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Abstract

We study resolving sets and split resolving sets of the point-block incidence
graphs of symmetric designs and we obtain general lower bounds on their cardinality.
In some cases, this lower bound is just a constant factor away from the known upper
bounds. In particular, we show that for any € > 0 there exists gg and ng such that
if ¢ > qo and n > ng, then the metric dimension of the point-hyperplane incidence
graph of PG(n, q) is at least (2 —e)ng. The best known upper bound for the metric
dimension of PG(n, q) is roughly 4nq. We also prove that the metric dimension of

(2—e)u

a symmetric (v, k, \) design, under certain conditions, is at least Tv for any

_ Inv
€ > 0, where u = an—lnkHJ'

Mathematics Subject Classifications: 05B05,05B25,05C12,51A05,51E05

1 Introduction

The concept of resolving sets was introduced by Slater in 1975 [15] and independently by
Harary and Melter in 1976 [8]. Many results of the topic have been gathered in [3], [5] and
[16]. In this paper, we study the resolving sets and split resolving sets of the point-block
incidence graphs of symmetric designs. Within this, we deal separately with the point-
hyperplane incidence graphs of projective spaces. The study of the metric dimension of
incidence graphs was initiated by Bailey [1], [2], while [4] and [17] are devoted exclusively
to the case of symmetric designs and projective spaces, respectively.

Definition 1. Let G = (V| E) be a graph, S C V and let us fix an order of the elements
of S = (s1,82,...8m). The distance vector of v € V' with respect to S is

R(v|S) = (d(v, s1),d(v, s2),...,d(v, 5p))-

We say that a set W C V is resolved by the set S if R(v|S) # R(ulS) for any v # u € W,
that is, there is a vertex s € S such that d(v, s) # d(u, ).
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S is called a resolving set of G if it resolves the set V. A smallest resolving set is called
optimal, its size is called the metric dimension of the graph and it is denoted by u(G).

Split resolving sets were introduced by Bailey in [1].

Definition 2. Let G = (V| E) be a bipartite graph with parts A and B. We say that S
is a split resolving set if SN A resolves B and SN B resolves A. A smallest split resolving
set is called optimal and we denote its size by p*(G), which quantity we will call the split
metric dimension of G. A vertex set S is called a semi-resolving set if S C A and S
resolves B, or if S C B and S resolves A.

It is easy to see that a split resolving set is also a resolving set, thus, for any bipartite
graph G, we have u(G) < pu*(G).

Definition 3. A (v,k, \) design is a triplet (P,B,Z) where P and B are disjoint non-
empty sets, their elements are called points and blocks, 7 is a binary relation between P
and B called incidence, for which the following hold:

.« v=|P|
e every two different points are incident with exactly A\ common blocks,
e cvery block is incident with exactly & points.

We call the design symmetric if |B| = v.

It is well-known that every (v, k, A) design is r-reqular, that is, every point is incident

with exactly r blocks, where r = ’\gf__ll).

Theorem 4 ([13] Proposition 2.4.9.). For any (v, k, \) design, the following are equivalent:
o Bl =u,
o r ==k,

o cvery two different blocks are incident with exactly A\ common points.

k(k—1)

Let us remark that for symmetric designs, A = is determined by v and k, and

—1
so is the quantity k — \ = k(;’__lk), which is usually called the order of the design. In many
of the known results, the order is involved in the bounds for the metric dimension; in this

paper we formulate the results using only v and k.

Definition 5. Let P and B be the sets of points and blocks of a (v, k, \) design. We say
that G = (V, E) is the point-block incidence graph or the Levi graph of the design if the
set of vertices is V = P U B, and the set of edges is E = {{p, A} : pe P, A € B,pTA}.
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It follows from the definition that for every p,q € P and A, B € B

ﬂn@z{ S P=a d(A,B)={ 2 ifA#BANANB#0( ;
2 itp#a 4 fA#BAANB =0

1 ifpeA
dmjvz{3 ifpg A
If the design is symmetric, then d(A, B) # 4 since every two blocks have common points,
therefore the diameter of the point-block incidence graph of a symmetric block design is
three.
We mention some known results about the metric dimension of symmetric designs.
The following general upper bound is proven by Bailey in [2].

Theorem 6. If G is the point-block incidence graph of a symmetric (v, k,\) design and
k—XZ>=2, then

ue) < we) <2 | 25|

In [17], the following lower bound was proven.

Theorem 7. If G is the point-block incidence graph of a symmetric (v, k, \) design, then

v
(@)= p@) = | ———|.
w6 > 6 > |
There is a straightforward general lower bound for any graph G with diameter d on n
vertices: d*@) + u(G) = n (see e.g. [5]). For incidence graphs of symmetric designs, this
gives
2 < 36 4 1w(G) < 3HG) 9. 3u(G) — gu(G)+1

Applying the logarithm to both sides, we obtain
In(2v)
In3

ﬁﬂ%>{%§?]

Bailey pointed out that, if v = ¢(k — ), then this bound and Theorem 6 give ¢; Inv <
w(G) < calnw.

In this paper, we develop a general method which gives new lower bounds for the
metric and split metric dimension of the point-block incidence graph G of any symmetric

design. Let us summarize our main results. Theorem 18 claims p*(G) > 4(,;:21)

w(G) = 4(];:61). Moreover, Theorem 21 and Theorem 27 roughly say that, under certain

conditions, p*(G) = u(G) > M, where u = | 54— |.
We will also consider what our method gives for those particular cases that have been
studied in the literature in more detail. In these cases, our lower bound is sharp up to a

constant factor or a constant additive error term.

n(G) >

Hence,

and
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Definition 8. We denote the n-dimensional projective space over the finite field F, by
PG(n, q).

If P and H are the set of points and the set of hyperplanes of PG(n, q), then (P, H,Z)
is a symmetric design with

n+1 n n—l _

q 1 q 1 q 1
=|Pl=H=—' k= dN=——.
v=|P|=|H| 1 . 1,an 1

We will also call this design a projective space. The point-block incidence graph of this
design is also called point-hyperplane graph. We will use the notations u(PG(n,q)) and
w*(PG(n,q)) for the metric dimension and the split metric dimension of this graph.

For the metric dimension of the incidence graph of projective planes and spaces the
following are known:

Theorem 9 ([9],[12]). The metric dimension of a projective plane of order ¢ > 8 is 4q—4.
Theorem 10 ([4]). If q is large enough, then

2n"
w(PG(n,q)) = 2ng — o

Theorem 11 ([4]). Let p be a prime p > 3 and ¢ = p" > 36086. If n > 3, then
WPG(n,q)) < (n” +n—8)q.
We will show that (see Theorem 32 and Corollary 37)
2(1 = 04(1))(1 = 04(1))ng < p(PG(n, q)) < 4ng.

The upper bound follows from known results for so-called higgledy-piggledy line sets
and strong blocking sets; see Section 5 for details. Our lower bound is stated in a more
precise form in Theorem 35. Let us remark that, unlike Theorem 10, our bound works
when n is large compared to ¢ as well.

Definition 12. A biplane is a symmetric design with A = 2; that is a <ﬁ#, q+2, 2)
design.

In [17], Tang, Zhou, Chen and Zhang proved that the metric dimension of a biplane
is b if ¢ = 2 and 2q if ¢ > 3, where ¢ = k — 2.

Throughout this paper, e will denote Euler’s number. We will use the following com-
binatorial inequality:

Proposition 13. If0 < u < k, then

()< (%) g
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The proof of this proposition can be found in [14, Proposition 1.4.]. However, it is
presented here due to its brevity.

Proof. Let x = 7 € (0,1]. Then

ZZ: (lj) ) zu: CD% ) % :0 <Ij)$ L ;m)k N (1(;)%)k < (ef))uk- 0

=0

Notation: In this paper, we deal with bipartite graphs. If X and Y denote the parts
of the graph and S is a fixed subset of V= X UY, then let Xg = XNSand Ys =Y NS.

2 Bipartite and semi-regular graphs

We start with giving a lower bound for the split metric dimension and the metric dimension
of bipartite and semi-regular graphs.

Definition 14. Let G = (A, B, E) be a bipartite graph with bipartition (A, B). If every
vertex in A has degree r and every vertex in B has degree k, then G is called semi-regular

of bi-degree (r, k).

Clearly, the incidence graphs of (v, k, \) designs are particular semi-regular graphs of
bi-degree (7, k). In case of symmetric designs, 7 = k so their incidence graphs are in fact
regular.

Theorem 15. Let G = (A, B, E) be a bipartite graph with diameter 3, v = |A| and
b= |B|. If S is a split resolving set, then

|As| = logy b, |Bs| = log,v.
If S is a resolving set, then
|As| = logy(b—[S]) . [Bs| = logy(v — [5]).

Proof. 1t is enough to prove the statements for |Ag|. Let | = |Ag|. If S is a split resolving
set and wy # wy € B, then the sequences R(w;|Ag) and R(ws|Ag) have to be different.
The number of different sequences is b and the number of sequences is at most 2!, thus
b <2l

If S is a resolving set and w; # wy € B\ Bg, then their sequences have to be different.
The number of different sequences is b — | Bg|, and it is also at most 2!, hence

b—|Bs| <2,
thus

[As| =1 = logy (b — [ Bs]) = logy(b — [5]). 0

ot
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Proposition 16. Let G = (A, B, E) be a semi-regular bipartite graph of bi-degree (v, k)
with diameter 3, b = |B|, let u be a positive integer and let s € (0,1). If S is a split
resolving set and u < |Ag|, then

|As| >min{Sb(u+1) : " (1_3)b}. (2)

r (&

If S is a resolving set and u < |Ag|, then

|As| >min{Sb(u+1) : ud/(1=s)b= ’S‘}. (3)

r (&

Proof. In the first part of the proof, S can be a resolving set or a split resolving set as
well.

Case 1: Suppose that there are at least sb vertices in B such that each of them has
at least u + 1 neighbors in Ag. We denote the set of these vertices by B;. By double
counting the set

{(z,y) € As x By : {z,y} € E},

we get
|Ag|r > sb(u+1).

Case 2: There are less then sb vertices in B which have at least u + 1 neighbors in
Ag. Therefore, there are at least (1 — s)b vertices in B which have at most u neighbors
in AS- Let [ = ’As‘

If S is a split resolving set, then let By denote the set of vertices in B that have at
most u neighbors in Ag, and if S is a resolving set, then let By denote the set of vertices in
B\ Bg that have at most u neighbors in Ag. If wy # wy € By, then R(w|Ag) # R(ws|As).
In both cases, the number of different sequences is |By| and the number of sequences is
at most y ., (i), as there can be at most u ones in each sequence. Therefore, if S is a
split resolving set, then

(1—3)b < |Byf gi(j) . (%z)u (4)

=0

ui/(1—s)b

e

By rearranging this inequality, we get |Ag| =1 >
If S is a resolving set, then
“ /1 el\"
(1—5)b—1|S| < |Bs| < <) (5)
i=0
y/ (1—s)b— |S|
Straightforward rearrangements yield [Ag| =1 > —Y———

As either Case 1 or Case 2 holds, we have proved the assertlons. O

The following is trivially implied by Proposition 16.
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Proposition 17. Let G = (A, B, E) be a regular bipartite graph of degree k with diameter
3, v=|A| = |B|, let u be a positive integer and let s € (0,1). If S is a split resolving set
and u < |Ag| and u < |Bg|, then

S > min { 2sv(u+1) 2ui/(1— s)v} '

k ’ e

If S is a resolving set and u < |Ag| and u < |Bs|, then

18> mm{2sv(u—|— 1) 2u/(1—s)v— |S|}

k ’ e

Let us derive a simple lower bound.

Theorem 18. Let G = (A, B, E) a k-regular bipartite graph with diameter 3, v = |A| =
|B|. Then
4(v —1)

. 4(v—1
pr(@ > W ey > 00

E+6

Proof. We follow the proof of Proposition 16, setting the parameter u = 1. Let us consider
split resolving sets first. Without using Formula (1) in inequality (4), we get

(1—s)v<i(i>:1+l,

1=0

hence
[>2(1-sv—1.

Applying this and substituting v = 1 into the first formula of (2), we get the lower bound
2
|Ag| > min{% , (1 —s)v— 1} .
The same lower bound can be given for |Bg|. Thus
* . [ 2sv
w(G) =|As| +|Bs| = 2min - (I1—s)v—1¢.

Let us choose the parameter s so that the two formulas are equal:

2sv

—=(1- — 1.
(s
By rearranging, we get s = fEZ;;g, therefore
. 4sv 4(v—1)
pi(G) 2z — =

E k+2
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Using the same ideas for resolving sets, Formula (5) becomes

e ()i

=0

hence
I=2(1—-sv—|S]—1

Thus 5
|A5|2min{ ZU (l—s)v—|S|—1}

The same lower bound holds for |Bg|, hence
2sv
51 = 145l + 185l > 2min {2 (1= spo - 151 -1},

If 20 < (1—s)o—|S] =1, then [S| > %2 If 2¢ > (1 — s)v — [S| — 1, then S| >
1

2((1 = s)v — | S| = 1). By rearranging, we get |S| > w Thus
2sv (1—s)v—1
S| =2 _, ——— .
51> mm{ v ) }

Let us choose the parameter s so that the two formulas are equal, that is

2sv (1—=s)v—1

k 3
By rearranging, we get
k(v —1)
s = ,
v(k+6
hence
dsv  4(v—1)
S|>—=———. O
5] k k+6

3 Split resolving sets of symmetric designs

In this section, G = (P, B, ) will denote the point-block incidence graph of a symmetric
(v, k, A) design. Note hat G is a regular graph of degree k and diameter 3, thus Theorem
15 and Theorem 18 are valid for p*(G), and Proposition 17 can be applied to derive a
lower bound for p*(G). To obtain sharper bounds, we will need the following.

Lemma 19. Let S be a split-resolving set. Then

Inv Inv

> = —_—
[Ps| > lnv—Ink+1" 1Bs| = lnv—Ink+1
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Proof. By duality, it is enough to prove the lower bound for |Pg|. By Theorem 15, we

have [Pg| > log, v = %, thus it is enough to prove

Inv Inv
n2” lnv—Ink+1"

Rearranging, this is equivalent to

2k
Inv>Ink+n2—-1=In—
e

or, equivalently, v > %, which is trivially true. O]
We will also use the following technical lemma.

Lemma 20. If m > 1, then
m T 4m w1 — 1 <0,

Proof. Let f(m) :=m m-1 4 m~ w1 — 1. The derivative of fis

m m 1 1
2mi-n +mi-m lnm +mi-= lnm — 2mi-=

f,(m) - (m o 1)2

The derivative is positive on the interval (1,00), so f is strictly increasing on (1,00).
Clearly, lim,, o f(m) = 0, thus f is negative on (1, 00). O

Now we are ready to prove our main theorem.

Theorem 21. Ifv < ’;—;, then
2vu

* >
,LL (G) = k:“‘\l/ﬂ’

B Inv
v= Inv—Ink+1]|"

i iy — € i - Inv — | Inv
Proof. The equation /v = - 1s equivalent to u = . Let u = hnwlnkﬂj. Then

u > 2 and Vv > €. By Lemma 19, we can use this parameter v in Proposition 17 to
obtain
2 1) 2u/(1-—
,u*(G)}min{ sv(u + )7 ui/( s)v}>
k e
2 . u v 1
?mm{s(u—{—l) , uvl—s}> ?umln{s , (1 —s)u}.
1

Let us set s = u 1. Then s < (1 — s)w holds, because it is equivalent to

where

1

sths—1=u w14y 1 —1<0,
and this inequality holds by Lemma 20, since u > 2. O
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Let us compare our results to previously known ones. The general lower bound for

. . . % In(2v) ~ L.C
graphs with diameter 3 yields roughly p*(G) > p(G) > =57 If v = k¢ for some ¢ > 1,

then this yields p*(G) > S, while Theorem 18 gives roughly p*(G) > 4k°~*. But also
in case v < ck for some ¢, such as Hadamard designs of order n, which are symmetric
(4n—1,2n—1,n—1)-designs, the general bound gives p*(G) > 241 The next theorem

In3
shows that our methods improve this by a constant factor.

Theorem 22. Let G be the point-block incidence graph of a Hadamard design of order n.
Ifn =9, then
(8n —2)u

- In(4n — 1)
- In 4dn—1 + 1 :

p(G) =

where

2n—1

Moreover, for any positive integer n,

2In(4n — 1)

* >

Proof. The first formula is a consequence of Theorem 21. The condition v < ’Z—z is equiv-

alent to

(2n —1)?
o2

which holds if n > 9. The second formula follows from Theorem 15. ]

dn — 1<

Y

Note that Bailey’s general result Theorem 6 applied for Hadamard designs gives

p(G) <2 Plnﬂ _ 9 [(471— 1)In(4n — 1)

PRY —‘<2[41n(4n—1ﬂ,

n
so our lower bound is sharp within a factor of 3.

Metric dimension of biplanes have been studied in detail in [17], where u(G) = 2¢q was
derived for ¢ > 3, where ¢ = k—2. This is a lower bound for the size of split resolving sets
as well. Up to our knowledge, there is no other lower bound known for the split metric

dimension of biplanes. Since k = 2(:__11), v = k(k_21)+2. Theorem 18 yields
4(v—1 4k(k —1 2+ 2)(g+1 12
G5 M=) AME=D) 2g+2@rD) , o, 12
k+2 2(k +2) q+4 q+4

which is very close to the former one.
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4 Metric dimension of symmetric designs

As in the previous section, G = (P, B, E) denotes the point-block incidence graph of a
symmetric (v, k, A) design, thus it is a regular graph of degree k and diameter 3. Therefore,
Theorem 15 and Theorem 18 provide lower bounds for u(G). In this section, we give a
sharper lower bound using Proposition 17.

In the second formula of Proposition 17, the term |S| can obviously be replaced by
any known upper bound for |S|. Therefore, by using Theorem 6, we obtain the following
result.

Proposition 23. Let S be an optimal resolving set of a symmetric (v, k, \) design, Ps =
SNP and Bs = SNB. Let u be a positive integer and let s € (0,1). Ifk—X > 2, u < |Ps|
and u < |Bs|, then

. 2sv(u+1) 2u vinw
> IR S I — — .
|S|/m1n{ - , 6\/(1 s)v Z[k_)ﬂ}

The disadvantage of this result is that finding the optimal values for v and s to get
the largest lower bound is quite complicated in general. To this end, we need some more
technical preparations.

k vinv v
and v < exp —, then < —.
a k— X\ a

k(k+ a)

k—alnv

Lemma 24. For any positive a € R, if v >

. . . . _ Aw-1) _ k(v=k)
rI;goof. Since our (v, k, \) design is symmetric, k = =, —~, and therefore k — A\ = =—>.
en

vinwv _ vinw 1= (v—1vlnv+ k(v —k)
k—A k—A B k(v —k)
- v’Inv + k(v — k) _ viInv + kv
k(v —k) k(v —k)

We have to prove that
viinv+kv _w

k(v—Fk) " a

By rearranging, this is equivalent to
valnv — kv < —k? — ka.
By dividing by alnv — k, we get

- —kQ—ka_ k? + ka
“alnv—k k—alnv

k
The sign is reversed since v < exp —, that is, alnv — k& < 0. O
a
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NS

1
Lemma 25. If v > 769, then [Z nq))\-‘ <

Proof. We use the inequality k — A\ > /v — 1, which follows from the inequality v <
(k—X)?+ (k— X) + 1 (see [13, Proposition 2.4.12]). With this,

vinov <vlnv+1< vinv +1<v
k— A k— A Vu—1 4’
where the last inequality holds if v > 769. O

Lemma 26. Let S be a resolving set. If k —\>2, v > % and

e v is at least 769 or

k(k +4)
> v T b
V>  Alno andv<exp4,
then 1 1
nv nov
P P — > —_—
|PS|/lnv—lnk—|—1 ’ ‘BS|/lnv—lnk—|—1

Proof. By duality, it is enough to prove the lower bound for |Ps|. We use Theorem 15,
Theorem 6 and either Lemma 24 or Lemma 25 to get

v Ilnv—1n2

| 2
|Ps| = logy(v —|S]) = log, (U—Q [U nU—D > log, <v— —U) :10g2§ =

E— A\ 4 n2 7
thus it is enough to prove
Inv—1n2 S Inv
n2 " lnv—Ink+1
Rearranging, this is equivalent to
In*v —Inv(nk+1-2m2)+mnkln2—1n2 > 0.
As k > 3, this follows if
In*v —Inv(nk —1+2In2) >0,
that is, if
4k
Inv>2lnk—-14+2In2 =1n—,
e
which follows from the assumptions. O

Now we are ready to prove our stronger lower bound.

Theorem 27. Let G be the point-block incidence graph of a (v, k,\) symmetric design.
Ifk—XA>2v<Y and
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e v is at least 769 or

k(k+4) Qv <
. e — J—
U/k—4lnv and v exp4,
then ; 20— 1)Inv + k
Uv 1 Vv — nov -+
G) > == (u - ,
> 5 o)
h lnwv
where u = | —————— | .
Inv—Ink+1
|
Proof. Let u = v . Then v > % Proposition 23 with this u gives
Inv—Ink+1

M(G)>min{w> %V(l—s)v—zﬁﬁﬂ} >

2umin{% , 1“\’/(1—8)1)— 2v((v—1)lnv+k)} >

e k(v —k)
. s W 2((v —1)Inv + k)
- “ —35) — =
2um1n{ T \/(1 s) o — ) >
2uv 2((v—1)Inv + k)
il a1 — ) — .
k mm{s, \/( s) R0 — )
Let s = u o1 — W We prove that

5 < 1(/(1 g 2((v ;(3})_111]:) + k)7

which means that
2((v—1)Inv+ k)

“ -1
s +s + o —k)

<0.
By substituting s, we get

. 2((v—=1)Inv+k
(“ T kw—k)

NG
+u w1 —1<0.
This follows from the inequality
<u7u£1>u by — 1 < 0.

By Lemma 20, this holds for u > 2, which follows from k? > ve? as in the proof of
Theorem 21. ]
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Let us recall that, for the incidence graph of a Hadamard design of order n (that is,
a (4n —1,2n — 1,n — 1) design), u(G) < p*(G) < 2 {w-‘ < 2[4In(4n —1)]

follows from Bailey’s general result, Theorem 6. We obtain the following.

Theorem 28. Let G be the point-block incidence graph of a Hadamard design of order n.

Then 4 1)In(4 1
1(G) > 2log, (4n—1—2 [( n—1)nn - )D
n
Proof. 1t is a consequence of Theorem 15 and Theorem 6. [

Let us also recall that the metric dimension of projective planes and biplanes have
been determined exactly; it is 4g — 4 for projective planes of order ¢ > 8 and 2¢ for
biplanes of order ¢ > 3. Theorem 18 gives u(G) > 4q — 24 + % for the former and
w(G) = 2q — 10 + qBTA‘S for the latter. Both are just an additive constant away from the
exact values.

For the point-hyperplane graph of PG(n, ¢), which has parameter v = qn;l; Lk = q::f ,
Theorem 27 can be used to obtain u(PG(n,q)) > 2(1 — 0,(1))(1 — 04(1))ng. However, as
the case of projective spaces is one of the most studied areas in the topic, we devote a

standalone section to elaborate more precise results on it.

5 Projective spaces

In order to specify and enhance the lower bound of Theorem 27 for the metric dimension of
projective spaces, we will also need an upper bound on the size of an optimal resolving set
better than that of Bailey’s general Theorem 6 to plug into Proposition 17. Such a bound
can be obtained in a constructive manner. To this end, we will need some definitions.

Definition 29 ([6] Section 3). A set B of points in PG(n,q) is a strong blocking set if
every hyperplane H of PG(n, ¢) is spanned by BN H.

It is clear that any strong blocking set is a semi-resolving set (with respect to hyper-
planes). An efficient and comfortable way to construct strong blocking sets is to find an
appropriate set of lines.

Definition 30 ([11] Section 4). A set S of lines in PG(n, q) is higgledy-piggledy if the
union of (the point sets of) the lines in S is a strong blocking set.

Fancsali and Sziklai [7, Theorem 11] proved that if there is no 2-codimensional subspace
intersecting every element of a line set S, then S is higgledy-piggledy. Let us call this
condition Condition A. They proved that if ¢ > 2n — 1, then there exists a set of lines
possessing Condition A, and thus higgledy-piggledy. They also noted that Condition A is
not always necessary (if, roughly saying, |S| is small and ¢ is larger than 2n — 1, then it
is). In [4, Lemma 8], Bartoli et. al. proved that if S is a set of lines satisfying Condition
A, then there exists a semi-resolving set of size |S|q. In [4], Condition A was used as the
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definition of higgledy-piggledy line sets, but this is not totally correct. Here we shall give
a proof of the same result but relying on the correct definition of higgledy-piggledy lines.
This will enable us to use another construction of higgledy-piggledy lines which works for
all n and q.

Theorem 31. If S is a higgledy-piggledy line set in PG(n,q), then there exists a semi-
resolving set of PG(n, q) of size |S|q with respect to hyperplanes.

Proof. Let us erase one point from each line of S. Let S’ be the set of these punctured
lines. It is obvious that the point set of the union of the lines of S is a semi-resolving
set. We prove that the union of elements of S’ is also a semi-resolving set. Let o and
B be two different hyperplanes. We need that there is a point of S’ that is in « but not
in 3, or vice versa. By the definition of higgledy-piggledy line sets, there exists a point
P el e Ssuchthat P € o and P ¢ (3 (otherwise SN a C aN  would contradict that
S N generates ). If P € S', then we are done. Suppose that P ¢ S’, that is, we erased
P from [. Tf [ lies in «, then there exists a point @ € [\ { P} such that Q € o and Q & (.
If [ is not in «, then R = N1 is a suitable point, since R € a and R € 5. O

Theorem 32.
w(PG(n,q)) < p*(PG(n,q)) < 4ng.

Proof. In [10, Theorem 31.], Héger and Nagy proved that in PG(n,q), there exists a
higgledy-piggledy set of 2n lines, thus the union of these lines forms a strong blocking set.
By Theorem 31, there is a semi-resolving set with 2nq points with respect to hyperplanes.
By duality, there exists a set of 2ng hyperplanes that resolves the set of points. O

Now we specify and improve our general lower bounds for projective spaces. In this
section, S always denotes a (split) resolving set for the point-hyperplane incidence graph
of PG(n,q).

Proposition 33. Let u be a positive integer and let s € (0,1). If S is an optimal resolving
set such that
U< ’PS’ /AN |HS|
and
(I—s)(¢" —1)
qg—1

2 4ng,
then .
u(PG(n,q)) > min {Z(U +1)sq , L\;m} :
If S is an optimal split resolving set such that
u < |Ps| and u < |Hgsl,
then

Quqgu V1 —
1 (PG(n,q)) > min{2(u_|_ 1)sq UC]#\/—S}
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Proof. We use Proposition 16. A lower bound of the first formula:

n+1 1

sv(u+1) s(u+1)
ko -1

q—1

(utDs(g )

> _
| Ps| pr—

In the second formula, we can use Theorem 32 and the condition

follows:
(1—=s)(¢"" =1)

(1-s)v—|S|> )~ dng >
qn+1_1 qn_1 .

- ( - —(1- 5
q—1 q—1

]

Let us first prove simple and general bounds for the (split) metric dimension of

PG(n,q).

Theorem 34. For any integer n > 2 and any positive prime power q,

If " — 1 > 8nqg(q — 1), then

2nq \/>
w(PG(n,q))
Proof. In Proposition 33, let u = n and s = % Then

2nq (/g
g ,
e

u(PG(n,q)) = min < (n +

nqg /%
It is easy to prove that 2 qe\/; < (n+1)gq.

The lower bound for the cardinality of a split-resolving can be proved in the same

way.

]

Next we give better but more complex lower bounds for the (split) metric dimension

of PG(n,q).

Theorem 35. If ¢ >3, n >3 and 5 > }Eg—ﬂ, then

u(PG(n,q)) >2L ning Jq(g)“.

1+Ingq n
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Proof. In Proposition 33, let u = LMJ Then

1+Ingq
n 1-1I—1nq %
g _ g™ qqre
e e e

and, moreover, we have

1 1
nlng 14lng

VT —s=(1—s) i) > (1 s) B = (1 - s)momeT,

We give an upper bound to (n—ll—;%' Due to the assumption
n > Inqg+ 1’
27 Ing—1

by rearranging, we obtain
n<nlng—2Ing— 2,

or, equivalently,

n+nlng<2nlng—2Ing — 2,

thus
1+1Ing 2

< —.
(n—1)lng—1 " n
Using this, we get the lower bound

w1 —
1(PG(n,q)) = min {2(u +1)sq W}

) nlng Ltlng nlng
> 2 1 , 2 1_ (n—1)Ing—1
e (e v R R il o= it

17:_1?qu min {s, (1—s) } : (7)

Sy

>2q{

2
the assertion of the Theorem follows with substituting s into (7). Now s < (1 — s)7 is

equivalent to

i
Let s = (%) %'. We will soon see that with this choice of s, s < (1 — s), and so
2

By substituting s we get

Let m = 5. Then we get the inequality
m w1 —i—m_ﬁ —1<0.
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By Lemma 20, this holds if m > 1, that is, n > 2.
1

We also have to prove that 4ng < (173(1)(7—(11"71). Let us substitute s = (%) 3-1. Then

2

s < (1 — s)n or, equivalently, (g)fﬁ < 1 —s. It is enough to prove that

n\n=z q¢"—1
= > 4ng. 8
(2) qg—1 i ®)

If n = 3, then the inequality can be reduced to
27(¢> + ¢ + 1) > 96¢,

which holds for every ¢ > 3. Let n > 4. Dividing the inequality (8) by %, we get

2

n\nz2 q¢"—1
— > &q.
(2) q—1 1

This holds if

2
M\ n—2 -1
i 1> 8,
<2) 4 d

which, by rearranging, is equivalent to

This is implied by

which is obviously true if n > 4 and ¢ > 3. O
Theorem 36. Ifn >3 and 5 > iggﬂ, then
nlnq n\ ez
w(PG(n,q)) 2 L +1In qJ a <§> '
Proof. 1t can be proven as the previous Theorem. O

g — 9 and lim, e (ﬂ)fﬁ = 1, Theorem 35 yields the following.

Since limy_,o 7 ry 5

Corollary 37. For any € > 0, there exist qy and ng such that if ¢ > qo and n > ngy, then
1 (PG(n,q)) = n(PG(n,q)) > (2 — €)ng.

For projective spaces over the binary field, the only known results are u(PG(2,2)) =5
(easy to check manually) and p(PG(n,2)) = 2(n+ 1) for n = 3,4 (verified by computer
search in [4]). We determine p(PG(n,2)) and p*(PG(n,2)) for all n.
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Theorem 38. *(PG(2,2)) =6. Ifn > 3, then
U(PG(n,2)) = " (PG(n, 2)) = 2(n + 1).

Moreover, if n > 3 and S is a resolving set of size 2(n+1), then S consists of n+ 1 points
not contained in a hyperplane and n + 1 hyperplanes whose intersection is empty.

Proof. Let {Py, Ps,...,P,.1} be a set of points in general position, that is, not contained
in a hyperplane. We prove by induction that this set resolves the set of hyperplanes.

It is obviously true for n = 2. Suppose n > 3. Let a,8 € H be two arbitrary,
distinct hyperplanes. If a and  intersect the hyperplane spanned by P, P, ..., P, in
distinct (n — 2)-dimensional hyperplanes o’ and ', then by induction, there is a point
P;, (1 < i < n) that is incident with either o/ or ', but not with both.

If o and § intersect the hyperplane spanned by Py, Ps, ..., P, in the same (n — 2)-
dimensional hyperplane 7, then there exists a point P, € {P;, P,,..., P,} that is not on
~. In this case, a and S intersect the line P; P, in different points. This line has three
points and P; lies in neither a nor 3, thus P, lies in exactly one of them.

If « is the hyperplane spanned by the points Py, Ps, ..., P,, then one of these points
does not lie in [.

By duality, there are n + 1 hyperplanes that resolve the set of points and therefore
u(PG(n,2)) < p*(PG(n,2)) < 2(n+1).

We prove that 2(n + 1) is also a lower bound and, moreover, if n > 3, then an optimal
(split) resolving set has to be the same construction that we presented to get an upper
bound. Let S be an optimal resolving set. Then |S| < 2(n + 1). If Pg spans PG(n, 2)
and Hg spans the dual of PG(n, 2), then |Ps| > n+1 and |Hg| = n+1,s0 |S| = 2(n+1)
and we are done.

Suppose now to the contrary that, say, Ps spans a subspace whose dimension is at
most n — 1. Let v be a hyperplane that contains the points of Ps. Let 6 be an (n — 2)-
dimensional hyperplane in 7. There are three hyperplanes that contain ¢, one of them is
itself. One of the other two has to be in Hg because they intersect the set Ps in the same
points. The subspace § can be chosen in 2" — 1 ways, thus |Hg| > 2" — 1. If n > 4, then
|S| > |Hs| = 2" — 1 > 2(n+ 1), a contradiction. If n = 3, then Theorem 15 and |S| < 8
give [Ps| > [logy (15— 8)] = 3. Thus |S| = |Ps| +|Hs| =>3+2°-1=10 > 8 =2(n+1),
a contradiction. O]
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