and of graphs F .

• The most important of such equivalence relations is the usual graph isomorphism.
In this case, Mn is the set of all n × n permutation matrices. Remarkably, char-
acterization of graph isomorphism using indistinguishability is also possible, with
F = {all graphs}. Indeed, a famous result of Lovász [8] states that if hom(F,G) =
hom(F,H) for all graphs F , then G and H are isomorphic.

• The concept of fractional isomorphism was introduced in [13] using (F1) for Mn

equal to the set of all doubly stochastic matrices. Later, several further equivalent
definitions were given in [12]. Finally, Dvořák [4] gave a characterization as in (F2),
with F being all trees.

• Cospectrality (sometimes called isospectrality) is derived from linear algebra, where
this notion denotes the equality of spectra (including multiplicities) of matrices.
For graphs, this concept is applied to adjacency matrices.2 Basic linear algebra
then asserts that for a characterization using (F1) we need to take Mn to be all
orthonormal n× n matrices. For a characterization using (F2) we take F to be all
cycles. The key insight to infer the equivalence relations of these two definitions is
that when we write Ck for the cycle of length k, hom(Ck, G) is equal to the trace of
Ak

G, which is in turn equal to the sum of the k-th powers of the eigenvalues.

• Quantum isomorphism is the newest addition to the list. It was introduced in [1].
Here, the matrices Mn are actually not over the field of complex numbers. Rather,
their entries are operators (and projections, more specifically) on a fixed Hilbert
space. The conditions imposed on Mn are known in the field of quantum algebra
as ‘magic unitaries’. In a remarkable paper [11] it was shown that this definition is
equivalent to (F2) with F being all planar graphs.

In this note, we translate the concept of cospectrality to graphons. Graphons are
analytic objects introduced by Borgs, Chayes, Lovász, Sós, Szegedy, and Vesztergombi [10,
2] to represent limits of sequences of graphs. We recall the exact definition and properties
later in Section 2. At this moment, it suffices that each graphon is a symmetric bounded
Lebesgue measurable function on [0, 1]2. In particular, it can be viewed as an integral
kernel operator on L2([0, 1]) (see (2)). There are several directions in which graphons can
be studied. Below are the two most important ones.

• Graphons can be studied per se, often motivated by concepts from finite graphs. The
seminal paper [10] introduced the notion of homomorphism density t(F,W ) (here, F

2Less often, some other matrices, such as the normalized Laplacian, are used. These alternative defini-
tions lead to different notions of cospectrality.
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is a graph and W is a graphon), which is motivated by the notion of homomorphism
counts hom(F,G) (or by the notion of homomorphism density hom(F,G)v(G)−v(F )).
Other concepts that have been extended to graphons include, for example, notions
of the max-cut [2] and the chromatic number [7].

Our attention is on (F1) and (F2). Note that there is a very easy way to in-
troduce the graphon counterparts of graph isomorphism, fractional isomorphism,
cospectrality, and quantum isomorphism from their definitions using the concept of
indistinguishability in (F2). Namely, we will say that two graphons U and W are
(i) weakly isomorphic, (ii) fractionally isomorphic, (iii) cospectral, and (iv) quantum
isomorphic if t(F,U) = t(F,W ) for (i) every graph F , (ii) every tree F , (iii) every
cycle F , (iv) every planar graph F , respectively. Let us now turn to graphon counter-
parts to (F1). Here, we should view each graphon W as an integral kernel operator
TW : L2([0, 1]) → L2([0, 1]) (defined by (2)). Similarity is not facilited by a family
Mn of n× n matrices, but rather by a set of bounded operators M ⊂ B(L2([0, 1]))
on L2([0, 1]), and the counterpart of the matrix equality TAH = AGT for some
T ∈ Mn is the equality of operators TTU = TWT for some T ∈ M. (As we shall
see in Footnote 3, an additional twist is sometimes needed.) Let us see counter-
parts of (F1) relating to the above equivalence relations for graphons. The main
result of [3] asserts that two graphons U and W are weakly isomorphic if and only
if for every ε > 0 there exists a unitary Koopman operator T so that the operator
norm of TU − WT is less than ε. Recall that being a unitary Koopman operator
amounts to the existence of a measure-preserving bijection π : [0, 1] → [0, 1] such
that (Tf)(x) = f(π(x)) for every f ∈ L2([0, 1]) and x ∈ [0, 1]. This can be viewed
as an analogue of (F1).3 The theory of fractional isomorphism for graphons was
introduced by Greb́ık and Rocha [5]. Specifically, [5] gives graphon counterparts
to all known characterizations of graph fractional isomorphism and proves their
equivalence relations to the above definition which requires the equality of all tree
densities. The characterization of (F1) is TU = WT for a suitable ‘Markov operator’
T . One of the main contributions in this note is that in Theorem 3 we give several
definitions of ‘cospectral graphons’ and prove their equivalence relations. As far as
we know, no attempt to extend the notion of quantum isomorphism to graphons
has been made.

• A particularly important line of research is in investigating continuity properties of
various graph(on) parameters. The most prominent example is again the homomor-
phism density. In particular, the so-called Counting lemma asserts that if (Gn)n is
a sequence of graphs converging to a graphon W , then for every graph F we have
hom(F,Gn)v(Gn)

−v(F ) → t(F,W ).

This yields the following result. Namely, suppose that (Gn)n and (Hn)n are se-
quences of graphs so that for each n, the graphs Gn and Hn are of the same order
and are isomorphic, or fractionally isomorphic, or cospectral, or quantum isomor-
phic. Suppose further that (Gn)n converges to a graphon U and (Hn)n converges

3Note that we cannot achieve precisely TU = WT in some situations, see Figure 7.1 in [9].
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to a graphon W . Then by the above, Gn and Hn have the same counts (and thus
also densities) of homomorphisms from each graph, or from each tree, or from each
cycle, or from each planar graph, respectively. By the continuity of homomorphism
densities, these equalities are inherited to U and W . We conclude that U and W
are weakly isomorphic, or fractionally isomorphic, or cospectral, or quantum iso-
morphic.

The main result of [6] goes in the opposite direction in the case of fractional isomor-
phism: If U and W are fractionally isomorphic then we can find sequences of graphs
Gn → U and Hn → W such that for each n, the graphs Gn and Hn are fractionally
isomorphic. The second result of this note, Theorem 5, is that the counterpart of
this result for cospectrality does not hold.

2 Preliminaries

For a graph G we denote by v(G) the number of vertices of G and e(G) the number of
edges. By Ck we denote the cycle of length k.

2.1 Graphons

We now review the basic concepts of the theory of graphons, using common notation from
the excellent monograph [9]. A graphon is a symmetric measurable function W : [0, 1]2 →
[0, 1]. When we view the sets [0, 1] or [0, 1]2 as measure spaces, we take the underlying
measure to be the Lebesgue measure. The cut-norm distance is defined as

d□(U,W ) = sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

U(x, y)−W (x, y) dx dy

∣∣∣∣ , (1)

where the supremum ranges over all measurable subsets S and T of [0, 1]. The cut-distance
is defined as

δ□(U,W ) = inf
φ
d□(U

φ,W ),

where the infimum ranges over all measure preserving bijections φ : [0, 1] → [0, 1] and
Uφ(x, y) = U(φ(x), φ(y)). The cut-distance is symmetric, satisfies the triangle inequality,
and δ□(U,U) = 0 for all U . In addition, note that the pairs of graphons of the form U
and Uφ are at cut-distance 0, yet there are many instances when they are not equal. That
means that δ□ is pseudometric but not metric. More details can be found in Section 8.2.2
of [9].

Recall that each graph can be represented as a graphon. For a graph G on a vertex
set V , we define a graphon WG in the following way. Partition [0, 1] into sets {Ωv}v∈V of
measure 1

|V | each. On each rectangle Ωu ×Ωv, the function WG is constant-1 or constant-
0, depending on whether uv forms an edge of G or not. The representation WG is not
unique as it depends on the choice of the partition {Ωv}v∈V . However, any two represen-
tations are at cut-distance 0. The sequence of graphs (Gn)n converges to W if and only if
δ□(WGn ,W ) → 0 as v(Gn) → ∞.
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The density of a graph G in a graphon W is defined as

t(G,W ) =

∫
(xv)v∈v(G)∈[0,1]V (G)

∏
uv∈E(G)

W (xu, xv)
∏

v∈V (G)

dxv .

So far, the analogies between the adjacency matrix of a graph and a graphon were
made in the original domain [0, 1]2. In the language of Fourier transform, this corresponds
to the spatial perspective. We now move to the dual perspective. Namely, we recall
a formalism that allows us to study spectral properties of graphons. The details can
be found in Section 7.5 of [9]. Each graphon W can be associated with an operator
TW : L2([0, 1]) → L2([0, 1]) defined by

(TWf)(x) =

∫ 1

0

W (x, y)f(y) dy for every x ∈ [0, 1]. (2)

It is known that TW is a symmetric real Hilbert-Schmidt operator. In particular, we say
that f ∈ L2([0, 1]) is an eigenvector of W with eigenvalue λ ∈ R if TWf = λf . Since TW

is a compact operator it has a discrete real spectrum (that is, the multiset of eigenvalues),
denoted by Spec(W ). It is well known that for each ε > 0 the number of eigenvalues of
modulus at least ε (including multiplicities) is finite. Further, Parseval’s Theorem (see
e.g. (7.23) in [9]) asserts that

∥W∥22 =
∑

λ∈Spec(W )

λ2 . (3)

We mentioned in Section 1 that for k ⩾ 3 and a graph G, the quantity hom(Ck, G) is
the sum of the k-th powers of the eigenvalues of the adjacency matrix of G. The graphon
counterpart to this is (see (7.22) in [9])

t(Ck,W ) =
∑

λ∈Spec(W )

λk for each k ⩾ 3. (4)

2.2 Spectral theorem

Here we recall the notion of unitary operators. This is a general concept which applies
to every Hilbert space. We need a definition only in the complex Hilbert space L2([0, 1]).
A bounded operator T : L2([0, 1]) → L2([0, 1]) is unitary if T is surjective and for every
f, g ∈ L2([0, 1]), we have ⟨Tf, Tg⟩ = ⟨f, g⟩ and ∥Tf∥2 = ∥f∥2. In fact, the last two
properties in the previous definition are known to be equivalent. That is, the property of
the preservation of the inner product implies the property of the preservation of the norm
and vice versa. Unitary operators are functional-analytic counterparts to orthonormal
matrices.

Next, we state the Spectral theorem for self-adjoint compact operators. Recall that
a bounded operator T : L2([0, 1]) → L2([0, 1]) is self-adjoint if for every f, g ∈ L2([0, 1]),
we have ⟨Tf, g⟩ = ⟨f, Tg⟩. For every graphon W , the associated operator TW in (2) is
self-adjoint. This can be easily verified, using the fact that W is a symmetric function.
Since TW is a Hilbert-Schmidt operator, it is also a compact operator.
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Theorem 1 (Spectral theorem). Let T : L2([0, 1]) → L2([0, 1]) be a compact self-adjoint
linear operator.

For each non-zero eigenvalue λ, let Kλ be the eigenspace corresponding to λ, i.e.,
Kλ = {x ∈ L2([0, 1]) | Tx = λx}. Let PKλ

be the orthogonal projection onto the eigenspace
Kλ.

Then the following spectral decomposition of T holds,

T =
∑

λ∈Spec(T )
λ ̸=0

λPKλ
,

where the sum converges in the operator norm if Spec(T ) is infinite.

3 Equivalent definitions of cospectral graphons

We defined cospectral graphons in Section 1. Since not all the concepts were defined back
then, we repeat the definition here.

Definition 2. Graphons U and W are cospectral if and only if t(Ck, U) = t(Ck,W ) for
all integers k ⩾ 3.

In our first main theorem, we prove that graphon cospectrality has several equivalent
definitions.

Theorem 3. For any two graphons U and W , the following statements are equivalent:

(i) For all integers k ⩾ 3, we have t(Ck, U) = t(Ck,W ).

(ii) There are infinitely many odd numbers k and infinitely many even numbers k, such
that t(Ck, U) = t(Ck,W ).

(iii) Graphons U and W have the same spectra, that is, Spec(U) = Spec(W ).

(iv) There exists a unitary operator T : L2([0, 1]) → L2([0, 1]), such that T ◦TW = TU ◦T .

To prove Theorem 3, we establish the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (i) and
(iv) ⇒ (iii) ⇒ (iv). The implication (i) ⇒ (ii) is immediate. The implication (iii) ⇒ (i)
follows directly from (4).

Proof of Theorem 3, (ii) ⇒ (iii). Suppose for contradiction that (ii) holds but Spec(U) ̸=
Spec(W ). Let ν > 0 be the largest number such that there exists an eigenvalue of
modulus ν with different multiplicities in Spec(U) and Spec(W ). Let α := sup{|λ| : λ ∈
Spec(U)∪ Spec(W ), |λ| < ν}. If the set {|λ| : λ ∈ Spec(U)∪ Spec(W ), |λ| < ν} is empty,
then we let α := 0. We have that α < ν. Further, let β > 0 be small enough so that∑

λ∈Spec(U),|λ|⩽β

λ2 ⩽ α2 and
∑

λ∈Spec(W ),|λ|⩽β

λ2 ⩽ α2 . (5)
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Such a number β exists since the eigenvalues are square-summable by (3).
Let hU = |{λ ∈ Spec(U) : |λ| ∈ (β, ν)}|, hW = |{λ ∈ Spec(W ) : |λ| ∈ (β, ν)}|, and

h = hU + hW . Recall that the spectra of U and W are real and thus the only eigenvalues
of modulus ν may be ν and −ν. Let m+

U and m−
U be the multiplicities of ν and −ν in

Spec(U) and let m+
W and m−

W be the multiplicities of ν and −ν in Spec(W ). The key is
the following observation, which follows for every k ⩾ 3 by substituting into (4),

t(Ck, U) =
∑

λ∈Spec(U):|λ|>ν

λk

︸ ︷︷ ︸
(T1)U

+m+
Uν

k + (−1)km−
Uν

k +
∑

λ∈Spec(U):|λ|∈(β,ν)

λk

︸ ︷︷ ︸
(T2)U

+
∑

λ∈Spec(U):|λ|∈(0,β)

λk

︸ ︷︷ ︸
(T3)U

.

We can write an analogous formula for t(Ck,W ), and get the terms (T1)W , (T2)W , and
(T3)W . We can express |t(Ck, U)− t(Ck,W )|, by grouping (T1)U with (T1)W , then (T2)U
with (T2)W , and lastly (T3)U with (T3)W . The terms (T1)U and (T1)W cancel perfectly
due to the way we chose ν. Next, we deal with (T2). Each summand contributes between
−αk and αk. There are hU summands in (T2)U . Similarly, there are hW summands in
(T2)W . Hence, |(T2)U − (T2)W | ⩽ hαk. Finally, we deal with the terms (T3). We use the
well-known inequality between the ℓp-norm and the ℓq-norm, ∥ · ∥p ⩾ ∥ · ∥q for p ⩽ q. For
p = 2 and q = k this gives

|(T3)U | ⩽

∣∣∣∣∣∣
∑

λ∈Spec(U):|λ|∈(0,β)

λk

∣∣∣∣∣∣ ⩽
∑

λ∈Spec(U):|λ|∈(0,β)

|λ|k ⩽

 ∑
λ∈Spec(U):|λ|∈(0,β)

|λ|2
k/2

(5)

⩽ αk ,

and similarly |(T3)W | ⩽ αk. Putting all these bounds together, we conclude that

|t(Ck, U)− t(Ck,W )| =
(
m+

U −m+
W + (−1)k(m−

U −m−
W )

)
νk ± (h+ 2)αk . (6)

We emphasize that for k large, (h+ 2)αk is negligible with respect to νk. Thus, in order
to arrive at the contradiction that for arbitrary large even k or for arbitrary large odd k
we have t(Ck, U)− t(Ck,W ) ̸= 0, we only need to prove that for a suitable parity P = 0
(corresponding to k even) or P = 1 (corresponding to k odd) we have

m+
U −m+

W + (−1)P (m−
U −m−

W ) ̸= 0. (7)

We distinguish two cases. First, if m+
U +m−

U ̸= m+
W +m−

W then (7) holds for P = 0.
Second, assume that m+

U +m−
U = m+

W +m−
W . In that case, m+

U −m−
U ̸= m+

W −m−
W (indeed,

otherwise, we would have m+
U = m+

W and m−
U = m−

W , a contradiction to the way we chose
ν). In this case (7) holds for P = 1.

Proof of Theorem 3, (iv) ⇒ (iii). Assume (iv), that is, TU = TTWT−1 for a unitary op-
erator T .

For λ ̸= 0, let Kλ and Lλ be the corresponding eigenspaces for λ with respect to TW

and to TU defined as:

Kλ = {x ∈ L2([0, 1]) | TWx = λx} and Lλ = {x ∈ L2([0, 1]) | TUx = λx} .
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(Obviously, Kλ = {0} if λ is not an eigenvalue of TW , and Lλ = {0} if λ is not an
eigenvalue of TU .)

We need to prove that for every λ ̸= 0 we have dim(Kλ) = dim(Lλ). To this end,
it suffices to show that Lλ = TKλ, since a linear bijection preserves the dimension of
subspaces. Equivalently, we will prove that

Lλ ⊇ TKλ and Kλ ⊇ T−1Lλ . (8)

For the first part of (8), consider z ∈ Kλ arbitrary. We need to prove that Tz ∈ Lλ. We
have

TU(Tz) = TTWT−1(Tz) = TTW (z)
z ∈ Kλ= T (λz) = λT (z) ,

as was needed. The second part of (8) is analogous. This time, we use that TW = T−1TUT .
Consider z ∈ Lλ arbitrary. We need to prove that T−1z ∈ Kλ. We have

TW (T−1z) = T−1TUT (T
−1z) = T−1TU(z)

z ∈ Lλ= T−1(λz) = λT−1(z) ,

as was needed.

Proof of Theorem 3, (iii) ⇒ (iv). By Theorem 1, we can decompose L2([0, 1]) according
to the orthogonal eigenspaces of TW ,

L2([0, 1]) =
⊕

λ∈Spec(W )

Kλ .

Here, {Kλ}λ∈Spec(W ) are mutually orthogonal spaces, each of dimension equal to the mul-
tiplicity of the eigenvector λ, and writing PK : L2([0, 1]) → L2([0, 1]) for the orthogonal
projection on a closed subspace K ⊂ L2([0, 1]), we have TW =

∑
λ∈Spec(W ) λPKλ

. Like-

wise, we have L2([0, 1]) =
⊕

λ∈Spec(U) Lλ and TU =
∑

λ∈Spec(U) λPLλ
for the eigenspaces of

TU . Since the spectra of U and W are the same including multiplicities, we can fix linear
isometries bλ : Kλ → Lλ for each λ ∈ Spec(U) = Spec(W ). It is clear that the operator
Tf :=

∑
λ bλ ◦ PLλ

satisfies T ◦ TW = TU ◦ T . It is also clear that T is surjective and
preserves the L2-norm.

4 Cospectral inapproximability

As we mentioned in Section 1, the main motivation for our second main result is the
following theorem of Hladký and Hng [6].

Theorem 4. Suppose that U and W are fractionally isomorphic graphons. Then there ex-
ist sequences (Gn)n and (Hn)n of graphs such that (Gn)n converges to U , (Hn)n converges
to W , and Hn is fractionally isomorphic to Gn for each n.

Here, we show that a counterpart of this theorem does not hold for cospectral graphons.
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Theorem 5. Consider graphons U(x, y) = 1
2
and W (x, y) = 1x∈[0, 1

2
] · 1y∈[0, 1

2
] for (x, y) ∈

[0, 1]2. Then U and W are cospectral with Spec(U) = Spec(W ) = {1
2
}. If we have

sequences (Gn)n and (Hn)n of graphs such that (Gn)n converges to U , (Hn)n converges to
W , then Gn and Hn are not cospectral for each n sufficiently large.

We now prove Theorem 5. The statement about the spectra of U and W is easy to
verify, with the only eigenvector of U being the constant-1 and the only eigenvector of W
being 1x∈[0, 1

2
]. The particular property on which our proof depends is ∥U∥1 ̸= ∥W∥1. That

is, we prove that any two graphons with different L1-norms (whether they are cospectral
or not) cannot be cospectrally approximated, not only by finite graphs, but also by the
more general class of {0, 1}-valued graphons.

Proposition 6. Let U and W be graphons with ∥U∥1 > ∥W∥1. Suppose that U ′ and W ′

are two {0, 1}-valued graphons with δ□(U,U
′), δ□(W,W ′) < (∥U∥1 − ∥W∥1)/2. Then U ′

and W ′ are not cospectral.

Proof. As a preparatory step, we claim that∫
U(x, y)− U ′(x, y)dxdy ⩽ δ□(U,U

′) . (9)

To verify this, we need to check that for every measure preserving bijection φ : [0, 1] →
[0, 1] we have∫

U(x, y)− U ′(x, y)dxdy =

∫
Uφ(x, y)− U ′(x, y)dxdy ⩽ d□(U

φ, U ′) .

This becomes obvious when we consider S = T = [0, 1] in (1).
Thus,

∥U ′∥1 =
∫

U ′(x, y)dxdy =

∫
U(x, y)dxdy−

∫
U(x, y)−U ′(x, y)dxdy

(9)

⩾ ∥U∥1−δ□(U,U
′) .

Since U ′ is {0, 1}-valued, and since 02 = 0 and 12 = 1, we have ∥U ′∥22 = ∥U ′∥1. We
conclude that ∥U ′∥22 ⩾ ∥U∥1 − δ□(U,U

′).
Similarly, ∥W ′∥22 ⩽ ∥W∥1 + δ□(W,W ′). Combining with the main assumption of the

proposition, we get ∥U ′∥22 ̸= ∥W ′∥22. By Parseval’s Theorem (3) we conclude that U ′ and
W ′ are not cospectral.

We pose as an open problem, whether we can remove the assumption ∥U∥1 ̸= ∥W∥1.
Problem 7. Do there exist two cospectral graphons U and W with ∥U∥1 = ∥W∥1 that
cannot be cospectrally approximated?
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