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Abstract

Combinatorial transition matrices arise frequently in the theory of symmet-
ric functions and their generalizations. The entries of such matrices often count
signed, weighted combinatorial structures such as semistandard tableaux, rim-hook
tableaux, or brick tabloids. Bijective proofs that two such matrices are inverses of
each other may be difficult to find. This paper presents a general framework for
proving such inversion results in the case where the combinatorial objects are built
up recursively by successively adding some incremental structure such as a single
horizontal strip or rim-hook. In this setting, we show that a sequence of matrix in-
version results AnBn = I can be reduced to a certain “local” identity involving the
incremental structures. Here, An and Bn are matrices that might be non-square,
and the columns of An and the rows of Bn are indexed by compositions of n. We
illustrate the general theory with four classical applications involving the Kostka
matrices, the character tables of the symmetric group, incidence matrices for com-
position posets, and matrices counting brick tabloids. We obtain a new, canonical
bijective proof of an inversion result for rectangular Kostka matrices, which com-
plements the proof for the square case due to Eğecioğlu and Remmel. We also give
a new bijective proof of the orthogonality result for the irreducible Sn-characters
that is shorter than the original version due to White.

Mathematics Subject Classifications: 05A19, 05A17, 15A09, 05E05

1 Introduction

Combinatorial matrices occur ubiquitously in algebraic combinatorics, especially in the
theory of symmetric functions and their generalizations. Transition matrices connecting
two bases of symmetric functions (or quasisymmetric functions, etc.) very often have
combinatorial interpretations where the matrix entries count signed, weighted structures
such as semistandard tableaux, rim-hook tableaux, or brick tabloids. For example, the
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classical Kostka matrix K gives the monomial expansion of the Schur symmetric functions.
The matrix entry Kλ,µ identifies the coefficient of mµ in sλ as the number of semistandard
Young tableaux of shape λ and content µ. Eğecioğlu and Remmel [3] gave a combinatorial
formula expressing each entry in K−1 as a signed sum of special rim-hook tableaux. (See
Section 3 for detailed definitions of the objects mentioned here.)

As another example, the character table of the symmetric group Sn can be viewed
as a matrix X = [χλµ] with rows and columns indexed by integer partitions of n. Here,
χλµ is the value of the irreducible character χλ indexed by λ on the conjugacy class of
Sn consisting of permutations of cycle type µ. Remarkably, χλµ is also the coefficient of
the Schur function sλ when the power-sum symmetric function pµ is written in the Schur
basis. The entry χλµ has a combinatorial interpretation as the signed sum of rim-hook
tableaux of shape λ and content µ. The inverse of X has entries χµλ/zλ, where n!/zλ is
the number of permutations in Sn with cycle type λ. The monograph [10] gives a very
clear exposition of the results stated in this paragraph.

Bijective proofs that two combinatorial matrices are inverses of each other may be
difficult to find. In the case of the Kostka matrix, Eğecioğlu and Remmel [3] gave an
ingenious proof based on a sign-reversing involution on pairs consisting of a semistandard
tableau and a special rim-hook tableau with compatible content. In the case of the charac-
ter matrix X, the formula for X−1 follows from the orthogonality relations for irreducible
characters. Finding a bijective proof based on rim-hook tableaux is very challenging;
Dennis White gave such a proof via an intricate algorithmic construction [12]. There are
many other instances of combinatorial transition matrices where inversion results require
elaborate algebraic manipulations, subtle bijective arguments, or some combination of
these.

Our goal here is to develop a general framework for proving inversion results for certain
combinatorial matrices. We often have not just one matrix and its inverse, but a whole
family of matrices. For example, what we have called the Kostka matrix is really a
sequence of matrices Kn for n > 0, where the rows and columns of Kn are indexed by
integer partitions of n. A simple recursion (based on removing the largest value from a
semistandard tableau) relates the entries of Kn to entries in various smaller matrices Km.

Our general theory, presented in Section 2, considers two sequences of matrices (An :
n > 0) and (Bn : n > 0) where the columns of An and the rows of Bn are indexed by
compositions of n. These matrices are not n × n and may be rectangular rather than
square. We assume that the entries in An can be computed recursively from certain
entries in A0, . . . , An−1, and similarly for Bn. This setup applies to many combinatorial
matrices (such as suitably adjusted versions of the Kostka matrices and their inverses)
where the combinatorial objects are built up recursively by successively adding some
incremental structure such as a single horizontal strip, special rim-hook, etc. In this
setting, we show that the sequence of (one-sided) matrix inversion results AnBn = I is
equivalent to a certain “local” identity involving the incremental structures. Intuitively,
this local identity contains the combinatorial essence of why each Bn is a right-inverse of
An. Section 7 explains how a bijective proof of the local identity can often be leveraged
to create a bijective proof of the matrix inversion result itself.
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We illustrate our general theory with four classical applications that have relevance
to transition matrices for bases of Sym (the space of symmetric functions), QSym (the
space of quasisymmetric functions), and NSym (the space of non-commutative symmetric
functions). Section 3 studies rectangular versions of the Kostka matrix and its inverse.
Section 7.1 uses this analysis to build a new bijective proof of the inversion result for
rectangular Kostka matrices. This bijection is canonical (in a certain precise technical
sense) and differs from the bijection for the square case due to Eğecioğlu and Remmel [3].
Section 4 studies rectangular versions of the matrix X and its inverse. Here, the lo-
cal identity has an “almost canonical” bijective proof that can be expressed elegantly in
terms of abaci. Section 7.2 lifts this to a bijective proof of the matrix inversion result
that is substantially shorter than Dennis White’s original version [12]. The proof uses
novel combinatorial interpretations of n! parametrized by partitions λ (see Remark 41).
Section 5 uses our general theory to invert the incidence matrices for posets of composi-
tions of n ordered by refinement. Although this classical result is easy enough to prove
algebraically, the combinatorial proof of the local identity is still illuminating. The latter
proof also generalizes readily to prove a more daunting weighted version of the classical
result (Section 5.4) with relevance to certain transition matrices for NSym. Section 6 gives
a fourth application involving matrices counting brick tabloids. These matrices connect
the power-sum and monomial bases of symmetric functions.

Most of this paper (except for a few isolated remarks) can be read without any prior
knowledge of Sym, QSym, NSym, or the various combinatorial structures mentioned in
this introduction. The four application sections are almost entirely independent of one
another, except that Lemma 20 and some definitions in Section 5 are needed in Section 6.

2 General Framework for Matrix Inversion

This section presents the general theory for proving combinatorial matrix inversion re-
sults via reduction to local identities. We begin by defining the needed notation and
terminology.

2.1 Notation and Definitions

For each integer n > 0, a composition of n is a list α = (α1, α2, . . . , αs) of positive integers
with α1 + · · · + αs = n. The size of α is |α| = n, and the length of α is `(α) = s. The
entries αi are the parts of α. Write L(α) = αs for the last part of α. If s > 1, write
α∗ = (α1, α2, . . . , αs−1) for the truncation of α, which is the composition of n−αs obtained
by deleting the last part of α. An integer partition is a composition λ = (λ1, λ2, . . . , λs)
satisfying λ1 > λ2 > · · · > λs.

Write C(n) for the set of compositions of n. Write P (n) for the set of partitions of
n. The empty sequence is the unique element in C(0) and P (0). Write [n] for the set
{1, 2, . . . , n}. Define sort : C(n) → P (n) by letting sort(α) be the weakly decreasing
rearrangement of the list α ∈ C(n). Given α ∈ C(n), the diagram dg(α) of α is the set
{(i, j) ∈ Z2 : 1 6 i 6 `(α), 1 6 j 6 αi}. We visualize dg(α) as a left-justified array of unit
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boxes with αi boxes in the ith row from the top. The box in row i, column j is identified
with the pair (i, j) ∈ dg(α).

Example 1. For α = (2, 4, 2, 3) we have dg(α) = and the marked box has the label

(2, 3).

For any finite sets R and C and field F, an R×C matrix is a function A : R×C → F.
For r ∈ R and c ∈ C, we call A(r, c) the entry in row r, column c of A. For any statement
Q, let χ(Q) = 1 if Q is true and χ(Q) = 0 if Q is false. For any finite set R, let IR be the
identity matrix with rows and columns indexed by R, which satisfies IR(λ, µ) = χ(λ = µ)
for all λ, µ ∈ R. We may omit the subscript R if it is clear from context.

2.2 Setup for the Matrix Inversion Framework

Next we describe the assumed setup for our matrix inversion framework. The ingredients
in the setup consist of two sequences of matrices, with rows and columns indexed by
certain combinatorial objects, and two recursions that describe how the matrices in each
sequence are built from earlier matrices in that sequence.

We begin by describing the matrices. Let F be a field (which in our applications will
be Q). Suppose, for each integer n > 0, we have a finite set of objects R(n), where R(0)
consists of a single element. (In all applications considered in this paper, R(n) will be
either P (n) or C(n).) Suppose we are given a sequence of matrices A0, A1, A2, . . . , An, . . .
where each An is an R(n) × C(n) matrix with values in F. Thus, the rows of An are
indexed by objects in R(n), while the columns of An are indexed by compositions of n.
We may abbreviate An(λ, β) as A(λ, β), since n must be |β|. Also suppose we are given a
sequence of matrices B0, B1, B2, . . . , Bn, . . ., where each Bn is a C(n)×R(n) matrix with
values in F. Again we write B(β, µ) = Bn(β, µ) where n = |β|.

We continue by describing the recursions assumed as part of the setup. For each n > 0,
λ ∈ R(n), and L ∈ [n], assume there is a finite set S(λ, L) ⊆ R(n − L) and an F-valued
weight function wtA such that the matrices An satisfy the recursion

A(λ, β) =
∑

γ∈S(λ,L(β))

wtA(λ, γ)A(γ, β∗) (1)

and initial condition A0 = [1]. We interpret this recursion informally as follows. The
entry A(λ, β) counts signed, weighted objects with shape λ ∈ R(n) and content β =
(β1, . . . , βs) = (β∗, L(β)). The recursion asserts that each such object can be built
uniquely by starting with some smaller shape γ ∈ R(n − L(β)), drawn from some set
S(λ, L(β)) of allowable shapes depending on λ and L(β), choosing any object of shape γ
and content β∗ counted by A(γ, β∗), and augmenting that object with some incremental
structure. The effect of the augmenting step is reflected by the factor wtA(λ, γ). The
initial condition amounts to the assumption that there is a unique “empty object” with
empty shape in R(0) and empty content in C(0).
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We make the analogous assumption for the sequence of matrices Bn. For each n > 0,
µ ∈ R(n), and L ∈ [n], assume there is a finite set T (µ, L) ⊆ R(n − L) and an F-valued
weight function wtB such that the matrices Bn satisfy the recursion

B(β, µ) =
∑

δ∈T (µ,L(β))

wtB(µ, δ)B(β∗, δ) (2)

and initial condition B0 = [1]. This recursion has a similar interpretation as before, but
here the column index µ gives the shape and the row index β gives the content of the
objects counted by the entries in Bn. In some applications, the roles of shape and content
in recursions (1) or (2) may be interchanged.

2.3 Matrix Inversion via the Local Identity

We now come to the first main result of the general theory.

Theorem 2. Assume the setup in §2.2. The family of matrix identities

AnBn = IR(n) for all n > 0 (3)

is equivalent to the family of local identities

n∑
L=1

∑
γ∈S(λ,L)∩T (µ,L)

wtA(λ, γ) wtB(µ, γ) = χ(λ = µ) for all n > 0 and all λ, µ ∈ R(n).

(4)

Proof. For n > 0 and λ, µ ∈ R(n), we compute the entry in row λ, column µ of AnBn as
follows:

(AnBn)(λ, µ) =
∑

β∈C(n)

A(λ, β)B(β, µ)

=
∑

β∈C(n)

 ∑
γ∈S(λ,L(β))

wtA(λ, γ)A(γ, β∗)

 ·
 ∑
δ∈T (µ,L(β))

wtB(µ, δ)B(β∗, δ)

 .

Each β ∈ C(n) has the form β = (β∗, L) for a unique L = L(β) ∈ [n] and a unique
β∗ ∈ C(n− L). So we can rewrite the sum over β as a sum over β∗ and L. We get:

(AnBn)(λ, µ) =
n∑

L=1

∑
β∗∈C(n−L)

 ∑
γ∈S(λ,L)

wtA(λ, γ)A(γ, β∗)

 ·
 ∑
δ∈T (µ,L)

wtB(µ, δ)B(β∗, δ)


=

n∑
L=1

∑
γ∈S(λ,L)

∑
δ∈T (µ,L)

wtA(λ, γ) wtB(µ, δ)
∑

β∗∈C(n−L)

A(γ, β∗)B(β∗, δ).
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We recognize the innermost sum as the definition of a matrix product entry, so

(AnBn)(λ, µ) =
n∑

L=1

∑
γ∈S(λ,L)

∑
δ∈T (µ,L)

wtA(λ, γ) wtB(µ, δ)(An−LBn−L)(γ, δ). (5)

On one hand, assume (3) holds for all n > 0. Then, in particular, (AnBn)(λ, µ) =
χ(λ = µ) and (An−LBn−L)(γ, δ) = χ(γ = δ). Inserting these expressions into (5), the
double sum over γ and δ simplifies to a single sum over γ = δ ∈ S(λ, L)∩ T (µ, L). So (5)
reduces to (4), as needed.

On the other hand, assume instead that (4) holds. We prove (3) by induction on n.
For n = 0, the formula is true since A0 = B0 = [1]. Fix n > 0 and assume AmBm = IR(m)

for all m < n. Taking m = n− L for L = 1, 2, . . . , n, Equation (5) becomes

(AnBn)(λ, µ) =
n∑

L=1

∑
γ∈S(λ,L)

∑
δ∈T (µ,L)

wtA(λ, γ) wtB(µ, δ)χ(γ = δ).

As before, the right side here simplifies to the left side of the local identity (4). Thus,
(AnBn)(λ, µ) = χ(λ = µ) for all λ, µ ∈ R(n), proving that AnBn = IR(n).

Remark 3. The theorem does not assert that BnAn = IC(n). In most of our applications,
R(n) will be P (n), and hence BnAn = IC(n) cannot possibly hold because the left side
has rank at most |P (n)|. However, we can often convert the one-sided matrix inverse
formula AnBn = IR(n) (for rectangular matrices An, Bn) to a related formula involving
square matrices. In the square case, AB = I automatically implies BA = I, as is well
known.

In many applications, An is a P (n) × C(n) matrix satisfying the following sorting
condition: for all λ ∈ P (n) and α, β ∈ C(n), if sort(α) = sort(β) then A(λ, α) = A(λ, β).
In this case, we can convert from rectangular to square matrices as follows. Define A′n :
P (n)×P (n)→ F to be the restriction of An to the columns indexed by partitions, so A′n
is formed from An by deleting some columns of An that are duplicates of other columns.
Define B′n : P (n) × P (n) → F by adding together those rows indexed by compositions
that sort to the same partition, that is,

B′n(ν, µ) =
∑

β∈C(n):
sort(β)=ν

Bn(β, µ) for ν, µ ∈ P (n). (6)

If we know AnBn = IP (n), then we can deduce A′nB
′
n = IP (n) as follows. For λ, µ ∈ P (n),

(A′nB
′
n)(λ, µ) =

∑
ν∈P (n)

A′n(λ, ν)B′n(ν, µ) =
∑

ν∈P (n)

An(λ, ν)
∑

β∈C(n):
sort(β)=ν

Bn(β, µ)

=
∑

ν∈P (n)

∑
β∈C(n):
sort(β)=ν

An(λ, β)Bn(β, µ) =
∑

β∈C(n)

An(λ, β)Bn(β, µ) = (AnBn)(λ, µ).
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Remark 4. Here is an informal combinatorial interpretation of the local identities (4).
Fix λ, µ ∈ R(n). We consider all possible ways of transforming λ into µ via the following
two-step process. First, go from λ to some intermediate object γ by removing some
differential structure of size L (determined by the recursion for the A matrix). Second,
go from this γ to µ by adding another differential structure of size L (determined by the
recursion for the B matrix). For fixed γ, the transition from λ to µ via γ contributes a
term wtA(λ, γ) wtB(µ, γ) that could be negative. The sum of such terms over all feasible
γ is required to be 1 if λ = µ and 0 if λ 6= µ. In later applications, we use the notation
G(λ, µ) =

⋃n
L=1 S(λ, L) ∩ T (µ, L) for the set of γ that are viable intermediate shapes in

the passage from λ to µ. The local identities (4) take the form∑
γ∈G(λ,µ)

wtA(λ, γ) wtB(µ, γ) = χ(λ = µ).

Remark 5. The proof of Theorem 2 highlights why compositions are so effective as in-
dexing objects for the columns of An and the rows of Bn. In particular, we could re-
duce to smaller instances of An and Bn thanks to the bijection from the disjoint union⋃n
L=1C(n − L) to C(n) sending β∗ ∈ C(n − L) to (β∗, L). More generally, suppose we

have a set of objects X(n) and a set φ(n) ⊆ {1, 2, . . . , n} for each integer n > 0, such
that there is a bijection from X(n) to the disjoint union

⋃
L∈φ(n)X(n−L) for each n > 0.

Theorem 2 still works with the indexing sets C(n) replaced by X(n), with the new local
condition being∑
L∈φ(n)

∑
γ∈S(λ,L)∩T (µ,L)

wtA(λ, γ) wtB(µ, γ) = χ(λ = µ) for all n > 0 and all λ, µ ∈ R(n).

3 Application 1: Rectangular Kostka Matrices

As the first application of the general theory, we prove an inversion result for a rectangular
version of the Kostka matrices. In this case, the local identities (4) can be informally
summarized by the slogan: “A local inverse of a horizontal strip is a signed special rim-
hook.”

3.1 Semistandard Tableaux

Given λ ∈ P (n) and β ∈ C(n), a semistandard Young tableau (SSYT) of shape λ and
content β is a filling of the diagram of λ using βk copies of k for each k, such that values
weakly increase reading left to right along each row, and values strictly increase reading
top to bottom along each column. Let SSYT(λ, β) be the set of all such SSYT. In this
first application of the general setup of §2.2, we let An be the P (n) × C(n) rectangular
Kostka matrix with entries An(λ, β) = | SSYT(λ, β)|.

Example 6. Let β = (2, 3, 2) and λ = (4, 3). The entry An(λ, β) = 2 counts the following
tableaux in SSYT(λ, β):

1 1 2 2
2 3 3

1 1 2 3
2 2 3
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A horizontal strip of size L is a set of L unit boxes occupying distinct columns. Given
λ ∈ P (n) and β ∈ C(n), suppose T ∈ SSYT(λ, β) and write β = (β1, . . . , βs) = (β∗, L(β)).
For 1 6 i 6 s, the cells containing value i in T form a horizontal strip of size βi, as is
readily checked. Also, the cells containing values 1, 2, . . . , i form the diagram of some
partition λ(i) where dg(λ(i)) ⊆ dg(λ). Let S(λ, L) be the set of partitions γ ∈ P (n − L)
such that dg(γ) ⊆ dg(λ) and the set difference λ/γ = dg(λ)\dg(γ) is a horizontal strip of
size L. There is exactly one way to construct any given T ∈ SSYT(λ, β) as follows: choose
γ ∈ S(λ, L(β)); choose any T ∗ ∈ SSYT(γ, β∗); and fill the L(β) boxes in dg(λ) \ dg(γ)
with the value s = `(β). This proves the recursion

A(λ, β) =
∑

γ∈S(λ,L(β))

A(γ, β∗), (7)

which is an instance of (1) with wtA(λ, γ) = 1. In fact, we have a bijection F :
SSYT(λ, β) →

⋃
γ∈S(λ,L(β)) SSYT(γ, β∗), where F (T ) is the SSYT obtained by remov-

ing the L(β) boxes containing the value s = `(β) from T . The construction prior to (7)
describes how to compute F−1.

3.2 Special Rim-Hook Tableaux

Eğecioğlu and Remmel [3] discovered a combinatorial interpretation for the inverse of
the (square) P (n)× P (n) Kostka matrix involving special rim-hook tableaux. We define
a rectangular analogue of their inverse Kostka matrix, which also appeared in [4]. A
special rim-hook (SRH) of size L is a set of L unit boxes that can be traversed by starting
with a box in column 1 (the leftmost column) and successively taking one step to the
right or up to go from one box to the next. The sign of a SRH σ occupying r rows is
sgn(σ) = (−1)r−1.

Given µ ∈ P (n) and β ∈ C(n), a special rim-hook tableau (SRHT) of shape µ and
content β is a filling S of the diagram of µ such that for all k, the cells of S containing k
form a special rim-hook of size βk, and the values in column 1 weakly increase from top
to bottom. Let SRHT(µ, β) be the set of all such SRHT. The sign of an SRHT S is the
product of the signs of all special rim-hooks in S. Let Bn be the C(n) × P (n) matrix
defined by Bn(β, µ) =

∑
S∈SRHT(µ,β) sgn(S).

Example 7. For β = (3, 2, 4) and µ = (3, 3, 3), SRHT(µ, β) is the set containing this
object

1 1 1
2 2 3
3 3 3

which has sign (−1)1−1(−1)1−1(−1)2−1 = −1. If β = (2, 4, 3) and µ = (3, 3, 3), we have
this SRHT with sign −1:

1 1 2
2 2 2
3 3 3

For β = (4, 2, 3) and µ = (3, 3, 3), we see that SRHT(µ, β) = ∅.
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Let S ∈ SRHT(µ, β) where β = (β1, . . . , βs) = (β∗, L(β)). Removing the special rim-
hook σ in S of size L(β) containing the value s = `(β) leaves a smaller SRHT S∗ of content
β∗ and some partition shape δ, as is readily checked. Moreover, sgn(S) = sgn(S∗) sgn(σ).
Let T (µ, L) be the set of partitions δ ∈ P (n − L) such that dg(δ) ⊆ dg(µ) and µ/δ =
dg(µ) \ dg(δ) is a special rim-hook of size L. Removing the last special rim-hook gives
a bijection G : SRHT(µ, β) →

⋃
δ∈T (µ,L(β)) SRHT(δ, β∗). Taking signs into account, we

deduce the recursion
B(β, µ) =

∑
δ∈T (µ,L(β))

sgn(µ/δ)B(β∗, δ), (8)

which is an instance of (2) with wtB(µ, δ) = sgn(µ/δ). A version of (8) appears in [4,
Sec. 4].

Remark 8. For given µ ∈ P (n) and L ∈ [n], there is at most one way to remove a
special rim-hook of size L from the southeast rim of dg(µ) to leave a partition shape. In
other words, |T (µ, L)| 6 1. Iterating this reasoning shows that | SRHT(µ, β)| 6 1 for all
µ ∈ P (n) and all β ∈ C(n).

Example 9. For n = 4, the rectangular matrices are as follows.

A4 :



4 31 22 211 13 121 112 1111

4 1 1 1 1 1 1 1 1
31 0 1 1 2 1 2 2 3
22 0 0 1 1 0 1 1 2
211 0 0 0 1 0 1 1 3
1111 0 0 0 0 0 0 0 1

 B4 :



4 31 22 211 1111

4 1 −1 0 1 −1
31 0 1 0 −1 1
22 0 0 1 −1 1
211 0 0 0 1 −1
13 0 0 −1 0 1
121 0 0 0 0 −1
112 0 0 0 0 −1
1111 0 0 0 0 1


3.3 Proof of the Local Identity

In this first application, the local identity (4) takes the following form.

Theorem 10. Given n > 0 and λ, µ ∈ P (n), let G(λ, µ) be the set of partitions γ such
that dg(γ) can be obtained either by removing a nonempty horizontal strip from dg(λ) or
by removing a nonempty special rim-hook from dg(µ). Then∑

γ∈G(λ,µ)

sgn(µ/γ) = χ(λ = µ). (9)

Therefore (by Theorem 2) the rectangular Kostka matrix An has a right-inverse Bn whose
entries count signed SRHT.

Proof. First consider the case λ = µ. The set G(λ, µ) consists of the single partition γ
obtained by deleting the last part of λ. This is because the only removable horizontal
strip in dg(λ) that is also a removable special rim-hook of dg(λ) is the set of all boxes
in the lowest row of dg(λ). Since this set occupies one row, sgn(µ/γ) = +1 in this case,
and (9) holds.
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Next consider the case λ 6= µ. We accompany the general proof by a running example
where λ = (6, 4, 2, 1) and µ = (4, 3, 3, 3). The diagrams are shown here:

dg(λ) = dg(µ) =

We prove that G(λ, µ) is either empty or consists of exactly two elements where the
corresponding special rim-hooks µ/γ have opposite signs. This suffices to prove (9). Write
µ = (µ1, µ2, . . . , µs). There are exactly s special rim-hooks that can be removed from
dg(µ) to leave another partition diagram γ. Namely, for i = 1, 2, . . . , s, we can remove
the SRH σi that starts in the lowest box of column 1 and moves along the southeast rim
of dg(µ) until it ends at the rightmost box in row i of the diagram. Let γi be the partition
obtained by removing σi from dg(µ). These are the only possible elements of G(λ, µ).
For our running example, the diagrams of γi are drawn below using white boxes, with the
corresponding SRH σi depicted in gray.

dg(γ1) = dg(γ2) = dg(γ3) = dg(γ4) =

Step 1. We show G(λ, µ) cannot contain both γi and γj when j > i + 1. For if this
happened, consider the rightmost box c in row i + 1 of dg(µ). In our running example,
taking i = 2 and j = 4, the box c is marked in black below:

Box c and the box just above c both belong to σi and so do not belong to dg(γi). Since
λ/γi is a horizontal strip, c cannot belong to dg(λ). On the other hand, because j > i+1,
c does not belong to σj and so does belong to dg(γj), which is contained in dg(λ). Thus
c does belong to dg(λ), which gives a contradiction.

Step 2. Suppose G(λ, µ) is nonempty, say with γi ∈ G(λ, µ). We prove G(λ, µ) =
{γi, γi+1} or G(λ, µ) = {γi, γi−1}. Let ηi = λ/γi, which must be a horizontal strip. We
can pass from dg(µ) to dg(λ) by first removing σi to produce dg(γi), then adding ηi to
reach dg(λ). Let c be the rightmost box in row i of dg(µ), which is in σi and thus not in
dg(γi). Let R be the set of boxes of σi lying in row i of dg(µ). In our running example,
we may take i = 2. The black box in the next figure is c, the rest of σi is shown in gray,
and in this instance, R = {c}.

dg(µ) =
−σ2−−→ dg(γ2) =

+η2−−→ dg(λ) =

Case 1: Assume c is in dg(λ). Then we must have c ∈ ηi, hence R ⊆ ηi ⊆ dg(λ).
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• Case 1a: Assume i < s, so γi+1 is defined. In this situation, σi+1 = σi \ R, γi+1 =
γi∪R, dg(γi+1) ⊆ dg(λ), and (critically) λ/γi+1 = ηi \R is a horizontal strip. Thus
γi+1 ∈ G(λ, µ), and Step 1 applies to show G(λ, µ) = {γi, γi+1}. Note sgn(σi+1) =
− sgn(σi). In our running example, the next figure shows how to go from µ to λ by
removing σ3 and then adding η2 \R.

dg(µ) =
−σ3−−→ dg(γ3) =

+η2\R−−−−→ dg(λ) =

• Case 1b: Assume i = s; we rule out this case by deducing a contradiction. Here, σs
and R must both be the set of all cells in the lowest row of dg(µ). But since R is a
subset of ηs, where ηs has the same size as σs, we must have ηs = R. This in turn
forces λ = µ, contradicting the assumption λ 6= µ.

Case 2: Assume c is not in dg(λ).

• Case 2a: Assume i > 1, so γi−1 is defined. Let R′ be the set of cells of σi−1
lying in row i − 1 of dg(µ). By assumption on c, the horizontal strip ηi cannot
contain any cell of row i directly below a cell of R′ (although ηi might contain some
cells in row i − 1 to the right of R′). We now see that σi−1 = σi ∪ R′, γi−1 =
γi \ R′, dg(γi−1) ⊆ dg(γi) ⊆ dg(λ), and (critically) λ/γi−1 = ηi ∪ R′ is a horizontal
strip. Thus γi−1 ∈ G(λ, µ), and Step 1 applies to show G(λ, µ) = {γi, γi−1}. Note
sgn(σi−1) = − sgn(σi).

We illustrate this case with a new example. Let µ = (4, 3, 2) and λ = (7, 2). We
label the special rim-hooks and horizontal strips in gray and label the cell c = (2, 3)
in black. On one hand, we remove σ2 from dg(µ) to reach the diagram of γ2 = (4, 1),
then add η2 to dg(γ2) to obtain dg(λ). On the other hand, we remove σ1 = σ2 ∪R′
from dg(µ) to reach the diagram of γ1 = (2, 1), then add η1 to dg(γ1) to obtain
dg(λ).

dg(µ) =
−σ2−−→ dg(γ2) =

+η2−−→ dg(λ) =

dg(µ) =
−σ1−−→ dg(γ2) =

+η1−−→ dg(λ) =

• Case 2b: Assume i = 1; we rule out this case by deducing a contradiction. The
special rim-hook σ1 starts in column 1 and ends at cell c in row 1 and column µ1,
so σ1 contains at least µ1 boxes. So the horizontal strip η1, which has the same size
as σ1, must have at least µ1 boxes, all of which occupy at least µ1 columns. Since
η1 is added to dg(γ1) ⊆ dg(µ), cell c must belong to η1 ⊆ dg(λ), contrary to the
assumption of Case 2.

Remark 11. Bender and Knuth [1] gave a bijective proof that the rectangular Kostka
matrix satisfies the sorting condition of Remark 3; see also [8, Thm. 9.27]. By Remark 3,
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we can deduce Eğecioğlu and Remmel’s inversion result [3, Thm. 1] for the square P (n)×
P (n) Kostka matrix from our rectangular version. For S ∈ SRHT(µ, β), those authors
refer to ν = sort(β) as the type of S. Their square inverse Kostka matrix has entries
K−1(ν, µ) =

∑
β: sort(β)=ν

∑
S∈SRHT(µ,β) sgn(S), in accordance with (6).

Remark 12. By the proof of Theorem 10, there is a bijection γi 7→ γi±1 that matches
the two oppositely-signed objects contributing to the sum, in the case where λ 6= µ and
the sum is not already empty. Since there is only one positive object and one negative
object, this is a canonical bijection (not relying on arbitrary choices). We build this up
to a canonical bijective proof of AnBn = IP (n) in Section 7.1.

4 Application 2: Rim-Hook Tableaux

As the second application of the general theory, we prove an inversion result for a rect-
angular version of the transition matrices between power-sum symmetric functions and
Schur functions. In this case, the local identities (4) can be informally summarized by
the slogan: “A local inverse of a signed rim-hook is a rescaled signed rim-hook.”

4.1 Rim-Hook Tableaux

A rim-hook of size L is a set of L unit boxes that can be traversed by starting at some box
and successively moving one step to the right or one step up to go from one box to the
next. The sign of a rim-hook σ occupying r rows is sgn(σ) = (−1)r−1. Given λ ∈ P (n)
and β ∈ C(n), a rim-hook tableau (RHT) of shape λ and content β is a filling S of the
diagram of λ such that for all k, the cells of S containing k form a rim-hook of size βk,
and the cells of S containing 1, 2, . . . , k form a partition diagram. Let RHT(λ, β) be the
set of all such RHT. The sign of an RHT S is the product of the signs of all rim-hooks in
S. In this second application of the general setup of §2.2, we let An be the P (n)× C(n)
matrix with entries An(λ, β) =

∑
S∈RHT(λ,β) sgn(S). The symmetric function literature

often uses χλβ to denote An(λ, β).

Example 13. Let λ = (4, 3, 3, 1) and β = (3, 4, 4). We find A(λ, β) = −2 based on the
two RHT shown below, which both have sign −1.

1 1 3 3
1 2 3
2 2 3
2

1 1 2 2
1 2 2
3 3 3
3

Let U ∈ RHT(λ, β) where β = (β1, . . . , βs) = (β∗, L(β)). Removing the rim-hook σ
in U of size L(β) containing the value s = `(β) leaves a smaller RHT U∗ of content β∗

and some shape γ, by definition. Moreover, sgn(U) = sgn(U∗) sgn(σ). Let S(λ, L) be
the set of partitions γ ∈ P (n − L) such that dg(γ) ⊆ dg(λ) and λ/γ = dg(λ) \ dg(γ)
is a rim-hook of size L. Removing the last rim-hook gives a bijection G : RHT(λ, β) →
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⋃
γ∈S(λ,L(β)) RHT(γ, β∗). Taking signs into account, we deduce the recursion

A(λ, β) =
∑

γ∈S(λ,L(β))

sgn(λ/γ)A(γ, β∗), (10)

which is an instance of (1) with wtA(λ, γ) = sgn(λ/γ).

4.2 The Scaling Factors Zβ

Given a composition β = (β1, β2, . . . , βs) ∈ C(n), define the integer

Zβ = β1(β1 + β2)(β1 + β2 + β3) · · · (β1 + β2 + · · ·+ βs). (11)

For instance, Z(3,4,4) = 3 · 7 · 11 = 231 but Z(4,3,4) = 4 · 7 · 11 = 308. Since the last
factor is |β| = n, we have Zβ = n · Zβ∗ . Let Bn be the C(n) × P (n) matrix defined
by Bn(β, µ) =

∑
S∈RHT(µ,β) Z

−1
β sgn(S) for β ∈ C(n) and µ ∈ P (n). Observe that Bn is

obtained from An by rescaling all entries in each column β by Z−1β and then transposing
the matrix.

Define T (µ, L) to be the set of partitions δ ∈ P (n − L) such that dg(δ) ⊆ dg(µ) and
µ/δ = dg(µ) \ dg(δ) is a rim-hook of size L (so T (µ, L) is the same as S(µ, L) in this
application). Removing the last rim-hook σ of U ∈ RHT(µ, β) produces U∗ ∈ RHT(δ, β∗)
for a unique δ ∈ T (µ, L). Note that Z−1β sgn(U) = n−1Z−1β∗ sgn(U∗) sgn(σ) where n =
|β| = |µ| and σ = µ/δ. So we get the recursion

B(β, µ) =
∑

δ∈T (µ,L(β))

|µ|−1 sgn(µ/δ)B(β∗, δ), (12)

which is an instance of (2) with wtB(µ, δ) = |µ|−1 sgn(µ/δ).

Example 14. For n = 4, the rectangular matrices are as follows.

A4 :



4 31 22 211 13 121 112 1111

4 1 1 1 1 1 1 1 1
31 −1 0 −1 1 0 1 1 3
22 0 −1 2 0 −1 0 0 2
211 1 0 −1 −1 0 −1 −1 3
1111 −1 1 1 −1 1 −1 −1 1



B4 :



4 31 22 211 1111

4 1/4 −1/4 0 1/4 −1/4
31 1/12 0 −1/12 0 1/12
22 1/8 −1/8 2/8 −1/8 1/8
211 1/24 1/24 0 −1/24 −1/24
13 1/4 0 −1/4 0 1/4
121 1/12 1/12 0 −1/12 −1/12
112 1/8 1/8 0 −1/8 −1/8
1111 1/24 3/24 2/24 3/24 1/24


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4.3 Abacus Notation for Partitions

It is often useful to represent integer partitions by abaci, especially when performing
operations that affect the southeast rim of the partition diagram. Given λ ∈ P (n) and
any N > `(λ), the N-bead abacus representing λ is the binary word abN(λ) = w1w2w3 · · ·
defined as follows. The word begins with N − `(λ) copies of 1 (each 1 represents a bead
on an abacus). To continue building the word, move along the southeast rim of dg(λ),
from the southwest corner to the northeast corner, by a succession of unit-length east
steps and north steps. Record a 0 (gap) in the abacus word for each east step, and record
a 1 (bead) in the abacus word for each north step. The word terminates with an infinite
sequence of 0s (gaps). The value of N is usually irrelevant as long as it is large enough
to accommodate any operations performed on the partition and its associated abacus.

For instance, consider the operation of removing a rim-hook of size L from the rim of
dg(λ). It is not hard to check that this operation corresponds to making a bead “jump”
from some position i on abN(λ) to a position i− L that contains a gap. In other words,
removal of the rim-hook σ of size L modifies the abacus by changing some wi from 1 to 0
and wi−L from 0 to 1. Furthermore, if there are b beads in positions i− L + 1, . . . , i− 1
on abN(λ), then sgn(σ) = (−1)b. (For a more detailed verification, see [7, Sec. 3.3] or [8,
Thm. 10.13].) On the other hand, adding a rim-hook of size L to dg(λ) is accomplished
on the abacus by making a bead jump from position i to some position i+L that contains
a gap. Here, the number of beads on the abacus must satisfy N > `(λ) +L to ensure that
there are enough beads to accommodate all possible rim-hooks that might be added.

Example 15. Starting with the partition λ = (4, 3, 3, 2, 2, 1), we can remove a rim-hook
of size L = 5 to obtain µ = (4, 2, 1, 1, 1, 1) as shown in the following partition diagrams:

dg(λ) = → dg(µ) =

The corresponding operation on the 9-bead abaci representing µ and ν is shown here:

ab9(λ) = 1110101101101000 · · · → ab9(µ) = 1110111101001000 · · ·

The sign associated with this rim-hook removal is (−1)3 = −1.

4.4 Proof of the Local Identity

In this second application, the local identity (4) takes the following form.

Theorem 16. Given n > 0 and λ, µ ∈ P (n), let G(λ, µ) be the set of partitions γ that can
be obtained either by removing a nonempty rim-hook from λ or by removing a nonempty
rim-hook from µ. Then ∑

γ∈G(λ,µ)

n−1 sgn(λ/γ) sgn(µ/γ) = χ(λ = µ). (13)
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Therefore (by Theorem 2) the matrix An whose entries count signed RHT has a right-
inverse Bn, a rescaled version of the transpose of An.

Proof. First consider the case λ = µ. The left side of (13) becomes∑
γ∈G(λ,λ)

n−1 sgn(λ/γ)2 = |G(λ, λ)|/n,

so it suffices to show that |G(λ, λ)| = n = |λ|. This amounts to showing that there are
exactly n nonempty rim-hooks that can be removed from the border of dg(λ). We give
a bijection from dg(λ) (a set of n unit boxes) onto this set of rim-hooks. Given a box
c ∈ dg(λ), move down (due south) from c to reach a box c′ on the southern border of
dg(λ), and move right (due east) from c to reach a box c′′ on the eastern border of dg(λ).
The bijection maps c to the rim-hook that moves northeast along the border starting at
c′ and ending at c′′. The inverse bijection takes a rim-hook on the border of dg(λ), say
going northeast from a box c1 to a box c2, and maps this rim-hook to the box of dg(λ) in
the same row as c2 and the same column as c1. In the diagram of λ = (5, 5, 4, 4, 3) shown
below, we label in gray the rim-hook corresponding to the black cell c.

To handle the case λ 6= µ, it suffices to prove∑
γ∈G(λ,µ)

sgn(λ/γ) sgn(µ/γ) = 0.

We do this by showing that G(λ, µ) is either empty or contains exactly two objects
contributing oppositely-signed terms to the sum.

Consider theN -bead abaci abN(λ) and abN(µ), whereN = max(`(λ), `(µ)). Assuming
G(λ, µ) 6= ∅, there must be a way go from dg(λ) to dg(µ) by removing some rim-hook of
size L from dg(λ) to get dg(γ) for some γ ∈ G(λ, µ), then adding some different rim-hook
of size L to dg(γ) to get dg(µ). Translating to abaci, there must be a way to go from
abN(λ) to abN(µ) by the following two-step process. First, a bead in abN(λ) jumps from
some position i to a gap in some position i − L, producing abN(γ) for some γ. Second,
a different bead in abN(γ) jumps from some position j 6= i to a gap in position j + L,
producing abN(µ). We must have j 6= i− L since λ 6= µ.

The key observation is that there is exactly one other way to execute this two-step
process (with new choices of i, j, L, γ) to convert abN(λ) to abN(µ). In more detail, first
note that:

• positions i and j contain beads in abN(λ) and gaps in abN(µ);

• positions i− L and j + L contain gaps in abN(λ) and beads in abN(µ);

• each other position contains the same thing (bead or gap) in abN(λ) and in abN(µ).
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Consider the case i < j, so i − L < i < j < j + L. The only other way to go from
abN(λ) to abN(µ) is to move a bead from position j to position i− L (jumping down by
L′ = j − i + L > 0 positions) and then move a bead from position i to position j + L
(jumping up L′ positions). To compare the signs of the two ways, let abN(λ) have a beads
strictly between positions i − L and i, b beads strictly between positions i and j, and c
beads strictly between positions j and j + L. For the first bead motion, the bead jump
from i to i−L contributes (−1)a, and the bead jump from j to j+L contributes (−1)c. For
the second bead motion, the bead jump from j to i−L contributes (−1)a+b+1 (noting that
this bead jumps over a bead at position i), while the bead jump from i to j+L contributes
(−1)b+c (noting there is no longer a bead at position j). Since (−1)a+2b+c+1 = −(−1)a+c,
the two terms have opposite signs.

Consider the case j < i and i− j < L. Then i−L < j < i < j+L. As in the previous
case, the other way to go from abN(λ) to abN(µ) is to move the bead in position j to
position i−L, then move the bead in position i to position j+L. A sign analysis (similar
to the first case) shows that the two ways lead to terms with opposite signs.

Consider the case j < i and i− j > L. We cannot have i− j = L since j 6= i− L as
noted earlier. We cannot have i−L = j+L since otherwise we could not move a bead from
j to j+L on abN(γ). The possible orderings in this case are therefore j < j+L < i−L < i
or j < i−L < j+L < i. In both orderings, the second way to go from abN(λ) to abN(µ)
first moves a bead from i to j +L, then moves a bead from j to i−L. As before, we can
check that the two ways lead to terms of opposite signs.

Remark 17. When λ 6= µ and the sum on the left side of (13) is not vacuous, the proof
just given shows there is exactly one positive object and one negative object contributing
to this sum. Thus we have a canonical bijection (not relying on arbitrary choices) proving
this identity. The bijection when λ = µ, while not canonical in this technical sense, is still
quite natural. We build this up to an “almost canonical” bijective proof of An(n!Bn) =
n!IP (n) in Section 7.2.

Example 18. Let λ = (9, 8, 6, 6, 5, 4, 4, 2) and µ = (9, 9, 9, 7, 5, 3, 1, 1), so N = 8. The
first way to go from abN(λ) to abN(µ) takes L = 5 and moves a bead from position i = 6
to i − L = 1, then moves a bead from position j = 10 to j + L = 15, as shown by the
upper arrows in the diagram below. The second way takes L = 10−6+5 = 9 instead and
moves a bead from position 10 to 1, then moves a bead from position 6 to 15, as shown
by the lower arrows in the diagram. The signs are (−1)2+2 = +1 for the first way and
(−1)4+3 = −1 for the second way.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0

Going back to partition diagrams, let γ = (9, 8, 6, 6, 5, 3, 1, 1) and γ̃ = (9, 8, 6, 4, 3, 3, 1, 1).
The first way to go from λ to µ removes a rim-hook R = λ/γ from dg(λ) to reach dg(γ),
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then adds a rim-hook S = µ/γ to dg(γ) to reach dg(µ), as shown here:

dg(λ) = → dg(γ) = → dg(µ) =

The second way to go from λ to µ removes a rim-hook R̃ = λ/γ̃ from dg(λ) to reach
dg(γ̃), then adds a rim-hook S̃ = µ/γ̃ to dg(γ̃) to reach dg(µ), as shown here:

dg(λ) = → dg(γ̃) = → dg(µ) =

On one hand, dg(γ) = dg(λ) ∩ dg(µ), and R and S are disjoint rim-hooks that can be
added outside the rim of dg(γ) to reach dg(λ) or dg(µ), respectively. On the other hand,
we get the rim-hook R̃ by adding to R the cells on the inside border of dg(γ) that lead
from the northeastern-most cell of R to the southwestern-most cell of S (these cells are
shaded dark gray above). Similarly, S̃ consists of S along with these same cells, while
dg(γ̃) is dg(γ) with these cells removed. By translating the cases in the abacus-based
proof back to partition diagrams, one may check that these descriptions of γ, R, S, γ̃, R̃,
and S̃ are valid whenever G(λ, µ) = {γ, γ̃} is nonempty.

Remark 19. Stanton and White [11, Thm. 4] gave a bijective proof that our matrix
An (counting signed RHT) satisfies the sorting condition of Remark 3. This can also
be deduced algebraically from the observation that when sort(α) = sort(β), the power-
sum symmetric functions pα and pβ are equal and have the same Schur expansion. By
Remark 3, the restriction of An to a square P (n) × P (n) matrix has inverse B′n with
entries

B′n(λ, µ) =
∑

β∈C(n):
sort(β)=λ

Bn(β, µ) =
∑

β∈C(n):
sort(β)=λ

An(µ, β)/Zβ = An(µ, λ)
∑

β∈C(n):
sort(β)=λ

Z−1β . (14)

This classical result is usually stated as follows. For a partition λ containing mk copies
of k for each k, define the integer zλ =

∏
k>1mk!k

mk . Then the square matrix A with

λ, µ-entry χλµ has inverse with λ, µ-entry χµλ/zλ. A is known to be the character table for
the symmetric group Sn, and this result is a special case of the orthogonality of irreducible
characters of a finite group. Part (c) of Lemma 20 (below) shows why (14) agrees with
the classical formulation.

To state Lemma 20, we need the following definitions. Any σ ∈ Sn can be written
as a product of disjoint cycles. Define the cycle partition cycP(σ) ∈ P (n) to be the
list of the lengths of these cycles (including 1-cycles) written in weakly decreasing order.
Most permutations have several different cycle notations, obtained by reordering cycles
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or starting each cycle at a different position. Define the canonical cycle notation for σ
by requiring that each cycle start at its minimum element and writing cycles with their
minimum elements in decreasing order.

Define the cycle composition cycC(σ) ∈ C(n) to be the list of lengths of the cycles in
this canonical cycle notation for σ. For example, σ = (5, 2, 1)(6, 4, 7)(9, 3)(8) ∈ S9 has
canonical cycle notation (8)(4, 7, 6)(3, 9)(1, 5, 2), cycP(σ) = (3, 3, 2, 1), and cycC(σ) =
(1, 3, 2, 3).

Lemma 20. (a) For all λ ∈ P (n), n!/zλ is the number of σ ∈ Sn with cycP(σ) = λ.
(b) For all β ∈ C(n), n!/Zβ is the number of σ ∈ Sn with cycC(σ) = β.

(c) For all λ ∈ P (n),
∑

β∈C(n):
sort(β)=λ

Z−1β = z−1λ . In other words, zλ is the harmonic mean of the

Zβ as β ranges over all rearrangements of λ.

Proof. Part (a) is a standard result giving the size of the conjugacy class of Sn indexed
by λ; see, for example, [8, Thm. 7.115]. To prove part (b), we fix β ∈ C(n) and give the
following construction that builds all σ ∈ Sn with cycC(σ) = β. We use β = (1, 3, 2, 3)
as a running example to illustrate the construction. For convenience, write k = `(β) and
Bi = β1 + · · ·+ βi for i = 1, 2, . . . , k.

Begin with a list of cycles with β1 blanks in the first cycle, β2 blanks in the second cycle,
and so on. Our example begins with ( )( , , )( , )( , , ). Fill the blanks in
the rightmost cycle first. The first blank must be 1; there are n− 1 choices for the next
value, n− 2 choices for the value after that, and so on; there are n− (βk − 1) = Bk−1 + 1
choices for the last value in this cycle. In our example, we might pick 1 (forced) then 5
then 2 to get ( )( , , )( , )(1, 5, 2). Move left to the next empty cycle. The first
blank must be the minimum value not used already. Then there are n−βk−1 = Bk−1−1
choices for the next value, Bk−1 − 2 choices for the next value, and so on; there are
n−βk− (βk−1− 1) = Bk−2 + 1 choices for the last value. In our example, we might pick 3
(forced) then 9 to get ( )( , , )(3, 9)(1, 5, 2). Continue filling the cycles from right
to left, noting that the first element in each new cycle must be the minimum element in
[n] not already chosen.

The number of ways to execute this construction is the product of all integers in the
list n, n − 1, n − 2, . . . , 3, 2, 1 excluding n = Bk, Bk−1, Bk−2, . . . , B1 = β1. The excluded
integers correspond to the forced choices of the minimum element in each new cycle. We
see that the number of σ ∈ Sn with cycC(σ) = β is n!

B1B2···Bk
= n!

Zβ
, as needed.

To prove part (c), fix λ ∈ P (n). Since the canonical cycle notation of a permutation
is unique, the set {σ ∈ Sn : cycP(σ) = λ} is the disjoint union of the sets {σ ∈ Sn :
cycC(σ) = β} as β ranges over all compositions in C(n) that sort to λ. By parts (a)
and (b), we deduce

n!/zλ =
∑

β∈C(n):
sort(β)=λ

n!/Zβ.

Dividing by n! gives the result.
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Example 21. For λ = (3, 2, 2) ∈ P (7), we have zλ = 24, Z(3,2,2) = 105, Z(2,3,2) = 70,
Z(2,2,3) = 56, and 1

105
+ 1

70
+ 1

56
= 1

24
. With the 7! factor included, this says 48+72+90 = 210.

5 Application 3: Composition Refinement Matrices

For our third application, we use our local technique to prove a well-known inversion result
for matrices whose entries record when one composition refines another. These matrices,
along with their weighted generalizations considered in Section 5.4, are transition matri-
ces between certain bases of quasisymmetric functions and non-commutative symmetric
functions (see Remark 24). In this application, the local identities (4) can be informally
summarized by the slogan: “A local inverse of a composition of L is a signed brick of
length L.”

5.1 Refinement Ordering on Compositions

Let α, β be compositions of n. Define α 6 β to mean: there exist ik such that 0 = i0 <
i1 < i2 < . . . < i`(β) = `(α) and βk = αik−1+1 + . . .+ αik for k = 1, 2, . . . , `(β). When this
holds, we say α refines β and β coarsens α. For example, (2, 1, 1, 2, 1, 3, 1, 1) 6 (3, 4, 3, 2).
In general, we go from β to a composition refining β by replacing each part βk by a
composition of βk. We go from α to a composition coarser than α by picking zero or more
blocks of consecutive parts in α and replacing each block of parts by their sum. The set
C(n) is partially ordered by the refinement relation.

We use tableau-like structures called compositional brick tabloids (CBTs) to visualize
the refinement relation between compositions. These objects resemble the brick tabloids
used in [2] to study transition matrices between homogeneous symmetric functions and
elementary symmetric functions, but CBTs have simpler combinatorial structure. See
also [6] where similar objects are studied in connection with the combinatorics of non-
commutative symmetric functions. Given α, β ∈ C(n), a CBT of shape α and content β
is a filling of the diagram of α with βk copies of k, for 1 6 k 6 `(β), such that values
weakly increase from left to right in each row, and each value in any row is strictly larger
than the values appearing in all higher rows. Let CBT(α, β) be the set of such objects.
We may interpret an element in CBT(α, β) as a tiling of dg(α) by labeled bricks, where
the ith brick has length βi, satisfying the stated conditions on brick labels.

Example 22. For α = (4, 5, 5, 3) and β = (3, 1, 3, 2, 5, 1, 2), the set CBT(α, β) consists
of a single object shown here.

1 1 1 2
3 3 3 4 4
5 5 5 5 5
6 7 7

In general, given α, β ∈ C(n), the only possible tiling in CBT(α, β) satisfying the
ordering conditions is formed by laying down the bricks in order from 1 to `(β), working
through dg(α) from the top row down, and working left to right within each row. This
tiling process succeeds if and only if β refines α. Thus, |CBT(α, β)| = χ(β 6 α). In the
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case where CBT(α, β) is nonempty, define the sign of the unique CBT in this set to be
(−1)`(β)−`(α). We may view the sign combinatorially by attaching a sign of +1 to the first
brick in each row and −1 to all other bricks, and letting the sign of a tiling be the product
of the signs of all its bricks. The CBT in Example 22 has sign (−1)3 = −1.

In this third application of the general setup of §2.2, we let An be the C(n) × C(n)
refinement poset incidence matrix with entries

An(λ, β) = χ(λ 6 β) =
∑

T∈CBT(β,λ)

1 for λ, β ∈ C(n). (15)

We will prove that An has inverse Bn given by

Bn(β, µ) = (−1)`(β)−`(µ)χ(β 6 µ) =
∑

T∈CBT(µ,β)

sgn(T ) for β, µ ∈ C(n). (16)

This is a well-known result giving the Möbius function for the refinement poset on
C(n) (or equivalently, the poset obtained by ordering the set of subsets of [n− 1] by set
inclusion). Our point here is to showcase how this inversion result follows from a simple
combinatorial argument based on our local inversion technique. This same technique
proves a more subtle variation where matrix entries count weighted compositions (see
§5.4).

Example 23. For n = 4, the incidence matrices are shown here.

A4 =



4 31 22 211 13 121 112 1111

4 1 0 0 0 0 0 0 0
31 1 1 0 0 0 0 0 0
22 1 0 1 0 0 0 0 0
211 1 1 1 1 0 0 0 0
13 1 0 0 0 1 0 0 0
121 1 1 0 0 1 1 0 0
112 1 0 1 0 1 0 1 0
1111 1 1 1 1 1 1 1 1



B4 =



4 31 22 211 13 121 112 1111

4 1 0 0 0 0 0 0 0
31 −1 1 0 0 0 0 0 0
22 −1 0 1 0 0 0 0 0
211 1 −1 −1 1 0 0 0 0
13 −1 0 0 0 1 0 0 0
121 1 −1 0 0 −1 1 0 0
112 1 0 −1 0 −1 0 1 0
1111 −1 1 1 −1 1 −1 −1 1


Remark 24. Several classical transition matrices for bases of QSym (the space of qua-
sisymmetric functions), and NSym (the space of non-commutative symmetric functions)
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can be inverted using this result. We briefly state the results here, referring to [5, 6, 9] for
more details and definitions. First, the monomial quasisymmetric basis (Mα) and Gessel’s
fundamental quasisymmetric basis (Fα) of QSym satisfy

Fλ =
∑

β∈C(n)

χ(β 6 λ)Mβ =
∑

β∈C(n)

An(β, λ)Mβ for all λ ∈ C(n).

The (transposed) inversion result for An and Bn therefore gives

Mβ =
∑

µ∈C(n)

Bn(µ, β)Fµ =
∑

µ∈C(n)

(−1)`(µ)−`(β)χ(µ 6 β)Fµ for all β ∈ C(n).

Second, the ribbon Schur basis (rα) and the non-commutative complete basis (hα) of
NSym satisfy

hβ =
∑

α∈C(n)

χ(β 6 α)rα and rβ =
∑

α∈C(n)

(−1)`(β)−`(α)χ(β 6 α)hα for all β ∈ C(n).

Third, by redistributing signs between the matrices An and Bn, it is routine to check that
the C(n)× C(n) matrix given by An(λ, β) = (−1)n−`(λ)χ(λ 6 β) is its own inverse. This
matrix is the transition matrix (in both directions) between the NSym bases (hα) and
(eα):

hβ =
∑

µ∈C(n)

An(λ, β)eλ and eβ =
∑

µ∈C(n)

An(λ, β)hλ for all β ∈ C(n). (17)

Fourth, the weighted variation in Section 5.4 (with a sign adjustment) gives the transition
matrices between the NSym bases (hα) and (ψα), namely:

hβ =
∑

λ∈C(n)

χ(λ 6 β)

Zβ,λ
ψλ, ψµ =

∑
β∈C(n)

(−1)`(µ)−`(β)χ(β 6 µ)Lµ,β hβ for all β, µ ∈ C(n),

(18)
where Zβ,λ and Lµ,β are defined in §5.4.

5.2 Recursions for An and Bn

Given λ, β ∈ C(n) with β = (β∗, L(β)), a CBT of shape β and content λ (if it exists)
consists of a CBT of shape β∗ and content γ (where γ is some prefix of λ), followed by
the bottom row of length L(β) filled with bricks consisting of the suffix of λ not in γ.
For any λ ∈ C(n) and L ∈ Z>0, define S(λ, L) as follows. If λ has a suffix λk+1, . . . , λ`(λ)
with sum L, let S(λ, L) = {γ} where γ = (λ1, . . . , λk); otherwise let S(λ, L) = ∅. The
preceding discussion of CBT proves that

A(λ, β) =
∑

γ∈S(λ,L(β))

A(γ, β∗), (19)
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which is an instance of (1) with wtA(λ, γ) = 1. Note that if γ exists but does not refine
β∗, then λ does not refine β and both sides of (19) are zero. In Example 22, renaming the
partitions as λ = (3, 1, 3, 2, 5, 1, 2) and β = (4, 5, 5, 3), we have L(β) = 3, β∗ = (4, 5, 5),
γ = (3, 1, 3, 2, 5), and A(λ, β) = 1 = A(γ, β∗).

Next, given β, µ ∈ C(n) with β = (β∗, L(β)), we may pass from a signed CBT of shape
µ and content β (if it exists) to a smaller signed CBT of some shape δ and content β∗ by
removing the final brick (with length L(β) and label `(β)) along with the cells in dg(µ)
occupied by that brick. We obtain δ from µ by subtracting L(β) from the last part of µ
and deleting the new part if it is zero. In the case where the last row of dg(µ) has more
than one brick, the sign changes since we removed a brick of sign −1 from the last row.
In the case where the last row of dg(µ) has a single brick, the sign does not change since
we removed the first (and only) brick from the last row. For µ = (µ1, . . . , µk) ∈ C(n) and
L > 0, use three cases to define the set T (µ, L). If L > µk, let T (µ, L) = ∅. If L = µk, let
T (µ, L) = {δ} with δ = (µ1, . . . , µk−1) and sgn(µ, δ) = +1. If L < µk, let T (µ, L) = {δ}
with δ = (µ1, . . . , µk−1, µk − L) with sgn(µ, δ) = −1. The preceding discussion of CBT
proves the recursion

B(β, µ) =
∑

δ∈T (µ,L(β))

sgn(µ, δ)B(β∗, δ), (20)

which is an instance of (2) with wtB(µ, δ) = sgn(µ, δ). In Example 22, renaming the
partitions as β = (3, 1, 3, 2, 5, 1, 2) and µ = (4, 5, 5, 3), we have L(β) = 2 < µ4, β

∗ =
(3, 1, 3, 2, 5, 1), δ = (4, 5, 5, 1), sgn(µ, δ) = −1, and B(β, µ) = −1 = −B(β∗, δ).

5.3 Proof of the Local Identity

In this application, the local identity (4) takes the following form.

Theorem 25. Given n > 0 and compositions λ, µ ∈ C(n), let G(λ, µ) be the set of
compositions γ such that γ is a prefix of λ and γ can be obtained from µ by decreasing the
last part of µ by some positive amount L. Then∑

γ∈G(λ,µ)

sgn(µ, γ) = χ(λ = µ). (21)

Therefore (by Theorem 2), the matrices An and Bn in (15) and (16) are inverses of each
other.

Proof. The left side of (21) can be interpreted as the signed sum of all possible ways of
transforming µ = (µ1, . . . , µk) into λ by the following two-step procedure. First, decrease
the last part of µ by some amount L > 0, using the sign +1 if the entire last part is removed
and −1 otherwise, to reach some γ. Second, append some composition of L to γ to reach
λ. The intermediate object γ must be either µ∗ = (µ1, . . . , µk−1) or (µ1, . . . , µk−1, c) where
0 < c < µk. The first object has sign +1 and may be used if and only if µ∗ is a prefix of
λ. The second object has sign −1 and may be used if and only if µ∗ is a prefix of λ and
λk = c.
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In the case where λ = µ, we cannot use the second object since c < µk = λk. But the
first object works since µ∗ = λ∗ is a prefix of λ. In this case, the left side of (21) is 1, as
needed. In the case where λ 6= µ and µ∗ is not a prefix of λ, the sum on the left side of (21)
is vacuous and both sides are 0. Finally, consider the case where λ 6= µ and µ∗ is a prefix
of λ. Here c = λk must satisfy 0 < c < µk, since λk = µk would contradict λ 6= µ, while
c = 0 or λk > µk would contradict λ, µ ∈ C(n). In this case, G(λ, µ) = {µ∗, (µ∗, λk)}. So
both sides of (21) are 0, as needed.

To illustrate the final case of the proof, take λ = (4, 1, 3, 2, 1, 3) and µ = (4, 1, 3, 6).
Then G(λ, µ) = {(4, 1, 3), (4, 1, 3, 2)}. On the other hand, G(µ, µ) = {(4, 1, 3)}.

5.4 Weighted Variant of the Inversion Result

This subsection proves a weighted variation of the inversion result in Theorem 25. After
rearranging some signs, we obtain the transition matrices between the bases (hα) and
(ψα) of NSym, as stated in (18) of Remark 24.

Suppose α, β ∈ C(n) and β 6 α, so CBT(α, β) contains a unique object T . For
1 6 i 6 `(α), let β(i) ∈ C(αi) be the list of consecutive parts in β whose associated
bricks appear in T in row i of dg(α). For any composition γ = (γ1, γ2, . . . , γs), define

Zγ = γ1(γ1 + γ2) · · · (γ1 + γ2 + · · ·+ γs) as in §4.2. When β 6 α, define Zα,β =
∏`(α)

i=1 Zβ(i)

and Lα,β =
∏`(α)

i=1 L(β(i)). Thus Zα,β is the product of the Z-factors arising from the
compositions in each row of T , while Lα,β is the product of the lengths of the last bricks
in each row of T . In Example 22, where α = (4, 5, 5, 3) and β = (3, 1, 3, 2, 5, 1, 2), we
compute

Zα,β = Z(3,1)Z(3,2)Z(5)Z(1,2) = (3 · 4) · (3 · 5) · (5) · (1 · 3) = 2700

and Lα,β = 1 · 2 · 5 · 2 = 20.

Theorem 26. For λ, β, µ ∈ C(n), define

An(λ, β) = χ(λ 6 β)Lβ,λ and Bn(β, µ) = (−1)`(β)−`(µ)χ(β 6 µ)Z−1µ,β.

The matrices An and Bn are inverses of each other.

Proof. We adapt the proof of Theorem 25 by incorporating the extra weight factors in
the entries of An and Bn. First consider the recursion (19). Say we remove the last row
of a CBT T of shape β and content λ to get a CBT T ∗ of shape β∗ and content γ. The
last bricks of T and T ∗ are the same except T has a last brick of size L(λ) in its final row
of length L(β). Therefore, Lβ,λ = Lβ∗,γL(λ). So recursion (19) becomes

A(λ, β) =
∑

γ∈S(λ,L(β))

L(λ)A(γ, β∗), (22)

which is an instance of (1) with wtA(λ, γ) = L(λ).
Next consider the recursion (20). Say we remove the last brick in the last row of a

CBT T of shape µ and content β to get a CBT T ∗ of shape δ and content β∗. All the
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factors in Zµ,β and Zδ,β∗ are the same except the final row of T contributes an extra factor
L(µ) compared to T ∗. In other words, Zµ,β = Zδ,β∗L(µ). The sign analysis is the same as
before, so we get

B(β, µ) =
∑

δ∈T (µ,L(β))

sgn(µ, δ)L(µ)−1B(β∗, δ), (23)

which is an instance of (2) with wtB(µ, δ) = sgn(µ, δ)L(µ)−1.
Finally, taking the new weights into account, the local identity (21) becomes∑

γ∈G(λ,µ)

L(λ)

L(µ)
sgn(µ, γ) = χ(λ = µ). (24)

This reduces to (21) when λ = µ. When λ 6= µ, the factor L(λ)/L(µ) can be brought
outside the sum, and the result again follows from (21). Theorem 26 follows from (24)
and Theorem 2.

6 Application 4: Brick Tabloids

For our fourth application, we will prove inversion results for rectangular matrices that
count certain weighted brick tabloids. These are relevant to the transition matrices be-
tween the monomial basis and power-sum basis of symmetric functions. In this case, the
local identities (4) can be informally summarized by the slogan: “A local inverse of a
brick of size L is a partition of L (with suitable signs and weights).”

6.1 Background on Brick Tabloids

In this application, we often view integer partitions as multisets of parts. For each parti-
tion λ and i > 0, define the multiplicity mi(λ) to be the number of times i appears as a
part in λ. For partitions λ and µ, let λ ] µ, λ ∩ µ, and λ \ µ be the partitions obtained
by applying the standard set operations to λ and µ viewed as multisets. More precisely,
for each i, we have mi(λ ] µ) = mi(λ) + mi(µ), mi(λ ∩ µ) = min(mi(λ),mi(µ)), and
mi(λ \ µ) = max(mi(λ) −mi(µ), 0). Let λ ⊆ µ mean mi(λ) 6 mi(µ) for all i > 0. Let
i ∈ µ mean mi(µ) > 0; that is, i appears as a part of µ.

Example 27. For λ = (4, 2, 2, 1, 1, 1) and µ = (3, 2, 1, 1), λ]µ = (4, 3, 2, 2, 2, 1, 1, 1, 1, 1),
λ ∩ µ = (2, 1, 1), λ \ µ = (4, 2, 1) and µ \ λ = (3). Here, and in general, we have
λ = (λ \ µ) ] (λ ∩ µ) and µ = (µ \ λ) ] (λ ∩ µ).

Following [2], we define an ordered brick tabloid (OBT) of shape λ ∈ P (n) and content
β ∈ C(n) to be a filling of dg(λ) such that each label i appears in βi cells, all in the same
row, and labels in each row weakly increase from left to right. Let OBT(λ, β) be the set of
such objects, which may be viewed as tilings of the diagram of λ using labeled horizontal
bricks of lengths β1, β2, . . ..
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Example 28. For β = (2, 1, 1, 3) and λ = (4, 3), the three ordered brick tabloids in
OBT(λ, β) are shown here.

1 1 2 3
4 4 4

2 4 4 4
1 1 3

3 4 4 4
1 1 2

Recall the set CBT(β, α) of compositional brick tabloids of shape β ∈ C(n) and content
α ∈ C(n), which we defined in §5.1. For β ∈ C(n) and µ ∈ P (n), define the set BT(β, µ)
of brick tabloids of shape β and type µ to consist of all CBTs of shape β and content α
where sort(α) = µ. For T ∈ CBT(β, α), define wt(T ) = Lβ,α, which is the product of
the lengths of the last (rightmost) brick in each row. For β ∈ C(n) and µ ∈ P (n), define
wβ,µ =

∑
T∈BT(β,µ) wt(T ). In the special case β = (n), define Wµ = w(n),µ =

∑
α L(α),

where we sum over all α ∈ C(n) with sort(α) = µ. Note that W(n) = n.

Example 29. Let β = (3, 1, 2) and µ = (2, 2, 1, 1). The set BT(β, µ) contains the two
objects shown here.

1 2 2
3
4 4

1 1 2
3
4 4

The objects have weights 2 · 1 · 2 = 4 and 1 · 1 · 2 = 2, respectively, so wβ,µ = 6.

Lemma 30. (a) For all µ ∈ P (n) such that µ 6= (n), Wµ =
∑
i∈µ

Wµ\(i).

(b) For all partitions µ, Wµ = |µ|
`(µ)

(
`(µ)

m1(µ),m2(µ),...

)
.

Proof. To prove (a), fix µ ∈ P (n) with µ 6= (n). Let S be the set of α ∈ C(n) with
sort(α) = µ. For each i appearing as a part of µ, let Si = {α ∈ S : α1 = i}, and let Ti be
the set of γ ∈ C(n− i) with sort(γ) = µ \ (i). The map γ 7→ (i, γ) is a bijection from Ti
onto Si that preserves the last part. Also S is the disjoint union of the sets Si. Therefore,

Wµ =
∑
α∈S

L(α) =
∑
i∈µ

∑
α∈Si

L(α) =
∑
i∈µ

∑
γ∈Ti

L(γ) =
∑
i∈µ

Wµ\(i).

We give a bijective proof of (b) in the rearranged form `(µ)Wµ = |µ|
(

`(µ)
m1(µ),m2(µ),...

)
. Write

n = |µ|. The left side counts the set S of fillings of a row (n) with a rearrangement of
the parts of µ (the bricks) where one brick has been marked (accounting for `(µ)) and
one cell in the rightmost brick has been marked (accounting for the way brick tabloids
are weighted in Wµ). The right side counts the set T of fillings of a row (n) with a
rearrangement of the parts of µ where one of the n cells has been marked. Define a
bijection g : T → S as follows. For t ∈ T , suppose the marked cell of t lies in brick b.
Interchange b with the last brick in t, moving the marked cell along with b, and also mark
the brick (formerly the last brick) that got switched with t. This defines g(t). To get
g−1(s) where s ∈ S, find the marked brick in s and interchange it with the last brick in
s (which has one of its cells marked). In the following example with µ = (3, 3, 2, 2, 1), we
mark the cell in t and g(t) by ∗ and mark the switched brick in g(t) by gray shading.

g

(
1 1 1 2∗ 2 3 4 4 5 5 5

)
= 1 1 1 2 2 2 3 4 4 5∗ 5
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In this fourth application of the general setup of §2.2, we let An be the P (n)× C(n)
matrix with entries

An(λ, β) = |OBT(λ, β)| =
∑

T∈OBT(λ,β)

1 for λ ∈ P (n), β ∈ C(n). (25)

For β = (β1, . . . , βs) ∈ C(n), let Zβ = β1(β1 + β2)(β1 + β2 + β3) · · · (β1 + β2 + · · ·+ βs) as
in §4.2. We will prove that An has inverse Bn with entries given by

Bn(β, µ) = (−1)`(µ)−`(β)
wβ,µ
Zβ

for β ∈ C(n), µ ∈ P (n). (26)

Remark 31. It can be shown (cf. [2]) that An(λ, β) is the coefficient of mλ in the monomial
expansion of the power-sum symmetric function pβ. Since sort(α) = sort(β) implies
pα = pβ, the matrix An satisfies the sorting condition of Remark 3. Thus we get a
formula for the power-sum expansion of monomial symmetric functions by converting
Bn in (26) to the square matrix B′n defined in (6). If β, γ ∈ C(n) both sort to a given
ν ∈ P (n), then wβ,µ = wγ,µ, as can be seen by permuting the rows of brick tabloids of
shape β to get brick tabloids of shape γ. Using this and Lemma 20(c), we obtain

B′n(ν, µ) = (−1)`(µ)−`(ν)
wν,µ
zν

for all ν, µ ∈ P (n).

Example 32. For n = 4, the matrices An and Bn are as follows.

A4 :



4 31 22 211 13 121 112 1111

4 1 1 1 1 1 1 1 1
31 0 1 0 2 1 2 2 4
22 0 0 2 2 0 2 2 6
211 0 0 0 2 0 2 2 12
1111 0 0 0 0 0 0 0 24

 B4 :



4 31 22 211 1111

4 1 −1 −1/2 1 −1/4
31 0 1/4 0 −1/4 1/12
22 0 0 1/2 −1/2 1/8
211 0 0 0 1/12 −1/24
13 0 3/4 0 −3/4 1/4
121 0 0 0 1/6 −1/12
112 0 0 0 1/4 −1/8
1111 0 0 0 0 1/24


The square versions are shown here.

A′4 :



4 31 22 211 1111

4 1 1 1 1 1
31 0 1 0 2 4
22 0 0 2 2 6
211 0 0 0 2 12
1111 0 0 0 0 24

 B′4 :



4 31 22 211 1111

4 1 −1 −1/2 1 −1/4
31 0 1 0 −1 1/3
22 0 0 1/2 −1/2 1/8
211 0 0 0 1/2 −1/4
1111 0 0 0 0 1/24


6.2 Recursion for An

Fix a partition λ ∈ P (n) and a positive integer L. Let S(λ, L) be the set of partitions
γ that can be obtained by replacing one part i > L in λ by i − L and sorting the
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parts. We can identify i given λ and γ as the sole member of the multiset λ \ γ. Define
wtA(λ, γ) = mi(λ) = mλ\γ(λ) to be the number of times the part value i that got replaced
appears in λ. In this setting, the general recursion (1) takes the following form.

Lemma 33. For all λ ∈ P (n) and β ∈ C(n),

|OBT(λ, β)| =
∑

γ∈S(λ,L(β))

mλ\γ(λ) |OBT(γ, β∗)| . (27)

Proof. Informally, we obtain the recursion by removing the largest-labeled brick in an
OBT of shape λ and content β. However, there is some extra complexity since we must sort
the new diagram so it still has partition shape. Formally, we proceed by defining a bijection
F : OBT(λ, β) →

⋃
γ∈S(λ,L(β))[wtA(λ, γ)] × OBT(γ, β∗). Write β = (β1, . . . , βs) = (β∗, L)

with L = L(β). Given an input T ∈ OBT(λ, β), the brick with largest label s and size L
must be at the end of some row of dg(λ) of some length i > L. Suppose the brick appears
in the kth highest row of length i in the diagram, where 1 6 k 6 mi(λ). Delete this brick
and its associated cells, and move the truncated row (along with the remaining bricks in
it) to become the highest row of length i−L in the new diagram. The new diagram is an
OBT T ∗ of some shape γ ∈ S(λ, L) such that wtA(λ, γ) = mi(λ). Define F (T ) = (k, T ∗).

To invert F , start with any (k, T ∗) in the codomain of F , where T ∗ has shape γ ∈
S(λ, L). Here, i must be the unique part in λ \ γ, and γ must have at least one part of
size i− L. Put a brick of label s and size L at the end of the highest row of size i− L in
T ∗. Move this enlarged row up to become the kth highest row among the rows of length
i in a new OBT that has shape λ and content β. It is routine to check that these steps
define the two-sided inverse of F .

Example 34. For λ = (3, 3, 2) and β = (2, 1, 3, 2), the set S(λ, L(β)) contains two
partitions: γ = (3, 2, 1) with wtA(λ, γ) = m3(λ) = 2, and δ = (3, 3) with wtA(λ, δ) =
m2(λ) = 1. The four objects in OBT(λ, β) are shown here.

T1 =
2 4 4
3 3 3
1 1

, T2 =
3 3 3
2 4 4
1 1

, T3 =
1 1 2
3 3 3
4 4

, T4 =
3 3 3
1 1 2
4 4

On the other hand, OBT(γ, β∗) = {T5} and OBT(δ, β∗) = {T6, T7}, where

T5 =
3 3 3
1 1
2

, T6 = 1 1 2
3 3 3

, T7 = 3 3 3
1 1 2

.

In this example, the bijection F acts as follows:

F (T1) = (1, T5), F (T2) = (2, T5), F (T3) = (1, T6), F (T4) = (1, T7).

6.3 Recursion for Bn

For µ ∈ P (n) and L > 0, define T (µ, L) = {δ ∈ P (n − L) : δ ⊆ µ}, which is the set of
partitions of n− L that can be obtained from µ by removing some parts that sum to L.
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In other words, for each δ ∈ T (µ, L), ε = µ \ δ is a partition of L with ε ⊆ µ. For such δ,
define

wtB(µ, δ) =
(−1)`(µ)−`(δ)−1Wµ\δ

|µ|
. (28)

In this setting, to verify the general recursion (2), we must prove: for β ∈ C(n) and
µ ∈ P (n),

(−1)`(µ)−`(β)
wβ,µ
Zβ

=
∑

δ∈T (µ,L(β))

(−1)`(µ)−`(δ)−1+`(δ)−`(β
∗)Wµ\δwβ∗,δ
|µ|Zβ∗

. (29)

The power of −1 is the same on both sides since `(β) = `(β∗) + 1. The denominators
match as well (independent of δ) since |µ|Zβ∗ = nZβ∗ = |β|Zβ∗ = Zβ. Since µ \ δ is a
partition of L(β), we are reduced to checking

wβ,µ =
∑

δ∈T (µ,L)

w(L),µ\δwβ∗,δ where L = L(β). (30)

This follows by mapping a brick tabloid T counted by wβ,µ to the pair of brick tabloids
(T ′, T ∗), where T ′ is the last row of T and T ∗ consists of all higher rows of T . Note
that T ∗ is a brick tabloid of shape β∗ and type δ for some δ ∈ T (µ, L), whereas T ′ must
then be a brick tabloid of shape (L) and type µ \ δ. Taking products of the lengths of
the rightmost bricks, we have wt(T ) = wt(T ′) wt(T ∗). Thus the map T 7→ (T ′, T ∗) is a
weight-preserving bijection, and (30) follows.

6.4 Proof of the Local Identity

In this application, the local identity (4) takes the following form.

Theorem 35. Given n > 0 and partitions λ, µ ∈ P (n), let G(λ, µ) be the set of partitions
γ that can be obtained by decreasing one part of λ by some L > 0 (then sorting) and by
removing one or more parts from µ. Then

∑
γ∈G(λ,µ)

mλ\γ(λ)(−1)`(µ)−`(γ)−1Wµ\γ

n
= χ(λ = µ). (31)

Therefore (by Theorem 2), the rectangular matrix An of OBT counts has a right-inverse
Bn defined by (26).

Proof. First consider the case λ = µ. For each part i ∈ λ, let γi = λ \ (i) be λ with a
single copy of the part i deleted. Evidently γi ∈ G(λ, λ) for all i ∈ λ, and we claim these
are the only elements in G(λ, λ). To see why, fix γ ∈ G(λ, λ). On one hand, we obtain γ
from λ by decreasing some λj = i by some L > 0. On the other hand, `(γ) < `(µ) = `(λ).
If L < i, then we would have `(γ) = `(λ), which is impossible. So L = i and γ = γi. The

left side of (31) becomes
∑

i∈λ
mi(λ)(−1)1−1W(i)

n
=
∑

i∈λ
imi(λ)
n

= 1, since |λ| = n.
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For the case λ 6= µ, identity (31) holds vacuously when G(λ, µ) = ∅, so assume G(λ, µ)
is nonempty. This means there is a way to go from λ to µ by first subtracting some L > 0
from a single part in λ to get γ, then merging some partition ν of L with γ to reach µ.
In this situation, we claim λ \ µ must equal the single-part partition (i) for some i. On
one hand, λ \ µ cannot be empty since |λ| = |µ| and λ 6= µ. On the other hand, suppose
the multiset λ \ µ contained two parts a and b (where a = b could occur). Decrementing
the part a by L and merging with ν would produce a partition with too many copies of
b (compared to µ). Decrementing the part b by L and merging with ν would produce a
partition with too many copies of a (compared to µ). This proves the claim.

With the claim λ \ µ = (i) established, we can describe all elements of G(λ, µ). Write
µ \ λ = ρ, which must be a partition of i different from (i) since |λ| = |µ| but λ 6= µ. To
get an element of G(λ, µ), we must decrease one of the copies of i in λ by some amount
L since that is the only way to get rid of the extra copy of i. We could choose L = i,
leading to γ = λ \ (i) = λ ∩ µ ∈ G(λ, µ), then merge γ with ρ to reach µ. Or we could
choose any L < i such that i − L ∈ ρ, leading to γ = (λ ∩ µ) ] (i − L) ∈ G(λ, µ), then
merge γ with the remaining parts in ρ to reach µ. Putting all of this information into the
left side of (31), the numerator becomes

mi(λ)(−1)`(ρ)−1Wρ +
∑

L: i−L∈ρ

mi(λ)(−1)`(ρ)−2Wρ\(i−L)

= mi(λ)(−1)`(ρ)−1

[
Wρ −

∑
j∈ρ

Wρ\(j)

]
.

By Lemma 30(a), the term in brackets is zero, so (31) holds in this case.

Example 36. For λ = (5, 2, 2, 1) and µ = (3, 2, 2, 1, 1, 1), we have λ\µ = (5), ρ = µ\λ =
(3, 1, 1), and G(λ, µ) = {(2, 2, 1), (3, 2, 2, 1), (2, 2, 1, 1)}. The left side of (31) is

1(−1)2W(3,1,1) + 1(−1)1W(1,1) + 1(−1)1W(3,1)

10
=

5− 1− 4

10
= 0.

7 Automatically Constructing Bijective Proofs of AB = I

Returning to our general framework, it is often the case that the entries in the matrices
An and Bn count signed, weighted collections of combinatorial objects. Suppose we have
bijective proofs of recursion (1) for the entries of An, recursion (2) for the entries of Bn,
and the local identities (4). Then we can convert the algebraic proof of Theorem 2 to a
bijective proof of the matrix identities AnBn = IR(n). We sketch the general approach
here and provide two concrete examples (revisiting Applications 1 and 2) in the following
subsections.

Suppose A(λ, β) is the sum of signed, weighted objects in a set Aλ,β for each λ ∈ R(n)
and β ∈ C(n). Suppose B(β, µ) is the sum of signed, weighted objects in a set Bβ,µ for
each β ∈ C(n) and µ ∈ R(n). By definition of matrix multiplication, the λ, µ-entry of AB
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is the signed, weighted sum of all ordered pairs (S, T ) where S ∈ Aλ,β for some β ∈ C(n),
and T ∈ Bβ,µ for the same choice of β. Let Pλ,µ be the set of all such pairs. We seek to
construct sign-reversing, weight-preserving involutions Iλ,µ : Pλ,µ → Pλ,µ where Iλ,µ has
no fixed points for all λ 6= µ in R(n), and Iλ,λ has exactly one fixed point (with signed
weight +1) for all λ ∈ R(n).

Tracing through the argument leading to (5) produces the following informal recursive
description of Iλ,µ. Given (S, T ) ∈ Pλ,µ with S ∈ Aλ,β and T ∈ Bβ,µ for some β =
(β∗, L(β)), use the known bijective proofs of (1) and (2) to remove some local structures
from S and T to get smaller objects S∗ ∈ Aγ,β∗ and T ∗ ∈ Bβ∗,δ for some γ, δ ∈ R(n−L(β)).
In the case γ 6= δ, recursively apply Iγ,δ to (S∗, T ∗) to find the matching object (S ′, T ′)
of opposite sign. In the new object, β∗ may be replaced by some new composition β′ ∈
C(n−L(β)). Next, restore to S ′ and T ′ the same local structures that were removed from
S and T to reach the final output Iλ,µ(S, T ).

In the case γ = δ, we may sometimes still be able to recursively apply Iγ,δ to obtain
a cancellation as in the first case. However, it may be that (S∗, T ∗) is the fixed point for
Iγ,δ. There are two subcases here. If λ 6= µ, then we use the given bijective proof of the
local identity to obtain a matching object of opposite sign that will cancel with (S, T ). If
λ = µ, the local bijection either yields another cancellation or tells us that (S, T ) is the
fixed point for Iλ,λ.

Frequently, we can unroll the recursive description of Iλ,µ to obtain an iterative algo-
rithm to compute this map. Suppose we can explicitly describe the unique fixed point for
each Iλ,λ; call this fixed point the survivor of shape λ. Given a non-survivor (S, T ) ∈ Pλ,µ,
repeatedly strip off the last local structures from S and T until reaching an intermediate
object that is the survivor for some shape γ ∈ R(k). Apply the bijective proof of the local
identity, using the most recently removed local structure to determine what λ and µ to
use in (4). This bijection replaces the survivor of shape γ (and the next local structure
just outside it) by the survivor of some shape γ̃ ∈ R(k) (and suitable new local structure
just outside it). To finish, act on this object by restoring the rest of the local structures
that were removed from S and T to get the object Iλ,µ(S, T ) that cancels with (S, T ) in
Pλ,µ.

Sometimes (as in Application 2 below), this approach can be generalized to the case
where there is more than one surviving fixed point in Iλ,λ. This situation might occur if
we need to rescale one of the matrices An or Bn to ensure all entries are integers.

7.1 Application 1: Bijective Inversion of the Kostka Matrix

We illustrate the general construction by developing a bijective proof of AnBn = IP (n),
where An is the rectangular Kostka matrix from Section 3. In this application, Aλ,β
is the (unsigned, unweighted) set SSYT(λ, β) of semistandard Young tableaux of shape
λ and content β; and Bβ,µ is the (signed, unweighted) set SRHT(µ, β) of special rim-
hook tableaux of shape µ and content β. The set Pλ,µ consists of all pairs (S, T ) where
S ∈ SSYT(λ, β) and T ∈ SRHT(µ, β) for some composition β. For each partition λ, let
Sλ be the filling of dg(λ) where every cell in row i contains the value i. The object Sλ
belongs to both SSYT(λ, λ) and SRHT(λ, λ) and has positive sign. It is routine to check

the electronic journal of combinatorics 33(1) (2026), #P1.12 30



that Pλ,λ consists of the sole object (Sλ, Sλ), which is the survivor for shape λ in this
application. For example, the survivor for λ = (5, 3, 3, 2) is

1 1 1 1 1
2 2 2
3 3 3
4 4 ,

1 1 1 1 1
2 2 2
3 3 3
4 4

 .

The involution Iλ,µ acts on input (S, T ) ∈ Pλ,µ as follows. If λ = µ and (S, T ) is the
survivor for λ, then this is a fixed point. Otherwise let β = (β1, . . . , β`) be the content
composition for S and T . Remove the outermost horizontal strip from S (meaning the
β` cells in the filling of dg(λ) labeled `), and remove the last special rim-hook from T
(meaning the β` cells in the filling of dg(µ) labeled `). Do this repeatedly until reaching
a survivor object of some shape γ, where γ might be empty. Suppose this survivor
was reached after removing the cells labeled k from S (these cells forming a horizontal
strip η of size βk) and removing the cells labeled k from T (these cells forming a signed
special rim-hook ρ of size βk). Let λ be the partition consisting of the cells in γ and
η, and let µ be the partition consisting of the cells in γ and ρ. Then the set G(λ, µ)
(defined in Theorem 10) is nonempty. The proof of that theorem shows that G(λ, µ)
consists of exactly two oppositely-signed objects and describes how to go from one of
these objects to the other. Let γ̃ be the other object appearing with γ in G(λ, µ). To
make (S̃, T̃ ) = Iλ,µ(S, T ), start with the unique survivor of shape γ̃. Using the next label
k̃ not appearing in γ̃, add a horizontal strip to S̃ to reach λ and add a special rim-hook
to T̃ to reach µ (which is possible by definition of G(λ, µ)). Then restore the previously
removed horizontal strips and special rim-hooks of lengths βk+1, . . . , β` to the fillings S̃
and T̃ (respectively) in the same positions they occupied in S and T . Here the labels
(originally k+1, k+2, . . .) of the restored structures get renumbered to be k̃+1, k̃+2, . . ..

Example 37. Here are three examples of the action of Iλ,µ. First, 1 1 3
2 2 4
4 4 ,

1 1
2 2
3 4
4 4

 Iλ,µ7−→

 1 1 2
2 2 3
3 3 ,

1 1
2 2
2 3
3 3

 . (32)

In this example, we remove the 4s from the input objects and get a non-survivor. Then we
remove the 3s from both objects and reach the survivor for shape γ = (2, 2). We compute
λ = (3, 2), µ = (2, 2, 1), γ̃ = (2) from the proof of Theorem 10. Starting with the survivor
for γ̃, we fill dg(λ) \ dg(γ̃) with a horizontal strip of three 2s, and we fill dg(µ) \ dg(γ̃)
with a special rim-hook of three 2s. We then restore the last horizontal strip and special
rim-hook, renumbered to contain 3s instead of 4s. The original content β = (2, 2, 1, 3)
changes to new content β̃ = (2, 3, 3).
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For our second example, we compute
1 1 1 1 1 4 4
2 2 2 4 4 6 6
3 3 3 5
4 4 6 ,

1 1 1 1 1
2 2 2 4
3 3 3 4
4 4 4 4
5 6
6 6


Iλ,µ7−→


1 1 1 1 1 4 4
2 2 2 2 4 6 6
3 3 3 5
4 4 6 ,

1 1 1 1 1
2 2 2 2
3 3 3 4
4 4 4 4
5 6
6 6

 .

(33)
Here, β = (5, 3, 3, 6, 1, 3), γ = (5, 3, 3), λ = (7, 5, 3, 2), µ = (5, 4, 4, 4), γ̃ = (5, 4, 3), and
β̃ = (5, 4, 3, 5, 1, 3).

For our third example, we compute
1 1 1 1 1 3 4
2 2 2 3 3 6 6
3 3 4 5
4 4 6 ,

1 1 1 1 1
2 2 2 3
3 3 3 3
4 4 4 4
5 6
6 6


Iλ,µ7−→


1 1 1 1 1 3 4
2 2 2 2 3 6 6
3 3 4 5
4 4 6 ,

1 1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 6
6 6

 .

(34)
Here, β = (5, 3, 5, 4, 1, 3), γ = (5, 3), λ = (6, 5, 2), µ = (5, 4, 4), γ̃ = (5, 4), and β̃ =
(5, 4, 4, 4, 1, 3).

Remark 38. The involutions Iλ,µ constructed here are canonical in the technical sense
that they do not rely on arbitrary choices. On one hand, each set Pλ,λ contains a unique
survivor with no cancellation needed. On the other hand, for each λ 6= µ such that the
set G(λ, µ) is nonempty, this set contains exactly one positive object and exactly one
negative object. Thus the involution γ ↔ γ̃ on this set is uniquely determined. Our
general framework assembles the global maps Iλ,µ from these canonical local ingredients
without requiring any further choices.

Remark 39. Eğecioğlu and Remmel [3] gave a bijective proof of KnK
−1
n = IP (n) for the

square P (n) × P (n) Kostka matrices Kn. Their bijections differ from ours in several
respects. First, as a notational matter, they write partition diagrams in French notation
(longest row at the bottom) and use line segments rather than numbered cells to display
special rim-hooks. Second, their proof uses a slightly different combinatorial model for
the λ, µ-entry of KnK

−1
n compared to our set Pλ,µ. Specifically, they consider pairs (S, T )

where S is a SSYT of shape λ and T is an SRHT of shape µ such that, for each k > 1, the
horizontal strip in S filled with the label k has size equal to the length of the special rim-
hook in T starting in the kth row of dg(µ); this length is zero if there is no such rim-hook.
In particular, the content of S is a weak composition that might have some parts equal
to zero. The validity of their model rests on the fact that | SSYT(λ, α)| = | SSYT(λ, β)|
for any weak compositions α, β that are rearrangements of each other. Their involution
requires (as a subroutine) a bijection that interchanges the frequencies of i and i + 1 in
a SSYT. In contrast, our bijections for the rectangular Kostka matrices do not rely on
these ingredients.
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Eğecioğlu and Remmel [3, pp. 72–73] give the following example of their involution
(denoted here by ERλ,µ; we use our diagram conventions to facilitate comparison): 1 1 3

2 2 4
4 4 ,

1 1
2 2
3 4
4 4

 ERλ,µ←→

 1 1 3
3 3 4
4 4 ,

1 1
3 3
3 4
4 4

 . (35)

We use the label k for the special rim-hook starting in row k from the top. Their output
has content (2, 0, 3, 3), which we do not allow. But comparing to (32), we observe that
the actions of the maps Iλ,µ and ERλ,µ on this input essentially agree, after we adjust
for different conventions regarding the content. However, there are inputs on which the
two involutions do not agree even in this extended sense. For example, ERλ,µ matches
the two objects on the left sides of (33) and (34) with each other, as well as matching the
two objects on the right sides.

7.2 Bijective Matrix Inversion in Application 2

Getting a bijective proof of AnBn = IP (n) in Application 2 is more challenging, since
the Bn matrix defined in §4 has fractional entries. As a first step, we introduce the
rescaled matrix Bn = n!Bn and prove AnBn = n!IP (n) instead. In this case, An(λ, β)
is the signed set RHT(λ, β) of rim-hook tableaux of shape λ and content β. Note that
Bn(β, µ) =

∑
T∈RHT(µ,β)

n!
Zβ

sgn(T ). Using Lemma 20(b), we may take Bn(β, µ) to be the

signed set consisting of pairs (T, σ) such that T ∈ RHT(µ, β) and σ ∈ Sn has cycC(σ) =
β. For λ, µ ∈ P (n), Pλ,µ is the set of triples (S, T, σ) where, for some composition β,
S ∈ RHT(λ, β), T ∈ RHT(µ, β), σ ∈ Sn, and cycC(σ) = β. The sign of (S, T, σ) is
sgn(S) sgn(T ).

The involutions Iλ,µ must have no fixed points when λ 6= µ, but Iλ,λ should have n!
positive fixed points for all λ ∈ P (n). The natural set of fixed points for Iλ,λ turns out to
be the set of objects in Pλ,λ of the form (S, S, σ); call this set Survλ. The next theorem
proves there really are n! such objects. In fact, we require a bijective strengthening of
this enumerative result and a variation arising in connection with the local identity (13)
(rescaled by n!). For n > 1, define

CSn = [n]× [n− 1]× · · · × [3]× [2]× [1] = {(cn, . . . , c2, c1) : 1 6 ck 6 k for n > k > 1}.

Clearly, |CSn | = n!. Elements of CSn are called choice sequences.

Theorem 40. (a) For each λ ∈ P (n), there is a bijection Fλ : CSn → Survλ.
(b) Suppose we are given µ ∈ P (n) and a fixed (unlabeled) rim-hook ρ that may be removed
from the border of dg(µ) to leave a smaller partition shape. Let Survµ,ρ be the set of pairs
(T, σ) where T is a RHT of shape µ whose last rim hook is ρ, and cycC(σ) equals the
content of T . There is a bijection Fµ,ρ : CSn−1 → Survµ,ρ.

Remark 41. Part (a) gives novel combinatorial interpretations of n! parametrized by the
integer partitions of n. Since sgn(S) sgn(S) = +1, we can say that there are n! pairs
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(S, σ) such that: S is an unsigned RHT of shape λ and some content β ∈ C(n); and
cycC(σ) = β. If we specify in advance the cells occupied by the last rim-hook in S, then
part (b) says there are (n− 1)! such objects.

Proof. As a preliminary step, we define a numbering of the rim-hooks that can be removed
from the border of the diagram of a partition ν ∈ P (k). We number the cells in dg(ν)
with 1, 2, . . . , k in the reading order, working from the top row down and reading left to
right in each row. In other words, the cell in row i, column j of dg(ν) receives the number
ν1 + · · · + νi−1 + j. Each cell in dg(ν) corresponds to a unique removable rim-hook on
the border of dg(ν), as explained at the start of the proof of Theorem 16. For 1 6 c 6 k,
define the cth border rim-hook of ν to be that rim-hook corresponding to the cth cell of
dg(ν). This numbering system is a bijection from [k] to the set of such border rim-hooks
for ν.

Next, we construct the bijection Fλ by modifying the counting argument in the proof
of Lemma 20(b). Given a choice sequence c = (cn, . . . , c1) ∈ CSn, we create Fλ(c) =
(S, S, σ) ∈ Survλ by choosing the rim-hooks in S working from the outside border inward
and simultaneously filling the cycles in the canonical cycle notation for σ from right to
left. To begin, remove the cnth border rim-hook from dg(λ). This rim-hook will be the
largest-labeled rim-hook in S. Say L cells were removed; then we are left with the diagram
of a smaller partition λ(1) ∈ P (n − L). Build the rightmost cycle of σ by starting with
1, then using entries cn−1, cn−2, . . . , cn−(L−1) from c to choose the remaining values in the
cycle. Here and below, an entry c in the choice sequence means “fill the next position in
the cycle with the cth smallest element not yet appearing in σ.” To continue, remove the
cn−Lth border rim-hook from dg(λ(1)), say containing L′ cells, leaving the diagram of some
λ(2). Build the next-rightmost cycle of σ by starting with the minimum element not used
so far, then using entries cn−L−1, cn−L−2, . . . , cn−L−(L′−1) to choose the remaining values
in the cycle. Then remove the cn−L−L′th border rim-hook from dg(λ(2)), and continue
similarly. The passage from the choice sequence to the triple (S, S, σ) is reversible, as
illustrated in the example below. So Fλ is a bijection.

Part (b) is proved in the same manner. Here we do not need cn ∈ [n] to choose the
outermost rim-hook to remove from dg(µ), since that choice has been fixed in advance
to be ρ. Thus, choice sequences in CSn−1 suffice to construct uniquely each object in
Survµ,ρ.

Example 42. In this example, we compute F−1λ (S, S, σ) = (c18, c17, . . . , c1), where λ =
(5, 4, 4, 3, 2) ∈ P (18), and S and σ are shown here:

S =

1 1 3 4 4
1 3 3 4
2 3 4 4
2 5 5
2 5

, σ = (9, 16, 14)(7, 13, 15)(6, 11, 18, 12)(2, 17, 3, 10, 8)(1, 4, 5).
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To recover c18, we use the numbering of the cells of dg(λ) shown here:

dg(λ) =

1 2 3 4 5
6 7 8 9
10111213
141516
1718

We see that the highest-numbered rim-hook in S (namely, the set of cells containing 5)
is the 15th border-rim hook of dg(λ), so c18 = 15. To find c17, we look at the second
element in the rightmost cycle of σ, namely 4. The value 4 is the third-smallest available
element (since 1 has already been used), so c17 = 3. The next value in this cycle, namely
5, is again the third-smallest available element (since 1 and 4 have already been used), so
c16 = 3. We abbreviate the reasoning in the last two sentences as follows:

c17 = 3 via (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18);

c16 = 3 via (2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18).

To continue, we remove the rim-hook labeled 5 to get a new partition shape λ(1) =
(5, 4, 4, 1, 1) with cells numbered as follows:

dg(λ(1)) =

1 2 3 4 5
6 7 8 9
10111213
14
15

.

The next highest rim-hook in S (the set of cells containing 4, shaded gray in the preceding
diagram) is the third border rim-hook of λ(1), so c15 = 3. We proceed by examining the
cycle (2, 17, 3, 10, 8) in σ, which necessarily begins with 2. Reasoning as above, we deduce:

c14 = 13 via (3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18);

c13 = 1 via (3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18);

c12 = 5 via (6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18);

c11 = 3 via (6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18).

The computation continues similarly, as shown in the next figures.

dg(λ(2)) =

1 2 3
4 5 6
7 8
9
10

c10 = 2 and 6 begins the next cycle of σ;

c9 = 3 via (7, 9, 11, 12, 13, 14, 15, 16, 18);

c8 = 8 via (7, 9, 12, 13, 14, 15, 16, 18);

c7 = 3 via (7, 9, 12, 13, 14, 15, 16).
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dg(λ(3)) =

1 2
3
4
5
6

c6 = 4 and 7 begins the next cycle of σ;

c5 = 2 via (9, 13, 14, 15, 16);

c4 = 3 via (9, 14, 15, 16).

dg(λ(4)) = 1 2
3

c3 = 1 and 9 begins the next cycle of σ;

c2 = 2 via (14, 16);

c1 = 1 via (14).

In summary, F−1λ (S, S, σ) = (15, 3, 3, 3, 13, 1, 5, 3, 2, 3, 8, 3, 4, 2, 3, 1, 2, 1). Letting ρ be the
rim-hook of S marked with 5s, we also have

F−1λ,ρ(S, σ) = (3, 3, 3, 13, 1, 5, 3, 2, 3, 8, 3, 4, 2, 3, 1, 2, 1).

Remark 43. So far we have used permutations σ ∈ Sn that permute the standard set
{1, 2, . . . , n}. The definition of cycC(σ) and all related constructions still work if we
replace this set by any given set of n integers. This remark is needed below, when we
operate on sub-permutations of σ where some of the cycles have been temporarily deleted.

The involution Iλ,µ acts on input (S, T, σ) ∈ Pλ,µ as follows. If λ = µ and the input
is in Survλ, then this is a fixed point. Otherwise let β = (β1, . . . , β`) be the content
composition for S and T . Remove the outermost rim-hook from S (meaning the β` cells
in the filling of dg(λ) labeled `), remove the outermost rim-hook from T (meaning the
β` cells in the filling of dg(µ) labeled `), and remove the rightmost cycle in the canonical
cycle notation of σ. Do this repeatedly until reaching a survivor object (S0, S0, σ0) for
some shape γ, where γ might be empty. Let (S ′, T ′, σ′) be the immediately preceding
object. We go from S0 to S ′ by adding a rim-hook η of size βk to get an object of some
shape λ. We go from S0 to T ′ by adding a rim-hook ρ of size βk to get an object of
some shape µ. Here, σ0 consists of the leftmost k − 1 cycles in σ, while σ′ consists of the
leftmost k cycles in σ. By construction, (T ′, σ′) ∈ Survµ,ρ, and the set G(λ, µ) (defined
in Theorem 16) is nonempty. The proof of that theorem shows that G(λ, µ) consists of
exactly two oppositely-signed partitions and describes how to go from one of these objects
to the other. Let γ̃ be the other object appearing with γ in G(λ, µ), so that η̃ = λ \ γ̃
and ρ̃ = µ \ γ̃ are rim-hooks of the same size.

To build Iλ,µ(S, T, σ), first compute (T ′′, σ′′) = Fµ,ρ̃ ◦ F−1µ,ρ(T ′, σ′) ∈ Survµ,ρ̃ using the
bijections from Theorem 40(b), as modified in Remark 43. Get S ′′ by copying all values
in T ′′ in the sub-shape γ̃, then filling the rim-hook η̃ with the next unused value k̃. To
finish, restore the previously removed rim-hooks of lengths βk+1, . . . , β` to the fillings S ′′

and T ′′ (respectively) in the same positions they occupied in S and T . Here the labels
(originally k+1, k+2, . . .) of the restored rim-hooks get renumbered to be k̃+1, k̃+2, . . ..
Append to the right end of σ′′ the cycles previously removed from the right end of σ. The
resulting triple is Iλ,µ(S, T, σ).

Acting by Iλ,µ again reverses all the steps and returns us to (S, T, σ), so Iλ,µ is an
involution on Pλ,µ. The fixed point set of Iλ,λ in Pλ,λ has size n!, by Theorem 40(a). This
completes our bijective proof of AnBn = n!IP (n).
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Example 44. Let λ = (4, 3, 2, 1), µ = (4, 3, 3). We compute Iλ,µ(S, T, σ) for the following
objects:

S =

1 1 3 3
1 2 3
2 2
2

, T =
1 1 2 2
1 2 2
3 3 3

, σ = (5, 8, 6)(2, 10, 9, 4)(1, 3, 7).

Here, β = (3, 4, 3), sgn(S) = −1 · 1 · −1 = 1, and sgn(T ) = −1 · −1 · 1 = 1. To reach
a survivor (S0, S0, σ0), we remove the rim-hooks labeled 3 and 2 from S and T , and we

remove the two rightmost cycles of σ. This produces σ0 = (5, 8, 6) and S0 = 1 1
1

of

shape γ = (2, 1). We construct S ′ and T ′ by restoring the rim-hooks labeled 2 as shown
here:

S0 = 1 1
1

add η−−−→ S ′ =

1 1
1 2
2 2
2

; S0 = 1 1
1

add ρ−−−→ T ′ = 1 1 2 2
1 2 2

.

We find that σ′ = (5, 8, 6)(2, 10, 9, 4), S ′ has shape λ = (2, 2, 2, 1) and T ′ has shape
µ = (4, 3). By using the bijection in the proof of Theorem 16 (cf. Example 18), we find
γ̃ = (2, 2). This defines η̃ and ρ̃, which are shaded in gray here:

η̃ = λ \ γ̃ = , ρ̃ = µ \ γ̃ = .

Next we compute the choice sequence F−1µ,ρ(T ′, σ′), which is the sequence F−1µ (T ′, σ′)
with its first entry c7 deleted. One can check that c7 = 2 since ρ is the second border rim-
hook of µ, but we do not need this value. Note that σ′ permutes the set {2, 4, 5, 6, 8, 9, 10},
and the rightmost cycle of σ′ begins with the smallest value in this set, namely 2. Looking
at the remaining entries in this cycle, we recover c6, c5, c4 as follows (using the same
notation from Example 42):

c6 = 6 via (4, 5, 6, 8, 9, 10);

c5 = 5 via (4, 5, 6, 8, 9);

c4 = 1 via (4, 5, 6, 8).

Removing the cells containing 2 from T ′ leaves the shape (2, 1). The rim-hook labeled
1 in T ′ is the first border rim-hook of this shape, so c3 = 1. We deduce the rest of the
choice sequence as follows:

c3 = 1 and 5 begins the next cycle of σ′;

c2 = 2 via (6, 8);

c1 = 1 via (6).

So far, we have F−1µ (T ′, σ′) = (2, 6, 5, 1, 1, 2, 1) and c = F−1µ,ρ(T ′, σ′) = (6, 5, 1, 1, 2, 1).

The numbered diagram 1 2 3 4
5 6 7

shows that ρ̃ is the third border rim-hook of µ. There-

fore, setting c′ = (3, 6, 5, 1, 1, 2, 1), we have (T ′′, σ′′) = Fµ,ρ̃(c) = Fµ(c′). We compute T ′′
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and σ′′ as follows. Like σ′, σ′′ permutes the set {2, 4, 5, 6, 8, 9, 10} and the rightmost cycle
of σ′′ begins with 2. This cycle contains |ρ̃| = 3 values. We use c′6 = 6 and c′5 = 5 to
determine these values, as follows:

(2, 10, ) via (4, 5, 6, 8, 9, 10) and c′6 = 6;

(2, 10, 9) via (4, 5, 6, 8, 9) and c′5 = 5.

The next entry c′4 = 1 tells us which rim-hook to remove from the remaining shape (2, 2),

as shown by the gray cells in the numbered diagram 1 2
3 4

. We begin the next cycle of

σ′′ with the least available value 4. The remaining two values in this cycle are found as
follows:

(4, 5, ) via (5, 6, 8) and c′3 = 1;

(4, 5, 8) via (6, 8) and c′2 = 2.

We conclude by using c′1 = 1 to remove the first border rim-hook of the remaining shape
(1), as shown here: 1 . We use the least remaining value 6 to make the leftmost cycle
(6) in σ′′. We find T ′′ by labeling the rim-hooks removed from µ using labels 3, 2, 1. We
find S ′′ by copying the rim-hooks of T ′′ in the shape γ̃ and labeling the cells of η̃ with 3.
In summary, we have found

S ′′ =

1 2
2 2
3 3
3

, T ′′ = 1 2 3 3
2 2 3

, σ′′ = (6)(4, 5, 8)(2, 10, 9).

Finally, we compute Iλ,µ(S, T, σ) by restoring to S ′′ and T ′′ the rim-hooks originally
labeled 3 in S and T (using 4 as their new label) and appending the removed cycle
(1, 3, 7) to σ′′. This produces

(S∗, T ∗, σ∗) = Iλ,µ(S, T, σ) =

 1 2 4 4
2 2 4
3 3
3

,
1 2 3 3
2 2 3
4 4 4

, (6)(4, 5, 8)(2, 10, 9)(1, 3, 7)

 .

Note that sgn(S∗) = 1 · −1 · −1 · −1 = −1 and sgn(T ∗) = 1 · −1 · −1 · 1 = 1, so
sgn(S∗) sgn(T ∗) = − sgn(S) sgn(T ) as needed. Acting on (S∗, T ∗, σ∗) by Iλ,µ reverses all
the preceding steps and recreates the original triple (S, T, σ).
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