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Abstract

The problem of constructing or characterizing strongly regular Cayley graphs
(or equivalently, regular partial difference sets) has garnered significant attention
over the past half-century. A classic result in this area is the complete classifica-
tion of strongly regular Cayley graphs over cyclic groups, which was established by
Bridges and Mena (1979), independently by Ma (1984), and partially by Marušič
(1989). Miklavič and Potočnik (2003) extended this work by providing a complete
characterization of distance-regular Cayley graphs over cyclic groups through the
method of Schur rings. Building on this, Miklavič and Potočnik (2007) formally
posed the problem of characterizing distance-regular Cayley graphs for arbitrary
classes of groups. Within this framework, abelian groups are of particular signifi-
cance, as many distance-regular graphs with classical parameters are Cayley graphs
over abelian groups. In this paper, we employ Fourier analysis on abelian groups to
establish connections between distance-regular Cayley graphs over abelian groups
and combinatorial objects in finite geometry. By combining these insights with
classical results from finite geometry, we classify all distance-regular Cayley graphs
over the group Zn ⊕ Zp, where n is a positive integer and p is an odd prime.

Mathematics Subject Classifications: 05E30, 05C50, 05C25

1 Introduction

In graph theory, distance-regular graphs form a class of regular graphs with strong com-
binatorial symmetry. A connected graph Γ is distance-regular if, for each triple of non-
negative integers i, j and k, and for each pair of vertices u and v at distance k in Γ, the
number of vertices at distance i from u and distance j from v depends only on i, j and k,
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and not on the particular choice of u and v. While this defining condition is purely combi-
natorial, the concept of distance-regular graphs holds fundamental importance in design
theory and coding theory. Furthermore, it exhibits deep connections with diverse math-
ematical disciplines including finite group theory, finite geometry, representation theory
and association schemes [8, 51].

Within the study of distance-regular graphs, the characterization and construction of
graphs with specific types or parameters constitute essential research problems. Cayley
graphs — vertex-transitive graphs defined through groups and their subsets — emerge as
natural candidates for such investigations. This relevance stems from two observations:
most known distance-regular graphs are vertex-transitive [50], and numerous infinite fam-
ilies of strongly regular graphs (the diameter-2 case of distance-regular graphs) arise from
Cayley graph constructions [6, 9, 12, 13, 14, 23, 24, 25, 27, 28, 33, 34, 35, 36, 37, 38, 42, 46].

Let G be a finite group with identity e and let S be an inverse closed subset of G\{e}.
The Cayley graph Cay(G,S) is defined as the graph with vertex set G, where two vertices
g and h are adjacent if and only if g−1h ∈ S. The set S is referred to as the connection
set of Cay(G,S). It is well-known that Cay(G,S) is connected if and only if 〈S〉 = G,
and that G acts regularly on the vertex set of Cay(G,S) via left multiplication.

In 2007, Miklavič and Potočnik [30] (see also [51, Problem 71]) proposed the problem
of characterizing distance-regular Cayley graphs:

Problem 1. For a class of groups G, determine all distance-regular graphs, which are
Cayley graphs on a group in G.

Early progress on Problem 1 was made by Miklavič and Potočnik [29], who classi-
fied distance-regular Cayley graphs over cyclic groups (known as circulants) using the
framework of Schur rings.

Theorem 2 ([29, Theorem 1.2, Corollary 3.7]). Let Γ be a circulant on n vertices. Then
Γ is distance-regular if and only if it is isomorphic to one of the following graphs:

(i) the cycle Cn;

(ii) the complete graph Kn;

(iii) the complete multipartite graph Kt×m, where tm = n;

(iv) the complete bipartite graph without a perfect matching Km,m−mK2, where 2m = n
and m is odd;

(v) the Paley graph P (n), where n ≡ 1 (mod 4) is a prime.

In particular, Γ is a primitive distance-regular graph if and only if Γ ∼= Kn, or n is a
prime and Γ ∼= Cn or P (n).

Subsequently, Miklavič and Potočnik [30] extended their approach by combining Schur
rings with Fourier analysis to characterize distance-regular Cayley graphs over dihedral
groups through difference sets. Further advancements were achieved by Miklavič and
Šparl [31, 32], who employed elementary group theory and structural analysis to classify

the electronic journal of combinatorics 33(1) (2026), #P1.14 2



distance-regular Cayley graphs over abelian groups and generalized dihedral groups under
minimality conditions on their connection sets. Significant contributions include the work
of Abdollahi, van Dam and Jazaeri [1], who classified distance-regular Cayley graphs
of diameter at most 3 with least eigenvalue −2. van Dam and Jazaeri [48, 49] later
determined some distance-regular Cayley graphs with small valency and provided some
characterizations for bipartite distance-regular Cayley graphs with diameter 3 or 4. For
additional results on distance-regular Cayley graphs, including recent developments, we
refer to [17, 18, 19, 53].

As is well-known, an effective approach for constructing distance-regular Cayley graphs,
particularly strongly regular graphs, involves utilizing Cayley graphs over abelian groups.
For instance, numerous infinite families of strongly regular Cayley graphs over the additive
group of finite fields have been constructed via methods such as cyclotomic classes [13, 12],
Gauss sums with even indices [52], three-valued Gauss periods [35] and p-ary (weakly)
regular bent functions [9, 46, 42]. Furthermore, it is known that several important classes
of distance-regular graphs with classical parameters — such as Hamming graphs, halved
cubes, bilinear forms graphs, alternating forms graphs, Hermitian forms graphs, affine
E6(q) graphs and extended ternary Golay code graphs — are distance-regular Cayley
graphs over abelian groups (cf. [7, p. 194]). However, providing a complete solution to
Problem 1 for general abelian groups remains challenging.

In this paper, we investigate distance-regular Cayley graphs over abelian groups with
small diameters. We establish necessary conditions for their existence, which are closely
connected to finite geometry (see Sections 5 and 6 for details). Moreover, we demonstrate
that these necessary conditions prove particularly useful for the following significant class
of abelian groups.

Problem 3. Let n and m be positive integers with gcd(n,m) 6= 1. Characterize all
distance-regular Cayley graphs over the group Zn ⊕ Zm.

Thus far, significant progress has been made toward resolving Problem 3. Let n be a
positive integer and let p be an odd prime. In 2005, Leifman and Muzychuck [23] classified
strongly regular Cayley graphs over Zps ⊕ Zps . Recently, the authors [53] characterized
all distance-regular Cayley graphs over Zps ⊕ Zp and Zn ⊕ Z2. In this work, we extend
these results by providing a complete classification of distance-regular Cayley graphs over
Zn ⊕ Zp. Of course, Zn ⊕ Zp becomes cyclic when p - n. Hence, because of Theorem 2,
we focus exclusively on the case when p | n. Our main result is stated as follows.

Theorem 4. Let p be an odd prime and let Γ be a Cayley graph over Zn ⊕Zp with p | n.
Then Γ is distance-regular if and only if it is isomorphic to one of the following graphs:

(i) the complete graph Knp;

(ii) the complete multipartite graph Kt×m with tm = np, which is the complement of the
union of t copies of Km;

(iii) the complete bipartite graph without a 1-factor Knp
2
,np
2
− np

2
K2, where n ≡ 2 (mod 4);
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(iv) the graph Cay(Zp⊕Zp, S) with S = ∪ri=1Hi \ {(0, 0)} for some 2 6 r 6 p− 1, where
Hi (i = 1, . . . , r) are subgroups of Zp ⊕ Zp with order p.

In particular, each graph in (iv) is the line graph of a transversal design TD(r, p), which
is a strongly regular graph with parameters (p2, r(p− 1), p+ r2 − 3r, r2 − r).

Our approach. The proof of Theorem 4 is inspired by the work of Miklavič and Potočnik
[30] but requires substantial new ideas. If the graph Γ is primitive, then the result follows
immediately from [53, Lemma 3.1] and the theory of Schur rings. The majority of the
work concerns the case where Γ is imprimitive. Here, by [7, Theorem 4.2.1], the analy-
sis is divided into three distinct cases: Γ is antipodal but not bipartite; Γ is antipodal
and bipartite; and Γ is bipartite but not antipodal. In each of these cases, we study
the antipodal quotient or the halved graph of Γ. This reduction process ultimately leads
to three particularly challenging subcases: (i) Γ is an antipodal non-bipartite graph of
diameter 3; (ii) Γ is an antipodal bipartite graph of diameter 4; (iii) the halved graph of
Γ is isomorphic to the line graph of a transversal design. The core novelty of our proof
lies in the resolution of these three subcases in Lemma 32, Lemma 33 and Lemma 25,
respectively. To handle subcases (i) and (ii) (see Lemmas 32 and 33), we first employ
character equations to derive necessary conditions for distance-regularity. We then de-
velop new computational techniques for Fourier analysis over abelian groups in Sections
5 and 6. Leveraging these computational results, we demonstrate a fundamental connec-
tion between the structure of Γ and certain combinatorial objects from finite geometry,
specifically relative difference sets and polynomial addition sets. This connection allows
us to complete the classification for these subcases. For subcase (iii) (see Lemma 25), a
different strategy is required. We translate the graph-theoretic problem into a geometric
one by showing that the existence of such a graph Γ implies the existence of a specific
configuration within the Desarguesian affine plane. A detailed geometric argument then
shows that this configuration cannot exist, thus resolving this subcase.

The paper is organized as follows. In Section 2, we review fundamental results on
association schemes and distance-regular graphs. Section 3 presents algebraic charac-
terizations for distance-regular Cayley graphs established by Miklavič and Potočnik. In
Section 4, we introduce key combinatorial objects and classical theorems from finite ge-
ometry. Sections 5 and 6 utilize Fourier analysis on abelian groups to derive necessary
conditions for the existence of distance-regular Cayley graphs over abelian groups with
small diameter. Finally, Section 7 provides a complete proof of Theorem 4.

2 Association schemes and distance-regular graphs

In this section, we introduce some notations and properties related to association schemes
and distance-regular graphs.

2.1 Association schemes

Suppose that X is a finite set and X = (X,R = {R0, R1, . . . , Rd}) is a commutative
association scheme of class d on X, where Ri ⊂ X ×X is the i-th relation (see [4, Section
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2.2] for the definition). Let MX(C) be the full matrix algebra of |X| × |X|-matrices over
the complex field C whose rows and columns are indexed by the elements of X. For each
i ∈ {0, 1, . . . , d}, the adjacency matrix Ai ∈MX(C) of the relation Ri is defined as:

Ai(x, y) =

{
1, if (x, y) ∈ Ri,

0, if (x, y) /∈ Ri.

According to [4, Section 2.2], the matrices Ai satisfy the following properties:

(I) A0 = I, where I is the identity matrix of order |X|;

(II) A0 + A1 + · · ·+ Ad = J , where J is the all-ones matrix of order |X|;

(III) for each i ∈ {0, . . . , d}, there exists some i′ ∈ {0, . . . , d} such that ATi = Ai′ ;

(IV) for any i, j ∈ {0, . . . , d}, there exist non-negative integers pki,j (called intersection

numbers) with 0 6 k 6 d such that AiAj =
∑d

k=0 p
k
i,jAk;

(V) for any i, j ∈ {0, . . . , d}, we have AiAj = AjAi.

Let A be the linear subspace of MX(C) spanned by the adjacency matrices A0, A1, . . . , Ad
of X. By (IV) and (V), A is a (d + 1)-dimensional commutative subalgebra of MX(C)
under the ordinary multiplication. Moreover, by (II), for any i, j ∈ {0, 1, . . . , d}, we have

Ai ◦ Aj = δi,jAi,

where ‘◦’ denotes the Hadamard product, δi,j = 1 if i = j, and δi,j = 0 otherwise.
This implies that A is also a commutative subalgebra of MX(C) under the Hadamard
product. Thus A has two algebraic structures, and is called the Bose–Mesner algebra.
It is known that A is semisimple, and so there exists a basis of primitive idempotents
E0 = 1

|X|J,E1, . . . , Ed in A. That is, every matrix in A can be expressed as a linear

combination of E0, E1, . . . , Ed, and it holds that
∑d

i=0Ei = I and EiEj = δi,jEi for all
i, j ∈ {0, . . . , d} (cf. [39, Section 2.3]). This implies the existence of complex numbers
Pi(j) ∈ C such that AiEj = Pi(j)Ej for all i, j ∈ {0, . . . , d}. For any fixed i ∈ {0, 1, . . . , d},
the values Pi(0), Pi(1), . . . , Pi(d) constitute a complete set of the eigenvalues of Ai (cf. [5,
p. 58], [39, Section 2.3]), and furthermore,

Ai =
d∑
j=0

Pi(j)Ej.

On the other hand, since A is closed under the Hadamard product, for any i, j ∈
{0, 1, . . . , d}, there exist constants qki,j (0 6 k 6 d) such that

Ei ◦ Ej =
1

|X|

d∑
k=0

qki,jEk.

The structure constants qki,j (0 6 i, j, k 6 d) of A with respect to the Hadamard product
are called the Krein parameters. According to [4, Chapter II, Theorem 3.8], the Krein
parameters qki,j are non-negative real numbers.
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2.2 Schur ring and its duality

Let G be a finite group and let ZG denote the group algebra of G over the ring of integers
Z. For a subset S ⊆ G, let S denote the element

∑
s∈S s of ZG. In particular, if S

contains exactly one element s, we write s instead of S for simplicity. For an integer m
and an element

∑
g∈G rgg ∈ ZG, we define(∑

g∈G

rgg

)(m)

=
∑
g∈G

rgg
m ∈ ZG.

Suppose that {N0, N1, . . . , Nd} is a partition of G satisfying

(i) N0 = {e};

(ii) for any i ∈ {1, . . . , d}, there exists some j ∈ {1, . . . , d} such that Ni
(−1) = Nj;

(iii) for any i, j ∈ {1, . . . , d}, there exist integers pki,j (0 6 k 6 d) such that

Ni ·Nj =
r∑

k=0

pki,j ·Nk.

Then the Z-module S(G) spanned by N0, N1, . . . , Nd is a subalgebra of ZG, and is called
a Schur ring over G. In this situation, the basis {N0, N1, . . . , Nd} is called the simple
basis of the Schur ring S(G). We say that the Schur ring S(G) is primitive if 〈Ni〉 = G
for every i ∈ {1, . . . , d}. In particular, if N0 = {e} and N1 = G \ {e}, then the Schur ring
spanned by N0 and N1 is called trivial. Clearly, a trivial Schur ring is primitive.

Now suppose that G is an abelian group. For convenience, we express G as

G = Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znr ,

where for each 1 6 i 6 r, ni is a prime power. It is clear that the order of G is the
product |G| = n1n2 · · ·nr. We note that every element g ∈ G can be uniquely represented
as a tuple g = (g1, g2, . . . , gr), with each gi ∈ Zni

for 1 6 i 6 r. For an element
g = (g1, g2, . . . , gr) ∈ G, we define χg as the function from G to C by letting

χg(x) =
r∏
i=1

ζgixini
, for all x = (x1, x2, . . . , xr) ∈ G, (1)

where ζni
denotes a primitive ni-th root of unity.

Let S(G) = span{N0, N1, . . . , Nd} be a Schur ring over the abelian group G. For
any i ∈ {0, 1, . . . , d}, we denote by Ri = {(g, h) | h−1g ∈ Ni}. Then X = (G,R =
{R0, R1, . . . , Rd}) is a commutative association scheme of class d on G (cf. [4, p. 105]).
Moreover, if Ni is inverse closed for each i ∈ {0, 1, . . . , d}, then X is a symmetric associ-
ation scheme (see (cf. [4, Section 2.2]) for the definition). The intersection numbers and
Krein parameters of X are also called the intersection numbers and Krein parameters of
S(G), respectively. We have the following classic results about Schur rings over abelian
groups.
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Lemma 5 ([40, Theorem 3.4]). Let G be an abelian group of composite order with at least
one cyclic Sylow subgroup. Then there is no non-trivial primitive Schur ring over G.

Lemma 6 ([22, Kochendorfer’s theorem]). Let p be a prime and let a, b be positive integers
with a 6= b. Then there is no non-trivial primitive Schur ring over Zpa ⊕ Zpb.

Lemma 7 ([4, Chapter II, Theorem 6.3]). Let G be an abelian group and let S(G) =
span{N0, N1, . . . , Nd} be a Schur ring over G. Let R be the equivalence relation on G
defined by gRh if and only if χg(Ni) = χh(Ni) for all i ∈ {0, 1, . . . , d}. If E0, E1, . . . , Ef
are the equivalence classes of G with respect to R, then f = d and the Z-submodule
Ŝ(G) = span{E0, E1, . . . , Ed} of ZG is a Schur ring over G with intersection numbers
qki,j, where qki,j (0 6 i, j, k 6 d) are the Krein parameters of S(G).

The Schur ring Ŝ(G) defined in Lemma 7 is called the dual of S(G). Note that Lemma
7 implies that the Krein parameters of S(G) are integers.

2.3 Distance-regular graphs

Let Γ be a connected graph with vertex set V (Γ) and edge set E(Γ). The distance ∂Γ(x, y)
between two vertices x, y of Γ is the length of a shortest path connecting them in Γ, and
the diameter dΓ of Γ is the maximum value of the distances between vertices of Γ. For
x ∈ V (Γ), let SΓ

i (x) denote the set of vertices at distance i from x in Γ. In particular,
we denote SΓ(x) = SΓ

1 (x). When Γ is clear from the context, we use ∂(x, y), d, Si(x)
and S(x) instead of ∂Γ(x, y), dΓ, SΓ

i (x) and SΓ(x), respectively. For x, y ∈ V (Γ) with
∂(x, y) = i (0 6 i 6 d), let

ci(x, y) = |Si−1(x) ∩ S(y)|, ai(x, y) = |Si(x) ∩ S(y)|, bi(x, y) = |Si+1(x) ∩ S(y)|.

Here c0(x, y) = bd(x, y) = 0. The graph Γ is called distance-regular if ci(x, y), bi(x, y) and
ai(x, y) only depend on the distance i between x and y but not on the choice of x, y.

For a distance-regular graph Γ with diameter d, we denote ci = ci(x, y), ai = ai(x, y)
and bi = bi(x, y), where x, y ∈ V (Γ) and ∂(x, y) = i. Note that c0 = bd = 0, a0 = 0
and c1 = 1. Also, we set ki = |Si(x)|, where x ∈ V (Γ). Clearly, ki is independent of the
choice of x. By definition, Γ is a regular graph with valency k = b0, and ai + bi + ci = k
for 0 6 i 6 d. The array {b0, b1, . . . , bd−1; c1, c2, . . . , cd} is called the intersection array of
Γ. In particular, λ = a1 is the number of common neighbors of two adjacent vertices in
Γ and µ = c2 is the number of common neighbors of two vertices at distance 2 in Γ. A
distance-regular graph on n vertices with valency k and diameter 2 is called a strongly
regular graph with parameters (n, k, λ = a1, µ = c2).

Suppose that Γ is a distance-regular graph of diameter d with vertex set X = V (Γ)
and edge set R = E(Γ). For 0 6 i 6 d, we define

Ri = {(x, y) ∈ X ×X | ∂(x, y) = i}.

Then X = (X,R = {R0, R1, . . . , Rd}) is a symmetric (necessarily commutative) associ-
ation scheme of class d on X (cf. [4, Section 2.2, Section 3.1]). In this context, the
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intersection numbers pki,j and Krein parameters qki,j of X are also called the intersection
numbers and Krein parameters of Γ, respectively. Note that pi1,i+1 = bi, p

i
1,i = ai and

pi1,i−1 = ci for 0 6 i 6 d. Additionally, for i, j, k ∈ {0, 1, . . . , d}, if pki,j 6= 0 then k 6 i+ j,

and moreover, pi+ji,j 6= 0 (cf. [4, Section 3.1]).
A symmetric association scheme together with an ordering of relations is called P -

polynomial if pki,j 6= 0 implies k 6 i+j for all i, j, k ∈ {0, 1, . . . , d}, and also pi+ji,j 6= 0 for all
i, j ∈ {0, 1, . . . , d} (cf. [7, Section 2.7]). By definition, the symmetric association scheme
derived from a distance-regular graph is P -polynomial. Conversely, every P -polynomial
association scheme is derived from a distance-regular graph. Therefore, a distance-regular
graph is equivalent to a P -polynomial association scheme.

Lemma 8 ([7, Proposition 2.7.1]). Let X = (X,R) be a symmetric association scheme
with an ordering of relations R0, R1, . . . , Rd. Then X is P -polynomial if and only if (X,R1)
is a distance-regular graph.

Analogously, a symmetric association scheme together with an ordering of primitive
idempotents is called Q-polynomial if qki,j 6= 0 implies k 6 i+j for all i, j, k ∈ {0, 1, . . . , d},
and also qi+ji,j 6= 0 for all i, j ∈ {0, 1, . . . , d} (cf. [7, Section 2.7]). In particular, we say
that a distance-regular graph is Q-polynomial if the symmetric association scheme derived
from it is Q-polynomial.

A P -polynomial (resp. Q-polynomial) association scheme is called bipartite (resp. Q-
bipartite) if pki,j = 0 (resp. qki,j = 0) whenever i + j + k is odd. A P -polynomial (resp.
Q-polynomial) association scheme is called antipodal (resp. Q-antipodal) if pkd,d = 0 (resp.

qkd,d = 0) whenever k /∈ {0, d}.

Lemma 9 ([7, p. 241]). Let Γ be a Q-polynomial distance-regular graph. Then Γ is
bipartite (resp. antipodal) if and only if Γ is Q-antipodal (resp. Q-bipartite), that is, the
symmetric association scheme derived from Γ is Q-antipodal (resp. Q-bipartite).

2.4 Primitivity of distance-regular graphs

Let Γ be a graph and let B = {B1, . . . , B`} be a partition of V (Γ) (here Bi are called
blocks). The quotient graph of Γ with respect to B, denoted by ΓB, is the graph with
vertex set B, and with Bi, Bj (i 6= j) adjacent if and only if there exists at least one edge
between Bi and Bj in Γ. Moreover, we say that B is an equitable partition of Γ if there
are integers bi,j (1 6 i, j 6 `) such that every vertex in Bi has exactly bi,j neighbors in
Bj. In particular, if every block of B is an independent set, and between any two blocks
there are either no edges or there is a perfect matching, then B is an equitable partition
of Γ. In this situation, Γ is called a cover of its quotient graph ΓB, and the blocks are
called fibres. If ΓB is connected, then all fibres have the same size, say r, which is called
the covering index [21].

A graph Γ with diameter d is antipodal if the relation R on V (Γ) defined by xRy ⇔
∂(x, y) ∈ {0, d} is an equivalence relation. Under this equivalence relation, the corre-
sponding equivalence classes are called antipodal classes. A cover of index r, in which
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the fibres are antipodal classes, is called an r-fold antipodal cover of its quotient. In
particular, if Γ is an antipodal distance-regular graph with diameter d, then all antipodal
classes have the same size, say r, and form an equitable partition B∗ of Γ (cf. [30, Section
2.2]). In this case, we define the antipodal quotient of Γ as the quotient graph Γ := ΓB∗ .
If d = 2, then Γ is a complete multipartite graph. If d > 3, then the edges between two
distinct antipodal classes of Γ form an empty set or a perfect matching (cf. [30, Section
2.2]). Thus Γ is an r-fold antipodal cover of Γ with the antipodal classes as its fibres.
Moreover, it is known that a distance-regular graph Γ with diameter d is antipodal if and
only if bi = cd−i for every i 6= bd

2
c (cf. [7, Proposition 4.2.2]).

Let Γ be a distance-regular graph with diameter d. For i ∈ {1, . . . , d}, the i-th distance
graph Γi is the graph with vertex set V (Γ) in which two distinct vertices are adjacent if
and only if they are at distance i in Γ. If, for each 1 6 i 6 d, Γi is connected, then
Γ is primitive. Otherwise, Γ is imprimitive. It is known that an imprimitive distance-
regular graph with valency at least 3 is either bipartite, antipodal, or both (cf. [7, Theorem
4.2.1]). Moreover, if Γ is bipartite, then Γ2 has two connected components (not necessarily
isomorphic), which are called the halved graphs of Γ and denoted by Γ+ and Γ−. For
convenience, we assume that 1

2
Γ is one of these two graphs.

For distance-regular Cayley graphs over abelian groups, we have the following result
about antipodal quotients and halved graphs.

Lemma 10. Let G be an abelian group and let Γ be a distance-regular Cayley graph over
G. Then the following two statements hold.

(i) If Γ is antipodal and H is the antipodal class containing the identity vertex e, then
H is a subgroup of G, and Γ is distance-regular and isomorphic to Cay(G/H, S/H),
where S/H = {sH | s ∈ S};

(ii) If Γ is bipartite and H is the bipartition set containing the identity vertex e, then
H is an index 2 subgroup of G, and the halved graphs of Γ are distance-regular and
isomorphic to Cay(H,S2(e)).

Proof. (i) By [7, pp. 140–141], Γ is distance-regular. Thus it suffices to prove that H is a
subgroup of G and that Γ ∼= Cay(G/H, S/H). Since Γ is antipodal, the relationR on V (Γ)
defined by xRy ⇔ ∂(x, y) ∈ {0, d} ⇔ ∂(y−1x, e) ∈ {0, d} ⇔ y−1x ∈ H is an equivalence
relation. For any h1, h2 ∈ H, we have h1Re and eRh2, and hence h1Rh2, or equivalently,
h−1

2 h1 ∈ H. Thus H is a subgroup of G, and the antipodal classes of Γ coincide with the
cosets of H in G. For any two vertices xH and yH of Γ, we have that xH and yH are
adjacent if and only if there exists some edge between xH and yH in Γ, which is the case
if and only if there exist some h1, h2 ∈ H such that (xh1)−1yh2 ∈ S, which is the case if
and only if (xH)−1yH ∈ S/H. Therefore, we conclude that Γ ∼= Cay(G/H, S/H), and
the result follows.

(ii) By [7, pp. 140–141], the halved graphs Γ+ and Γ− are distance-regular. Suppose
that V (Γ+) = H. In a similar way as in (i), we can prove that H is an index 2 subgroup
of G. Thus it remains to show that Γ+ ∼= Γ− ∼= Cay(H,S2(e)). For any two vertices
x, y ∈ V (Γ+) = H, we have that x, y are adjacent if and only if ∂(x, y) = 2, which is the

the electronic journal of combinatorics 33(1) (2026), #P1.14 9



case if and only if ∂(e, x−1y) = 2, or equivalently, x−1y ∈ S2(e). Therefore, we conclude
that Γ+ ∼= Cay(H,S2(e)). Furthermore, as Γ is vertex-transitive, we have Γ− ∼= Γ+, and
the result follows.

Let Fq denote the finite field of order q where q is a prime power and q ≡ 1 (mod 4).
The Paley graph P (q) is defined as the graph with vertex set Fq in which two distinct
vertices u, v are adjacent if and only if u − v is a square in the multiplicative group of
Fq. It is known that P (q) is a strongly regular graph with parameters (q, (q − 1)/2, (q −
5)/4, (q − 1)/4) [11].

Lemma 11 ([7, p. 180]). Let Γ be a Paley graph. Then Γ has no distance-regular r-fold
antipodal covers for r > 1, except for the pentagon C5

∼= P (5), which is covered by the
decagon C10. Moreover, Γ cannot be a halved graph of a bipartite distance-regular graph.

The Hamming graph H(n, q) is the graph having as vertex set the collection of all
n-tuples with entries in a fixed set of size q, where two n-tuples are adjacent when they
differ in only one coordinate. Note that H(2, v) is just the lattice graph Kv�Kv, which
is the Cartesian product of two copies of Kv.

Lemma 12 ([47, Proposition 5.1]). Let n, q > 2. Then H(n, q) has no distance-regular
r-fold antipodal covers for r > 1, except for H(2, 2).

3 The algebraic characterizations of distance-regular Cayley
graphs

In this section, we present several algebraic characterizations for distance-regular Cayley
graphs, which were established by Miklavič and Potočnik in [29, 30].

3.1 Schur ring and distance-regular Cayley graphs

Let Γ = Cay(G,S) be a connected Cayley graph with diameter d. For i ∈ {0, 1, . . . , d},
we denote by Si := Si(e). The Z-submodule of ZG spanned by S0, S1, . . . , Sd is called the
distance module of Γ, and is denoted by DZ(G,S).

In [29], Miklavič and Potočnik provided an algebraic characterization for distance-
regular Cayley graphs in terms of Schur rings and distance modules.

Lemma 13 ([29, Proposition 3.6]). Let Γ = Cay(G,S) be a distance-regular Cayley graph
and let D = DZ(G,S) denote the distance module of Γ. Then:

(i) D is a (primitive) Schur ring over G if and only if Γ is a (primitive) distance-regular
graph;

(ii) D is the trivial Schur ring over G if and only if Γ is isomorphic to the complete
graph.
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Let n > 1 and let p be a prime such that p 6= n. If Γ is a primitive distance-regular
Cayley graph over Zn⊕Zp, then its distance module is a primitive Schur ring over Zn⊕Zp
by Lemma 13 (i), and hence must be the trivial Schur ring by Lemma 5 and Lemma 6.
Therefore, by Lemma 13 (ii), we obtain the following result.

Corollary 14. Let n > 1 and let p be a prime such that p 6= n. If Γ is a primitive
distance-regular Cayley graph over Zn ⊕ Zp, then Γ is isomorphic to the complete graph
Knp.

As every Cayley graph is vertex-transitive, by the definitions of Cayley graphs and
distance-regular graphs, we immediately deduce the following characterization for
distance-regular Cayley graphs.

Lemma 15. Let Γ = Cay(G,S) be a Cayley graph with diameter d. Then Γ is distance-
regular with intersection array {b0, b1, . . . , bd−1; c1, c2, . . . , cd} if and only if

S1 · S1 = b0 · e+ a1S1 + c2S2,

S2 · S1 = b1S1 + a2S2 + c3S3,

...

Sd · S1 = bd−1Sd−1 + adSd.

(2)

Since e+ S1 + S2 + · · ·+ Sd = G, we see that the conclusion of Lemma 15 still holds
if we remove an arbitrary equation from (2). Recall that a distance-regular graph with
diameter d is antipodal if and only if bi = cd−i for every i 6= bd

2
c. Additionally, the

intersection array of an r-antipodal distance-regular graph with diameter 3 must be of
the form {k, k − λ − 1 = µ(r − 1), 1; 1, µ, k}. Thus, by Lemma 15, we can deduce the
following result immediately.

Corollary 16. Let Γ = Cay(G,S) be a Cayley graph with diameter 3. Then Γ is an
antipodal distance-regular graph with intersection array {k, k−λ−1 = µ(r−1), 1; 1, µ, k}
if and only if {

S2 = k · e+ (λ− µ)S + µ(G− S3 − e),
(S3 + e) · (S + e) = G.

3.2 Distance-regular Cayley graphs over abelian groups

Let G be a finite abelian group and let C∗ be the multiplicative group of the complex field
C. A character of G is a group homomorphism χ from G to C∗. It is known that the set
of all characters of G is given by (cf. [44, Sections 4.4–4.5])

Ĝ = {χg | g ∈ G},

where χg is the function defined in (1).
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Let CG denote the group algebra of G over C. For any K =
∑

g∈G ag ·g ∈ CG and χ ∈
Ĝ, we denote by ag(K) := ag the coefficient of g in K, and define χ(K) =

∑
g∈G ag(K)χ(g).

Then the Fourier inversion formula (cf. [44, Theorem 5.3.6]) establishes that

ag(K) =
1

|G|
∑
h∈G

χh(K) · χh(g−1). (3)

For any K,L ∈ CG, it follows from the Fourier inversion formula (3) that

K = L if and only if χg(K) = χg(L) for all g ∈ G.

Combining this with Lemma 15, we obtain the following characterization for distance-
regular Cayley graphs over abelian groups.

Lemma 17. Let G be an abelian group and let Γ = Cay(G,S) be a Cayley graph with di-
ameter d. Then Γ is distance-regular with intersection array {b0, b1, . . . , bd−1; c1, c2, . . . , cd}
if and only if for every g ∈ G, the following system of equations holds:

χg(S1) · χg(S1) = b0 + a1χg(S1) + c2χg(S2),

χg(S2) · χg(S1) = b1χg(S1) + a2χg(S2) + c3χg(S3),

...

χg(Sd) · χg(S1) = bd−1χg(Sd−1) + adχg(Sd).

Let Γ = Cay(G,S) be a Cayley graph over the abelian group G. According to [3], the
eigenvalues of Γ = Cay(G,S) are given by

χg(S) =
∑
s∈S

χg(s), for all g ∈ G.

Suppose further that Γ is distance-regular and has diameter d. Then Γ has exactly
d + 1 distinct eigenvalues, denoted as θ0 > θ1 > · · · > θd. Let A be the Bose-Mesner
algebra corresponding to the symmetric association scheme derived from Γ and let E0 =

1
|G|J,E1, . . . , Ed be the primitive idempotents of A such that A(Γ)Ei = A1Ei = θiEi for all

i ∈ {0, 1, . . . , d}. We denote by Ŝi = {g ∈ G | χg(S) = θi}. Clearly, there is a one-to-one

correspondence between Ŝi and Ei. Let τ be a permutation on {0, 1, . . . , d} that fixes

0. We say that Γ has a Q-polynomial ordering Ŝτ(0), Ŝτ(1), . . . , Ŝτ(d) if it is Q-polynomial
with respect to the ordering of primitive idempotents Eτ(0), Eτ(1), . . . , Eτ(d).

Lemma 18. Let G be an abelian group and let Γ = Cay(G,S) be a distance-regular Cayley
graph with diameter d over G. Let θ0 > θ1 > · · · > θd be all the distinct eigenvalues of
Γ and let Ŝi = {g ∈ G | χg(S) = θi} for 0 6 i 6 d. If Γ has a Q-polynomial ordering

Ŝτ(0), Ŝτ(1), . . . , Ŝτ(d), where τ is a permutation on the set {0, 1, . . . , d} that fixes 0, then the

Cayley graph Γ̂ = Cay(G, Ŝτ(1)) is a distance-regular graph of diameter d with intersection
numbers qki,j, where qki,j are the Krein parameters of Γ.
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Proof. By Lemma 13, S(G) = span{S0, S1, . . . , Sd} is a Schur ring over G. Note that

Ŝi is inverse closed for all i ∈ {0, 1, . . . , d}. For any g, h ∈ G, we have g, h ∈ Ŝi if and
only if χg(S) = χh(S) = θi, which is the case if and only if χg(Sj) = χh(Sj) for all j ∈
{0, 1, . . . , d} by Lemma 17. Then Lemma 7 indicates that Ŝ(G) = span{Ŝ0, Ŝ1, . . . , Ŝd}
is a Schur ring over G with intersection numbers qki,j. Since Γ has a Q-polynomial order-

ing Ŝτ(0), Ŝτ(1), . . . , Ŝτ(d), we claim that the (symmetric) association scheme derived from

the Schur ring Ŝ(G) is P -polynomial with an ordering of relations Ŝτ(0), Ŝτ(1), . . . , Ŝτ(d).

Therefore, by Lemma 8, the Cayley graph Γ̂ = Cay(G, Ŝτ(1)) is a distance-regular graph
of diameter d with intersection numbers qki,j.

The Cayley graph Γ̂ = Cay(G, Ŝτ(1)) in Lemma 18 is called the dual graph of the
Q-polynomial distance-regular graph Γ = Cay(G,S).

A graph is called integral if all its eigenvalues are integers. Let FG be the set of all
subgroups of G. The Boolean algebra B(FG) is the set whose elements are obtained by
arbitrary finite intersections, unions and complements of the elements in FG. The minimal
non-empty elements of B(FG) are called atoms. It is known that each element of B(FG) is
the union of some atoms, and the atoms for B(FG) are the sets [g] = {x ∈ G | 〈x〉 = 〈g〉},
g ∈ G (see [2]). The following lemma provides a characterization for integral Cayley
graphs over abelian groups.

Lemma 19 ([2]). Let G be an abelian group and let S be an inverse closed subset of G
with e /∈ S. Then the Cayley graph Cay(G,S) is integral if and only if S ∈ B(FG).

4 Finite geometry

In this section, we introduce some classic results in finite geometry, which play a key role
in the proof of our main result.

Let G be a finite group and let N be a proper subgroup of G with order |N | = r
and index [G : N ] = m. A k-subset D of G is called an (m, r, k, µ)-relative difference set
relative to N (the forbidden subgroup) if and only if

D ·D(−1) = k · e+ µ ·G \N.

Lemma 20 ([41, Theorem 4.1.1]). Let D be a (nm, n, nm,m)-relative difference set rel-
ative to N in an abelian group G. Let g be an element in G. Then the order of g divides
nm, or n = 2, m = 1 and G ∼= Z4.

A subset D of G is called a polynomial addition set if there exists a polynomial f(x) ∈
Z[x] with degree deg f > 1 such that f(D) = mG for some integer m. In this context, we
also describe D as a (v, k, f(x))-polynomial addition set, where |G| = v and |D| = k. If
G is cyclic, then D is called a (v, k, f(x))-cyclic polynomial addition set.

Lemma 21 ([26, Corollary 5.4.5]). There is no (v, k, xn − b)-cyclic polynomial addition
set with 1 < k < v − 1 and n > 1.
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The proof of Lemma 21 relies on the following crucial lemma from [26], which is also
useful in the proof of our main result.

Lemma 22 ([43, Lemma 1.5.1], [26, Lemma 3.2.3]). Let p be a prime and let G be an
abelian group with a cyclic Sylow p-subgroup S. If Y ∈ ZG satisfies χ(Y ) ≡ 0 (mod pa)

for all characters χ ∈ Ĝ of order divisible by |S|, then there exist X1, X2 ∈ ZG such that
Y = paX1 +P ·X2, where P is the unique subgroup of order p of G. Furthermore, if Y has
non-negative coefficients only, then X1 and X2 also can be chosen to have non-negative
coefficients only.

A transversal design TD(r, v) of order v with line size r (r 6 v) is a triple (P ,G,L)
such that (see [15])

(i) P is a set of rv elements (called points);

(ii) G is a partition of P into r classes, each of size v (called groups);

(iii) L is a collection of subsets of P (called lines);

(iv) |G ∩ L| = 1 for every G ∈ G and every L ∈ L;

(v) every unordered pair of points from distinct groups is contained in exactly one line.

It follows immediately that |L| = r for every L ∈ L, and |L| = v2. The line graph of
a transversal design TD(r, v) is the graph with lines as vertices and two of them being
adjacent whenever there is a point incident to both lines. It is known that the line
graph Γ of a transversal design TD(r, v) is a strongly regular graph with parameters
(v2, r(v − 1), v + r2 − 3r, r2 − r) (cf. [20, p. 122]), and so has exactly three distinct
eigenvalues, namely r(v− 1), v− r and −r. For r = 2, Γ is the lattice graph Kv�Kv, and
for r = v, Γ is the complete multipartite graph Kv×v.

The following lemma provides certain restrictions for the antipodal cover of the line
graph of a transversal design TD(r, v) with r 6 v.

Lemma 23 ([21, Proposition 2.4]). An antipodal cover of the line graph of a transversal
design TD(r, v), r 6 v, has diameter four when r = 2 and diameter three otherwise.

Let p be an odd prime. In [53], it was shown that every distance-regular Cayley graph
over Zp ⊕ Zp is the line graph of a transversal design.

Lemma 24 ([53, Lemma 3.1]). Let p be an odd prime and let Γ = Cay(Zp ⊕ Zp, S) be a
Cayley graph over Zp⊕Zp. Then Γ is distance-regular if and only if S = ∪ri=1Hi\{(0, 0)},
where 2 6 r 6 p + 1, and Hi (i = 1, . . . , r) are subgroups of order p in Zp ⊕ Zp. In this
situation, Γ is isomorphic to the line graph of a transversal design TD(r, p) when r 6 p,
and to a complete graph when r = p + 1. In particular, Γ is primitive if and only if
2 6 r 6 p− 1 or r = p+ 1, and Γ is imprimitive if and only if r = p, in which case Γ is
the complete multipartite graph Kp×p.
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A clique in a graph Γ is a subgraph in which every pair of vertices are adjacent. A
maximal clique is a clique that cannot be extended by including an additional vertex that
is adjacent to all its vertices. The clique number of Γ is the cardinality of a clique of
maximum size in Γ.

Let p be an odd prime and let Fp denote the finite field of order p. It is known that
the Desarguesian affine plane AG(2, p) can be identified with F2

p. Let U = {(aj, bj) | 1 6
j 6 `} be an `-subset of F2

p. We define

Dir(U) =

{
bj − bk
aj − ak

| 1 6 j 6= k 6 `

}
.

Then the elements of Dir(U) are called the directions determined by U . Let W be a
subset of AG(2, p) with 1 < |W | 6 p. According to [45, Theorem 5.2], the set W is either
contained in a line, or satisfies the inequality

|Dir(W )| > |W |+ 3

2
. (4)

Note that Zp⊕Zp coincides with F2
p as sets. For any subset B of Zp⊕Zp with (0, 0) ∈ B,

we see that B is contained in a line if and only if B is contained in some subgroup of order
p in Zp ⊕ Zp. Moreover, if K1 and K2 are two distinct subgroups of order p in Zp ⊕ Zp,
then Dir(K1) 6= Dir(K2).

Lemma 25. Let p be an odd prime. Suppose that Γ = Cay(Zp⊕Zp, S) with S = ∪ri=1Hi \
{(0, 0)}, where 2 6 r 6 p− 1, and Hi (i = 1, . . . , r) are subgroups of order p in Zp ⊕ Zp.
Then the following statements hold.

(i) The clique number of Γ is equal to p.

(ii) If C is clique of Γ that is not contained in any line, then |C| 6 2r − 3.

(iii) If Γ is the halved graph of a bipartite distance-regular graph Γ′, then the number of
common neighbors of two vertices at distance 2 in Γ′ is exactly one.

Proof. (i) Clearly, Hi is a clique of order p in Γ. Since Γ has eigenvalues r(p − 1), p − r
and −r, the Delsarte bound (cf. [10, Section 3.3.2]) implies that the clique number of Γ

is at most 1− r(p−1)
−r = p. Therefore, the clique number of Γ is exactly p.

(ii) Since any two vertices in C are adjacent, we assert that the directions determined
by C are contained in the set {Dir(Hi) | 1 6 i 6 r}, and hence r > |Dir(C)|. As C is not
contained in any line, from (4) we obtain Dir(C) > (|C|+ 3)/2. Therefore, |C| 6 2r − 3.

(iii) Suppose that Γ is the halved graph of a bipartite distance-regular graph Γ′. Let k
denote the valency of Γ′ and let µ denote the number of common neighbors of two vertices
at distance 2 in Γ′. By contradiction, assume that µ > 2. By [7, Proposition 4.2.2], we
have

k2 − k
µ

= r(p− 1). (5)
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For any v ∈ V (Γ′), let S(v) be the neighborhood of v in Γ′. By [16, Lemma 2], S(v) is a
maximal clique in Γ′+ or Γ′−. Clearly, the maximal cliques S(v) for v ∈ V (Γ′) must cover
Γ′+ and Γ′−. Thus there exists some vertex v ∈ V (Γ′) such that C := S(v) is a maximal
clique in Γ containing the vertex (0, 0). According to (i), the clique number of Γ is p, and
k = |S(v)| = |C| 6 p. Thus we have rµ 6 p by (5). If C is contained in a line, then
k = |C| = p because C is a maximal clique. By (5), we have rµ = p, and so r = 1 or
p, contrary to our assumption. If C is not contained in any line, then (ii) indicates that
k = |C| 6 2r − 3 < 2r. Combining this with (5) and µ > 2, we obtain 2r > p, which is
impossible because p > µr > 2r.

5 Imprimitive distance-regular Cayley graphs with diameter
three over abelian groups

In this section, we present some properties of imprimitive distance-regular Cayley graphs
with diameter 3 over abelian groups.

It is known that an antipodal bipartite distance-regular graph with diameter 3 is
a complete bipartite graph without a perfect matching. Also, by [7, Corollary 8.2.2],
every non-antipodal bipartite distance-regular graph with diameter 3 is Q-polynomial.
Therefore, by Lemma 9 and Lemma 18, we can deduce the following result immediately.

Proposition 26. Let G be an abelian group. If Γ is a non-antipodal bipartite distance-
regular Cayley graph with diameter 3 over G, then its dual graph Γ̂ is an antipodal non-
bipartite distance-regular Cayley graph with diameter 3 over G.

By Proposition 26 and the above arguments, in order to study distance-regular Cayley
graphs with diameter 3 over abelian groups, the primary task is to consider those that
are antipodal and non-bipartite.

For the sake of convenience, we maintain the following notation throughout the re-
mainder of this paper.

Notation. Let G and H be finite abelian groups under addition and let G ⊕H denote
the direct product of G and H. For subsets A ⊆ G, B ⊆ H and elements g ∈ G, h ∈ H,
we define g + A = {g + a | a ∈ A}, (g,B) = {(g, b) | b ∈ B}, (A, h) = {(a, h) | a ∈ A},
and (A,B) = {(a, b) | a ∈ A, b ∈ B}. If Γ = Cay(G⊕H,S) is a Cayley graph over G⊕H,
then the connection set S can be expressed as

S = ∪h∈H(Rh, h) = ∪g∈G(g, Lg),

where Rh is a subset of G such that 0G 6∈ R0H and Rh = −R−h for all h ∈ H, and Lg
is a subset of H such that 0H /∈ L0G and Lg = −L−g for all g ∈ G. Let R = ∪h∈HRh

and L = ∪g∈GLg. Furthermore, if Γ is distance-regular, then we denote by k, λ, µ and
d the valency, the number of common neighbors of two adjacent vertices, the number of
common neighbors of two vertices at distance 2 and the diameter of Γ, respectively.
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Recall that the set of characters of G ⊕ H can be represented as Ĝ⊕H = {(χ, ψ) |
χ ∈ Ĝ, ψ ∈ Ĥ}, where the pair (χ, ψ) is defined such that (χ, ψ)((g, h)) = χ(g)ψ(h) for
every (g, h) ∈ G⊕H (cf. [44, Proposition 4.5.1]).

Lemma 27. Let G and H be finite abelian groups under addition and let S = ∪h∈H(Rh, h)
= ∪g∈G(g, Lg) be a subset of G ⊕ H, where Rh ⊆ G for all h ∈ H and Lg ⊆ H for all
g ∈ G. Then

χ(R0H ) =
1

|H|
∑
ψ∈Ĥ

(χ, ψ)(S)

for every χ ∈ Ĝ, and

ψ(L0G) =
1

|G|
∑
χ∈Ĝ

(χ, ψ)(S)

for every ψ ∈ Ĥ.

Proof. By symmetry, we only need to prove the first part of the lemma. Note that

∑
ψ∈Ĥ

ψ(h) =

{
|H|, if h = 0H ;

0, otherwise.

For every χ ∈ Ĝ, we have

∑
ψ∈Ĥ

(χ, ψ)(S) =
∑
ψ∈Ĥ

(χ, ψ)

(∑
h∈H

(Rh, h)

)
=
∑
ψ∈Ĥ

(∑
h∈H

χ(Rh)ψ(h)

)

=
∑
h∈H

∑
ψ∈Ĥ

ψ(h)

χ(Rh) = |H| · χ(R0H ),

and the result follows.

Proposition 28. Let G be an abelian group and let Γ be an antipodal non-bipartite
distance-regular Cayley graph with diameter 3 over G. Let r be the common size of
antipodal classes of Γ. If r is a prime, then G ∼= M ⊕ Zr for some abelian group M of
order |G|/r, and Γ is isomorphic to a Cayley graph over M ⊕ Zr in which the antipodal
class containing the identity vertex is S0 ∪ S3 = (0M ,Zr).

Proof. Since r is a prime divisor of |G|, we can express G as

G = K ⊕ Zrs1 ⊕ Zrs2 ⊕ · · · ⊕ Zrst ,

where s1 > s2 > · · · > st and r - |K|. Let H denote the antipodal class of G containing
the identity vertex, that is, H = S0 ∪ S3. Since |H| = r is a prime and K contains no
elements of order r, we claim that every element of S3 is of the form (0K , a1, . . . , at) with
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ai ∈ Zrsi and rsi−1 | ai for 1 6 i 6 t. Thus there exists some l ∈ {1, . . . , t} such that
b = (0K , b1, . . . , bl = rsl−1, 0, . . . , 0) ∈ S3 with rsi−1 | bi for 1 6 i 6 l. Then H = 〈b〉
because |H| = r is a prime. Let σ be the mapping on G defined by letting

σ((k, i1, . . . , it)) =

(
k, i1 −

b1

rsl−1
il, . . . , il−1 −

bl−1

rsl−1
il, il, . . . , it

)
for all (k, i1, . . . , it) ∈ G = K ⊕ Zrs1 ⊕ Zrs2 ⊕ · · · ⊕ Zrst . Clearly, σ is an automorphism
of G, and σ(b) = (0K , 0, . . . , 0, r

sl−1, 0, . . . , 0). Then G ∼= M ⊕ Zm, where m = rsl and
M = K ⊕ (⊕ti=1,i 6=lZrsi ), and Γ is isomorphic to a Cayley graph over M ⊕ Zm in which
the antipodal class containing the identity vertex is S0 ∪ S3 = (0M ,

m
r
Zm). Therefore, it

suffices to prove m = r. We consider the following three cases.

Case A. r = 2.
In this situation, S3 = {(0M , m2 )}. Assume that 4 | m. If (0M ,

m
4

) ∈ S1, then
(0M ,−m

4
) = (0M ,

m
2

) + (0M ,
m
4

) ∈ S2, which is impossible due to (0M ,−m
4

) ∈ −S1 = S1.
If (0M ,

m
4

) ∈ S2, then (0M ,
m
4

) and (0M ,
m
2

) are adjacent, and hence (0M ,
m
4

) = (0M ,
m
2

)−
(0M ,

m
4

) ∈ S1, a contradiction. Thus we have (0M ,
m
4

) /∈ S1 ∪S2 ∪S3, which is impossible.
Therefore, we conclude that m = 2 = r, as desired.

Case B. r 6= 2 and λ = µ.
By [7, p. 431], we have m|M |

r
−1 = k = 1+ rµ, and hence m|M |

r
≡ 2 (mod r). As r 6= 2,

we assert that m = r, as required.

Case C. r 6= 2 and λ 6= µ.

In this case, by [7, p. 431], Γ is integral, and so (χ, ψ)(S) ∈ Z for all (χ, ψ) ∈ M̂ ⊕ Zm.

By Lemma 27, for any ψ ∈ Ẑm, we have

ψ(L0M ) =
1

|M |
∑
χ∈M̂

(χ, ψ)(S) ∈ Q,

and hence ψ(L0M ) ∈ Z because it is an algebraic integer. Note that {ψ(L0M ) | ψ ∈ Ẑm}
gives a complete set of eigenvalues of the Cayley graph Cay(Zm, L0M ). Hence, by Lemma
19, L0M is a union of some atoms for B(FZm). On the other hand, by Corollary 16,

(0M ,
m

r
Zm) · S ∪ {(0M , 0)} = M ⊕ Zm,

and it follows that
(0M , L0M ∪ {0}) · (0M ,

m

r
Zm) = (0M ,Zm),

or equivalently,

L0M ∪ {0} ·
m

r
Zm = Zm.

This implies that L0M ∪ {0} contains exactly one element from each coset of m
r
Zm in Zm.

Then there exists an element a ∈ L0M such that (1+m
r
Zm)∩L0M = {a}. If 1+m

r
Zm ⊆ Z∗m,
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then a ∈ Z∗m. Since L0M is a union of some atoms for B(FZm) and Z∗m is exactly an atom,
we assert that 1 + m

r
Zm ⊆ Z∗m ⊆ L0M . Thus 1 + m

r
Zm = {a}, and it follows that m = r,

as desired. If 1 + m
r
Zm 6⊆ Z∗m, then there exists some i ∈ Zm such that 1 + im

r
/∈ Z∗m.

Combining this with gcd(1 + im
r
, m
r

) = 1, we obtain gcd(1 + im
r
,m) = r, which gives that

m = r because m is a power of r. The result follows.

Proposition 29. Let G be an abelian group and let p be a prime. Assume that Γ =
Cay(G⊕Zp, S) is an antipodal non-bipartite distance-regular Cayley graph with diameter
3 in which the antipodal class containing the identity vertex is S0 ∪ S3 = (0G,Zp). Let
k > θ1 > −1 > θ3 be all distinct eigenvalues of Γ and 2δ = θ1 − θ3. Then the following
statements hold.

(i) The sets Ri, for i ∈ Zp, form a partition of G \ {0G}.

(ii) If p > 2, then |G|
2δ

, θ1 and −θ3 are positive integers. Moreover, for every non-trivial

character ψ ∈ Ẑp, the set B = {g ∈ G | (χg, ψ)(S) = θ1} is a (|G|,− |G|
2δ
θ3, x

p− |G|
p

(2δ)p
)-

polynomial addition set such that

χl(B) =
|G|
2δ

∑
i∈Zp

ψ(i)a−l(Ri)− θ3 · a−l(0G)

 for all l ∈ G.

(iii) If p = 2, then there exists a strongly regular Cayley graph over G with parameters

(|G|, |G|
2δ
θ, |G|

4δ2
(θ2 − 1), |G|

4δ2
(θ2 − 1)), where θ = θ1 or −θ3.

Proof. (i) By Corollary 16, we have

G⊕ Zp = (0G,Zp) ·

∑
i∈Zp

(Ri, i) + e

 =
∑
i∈Zp

(Ri,Zp) + (0G,Zp).

Therefore, the sets Ri (i ∈ Zp) form a partition of G \ {0G}.
(ii) Again by Corollary 16,

S2 = k · e+ (λ− µ)S + µ(G⊕ Zp − (0G,Zp)). (6)

Let ψ ∈ Ẑp be a non-trivial character of Zp. We have ψ(Zp) = 0. For any g ∈ G, let

χg ∈ Ĝ be the character of G defined in (1). Then (χg, ψ) is a non-trivial character of

Ĝ⊕ Zp, and so (χg, ψ)(Ĝ⊕ Zp) = χg(G) · ψ(Zp) = 0. By applying (χg, ψ) on both sides

of (6), we obtain
((χg, ψ)(S))2 = k + (λ− µ)(χg, ψ)(S),

which implies that (χg, ψ)(S) = θ1 or θ3 for all g ∈ G according to [7, p. 431]. Then∑
g∈G

(χg, ψ)(S) · g = θ1B + θ3G \B = 2δB + θ3G.
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Since S =
∑

i∈Zp
(Ri, i), we have

2δB + θ3G =
∑
g∈G

∑
i∈Zp

ψ(i)χg(Ri)

 g. (7)

Let l ∈ G. By applying the character χl ∈ Ĝ on both sides of (7), we get

2δχl(B) + θ3χl(G) =
∑
g∈G

∑
i∈Zp

ψ(i)χg(Ri)

χl(g) =
∑
g∈G

∑
i∈Zp

ψ(i)χg(Ri)

χg(l)

=
∑
i∈Zp

ψ(i)

(∑
g∈G

χg(Ri)χg(l)

)
=
∑
i∈Zp

ψ(i) · |G|a−l(Ri),

(8)

where the last equality follows from the Fourier inversion formula (3). Note that χl(G) =
|G| if l = 0G, and χl(G) = 0 otherwise. By (8), we obtain

χl(B) =
|G|
2δ

∑
i∈Zp

ψ(i)a−l(Ri)− θ3 · a−l(0G)

 , (9)

and it follows that |B| = − |G|
2δ
θ3 > 0. Recall that the sets Ri, for i ∈ Zp, form a partition

of G \ {0G}. Then from (9) we can deduce that

χl(B
p) = χl(B)p =

|G|p

(2δ)p

∑
i∈Zp

a−l(Ri) + (−θ3)p · a−l(0G)


=
|G|p

(2δ)p
(1 + ((−θ3)p − 1) · a−l(0G)) .

Using the Fourier inversion formula (3), we get

Bp =
|G|p−1

(2δ)p
(((−θ3)p − 1) ·G+ |G| · 0G). (10)

By [7, p. 431], (2δ)2 = 4k + (λ − µ)2 ∈ Z. As p is odd and Bp ∈ ZG, from (10) and

(2δ)2 ∈ Z we can deduce that |G|
2δ

and 2δ are integers, and so are θ1 and θ3. Moreover,

again by (10), we assert that B is a (|G|,− |G|
2δ
θ3, x

p− |G|p
(2δ)p

)-polynomial addition set in G.

(iii) If p = 2, then Z2 has only one non-trivial character, namely ψ1, where ψ1(0) = 1
and ψ1(1) = −1. By substituting ψ = ψ1 in (9), we obtain

χl(B) =
|G|
2δ

(
a−l(R0)− a−l(R1)− θ3 · a−l(0G)

)
for all l ∈ G,
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which implies −B = B. Moreover, by (10), we have

B2 =
|G|

(2δ)2
((θ2

3 − 1) ·G+ |G| · 0G). (11)

If 0G /∈ B, then (11) indicates that the Cayley graph Cay(G,B) is with diameter d 6 2.

If d = 1, then B = G \ {0G}, and hence |G| − 1 = |B| = − |G|
2δ
θ3. On the other hand, by

[7, p. 431], we have θ3 = λ−µ
2
− δ, δ =

√
k + (λ−µ

2
)2, |G| = k+ 1 and k = µ+λ+ 1. Thus,

we obtain k− 1 = λ−µ or µ− λ, implying that µ = 0 or λ = 0, which is a contradiction.
Therefore, d = 2. Again by (11), we assert that Cay(G,B) is a strongly regular Cayley

graph with parameters (|G|,− |G|
2δ
θ3,

|G|
4δ2

(θ2
3 − 1), |G|

4δ2
(θ2

3 − 1)). If 0G ∈ B, then 0G /∈ G \B.

Combining (11) with θ1 − θ3 = 2δ and |B| = − |G|
2δ
θ3 yields that

(G \B)2 =
|G|

(2δ)2
((θ2

1 − 1) ·G+ |G| · 0G). (12)

By a similar analysis, we can deduce from (12) that Cay(G,G \ B) is a strongly regular

Cayley graph with parameters (|G|, |G|
2δ
θ1,

|G|
4δ2

(θ2
1 − 1), |G|

4δ2
(θ2

1 − 1)).

6 Imprimitive distance-regular Cayley graphs with diameter
four over abelian groups

In this section, we present some properties of antipodal bipartite distance-regular Cayley
graphs with diameter 4 over abelian groups.

Proposition 30. Let G be an abelian group and let Γ be an antipodal bipartite distance-
regular Cayley graph with diameter 4 over G. Let r be the common size of antipodal
classes of Γ. If r is an odd prime, then G ∼= M ⊕ Zr for some abelian group M of
order |G|/r, and Γ is isomorphic to a Cayley graph over M ⊕ Zr in which the antipodal
class and the bipartition set containing the identity vertex are S0 ∪ S4 = (0M ,Zr) and
S0 ∪ S2 ∪ S4 = M1 ⊕ Zr, respectively, where M1 is an index 2 subgroup of M .

Proof. Since r is a prime divisor of |G|, as in Proposition 28, we assert that G ∼= M ⊕Zm
with M being an abelian group of order |G|/m and m = r` for some ` > 1, and that Γ
is isomorphic to a Cayley graph Γ′ over M ⊕ Zm in which the antipodal class containing
the identity vertex is S0∪S4 = (0M ,

m
r
Zm). Furthermore, since Γ′ is bipartite and m = r`

is odd, we have 2 | |M |. Let H = S0 ∪ S2 ∪ S4 be the bipartition set in Γ′. Then H is an
index 2 subgroup of M ⊕ Zm, and so H = M1 ⊕ Zm, where M1 is an index 2 subgroup of
M . Therefore, it remains to prove m = r.

Since M is an abelian group of even order, we can assume that M = K ⊕ Z2s1 ⊕
Z2s2 ⊕ · · · ⊕ Z2st , where s1 > s2 > · · · > st > 1 (t > 1) and 2 - |K|. Then M1 =
K ⊕ Z2s1 ⊕ · · · ⊕ 2Z2si ⊕ · · · ⊕ Z2st for some i ∈ {1, . . . , t}. Let m′ = 2sim. As r
is odd and m = r`, we have Z2si ⊕ Zm ∼= Zm′ . Let M ′ = K ⊕ (⊕tj=1,j 6=iZ2si ). Then
M ⊕ Zm ∼= M ′ ⊕ Zm′ , and it is easy to check that Γ′ is isomorphic to a Cayley graph
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over M ′⊕Zm′ in which the antipodal class and the bipartition set containing the identity
vertex are S0 ∪S4 = (0M ′ ,

m′

r
Zm′) and S0 ∪S2 ∪S4 = M ′⊕ 2Zm′ , respectively. By Lemma

15, (
0M ′ ,

m′

r
Zm′
)
· S1 = (S0 + S4) · S1 = S1 + S3 = (M ′, 1 + 2Zm′),

which implies that m′

r
Zm′ ·L0M′

= 1 + 2Zm′ . Thus |L0M′
| = m′

2r
, and L0M′

contains exactly

one element from each coset in the set {i+m′

r
Zm′ | i ∈ 1+2Zm′}. Let Ẑm′ = {ψg | g ∈ Zm′}

be the set of all irreducible characters of Zm′ . In what follows, we shall determine the
value of ψg(L0M′

) for all g ∈ Zm′ . Clearly, ψg(L0M′
) = |L0M′

| = m′

2r
if g = 0, and

ψg(L0M′
) = −|L0M′

| = −m′

2r
if g = m′

2
due to L0M′

⊆ 1 + 2Zm′ . Again by Lemma 15, we

have

S2 = k · e+ µS2 = k · e+ µ

(
M ′ ⊕ 2Zm′ −

(
0M ′ ,

m′

r
Zm′
))

. (13)

If g ∈ rZm′ \ m′

2
Zm′ , then from (13) and [7, p. 425] we obtain (χ, ψg)(S)2 = k − µr = 0,

and hence (χ, ψg)(S) = 0 for all χ ∈ M̂ ′. Therefore, by Lemma 27,

ψg(L0M′
) =

1

|M ′|
∑
χ∈M̂ ′

(χ, ψg)(S) = 0.

If g /∈ rZm′ , then from (13) we get ((χ, ψg)(S))2 = k, and hence (ψ, χg)(S) ∈ {−
√
k,
√
k}

for all χ ∈ M̂ ′. Again by Lemma 27,

ψg(L0M′
) =

1

|M ′|
∑
χ∈M̂ ′

(χ, ψg)(S) ∈

{
± i
√
k

|M ′|
| i = 0, 1, . . . , |M ′|

}
. (14)

We consider the following two cases.

Case A.
√
k ∈ Q.

In this situation, for any g ∈ Zm′ , ψg(L0M′
) ∈ Z because it is a rational algebraic

integer. Thus L0M′
is a union of some atoms for B(FZm′

). Furthermore, since L0M′

is a subset of 1 + 2Zm′ that contains exactly one element from each coset in the set
{i+ m′

r
Zm′ | i ∈ 1+2Zm′}, there exists some a ∈ L0M′

such that (1+ m′

r
Zm′)∩L0M′

= {a}.
If 1 + m′

r
Zm′ ⊆ Z∗m′ , then a ∈ Z∗m′ . As Z∗m′ is exactly an atom, we assert that 1 + m′

r
Zm′ ⊆

Z∗m′ ⊆ L0M′
. Thus 1 + m′

r
Zm′ = {a}, and it follows that m′ = r, which is impossible. If

1 + m′

r
Zm′ 6⊆ Z∗m′ , then there exists some i ∈ Zm′ such that 1 + im

′

r
/∈ Z∗m′ . Combining this

with m′ = 2sim = 2sir` and gcd(1 + im
′

r
, m
′

r
) = 1, we obtain gcd(1 + im

′

r
,m′) = r, which

implies that r2 - m′. Therefore, we have m = r, and the result follows.

Case B.
√
k /∈ Q.

In this situation, ψg(L0M′
) ∈ Q for any g ∈ rZm′ , and ψg(L0M′

) ∈ {± i
√
k

|M ′| | i =

0, 1, . . . , |M ′|} ⊆ Q(ω) \ Q for any g /∈ rZm′ , where ω is a primitive m′-th root of unity.
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Then there exists an element σc0 with c0 ∈ Z∗m′ in the Galois group Gal[Q(ω) : Q] = {σc :
ω 7→ ωc | c ∈ Z∗m′} such that σc0(

√
k) = −

√
k. By applying σc0 on both sides of (14), we

obtain

ψg(c0L0M′
) = − 1

|M ′|
∑
χ∈M̂ ′

(χ, ψg)(S) = −ψg(L0M′
) for g /∈ rZm′ .

Recall that ψg(L0M′
) = |L0M′

| = m′

2r
if g = 0, ψg(L0M′

) = −|L0M′
| = −m′

2r
if g = m′

2
, and

ψg(L0M′
) = 0 if g ∈ rZm′ \ m′

2
Zm′ . Thus ψg(c0L0M′

) = ψg(L0M′
) ∈ Q for all g ∈ rZm′ .

According to the Fourier inversion formula (3), for each g ∈ Zm′ , we have

ag(L0M′
) + ag(c0L0M′

) =
1

m′

∑
h∈Zm′

(
ψh(L0M′

) + ψh(c0L0M′
)
)
ψh(g

−1)

=
1

m′

∑
h∈m′

2
Zm′

(
ψh(L0M′

) + ψh(c0L0M′
)
)
ψh(g

−1)

=
2

m′

∑
h∈m′

2
Zm′

ψh(L0M′
)ψh(g

−1).

Therefore,

max
g∈Zm′

(
ag(L0M′

) + ag(c0L0M′
)
)

= max
g∈Zm′

2

m′

∑
h∈m′

2
Zm′

ψh(L0M′
)ψh(g

−1) 6
1

m′
· 4 · m

′

2r
=

2

r
,

which is impossible because L0M′
6= ∅ and r > 3.

We complete the proof.

Proposition 31. Let G be an abelian group and let p be an odd prime. Assume that
Γ = Cay(G⊕Zp, S) is an antipodal bipartite distance-regular Cayley graph with diameter
4 in which the antipodal class and the bipartition set containing the identity vertex are
S0∪S4 = (0G,Zp) and S0∪S2∪S4 = H⊕Zp, respectively, where H is an index 2 subgroup
of G. Then the following statements hold.

(i) The sets Ri, for i ∈ Zp, form a partition of G \H.

(ii) For every non-trivial character ψ ∈ Ẑp, B = {g ∈ G | (χg, ψ)(S) =
√
k} is a

non-empty set such that

χl(B) =
|G|
2
√
k

∑
i∈Zp

ψ(i)a−l(Ri) +
√
k · a−l(0G)

 for all l ∈ G.

(iii) |G|
2
√
k

is an integer.
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Proof. (i) As in Proposition 29, from Lemma 15 we can deduce that
∑

i∈Zp
Ri = G \H.

Thus the sets Ri, for i ∈ Zp, form a partition of G \H.
(ii) Again by Lemma 15, we have

S2 = k · e+ µS2 = k · e+ µ
(
H ⊕ Zp − (0G,Zp)

)
. (15)

Let ψ ∈ Ẑp be a non-trivial character of Zp and let χ ∈ Ĝ. By applying the character

(χ, ψ) ∈ Ĝ⊕ Zp on both sides of (15), we obtain

((χ, ψ)(S))2 = k,

implying that (χ, ψ)(S) =
√
k or −

√
k. Let B = {g ∈ G | (χg, ψ)(S) =

√
k}. By a similar

analysis as in Proposition 29, we can deduce that

χl(B) =
|G|
2
√
k

∑
i∈Zp

ψ(i)a−l(Ri) +
√
k · a−l(0G)

 for l ∈ G.

In particular, |B| = χ0(B) = |G|
2

, and so B is non-empty.
(iii) Combining (i) and (ii), we get

χl(B
p) =

(
|G|
2
√
k

)p (
al(G \H) +

√
kp · al(0G)

)
for l ∈ G.

Let σ : G→ C be the mapping defined by

σ(g) =

{
1, if g ∈ H;

−1, if g ∈ G \H.

As H is an index 2 subgroup of G, the mapping σ is exactly an irreducible representation
of G, and so σ ∈ Ĝ because G is abelian. Thus we assert that there exists some involution
a ∈ G such that σ = χa ∈ Ĝ. Then from the Fourier inversion formula (3) we obtain

Bp =

(
|G|
2
√
k

)p(
1

2
· 0G −

1

2
· a+

√
kp

|G|
G

)
.

Therefore, |G|
2
√
k

is an integer because p is odd and Bp ∈ ZG.

7 Distance-regular Cayley graphs over Zn ⊕ Zp

In this section, we shall prove Theorem 4, which determines all distance-regular Cayley
graphs over the group Zn ⊕ Zp. To achieve this goal, we need the following two lemmas.

Lemma 32. Let p be an odd prime and let n be a positive integer such that p | n. Then
there are no antipodal non-bipartite distance-regular Cayley graphs with diameter 3 over
Zn ⊕ Zp.
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Proof. By contradiction, assume that Γ = Cay(Zn ⊕ Zp, S) is an antipodal non-bipartite
distance-regular Cayley graph of diameter 3 over Zn⊕Zp with n as small as possible (with
respect to p). Let k and r (r > 2) denote the valency and the common size of antipodal
classes (or fibres) of Γ, respectively. According to [7, p. 431], k+1 = np

r
, k = µ(r−1)+λ+1,

and Γ has the intersection array {k, µ(r−1), 1; 1, µ, k} and eigenvalues k, θ1, θ2 = −1, θ3,
where

θ1 =
λ− µ

2
+ δ, θ3 =

λ− µ
2
− δ and δ =

√
k +

(
λ− µ

2

)2

. (16)

Let H = S3 ∪ {(0, 0)} denote the antipodal class containing the identity vertex. Then
|H| = r. By Lemma 10, H is a subgroup of Zn ⊕ Zp. If r is not a prime, then H has
a non-trivial subgroup K. Let B denote the partition of Zn ⊕ Zp consisting of all cosets
of K in Zn ⊕ Zp and let ΓB be the quotient graph of Γ with respect to B. Then, in a
similar way as in Lemma 10, we can verify that ΓB ∼= Cay((Zn ⊕ Zp)/K, S/K), where
S/K = {sK | s ∈ S}. Since K ∩ (S1 ∪ S2) = ∅, for any two distinct s1, s2 ∈ S, we have
s1K 6= s2K. Also, by Corollary 16,{

S2 = k · 0G + (λ− µ)S + µ(Zn ⊕ Zp −H),

H · (S + e) = Zn ⊕ Zp.
(17)

Let f be the mapping from the group algebra Z · (Zn⊕Zp) to the group algebra Z · ((Zn⊕
Zp)/K) defined by

f

 ∑
x∈Zn⊕Zp

axx

 =
∑

x∈Zn⊕Zp

ax · xK.

By applying f on both sides of the two equations in (17), we obtain{
(S/K)2 = k ·K + (λ− µ)S/K + µ|K|((Zn ⊕ Zp)/K −H/K),

|K|H/K · (S/K +K) = |K|(Zn ⊕ Zp)/K,

or equivalently,{
(S/K)2 = k ·K + ((λ− µ+ µ|K|)− µ|K|)S/K + µ|K|((Zn ⊕ Zp)/K −H/K),

H/K · (S/K +K) = (Zn ⊕ Zp)/K.
(18)

Then from (18) and Corollary 16 we can deduce that ΓB is an (r/|K|)-antipodal distance-
regular graph of diameter 3 with intersection array {k, k−(λ−µ+µ|K|)−1 = µ|K|(r/|K|−
1), 1; 1, µ|K|, k}. If ΓB is bipartite, then Γ is also bipartite, a contradiction. Hence, ΓB
is an antipodal non-bipartite distance-regular Cayley graph of diameter 3 over the cyclic
group or the group Zn′ ⊕ Zp with n′ | n. By Theorem 2, we assert that the former
case cannot occur. For the later case, this violates the minimality of n. Therefore, r
is a prime. Then, by Proposition 28, Zn ⊕ Zp ∼= M ⊕ Zr and Γ is isomorphic to a
Cayley graph over M ⊕ Zr in which the antipodal class containing the identity vertex is
S3 ∪ {(0M , 0)} = (0M ,Zr), where M is an abelian group of order |G|/r. Thus we only
need to consider the following two cases.
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Case A. M = Zn, r = p and S0 ∪ S3 = (0M ,Zp).
In this situation, r = p is odd. By Proposition 29 (ii), there exists a non-empty

(n,− n
2δ
θ3, x

p − np

(2δ)p
)-polynomial addition set B in Zn. Note that |B| = − n

2δ
θ3. On the

other hand, by Lemma 21, we assert that |B| ∈ {1, n − 1, n}. If |B| = − n
2δ
θ3 = 1, then

from (16) and k = n− 1 we can deduce that λ− µ = n− 2 = k − 1, which is impossible
because k = µ(p− 1) + λ+ 1 > 2µ+ λ+ 1 and µ > 1. Similarly, if |B| = − n

2δ
θ3 = n− 1

then µ−λ = n−2 = k−1, and if |B| = − n
2δ
θ3 = n then k = 0, which are also impossible.

Case B. M = Zn
r
⊕ Zp and S0 ∪ S3 = (0M ,Zr).

In this situation, we must have gcd(r, n
r
) = 1.

Subcase B.1. r = 2.
Since p is odd and gcd(2, n

2
) = 1, we see that |M | = np

2
is odd. By Proposition 29

(iii), there exists a strongly regular Cayley graph Γ′ over M with parameters (|M |, k′ =
|M |
2δ
θ, λ′ = |M |

4δ2
(θ2 − 1), µ′ = |M |

4δ2
(θ2 − 1)), where θ = θ1 or −θ3. Clearly, Γ′ is non-bipartite

because it is of odd order. If k′ = 2, then Γ′ is a cycle, and hence Γ′ ∼= C4, which is
impossible. Now suppose k′ > 3. We see that Γ′ must be primitive or antipodal. If Γ′ is
antipodal, then it is a complete multipartite graph, which is impossible because λ′ = µ′.
If Γ′ is primitive, then Corollary 14 indicates that n

2
= p and M = Zp ⊕ Zp because Γ′

cannot be a complete graph. Thus, by Lemma 24, Γ′ is isomorphic to the line graph of a
transversal design TD(r′, p) with 2 6 r′ 6 p− 1. However, this is also impossible because
λ′ = µ′.

Subcase B.2. r 6= 2.
If r = p, then we are done by Case A. Now suppose r 6= p. Recall that S = S1 =

∪i∈Zr(Ri, i). By Proposition 29 (i), the sets Ri, for i ∈ Zr, form a partition of M \ {0M}.
Furthermore, by Proposition 29 (ii), both |M |

2δ
and θ3 are integers, and for every non-trivial

character ψ ∈ Ẑr, there exists a non-empty polynomial addition set B ⊆M such that

χl(B) =
|M |
2δ

{∑
i∈Zr

ψ(i)a−l(Ri)− θ3 · a−l(0M)

}
for all l ∈M. (19)

Let l0 ∈ M \ {0M}. Then there exists some i0 ∈ Zr \ {0} such that −l0 ∈ Ri, and (19)
implies that

χl0(B) =
|M |
2δ

ψ(i0). (20)

Since r is an odd prime and ψ ∈ Ẑr is non-trivial, we assert that ψ(i0) ∈ Q(ωr)\Q, where

ωr is a primitive r-th root of unity. Thus it follows from (20) and |M |
2δ
∈ Z that χl0(B) ∈

Q(ωr) \ Q. On the other hand, we have χl0(B) ∈ Q(ωn
r
) because χl0 ∈ M̂ = ̂Zn

r
⊕ Zp

and p | n
r

due to p | n and p 6= r, where ωn
r

is a primitive n
r
-th root of unity. Hence,

χl0(B) ∈ (Q(ωn
r
) ∩ Q(ωr)) \ Q. However, this is impossible because Q(ωr) ∩ Q(ωn

r
) = Q

due to gcd(r, n
r
) = 1.

Therefore, we conclude that there are no antipodal non-bipartite distance-regular
graphs with diameter 3 over Zn ⊕ Zp.
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Lemma 33. Let p be an odd prime and let n be a positive integer such that p | n.
Then there are no antipodal bipartite distance-regular Cayley graphs with diameter 4 over
Zn ⊕ Zp.

Proof. By contradiction, assume that Γ = Cay(Zn ⊕ Zp, S) is an antipodal bipartite
distance-regular Cayley graph with diameter 4. Then n is even and the bipartition set of
Γ containing the identity vertex is S0 ∪ S2 ∪ S4 = 2Zn ⊕ Zp. Let k and r (r > 2) denote
the valency and the common size of antipodal classes (or fibres) of Γ, respectively. By [7,
p. 425],

np = 2r2µ and k = rµ, (21)

and Γ has the intersection array {rµ, rµ − 1, (r − 1)µ, 1; 1, µ, rµ − 1, rµ}. Moreover, by
Lemma 15,

S2 = k · e+ µS2 = k · 0 + µ(2Zn ⊕ Zp − S0 ∪ S4). (22)

Note that S0 ∪ S4 is the antipodal class of Γ containing the identity vertex, and so
is a subgroup of S0 ∪ S2 ∪ S4 = 2Zn ⊕ Zp. Since S is inverse closed, from (21) and
(22) we see that S is exactly an (rµ, r, rµ, µ)-relative difference set relative to S0 ∪ S4

in S0 ∪ S2 ∪ S4 = 2Zn ⊕ Zp. Then from Lemma 20 we can deduce that n
2

= r2µ
p

is
a divisor of rµ, that is, r = p. Furthermore, by Proposition 30, we may assume that
S0 ∪ S4 = (0,Zp). In this context, by Proposition 31, the sets Ri, for i ∈ Zp, form a

partition of Zn \ 2Zn = 1 + 2Zn, and for every non-trivial character ψ ∈ Ẑp, there exists
a non-empty set B in Zn such that

χl(B) =
n

2
√
k

∑
i∈Zp

ψ(i)a−l(Ri) +
√
k · a−l(0)

 for all l ∈ Zn. (23)

Moreover, we have n
2
√
k
∈ Z. Clearly, n

2
√
k
6= 1 by (21). Let q be a prime dividor of n

2
√
k
.

Since the sets Ri, for i ∈ Zp, form a partition of 1 + 2Zn, we can deduce from (23) that
χl(B) ≡ 0 (mod q) for all l ∈ Zn. Then, by Lemma 22, there exist some X1, X2 ∈ Z · Zn
with non-negative cofficients only such that

B = qX1 +
n

q
Zn ·X2.

Since q > 1 and the cofficients of B in Z · Zn is either 0 or 1, we assert that

B =
n

q
Zn ·X2.

Note that (1 + 2Zn) \ qZn 6= ∅. Taking l0 ∈ (1 + 2Zn) \ qZn, we have χl0(B) = χl0(
n
q
Zn) ·

χl0(X2) = 0. Let i0 ∈ Zp be such that −l0 ∈ Ri0 . Then (23) gives that χl0(B) = n
2
√
k
ψ(i0),

and hence ψ(i0) = 0, which is impossible.
Therefore, we conclude that there are no antipodal bipartite distance-regular Cayley

graphs with diameter 4 over Zn ⊕ Zp.
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Now we are in a position to give the proof of Theorem 4.

Proof of Theorem 4. First of all, it is easy to verify that the graphs listed in (i)-(iii) are
distance-regular Cayley graphs over Zn⊕Zp. Furthermore, by Lemma 24, the graph listed
in (iv) is a distance-regular graph with diameter 2.

Conversely, suppose that Γ = Cay(Zn⊕Zp, S) is a distance-regular Cayley graph over
Zn ⊕Zp. Let k be the valency of Γ and let µ denote the number of common neighbors of
two vertices at distance 2 in Γ. If n = p, then from Lemma 24 we see that Γ is isomorphic
to one of the graphs listed in (i), (ii) and (iv). Thus we may assume that n 6= p. If Γ is
primitive, by Corollary 14, Γ is isomorphic to the complete graph Knp, as desired. Now
suppose that Γ is imprimitive. Clearly, Γ cannot be isomorphic to a cycle because it is a
Cayley graph over Zn ⊕ Zp. Thus k > 3, and it suffices to consider the following three
situations.

Case A. Γ is antipodal but not bipartite.
By [7, pp. 140–141] and Lemma 10, the antipodal quotient Γ of Γ is a primitive

distance-regular Cayley graph over a cyclic group or a group of the form Zn′ ⊕ Zp for
some n′ | n. Then it follows from Theorem 2, Corollary 14 and Lemma 24 that Γ is a
complete graph, a cycle of prime order, a Payley graph of prime order, or the line graph
of a transversal design TD(r, p) with 2 6 r 6 p− 1. If Γ is a cycle of prime order, then Γ
would be a cycle, which is impossible. If Γ is a Payley graph of prime order, by Lemma
11, we also deduce a contradiction. If Γ is the line graph of a transversal design TD(r, p)
with 2 6 r 6 p − 1, then [7, pp. 140–141] implies that d = 4 or 5. By Lemma 23, we
assert that d = 4 and r = 2, and hence Γ is the Hamming graph H(2, p). However, by
Lemma 12, H(2, p) has no distance-regular antipodal covers for p > 2, and we obtain a
contradiction. Therefore, Γ is a complete graph, and so d = 2 or 3. By Lemma 32, d 6= 3,
whence d = 2. Since complete multipartite graphs are the only antipodal distance-regular
graphs with diameter 2, we conclude that Γ is a complete multipartite graph with at least
three parts.

Case B. Γ is antipodal and bipartite.
In this situation, n is even. If d is odd, by [7, pp. 140–141], Γ is primitive. Also,

by Lemma 10, Γ is a distance-regular Cayley graph over a cyclic group or a group of the
form Z′n⊕Zp for some n′ | n. As in Case A, we assert that Γ is a complete graph. Hence,
d = 3. Since Γ is antipodal and bipartite, we obtain Γ ∼= Knp

2
,np
2
− np

2
K2. Moreover, we

assert that n/2 must be odd, i.e., n ≡ 2 (mod 4), since Γ is a Cayley graph over Zn⊕Zp.
Now suppose that d is even. Then [7, pp. 140–141] and Lemma 10 imply that 1

2
Γ is

an antipodal non-bipartite distance-regular Cayley graph over Zn
2
⊕ Zp with diameter

d 1
2

Γ = d/2. Clearly, d 6= 2. By Lemma 33, d 6= 4. Thus d > 6 and d 1
2

Γ = d/2 > 3.
However, this is impossible by Case A.

Case C. Γ is bipartite but not antipodal.
In this situation, n is even. By [7, pp. 140–141] and Lemma 10, 1

2
Γ is a primitive

distance-regular Cayley graph over Zn
2
⊕Zp. As in Case A, 1

2
Γ is a complete graph or the

line graph of a transversal design TD(r, p) with 2 6 r 6 p− 1.
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First suppose that 1
2
Γ is a complete graph. Then we have d = 2 or 3. If d = 2,

then Γ is a complete bipartite graph, which is impossible because Γ is not antipodal. If
d = 3, then Γ is a non-antipodal bipartite distance-regular graph with diameter 3 over
the abelian group Zn ⊕ Zp. By Proposition 26, the dual graph Γ̂ of Γ is an antipodal
non-bipartite distance-regular graph with diameter 3 over Zn ⊕ Zp. However, there are
no such graphs by Lemma 32, and we obtain a contradiction.

Now suppose that 1
2
Γ is the line graph of a transversal design TD(r, p) with 2 6

r 6 p − 1. Then we have µ = 1 by Lemma 25. If there exist two distinct elements
a, b ∈ S such that −a 6= b, then by the bipartiteness of Γ, we have ∂(0, a + b) = 2, and
hence the vertices 0, a, a + b, b form a cycle of length 4 in Γ. This implies that µ > 2,
a contradiction. Thus S = {a,−a} for some a ∈ Zn ⊕ Zp, and we see that Γ is a cycle,
which is also impossible.
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[29] Š. Miklavič and P. Potočnik. Distance-regular circulants. European J. Combin., 24:
777–784, 2003.

the electronic journal of combinatorics 33(1) (2026), #P1.14 30
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