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Abstract

The problem of constructing or characterizing strongly regular Cayley graphs
(or equivalently, regular partial difference sets) has garnered significant attention
over the past half-century. A classic result in this area is the complete classifica-
tion of strongly regular Cayley graphs over cyclic groups, which was established by
Bridges and Mena (1979), independently by Ma (1984), and partially by Marusic
(1989). Miklavi¢ and Potoénik (2003) extended this work by providing a complete
characterization of distance-regular Cayley graphs over cyclic groups through the
method of Schur rings. Building on this, Miklavi¢ and Potoc¢nik (2007) formally
posed the problem of characterizing distance-regular Cayley graphs for arbitrary
classes of groups. Within this framework, abelian groups are of particular signifi-
cance, as many distance-regular graphs with classical parameters are Cayley graphs
over abelian groups. In this paper, we employ Fourier analysis on abelian groups to
establish connections between distance-regular Cayley graphs over abelian groups
and combinatorial objects in finite geometry. By combining these insights with
classical results from finite geometry, we classify all distance-regular Cayley graphs
over the group Z,, & Z,, where n is a positive integer and p is an odd prime.

Mathematics Subject Classifications: 05E30, 05C50, 05C25

1 Introduction

In graph theory, distance-regular graphs form a class of regular graphs with strong com-
binatorial symmetry. A connected graph I' is distance-regular if, for each triple of non-
negative integers ¢, j and k, and for each pair of vertices v and v at distance k in I', the
number of vertices at distance i from u and distance j from v depends only on i, j and k,
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and not on the particular choice of v and v. While this defining condition is purely combi-
natorial, the concept of distance-regular graphs holds fundamental importance in design
theory and coding theory. Furthermore, it exhibits deep connections with diverse math-
ematical disciplines including finite group theory, finite geometry, representation theory
and association schemes [8, 51].

Within the study of distance-regular graphs, the characterization and construction of
graphs with specific types or parameters constitute essential research problems. Cayley
graphs — vertex-transitive graphs defined through groups and their subsets — emerge as
natural candidates for such investigations. This relevance stems from two observations:
most known distance-regular graphs are vertex-transitive [50], and numerous infinite fam-
ilies of strongly regular graphs (the diameter-2 case of distance-regular graphs) arise from
Cayley graph constructions [6, 9, 12, 13, 14, 23, 24, 25, 27, 28, 33, 34, 35, 36, 37, 38, 42, 46].

Let G be a finite group with identity e and let S be an inverse closed subset of G\ {e}.
The Cayley graph Cay(G, S) is defined as the graph with vertex set GG, where two vertices
g and h are adjacent if and only if g7'h € S. The set S is referred to as the connection
set of Cay(G,S). It is well-known that Cay(G, S) is connected if and only if (S) = G,
and that G acts regularly on the vertex set of Cay(G, S) via left multiplication.

In 2007, Miklavi¢ and Potoc¢nik [30] (see also [51, Problem 71]) proposed the problem
of characterizing distance-regular Cayley graphs:

Problem 1. For a class of groups G, determine all distance-regular graphs, which are
Cayley graphs on a group in G.

Early progress on Problem 1 was made by Miklavi¢ and Potoc¢nik [29], who classi-
fied distance-regular Cayley graphs over cyclic groups (known as circulants) using the
framework of Schur rings.

Theorem 2 ([29, Theorem 1.2, Corollary 3.7]). Let I' be a circulant on n vertices. Then
I' is distance-reqular if and only if it is isomorphic to one of the following graphs:

(i) the cycle C,;

(ii) the complete graph K,;

(111) the complete multipartite graph Ky, where tm = n;

(iv) the complete bipartite graph without a perfect matching K, m — mKs, where 2m =n
and m is odd;

(v) the Paley graph P(n), where n =1 (mod 4) is a prime.

In particular, T' is a primitive distance-regular graph if and only if ' =2 K,,, or n is a
prime and I' = C,, or P(n).

Subsequently, Miklavi¢ and Potocnik [30] extended their approach by combining Schur
rings with Fourier analysis to characterize distance-regular Cayley graphs over dihedral
groups through difference sets. Further advancements were achieved by Miklavic and
Sparl [31, 32], who employed elementary group theory and structural analysis to classify
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distance-regular Cayley graphs over abelian groups and generalized dihedral groups under
minimality conditions on their connection sets. Significant contributions include the work
of Abdollahi, van Dam and Jazaeri [1], who classified distance-regular Cayley graphs
of diameter at most 3 with least eigenvalue —2. van Dam and Jazaeri [48, 49] later
determined some distance-regular Cayley graphs with small valency and provided some
characterizations for bipartite distance-regular Cayley graphs with diameter 3 or 4. For
additional results on distance-regular Cayley graphs, including recent developments, we
refer to [17, 18, 19, 53].

Asis well-known, an effective approach for constructing distance-regular Cayley graphs,
particularly strongly regular graphs, involves utilizing Cayley graphs over abelian groups.
For instance, numerous infinite families of strongly regular Cayley graphs over the additive
group of finite fields have been constructed via methods such as cyclotomic classes [13, 12],
Gauss sums with even indices [52], three-valued Gauss periods [35] and p-ary (weakly)
regular bent functions [9, 46, 42]. Furthermore, it is known that several important classes
of distance-regular graphs with classical parameters — such as Hamming graphs, halved
cubes, bilinear forms graphs, alternating forms graphs, Hermitian forms graphs, affine
Es(q) graphs and extended ternary Golay code graphs — are distance-regular Cayley
graphs over abelian groups (cf. [7, p. 194]). However, providing a complete solution to
Problem 1 for general abelian groups remains challenging.

In this paper, we investigate distance-regular Cayley graphs over abelian groups with
small diameters. We establish necessary conditions for their existence, which are closely
connected to finite geometry (see Sections 5 and 6 for details). Moreover, we demonstrate
that these necessary conditions prove particularly useful for the following significant class
of abelian groups.

Problem 3. Let n and m be positive integers with ged(n,m) # 1. Characterize all
distance-regular Cayley graphs over the group Z,, & Z,,.

Thus far, significant progress has been made toward resolving Problem 3. Let n be a
positive integer and let p be an odd prime. In 2005, Leifman and Muzychuck [23] classified
strongly regular Cayley graphs over Z,s & Z,s. Recently, the authors [53] characterized
all distance-regular Cayley graphs over Z,s @ Z, and Z,, & Z,. In this work, we extend
these results by providing a complete classification of distance-regular Cayley graphs over
Ly, & Z,. Of course, Z, & Z, becomes cyclic when p { n. Hence, because of Theorem 2,
we focus exclusively on the case when p | n. Our main result is stated as follows.

Theorem 4. Let p be an odd prime and let I' be a Cayley graph over Z, & Z, with p | n.
Then T is distance-reqular if and only if it is isomorphic to one of the following graphs:
(1) the complete graph K,;

(i1) the complete multipartite graph Ky, with tm = np, which is the complement of the
unton of t copies of K,,;

(111) the complete bipartite graph without a 1-factor Konp np — LKy, wheren =2 (mod 4);

)
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(w) the graph Cay(Z, ® Z,, S) with S = U_, H;\ {(0,0)} for some 2 <r < p—1, where
H; (i=1,...,r) are subgroups of Z, & Z, with order p.

In particular, each graph in (iv) is the line graph of a transversal design T D(r,p), which
is a strongly regular graph with parameters (p*,r(p —1),p + 1% —3r, 7% —r).

Our approach. The proof of Theorem 4 is inspired by the work of Miklavi¢ and Poto¢nik
[30] but requires substantial new ideas. If the graph I" is primitive, then the result follows
immediately from [53, Lemma 3.1] and the theory of Schur rings. The majority of the
work concerns the case where I' is imprimitive. Here, by [7, Theorem 4.2.1], the analy-
sis is divided into three distinct cases: I' is antipodal but not bipartite; I' is antipodal
and bipartite; and I' is bipartite but not antipodal. In each of these cases, we study
the antipodal quotient or the halved graph of I'. This reduction process ultimately leads
to three particularly challenging subcases: (i) I' is an antipodal non-bipartite graph of
diameter 3; (ii) I' is an antipodal bipartite graph of diameter 4; (iii) the halved graph of
I' is isomorphic to the line graph of a transversal design. The core novelty of our proof
lies in the resolution of these three subcases in Lemma 32, Lemma 33 and Lemma 25,
respectively. To handle subcases (i) and (ii) (see Lemmas 32 and 33), we first employ
character equations to derive necessary conditions for distance-regularity. We then de-
velop new computational techniques for Fourier analysis over abelian groups in Sections
5 and 6. Leveraging these computational results, we demonstrate a fundamental connec-
tion between the structure of I' and certain combinatorial objects from finite geometry,
specifically relative difference sets and polynomial addition sets. This connection allows
us to complete the classification for these subcases. For subcase (iii) (see Lemma 25), a
different strategy is required. We translate the graph-theoretic problem into a geometric
one by showing that the existence of such a graph I' implies the existence of a specific
configuration within the Desarguesian affine plane. A detailed geometric argument then
shows that this configuration cannot exist, thus resolving this subcase.

The paper is organized as follows. In Section 2, we review fundamental results on
association schemes and distance-regular graphs. Section 3 presents algebraic charac-
terizations for distance-regular Cayley graphs established by Miklavi¢ and Potoc¢nik. In
Section 4, we introduce key combinatorial objects and classical theorems from finite ge-
ometry. Sections 5 and 6 utilize Fourier analysis on abelian groups to derive necessary
conditions for the existence of distance-regular Cayley graphs over abelian groups with
small diameter. Finally, Section 7 provides a complete proof of Theorem 4.

2 Association schemes and distance-regular graphs

In this section, we introduce some notations and properties related to association schemes
and distance-regular graphs.

2.1 Association schemes

Suppose that X is a finite set and X = (X,R = {Ro, Ry,..., Rq4}) is a commutative
association scheme of class d on X, where R; C X x X is the i-th relation (see [4, Section
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2.2] for the definition). Let Mx(C) be the full matrix algebra of |X| x | X|-matrices over
the complex field C whose rows and columns are indexed by the elements of X. For each
i€{0,1,...,d}, the adjacency matriz A; € Mx(C) of the relation R; is defined as:

1, if (z,y) € R;,

0, if (z,y) ¢ R;.

According to [4, Section 2.2], the matrices A; satisfy the following properties:
(I) Ag = I, where I is the identity matrix of order | X]|;

(IT) Ao+ Ay +---+ Ay = J, where J is the all-ones matrix of order |X]|;
(ITI) for each i € {0,...,d}, there exists some i’ € {0, ...,d} such that AT = A;;
)

(IV) for any i,5 € {0,...,d}, there exist non-negative integers pf; (called intersection
numbers) with 0 < k < d such that 4,4, = ZZ:O pfijAk;

(V) for any ¢,5 € {0,...,d}, we have A;A; = A, A,.

Let 2l be the linear subspace of Mx(C) spanned by the adjacency matrices Ay, A, ..., Ay
of X. By (IV) and (V), 2 is a (d + 1)-dimensional commutative subalgebra of Mx(C)
under the ordinary multiplication. Moreover, by (II), for any i, € {0,1,...,d}, we have

Ajo Ay =0;;A;,

where ‘o’ denotes the Hadamard product, ¢;; = 1 if ¢ = j, and J,; = 0 otherwise.
This implies that 2 is also a commutative subalgebra of Mx(C) under the Hadamard
product. Thus 2 has two algebraic structures, and is called the Bose-Mesner algebra.
It is known that 2 is semisimple, and so there exists a basis of primitive idempotents

Ey = ﬁ(], Ei,...,E; in 2. That is, every matrix in 2 can be expressed as a linear

combination of Ey, E, ..., E;, and it holds that Zf:o E; =1 and E;E; = §;;E; for all
i,j € {0,...,d} (cf. [39, Section 2.3]). This implies the existence of complex numbers
P,(j) € Csuchthat A,E; = P;(j)E; foralli,j € {0,...,d}. Forany fixedi € {0,1,...,d},
the values P;(0), P;(1),..., P;(d) constitute a complete set of the eigenvalues of A; (cf. [5,
p. 58], [39, Section 2.3]), and furthermore,

d
A;=> " Pi(j)E;.
j=0

On the other hand, since 2 is closed under the Hadamard product, for any ¢,7 €
{0,1,...,d}, there exist constants qf;j (0 < k < d) such that

d
1
E,oF; = — kB,
° rmng ¢

The structure constants qZ’»fj (0 <14,7,k < d) of 2 with respect to the Hadamard product
are called the Krein parameters. According to [4, Chapter II, Theorem 3.8|, the Krein
parameters qffj are non-negative real numbers.

ot
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2.2 Schur ring and its duality

Let GG be a finite group and let ZG denote the group algebra of G over the ring of integers
Z. For a subset S C G, let S denote the element )  _¢s of ZG. In particular, if S
contains exactly one element s, we write s instead of S for simplicity. For an integer m
and an element y  _.7,9 € ZG, we define

(m)
(Z rgg> = nggm € ZG.

geG geG

geG

Suppose that { Ny, Ny, ..., Ny} is a partition of G satisfying

(i) No={e};

(i) for any i € {1,...,d}, there exists some j € {1,...,d} such that N;(™" = Nj;

(iii) for any 4,j € {1,...,d}, there exist integers pf; (0 < k < d) such that
k
Ni- Ny =D vl N
k=0

Then the Z-module S(G) spanned by Ny, Vi, ..., Ny is a subalgebra of ZG, and is called
a Schur ring over G. In this situation, the basis {No, Ni,..., Ng} is called the simple
basis of the Schur ring S(G). We say that the Schur ring S(G) is primitive if (N;) = G
for every i € {1,...,d}. In particular, if Ny = {e} and N; = G\ {e}, then the Schur ring
spanned by Ny and N, is called trivial. Clearly, a trivial Schur ring is primitive.

Now suppose that G is an abelian group. For convenience, we express G as

G=2p ©@ZLy, ® D Ly,,

where for each 1 < ¢ < r, n; is a prime power. It is clear that the order of G is the
product |G| = ning - - - n,. We note that every element g € G can be uniquely represented
as a tuple ¢ = (91,92,---,9r), with each ¢g; € Z,, for 1 < i < r. For an element
g=1(91,92,-..,9:) € G, we define x, as the function from G to C by letting

Xg(7) :H(ﬂix", for all x = (21, 29,...,2,) € G, (1)
i=1
where (,, denotes a primitive n;-th root of unity.

Let S(G) = span{No, N1,..., N4} be a Schur ring over the abelian group G. For
any i € {0,1,...,d}, we denote by R; = {(g9,h) | h'g € N;}. Then X = (G,R =
{Ro, Ry, ..., R4}) is a commutative association scheme of class d on G (cf. [4, p. 105]).
Moreover, if N; is inverse closed for each i € {0,1,...,d}, then X is a symmetric associ-
ation scheme (see (cf. [4, Section 2.2]) for the definition). The intersection numbers and
Krein parameters of X are also called the intersection numbers and Krein parameters of
S(G), respectively. We have the following classic results about Schur rings over abelian
groups.
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Lemma 5 ([40, Theorem 3.4]). Let G be an abelian group of composite order with at least
one cyclic Sylow subgroup. Then there is no non-trivial primitive Schur ring over G.

Lemma 6 (][22, Kochendorfer’s theorem|). Let p be a prime and let a, b be positive integers
with a # b. Then there is no non-trivial primitive Schur ring over Zya @ Zy.

Lemma 7 ([4, Chapter II, Theorem 6.3]). Let G be an abelian group and let S(G) =
span{No, N1, ..., Na} be a Schur ring over G. Let R be the equivalence relation on G
defined by gRh if and only if X4(N;) = xn(N:) for alli € {0,1,...,d}. If By, Ey, ..., E
are the equivalence classes of G with respect to R, then f = d and the Z-submodule
S(G) = span{Ey, B, ..., Eq} of ZG is a Schur ring over G with intersection numbers
qf’j, where qf’j (0 < i,j5,k < d) are the Krein parameters of S(G).

The Schur ring S(G) defined in Lemma 7 is called the dual of S(G). Note that Lemma
7 implies that the Krein parameters of S(G) are integers.

2.3 Distance-regular graphs

Let I be a connected graph with vertex set V(I') and edge set E(I"). The distance Or(z,y)
between two vertices x,y of I' is the length of a shortest path connecting them in I', and
the diameter dr of ' is the maximum value of the distances between vertices of I'. For
x € V(I), let SF(x) denote the set of vertices at distance i from z in I'. In particular,
we denote S'(z) = S (z). When T is clear from the context, we use d(x,vy), d, S;(z)
and S(r) instead of dr(x,y), dr, Si(x) and ST(x), respectively. For x,y € V(I') with
O(z,y) =1 (0 <1< d), let

ci(z,y) = 1Sica(x) NS, ai(z,y) = [Si(z) N S(Y)|, bi(x,y) = |Sita(z) N S(y)l.

Here co(z,y) = ba(x,y) = 0. The graph I' is called distance-reqular if ¢;(z,y), b;(x,y) and
a;(x,y) only depend on the distance i between z and y but not on the choice of x,y.

For a distance-regular graph I' with diameter d, we denote ¢; = ¢;(z,y), a; = a;(x,y)
and b, = b;(x,y), where x,y € V(I') and d(z,y) = i. Note that ¢g = by = 0, ag = 0
and ¢; = 1. Also, we set k; = |5;(x)|, where z € V(T'). Clearly, k; is independent of the
choice of x. By definition, I' is a regular graph with valency k = by, and a; + b; +¢; = k
for 0 < i < d. The array {bg, b1, ...,bg_1;C1,Ca,...,cq} is called the intersection array of
I'. In particular, A = a; is the number of common neighbors of two adjacent vertices in
I' and 4 = ¢o is the number of common neighbors of two vertices at distance 2 in I'. A
distance-regular graph on n vertices with valency k and diameter 2 is called a strongly
reqular graph with parameters (n, k, A\ = ay, t = ¢3).

Suppose that I' is a distance-regular graph of diameter d with vertex set X = V()
and edge set R = FE(I"). For 0 < i < d, we define

Then X = (X,R = {Ry, R1,...,Rq}) is a symmetric (necessarily commutative) associ-
ation scheme of class d on X (cf. [4, Section 2.2, Section 3.1]). In this context, the
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intersection numbers pﬁ ; and Krein parameters qzlfj of X are also called the intersection
numbers and Krein parameters of I', respectively. Note that pj, , = b;, p1; = a; and
Pii1 = ¢ for 0 <i < d. Additionally, for i,j,k € {0,1,...,d}, if p}; # 0 then k < i+ j,
and moreover, pZJ;] # 0 (cf. [4, Section 3.1]).

A symmetric association scheme together with an ordering of relations is called P-
polynomial ifpﬁj # 0 implies k < i+j for all 4, j, k € {0,1,...,d}, and also pi? = 0 for all
i,7 €40,1,...,d} (cf. [7, Section 2.7]). By definition, the symmetric association scheme
derived from a distance-regular graph is P-polynomial. Conversely, every P-polynomial
association scheme is derived from a distance-regular graph. Therefore, a distance-regular
graph is equivalent to a P-polynomial association scheme.

Lemma 8 ([7, Proposition 2.7.1]). Let X = (X,R) be a symmetric association scheme
with an ordering of relations Ry, Ry, . .., Ry. Then X is P-polynomial if and only if (X, Ry)
1s a distance-reqular graph.

Analogously, a symmetric association scheme together with an ordering of primitive
idempotents is called Q-polynomial if qf’j # 0 implies k < i+ for all 4, j, k € {0,1,...,d},
and also qf]” # 0 for all 7,5 € {0,1,...,d} (cf. [7, Section 2.7]). In particular, we say
that a distance-regular graph is Q-polynomial if the symmetric association scheme derived
from it is -polynomial.

A P-polynomial (resp. @-polynomial) association scheme is called bipartite (resp. Q-
bipartite) if pf’j = 0 (resp. qﬁj = 0) whenever ¢ + j + k is odd. A P-polynomial (resp.
@-polynomial) association scheme is called antipodal (resp. @Q-antipodal) if p’fl’ 4 = 0 (resp.
¢ 4 = 0) whenever k ¢ {0, d}.

Lemma 9 ([7, p. 241]). Let T be a Q-polynomial distance-reqular graph. Then T' is
bipartite (resp. antipodal) if and only if T is Q-antipodal (resp. Q-bipartite), that is, the
symmetric association scheme derived from I is Q-antipodal (resp. Q-bipartite).

2.4 Primitivity of distance-regular graphs

Let I be a graph and let B = {By,..., B¢} be a partition of V(I') (here B; are called
blocks). The quotient graph of I" with respect to B, denoted by I's, is the graph with
vertex set B, and with B;, B; (i # j) adjacent if and only if there exists at least one edge
between B; and B; in I'. Moreover, we say that B is an equitable partition of I' if there
are integers b; ; (1 < 4,5 < £) such that every vertex in B; has exactly b; ; neighbors in
B;j. In particular, if every block of B is an independent set, and between any two blocks
there are either no edges or there is a perfect matching, then B is an equitable partition
of I'. In this situation, I' is called a cover of its quotient graph I's, and the blocks are
called fibres. If I'g is connected, then all fibres have the same size, say r, which is called
the covering index [21].

A graph I" with diameter d is antipodal if the relation R on V(I') defined by 2Ry <
O(z,y) € {0,d} is an equivalence relation. Under this equivalence relation, the corre-
sponding equivalence classes are called antipodal classes. A cover of index r, in which
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the fibres are antipodal classes, is called an r-fold antipodal cover of its quotient. In
particular, if I' is an antipodal distance-regular graph with diameter d, then all antipodal
classes have the same size, say r, and form an equitable partition B* of I' (cf. [30, Section
2.2]). In this case, we define the antipodal quotient of I' as the quotient graph I' := I's-.
If d = 2, then I' is a complete multipartite graph. If d > 3, then the edges between two
distinct antipodal classes of T form an empty set or a perfect matching (cf. [30, Section
2.2]). Thus I is an 7-fold antipodal cover of I with the antipodal classes as its fibres.
Moreover, it is known that a distance-regular graph I' with diameter d is antipodal if and
only if b; = cq_; for every i # 4] (cf. [7, Proposition 4.2.2]).

Let I be a distance-regular graph with diameter d. Fori € {1,...,d}, the i-th distance
graph T'; is the graph with vertex set V(I') in which two distinct vertices are adjacent if
and only if they are at distance ¢ in I'. If, for each 1 < ¢ < d, I'; is connected, then
[ is primitive. Otherwise, I' is imprimitive. It is known that an imprimitive distance-
regular graph with valency at least 3 is either bipartite, antipodal, or both (cf. [7, Theorem
4.2.1]). Moreover, if I" is bipartite, then I's has two connected components (not necessarily
isomorphic), which are called the halved graphs of T' and denoted by I't and I'". For
convenience, we assume that %F is one of these two graphs.

For distance-regular Cayley graphs over abelian groups, we have the following result
about antipodal quotients and halved graphs.

Lemma 10. Let G be an abelian group and let T' be a distance-reqular Cayley graph over
G. Then the following two statements hold.

(i) If T is antipodal and H is the antipodal class containing the identity vertez e, then
H is a subgroup of G, and I is distance-regular and isomorphic to Cay(G/H,S/H),
where S/H = {sH | s € S};

(i1) If T is bipartite and H is the bipartition set containing the identity vertex e, then
H is an index 2 subgroup of G, and the halved graphs of I' are distance-reqular and
isomorphic to Cay(H, Ss(e)).

Proof. (i) By [7, pp. 140-141], T is distance-regular. Thus it suffices to prove that H is a
subgroup of G and that I = Cay(G/H, S/H). Since I' is antipodal, the relation R on V (I')
defined by 2Ry < 0(z,y) € {0,d} & d(y~'z,e) € {0,d} & y~'z € H is an equivalence
relation. For any hy, hy € H, we have hyRe and eRhso, and hence hiyRhs, or equivalently,
hy*hy € H. Thus H is a subgroup of GG, and the antipodal classes of I' coincide with the
cosets of H in G. For any two vertices #H and yH of T, we have that oH and yH are
adjacent if and only if there exists some edge between xH and yH in I', which is the case
if and only if there exist some hy, hy € H such that (zhy) *yhs € S, which is the case if
and only if (vH) 'yH € S/H. Therefore, we conclude that T' & Cay(G/H,S/H), and
the result follows.

(ii) By [7, pp. 140-141], the halved graphs I'* and '~ are distance-regular. Suppose
that V/(I'") = H. In a similar way as in (i), we can prove that H is an index 2 subgroup
of G. Thus it remains to show that T't = I'" = Cay(H, Sa(e)). For any two vertices
x,y € V(I'") = H, we have that z,y are adjacent if and only if d(x,y) = 2, which is the
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case if and only if d(e,z7'y) = 2, or equivalently, z7'y € Sy(e). Therefore, we conclude
that I'" = Cay(H, Ss(e)). Furthermore, as I' is vertex-transitive, we have I'” 2 ' and
the result follows. []

Let F, denote the finite field of order ¢ where ¢ is a prime power and ¢ = 1 (mod 4).
The Paley graph P(q) is defined as the graph with vertex set F, in which two distinct
vertices u, v are adjacent if and only if v — v is a square in the multiplicative group of
F,. It is known that P(q) is a strongly regular graph with parameters (¢, (¢ —1)/2, (¢ —

5)/4, (¢ —1)/4) [11].

Lemma 11 ([7, p. 180]). Let I" be a Paley graph. Then I' has no distance-regular r-fold
antipodal covers for r > 1, except for the pentagon Cs = P(5), which is covered by the
decagon Cyy. Moreover, I' cannot be a halved graph of a bipartite distance-reqular graph.

The Hamming graph H(n,q) is the graph having as vertex set the collection of all
n-tuples with entries in a fixed set of size ¢, where two n-tuples are adjacent when they
differ in only one coordinate. Note that H(2,v) is just the lattice graph K,0K,, which
is the Cartesian product of two copies of K.

Lemma 12 ([47, Proposition 5.1)). Let n,q > 2. Then H(n,q) has no distance-regular
r-fold antipodal covers for r > 1, except for H(2,2).

3 The algebraic characterizations of distance-regular Cayley
graphs

In this section, we present several algebraic characterizations for distance-regular Cayley
graphs, which were established by Miklavi¢ and Potoc¢nik in [29, 30].

3.1 Schur ring and distance-regular Cayley graphs

Let T' = Cay(G, S) be a connected Cayley graph with diameter d. For i € {0,1,...,d},
we denote by S; := S;(e). The Z-submodule of ZG spanned by Sy, Si,. .., Sq is called the
distance module of T', and is denoted by Dz(G, S).

In [29], Miklavi¢ and Poto¢nik provided an algebraic characterization for distance-
regular Cayley graphs in terms of Schur rings and distance modules.

Lemma 13 ([29, Proposition 3.6]). Let I' = Cay(G, S) be a distance-reqular Cayley graph
and let D = Dy (G, S) denote the distance module of I'. Then:

(1) D is a (primitive) Schur ring over G if and only if I is a (primitive) distance-reqular
graph;

(i) D is the trivial Schur ring over G if and only if I is isomorphic to the complete
graph.
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Let n > 1 and let p be a prime such that p # n. If I' is a primitive distance-regular
Cayley graph over Z,, & Z,, then its distance module is a primitive Schur ring over Z,, & 7Z,
by Lemma 13 (i), and hence must be the trivial Schur ring by Lemma 5 and Lemma 6.
Therefore, by Lemma 13 (ii), we obtain the following result.

Corollary 14. Let n > 1 and let p be a prime such that p # n. If T' is a primitive
distance-reqular Cayley graph over Z, ® Z,, then I' is isomorphic to the complete graph
K.

As every Cayley graph is vertex-transitive, by the definitions of Cayley graphs and
distance-regular graphs, we immediately deduce the following characterization for
distance-regular Cayley graphs.

Lemma 15. Let I' = Cay(G, S) be a Cayley graph with diameter d. Then ' is distance-
reqular with intersection array {by,b1,...,b4_1;c1,C2,...,cq} if and only if

S1-81 = b - e+ a151 + 25,

Sz 81 = 0151 + az8 + ¢35, @
2

Sq+S1=0b4-154-1 + agSa.

Since e + S1 + Sy + -+ + 54 = G, we see that the conclusion of Lemma 15 still holds
if we remove an arbitrary equation from (2). Recall that a distance-regular graph with
diameter d is antipodal if and only if b; = c4_; for every i # [£]. Additionally, the
intersection array of an r-antipodal distance-regular graph with diameter 3 must be of
the form {k,k — A —1 = pu(r — 1),1;1, 4, k}. Thus, by Lemma 15, we can deduce the
following result immediately.

Corollary 16. Let ' = Cay(G,S) be a Cayley graph with diameter 3. Then T" is an
antipodal distance-regular graph with intersection array {k,k—A—1= p(r—1),1;1, u, k}
if and only if

S?=k-e+ (A= p)S+ (G — S — o).
(Sate)-(S+e)=G.
3.2 Distance-regular Cayley graphs over abelian groups

Let G be a finite abelian group and let C* be the multiplicative group of the complex field
C. A character of G is a group homomorphism x from G to C*. It is known that the set
of all characters of G is given by (cf. [44, Sections 4.4-4.5])

where x, is the function defined in (1).
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Let CG denote the group algebra of G over C. For any IC = deG ag-g € CG and x €

G, we denote by aq(K) == a4 the coefficient of g in K, and define x(K) = 3_ . a4(K)x(9)-
Then the Fourier inversion formula (cf. [44, Theorem 5.3.6]) establishes that

0, (K) = ‘g' S0 () - xalg™). (3)

heG

For any K, L € CG, it follows from the Fourier inversion formula (3) that
K = L if and only if x,(K) = x,(£) for all g € G.

Combining this with Lemma 15, we obtain the following characterization for distance-
regular Cayley graphs over abelian groups.

Lemma 17. Let G be an abelian group and let I' = Cay(G, S) be a Cayley graph with di-
ameter d. Then T is distance-reqular with intersection array {bo, b1, ..., bg_1;c1,¢Ca, ..., Cq}
if and only if for every g € G, the following system of equations holds:

Xg(51) - Xg(51) = o + a1xg(S1) + c2xg(52),
Xg(92) - Xg(S1) = bixy (1) + azxg(S2) + eaxy (),

Xg(Sa) - Xg(51) = ba-1Xg(Sa-1) + aaxy(Sa)-

Let T' = Cay(G, S) be a Cayley graph over the abelian group G. According to [3], the
eigenvalues of I' = Cay(G, S) are given by

Xg(S) = ng(s), for all g € G.

seS

Suppose further that I' is distance-regular and has diameter d. Then I' has exactly
d + 1 distinct eigenvalues, denoted as 6y > 6; > --- > 0,;. Let 2 be the Bose-Mesner
algebra corresponding to the symmetric association scheme derived from I' and let Ey =
ﬁJ, Ey, ..., E4 be the primitive idempotents of 2 such that A(I')E; = A E; = 6, E; for all
i€{0,1,...,d}. We denote by §Z ={g € G| xy(S)=10;}. Clearly, there is a one-to-one
correspondence between S, and E;. Let 7 be a permutation on {0,1,...,d} that fixes
0. We say that I" has a Q-polynomial ordering §T(0)7 §T(1), e ,S’\T(d) if it is ()-polynomial
with respect to the ordering of primitive idempotents E- (), K-, - - ., Er ).

Lemma 18. Let G be an abelian group and let I' = Cay(G, S) be a distance-reqular Cayley
graph with_diameter d over G. Let 6y > 61 > --- > 6y be all the distinct eigenvalues of
I'and let S; = {g € G | x4(8) = 6;} for 0 < i < d. IfT has a Q-polynomial ordering
§T(0), §T(1), cee §T(d), where T is a permutation on the set {0,1,...,d} that fizes 0, then the
Cayley graph [ = Cay (G, §T(1)) 18 a distance-reqular graph of diameter d with intersection
numbers qﬁj, where qﬁfj are the Krein parameters of I'.
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Proof. By Lemma 13, S(G) = span{Sy, Si,...,Sa} is a Schur ring over G. Note that
§,~ is inverse closed for all i € {0,1,...,d}. For any g,h € G, we have g,h € §, if and
only if x,(S) = xn(S) = 0;, which is the case if and only if x,(S;) = xn(5;) for all j €
{0,1,...,d} by Lemma 17. Then Lemma 7 indicates that g(G) = span{go, §1, - ,§d}
is a Schur ring over G with intersection numbers qﬁ ;- Since I' has a @)-polynomial order-

ing :9\7(0), §T(1), ey §T(d), we claim that the (symmetric) association scheme derived from
the Schur ring S(G) is P-polynomial with an ordering of relations Sr(y, S-1; - - -, Sra)-
Therefore, by Lemma 8, the Cayley graph I' = Cay(G, S;1)) is a distance-regular graph

of diameter d with intersection numbers qﬁfj. O]

The Cayley graph I = Cay(G, §T(1)) in Lemma 18 is called the dual graph of the
@-polynomial distance-regular graph I' = Cay(G, S).

A graph is called integral if all its eigenvalues are integers. Let Fg be the set of all
subgroups of G. The Boolean algebra B(F¢) is the set whose elements are obtained by
arbitrary finite intersections, unions and complements of the elements in F5. The minimal
non-empty elements of B(F¢) are called atoms. It is known that each element of B(F¢) is
the union of some atoms, and the atoms for B(F¢) are the sets [g] = {z € G | (z) = (9)},
g € G (see [2]). The following lemma provides a characterization for integral Cayley
graphs over abelian groups.

Lemma 19 ([2]). Let G be an abelian group and let S be an inverse closed subset of G
with e ¢ S. Then the Cayley graph Cay(G,S) is integral if and only if S € B(Fg).

4 Finite geometry

In this section, we introduce some classic results in finite geometry, which play a key role
in the proof of our main result.

Let G be a finite group and let N be a proper subgroup of G with order |N| = r
and index [G : N] = m. A k-subset D of G is called an (m,r, k, u)-relative difference set
relative to N (the forbidden subgroup) if and only if

D-DY =k.e+pu-G\N.

Lemma 20 ([41, Theorem 4.1.1]). Let D be a (nm,n,nm,m)-relative difference set rel-
ative to N in an abelian group G. Let g be an element in G. Then the order of g divides
nm, orn=2 m=1and G =7Z,.

A subset D of G is called a polynomial addition set if there exists a polynomial f(z) €
Z|z] with degree deg f > 1 such that f(D) = mG for some integer m. In this context, we
also describe D as a (v, k, f(z))-polynomial addition set, where |G| = v and |D| = k. If
G is cyclic, then D is called a (v, k, f(x))-cyclic polynomial addition set.

Lemma 21 ([26, Corollary 5.4.5]). There is no (v, k,x™ — b)-cyclic polynomial addition
setwithl <k<wv—1andn > 1.

THE ELECTRONIC JOURNAL OF COMBINATORICS 33(1) (2026), #P1.14 13



The proof of Lemma 21 relies on the following crucial lemma from [26], which is also
useful in the proof of our main result.

Lemma 22 ([43, Lemma 1.5.1], [26, Lemma 3.2.3]). Let p be a prime and let G be an
abelian group with a cyclic Sylow p-subgroup S. If Y € ZG satisfies x(Y) = 0 (mod p)
for all characters x € G of order divisible by |S|, then there exist X1, Xy € ZG such that
Y = p*X 1+ P- X5, where P is the unique subgroup of order p of G. Furthermore, if Y has
non-negative coefficients only, then Xy and Xs also can be chosen to have non-negative
coefficients only.

A transversal design T'D(r,v) of order v with line size r (r < v) is a triple (P, G, L)
such that (see [15])

(i) P is a set of rv elements (called points);

(ii) G is a partition of P into r classes, each of size v (called groups);

)

)

(iii) L is a collection of subsets of P (called lines);

(iv) |[GNL| =1 for every G € G and every L € L;
)

(v) every unordered pair of points from distinct groups is contained in exactly one line.

It follows immediately that |L| = r for every L € L, and |£| = v*. The line graph of

a transversal design T'D(r,v) is the graph with lines as vertices and two of them being
adjacent whenever there is a point incident to both lines. It is known that the line
graph I' of a transversal design T'D(r,v) is a strongly regular graph with parameters
(v, r(v — 1),0+ 7% = 3r,r> —r) (cf. [20, p. 122]), and so has exactly three distinct
eigenvalues, namely r(v — 1), v —r and —r. For r = 2, I is the lattice graph K,[JK,, and
for r = v, I' is the complete multipartite graph K,,.

The following lemma provides certain restrictions for the antipodal cover of the line
graph of a transversal design T'D(r,v) with r < v.

Lemma 23 ([21, Proposition 2.4]). An antipodal cover of the line graph of a transversal
design T'D(r,v), r < v, has diameter four when r = 2 and diameter three otherwise.

Let p be an odd prime. In [53], it was shown that every distance-regular Cayley graph
over Z, ® Z, is the line graph of a transversal design.

Lemma 24 ([53, Lemma 3.1]). Let p be an odd prime and let I' = Cay(Z, & Z,, S) be a
Cayley graph over Z,®Z,. ThenT is distance-regular if and only if S = Uj_H;\{(0,0)},
where 2 < r <p+1, and H; (i =1,...,1) are subgroups of order p in Z, & Z,. In this
situation, I' is isomorphic to the line graph of a transversal design T'D(r,p) when r < p,
and to a complete graph when r = p + 1. In particular, T is primitive if and only if
2<r<p—1orr=p+1, and " is imprimitive if and only if r = p, in which case I' is

the complete multipartite graph Kpx,.
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A cligue in a graph I' is a subgraph in which every pair of vertices are adjacent. A
mazimal clique is a clique that cannot be extended by including an additional vertex that
is adjacent to all its vertices. The clique number of T' is the cardinality of a clique of
maximum size in I'.

Let p be an odd prime and let [F,, denote the finite field of order p. It is known that
the Desarguesian affine plane AG(2,p) can be identified with F2. Let U = {(a;,b;) | 1 <
j < £} be an f-subset of IFIQ). We define

b; — by

a; — ag

Dir(U):{ |1<j7ék;<€}.
Then the elements of Dir(U) are called the directions determined by U. Let W be a
subset of AG(2,p) with 1 < |W| < p. According to [45, Theorem 5.2], the set W is either
contained in a line, or satisfies the inequality

W|+3

[Dir(W)] > . (4)

Note that Z, ® Z, coincides with IF> as sets. For any subset B of Z, ® Z, with (0,0) € B,
we see that B is contained in a line if and only if B is contained in some subgroup of order
p in Z, ® Z,. Moreover, if K; and K, are two distinct subgroups of order p in Z, @ Z,,
then Dir(K7) # Dir(Ks).

Lemma 25. Let p be an odd prime. Suppose that I = Cay(Z,® Z,, S) with S = U[_H; \
{(0,0)}, where 2 <r<p—1, and H; (i =1,...,r) are subgroups of order p in Z, ® Z,.
Then the following statements hold.

(i) The clique number of T is equal to p.
(i1) If C is clique of I' that is not contained in any line, then |C| < 2r — 3.

(i5i) If T is the halved graph of a bipartite distance-reqular graph I, then the number of
common neighbors of two vertices at distance 2 in I is exactly one.

Proof. (i) Clearly, H; is a clique of order p in I'. Since I' has eigenvalues r(p — 1), p — r
and —r, the Delsarte bound (cf. [10, Section 3.3.2]) implies that the clique number of T’
is at most 1 — T(’i—;l) = p. Therefore, the clique number of I' is exactly p.

(ii) Since any two vertices in C' are adjacent, we assert that the directions determined
by C' are contained in the set {Dir(H;) | 1 <4 < r}, and hence r > |Dir(C)|. As C is not
contained in any line, from (4) we obtain Dir(C') > (|C| + 3)/2. Therefore, |C| < 2r — 3.

(iii) Suppose that I" is the halved graph of a bipartite distance-regular graph I''. Let k
denote the valency of IV and let y denote the number of common neighbors of two vertices
at distance 2 in I". By contradiction, assume that g > 2. By [7, Proposition 4.2.2], we
have

k*—k

0

=rp—1). ()
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For any v € V(I), let S(v) be the neighborhood of v in I". By [16, Lemma 2], S(v) is a
maximal clique in I'" or TV~. Clearly, the maximal cliques S(v) for v € V(I') must cover
["* and T"~. Thus there exists some vertex v € V(I") such that C' := S(v) is a maximal
clique in I' containing the vertex (0,0). According to (i), the clique number of I" is p, and
k =1S()| = |C|] < p. Thus we have ru < p by (5). If C is contained in a line, then
k = |C| = p because C' is a maximal clique. By (5), we have ru = p, and so r = 1 or
p, contrary to our assumption. If C'is not contained in any line, then (ii) indicates that
k =|C|] < 2r — 3 < 2r. Combining this with (5) and p > 2, we obtain 2r > p, which is
impossible because p > ur > 2r. O

5 Imprimitive distance-regular Cayley graphs with diameter
three over abelian groups

In this section, we present some properties of imprimitive distance-regular Cayley graphs
with diameter 3 over abelian groups.

It is known that an antipodal bipartite distance-regular graph with diameter 3 is
a complete bipartite graph without a perfect matching. Also, by [7, Corollary 8.2.2],
every non-antipodal bipartite distance-regular graph with diameter 3 is (J-polynomial.
Therefore, by Lemma 9 and Lemma 18, we can deduce the following result immediately.

Proposition 26. Let G be an abelian group. If I' is a non-antipodal bipartite distance-
reqular Cayley graph with diameter 3 over G, then its dual graph I' is an antipodal non-
bipartite distance-reqular Cayley graph with diameter 3 over G.

By Proposition 26 and the above arguments, in order to study distance-regular Cayley
graphs with diameter 3 over abelian groups, the primary task is to consider those that
are antipodal and non-bipartite.

For the sake of convenience, we maintain the following notation throughout the re-
mainder of this paper.

Notation. Let G and H be finite abelian groups under addition and let G & H denote
the direct product of G and H. For subsets A C G, B C H and elements g € G, h € H,
we define g+ A={g+a|a€ A}, (9,B) ={(g9,b) | b € B}, (A,h) = {(a,h) | a € A},
and (A, B) = {(a,b) |a € A,be B}. lf I' = Cay(G® H, S) is a Cayley graph over G & H,

then the connection set S can be expressed as
S = UhEH(Rh7 h) = UgEG(.gv Lg)v

where Rj, is a subset of G such that Og € Ry, and R, = —R_; for all h € H, and L,
is a subset of H such that Oy ¢ Lo, and L, = —L_, for all ¢ € G. Let R = Upep R,
and L = UgegL,. Furthermore, if I' is distance-regular, then we denote by k, A, © and
d the valency, the number of common neighbors of two adjacent vertices, the number of
common neighbors of two vertices at distance 2 and the diameter of ', respectively.
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Recall that the set of characters of G @& H can be represented as GoH = {(x,¥) |

Y eG e f[} where the pair (y, ) is defined such that (x,v)((g,h)) = x(g)¥(h) for
every ( h) € G® H (cf. [44, Proposition 4.5.1]).

Lemma 27. Let G and H be finite abelian groups under addition and let S = Upey(Rp, h)
= Ugec (g, Ly) be a subset of G & H, where R, C G for all h € H and L, C H for all

g € G. Then
X(R
OH ’H’ Z Xa
wGH

for every x € @, and

OG |G| Z Xa

xeG

for every ¢ € H.

Proof. By symmetry, we only need to prove the first part of the lemma. Note that

S o {|H| if b= Op;

e , otherwise.
€

For every x € @, we have

D 6U)S) =) () <Z (B, h ) = (Zx (Bn)v )

wef] 1#6?[ heH 1,[J€H heH
=> (D ¢(h) | x(Ru) = |H| - x(Roy),
heH \qyef
and the result follows. O

Proposition 28. Let G be an abelian group and let I' be an antipodal non-bipartite
distance-regular Cayley graph with diameter 3 over G. Let r be the common size of
antipodal classes of I'. If r is a prime, then G = M & Z, for some abelian group M of
order |G|/r, and T is isomorphic to a Cayley graph over M & Z, in which the antipodal
class containing the identity vertezx is So U S3 = (0pr, Z,).

Proof. Since r is a prime divisor of |G|, we can express G as
G:K@erl @ZTSZ @"'@ert7

where s1 > s > -+ > s, and r 1 |K|. Let H denote the antipodal class of G containing
the identity vertex, that is, H = Sy U S3. Since |H| = r is a prime and K contains no
elements of order r, we claim that every element of S; is of the form (Ok,ay,...,a;) with
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a; € Zyps; and r*71 | a; for 1 < i < t. Thus there exists some | € {1,...,¢} such that
b= (0g,by,...,00 = ro~ 1,0,..., )633W1th7“51*1|b for 1 <i <L ThenH:(b)
because |H| = r is a prime. Let o be the mapping on G defined by letting

by , bi—1 . . :
o((kyit, ... i) = </f 21_7«31 1%---721—1—mlml,m;lt

for all (k,i1,...,4;) € G =K ® Zysi @ Lypsz ® -+ + & Zys,. Clearly, o is an automorphism
of G, and o(b) = (0g,0,...,0,7%710,...,0). Then G 2 M & Z,,, where m = r® and
M=Ko® (&, #ersi), and ' is isomorphic to a Cayley graph over M & Z,, in which
the antipodal class containing the identity vertex is So U S3 = (Oar, **Zy,). Therefore, it
suffices to prove m = r. We consider the following three cases.

Case A. r = 2.

In this situation, S3 = {(Oa,%)}. Assume that 4 | m. If (0, %) € Sp, then
(Oar, =) = (Oar, ) 4 (0ar, 3) € S2, which is impossible due to (0pr, —7%) € =51 = Si.
If (Oar,§) € Sa, then (Oay, 4) and (0p, %) are adjacent, and hence (0y, 4) (Oar, ) —
(Oar, ) € S1, a contradiction. Thus we have (0az, §) ¢ S1 U S2 U Ss, which is impossible.
Therefore we conclude that m = 2 = r, as desired.

Case B.r # 2 and A = p.
By [7, p. 431], we have ™ | | —1 =k =1+ru, and hence ™ ‘ =2 (mod r). Asr #2,
we assert that m = r, as requ1red

Case C. r # 2 and \ # p.
In this case, by [7, p. 431] I is integral, and so (x, ¥)(S) € Z for all (x,¢) € M & Z,,.
By Lemma 27, for any ¢ € Zm, we have

wLOM |M| Z X? 7

xEM

and hence ¥(Ly,,) € Z because it is an algebraic integer. Note that {i(Lo,,) | ¥ € i;}
gives a complete set of eigenvalues of the Cayley graph Cay(Z,,, Ly,,). Hence, by Lemma
19, Ly,, is a union of some atoms for B(Fz,,). On the other hand, by Corollary 16,

(Os1, - Zin) - SU {001, 0)} = M &,

and it follows that
m

(0M7 LOM U {O}) : (OM’ 7Zm) = (OM>Zm)7

or equivalently,
m
LOM U {O} ) 7Zm = Z_m

This implies that Lg,, U {0} contains exactly one element from each coset of ™Z,, in Z,.
Then there exists an element a € Ly,, such that (14+-%Z,,)NLo,, = {a}. If 14+2Z,, C Z;,,
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then a € Z,. Since Ly,, is a union of some atoms for B(Fz,,) and Z}, is exactly an atom,
we assert that 14 "Z,, C Z;, C Lg,,. Thus 1 + ™Z,, = {a}, and it follows that m = r,
as desired. If 1+ ™Z,, € Zj,, then there exists some i € Z,, such that 1+ & Z7 .
Combining this with ged(1 + %, ™) = 1, we obtain gcd(1 + 4", m) = r, which gives that
m = r because m is a power of r. The result follows. n

Proposition 29. Let G be an abelian group and let p be a prime. Assume that I' =
Cay(G ®Z,, S) is an antipodal non-bipartite distance-reqular Cayley graph with diameter
3 in which the antipodal class containing the identity vertex is So U Ss = (0¢,Z,). Let
k>0, > —1 > 03 be all distinct eigenvalues of I' and 20 = 0, — 03. Then the following
statements hold.

(i) The sets R;, for i € Z,, form a partition of G \ {0¢g}.

(i) If p > 2, then & 25 , 01 and —03 are positive integers. Moreover, for every non-trivial

character ¢ € Zp, the set B ={g € G| (x4, ¢)(S) =61} is a (|G|, ‘G|93, (‘C?;)—
polynomial addition set such that

XiB) === | D v(i)ai(R) — b5-a_(0g) | foralll € G.

(i11) If p = 2, then there exists a strongly regular Cayley graph over G with parameters
(1G], ‘glﬁ, 1907 — 1), 15192 — 1)), where 6 = 0, or —6;.

Proof. (i) By Corollary 16, we have

GEBZP: (Oszp)' Z(Rivi)—i_e = Z(R%Zp)—i_(onzp)'

€Ty i€Zyp

Therefore, the sets R; (i € Z,) form a partition of G\ {0¢}.
(ii) Again by Corollary 16,

St = ket (A= p)S + (G B Zy— (06, %)), (6)

Let ¢ € Z; be a non-trivial character of Z,. We have ¢(Z,) = 0. For any g € G, let

Xg € @ be the character of G defined in (1). Then (Xxg,®) is a non-trivial character of
@p, and so ()@ﬂﬁ)(@p) = xg(GQ) - ¥(Zy) = 0. By applying (xg, %) on both sides
of (6), we obtain

(o ¥)(9))* =k + (X = 1) (xg, ¥)(S),

which implies that (x,,¥)(S) = 61 or 85 for all g € G according to [7, p. 431]. Then

S (0, 0)(S) - g = 0B + 66\ B =26B + 6:G.

geG

THE ELECTRONIC JOURNAL OF COMBINATORICS 33(1) (2026), #P1.14 19



Since S = },c; (R, 1), we have

26B+0;G =) | Y eli)xy(Ra) | g- (7)

geG \i€Zyp

Let | € G. By applying the character x; € G on both sides of (7), we get

20x1(B) + O3xu(G Z Zl/) Dxg(2) | xaly Z Zl/) xg(Bi) | Xg(1)

geG \i€Zy geG \i€Z, (8)
= (i) (ng(&) ) 3" (i) - [Glai(R),
1€ 2y geG i€Zy

where the last equality follows from the Fourier inversion formula (3). Note that x;(G) =
|G| if I = 0g, and x;(G) = 0 otherwise. By (8), we obtain

_lal :
x(B) =5 ZZ (i)ai(Br) — b5 as(0c) | | (9)
and it follows that |B| = |G|93 > 0. Recall that the sets R;, for i € Z,, form a partition

of G\ {0¢}. Then from (9) we can deduce that

B = (B = o | 3 el + (=60 a(0e)

i€Z,

— (|chs|;p (14 ((—03)P — 1) - a—(0c)) -

Using the Fourier inversion formula (3), we get

B = (0 = 1)+ 161 00) (10)

By [7, p. 431], (20)? = 4k + (A — p)? € Z. As p is odd and B? € ZG, from (10) and
(20)* € Z we can deduce that % and 20 are integers, and so are ¢; and #3;. Moreover,

again by (10), we assert that B is a (|G/, ‘G‘Qg, aP — (‘ZG(Sl;,)—polynomial addition set in G.
(iii) If p = 2, then Zy has only one non-trivial character, namely v, where ¢4(0) = 1

and 1 (1) = —1. By substituting ) = ¢; in (9), we obtain

G
Xl(ﬁ) = |2—5| (a,l(&) — a,l(&) — 05 - a,l(Og)) for all [ € G,
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which implies —B = B. Moreover, by (10), we have

2 _ |G
T (20

If Oc ¢ B, then (11) indicates that the Cayley graph Cay(G, B) is with diameter d < 2
If d =1, then B =G\ {OG} and hence |G| — 1 = |B| = —|2—(:;|93. On the other hand, by

7, p. 431], we have 05 = —8,6 =/k+ (23£)% |G| =k+1and k = pu+ A+ 1. Thus,
we obtain k—1=A—p or u A, implying that g = 0 or A = 0, which is a contradiction.
Therefore, d = 2. Again by (11), we assert that Cay(G, B) is a strongly regular Cayley

graph with parameters (|G|, — ‘G|93, L?Q‘ (62 — 1), lgi (02 —1)). If O¢ € B, then 0¢ ¢ G \ B.

—5((03—1)- G+ |G| - 0c). (11)

Combining (11) with 0; — 63 = 20 and |B| = 25 99, vields that
G
@\B? = 902 1) G161 00). (12)
== (20)?
By a similar analysis, we can deduce from (12) that Cay(G, G \ B) is a strongly regular
Cayley graph with parameters (|G|, 5 Gl 91, @ (62 — 1), JgQ' (62 —1)). O

6 Imprimitive distance-regular Cayley graphs with diameter
four over abelian groups

In this section, we present some properties of antipodal bipartite distance-regular Cayley
graphs with diameter 4 over abelian groups.

Proposition 30. Let G be an abelian group and let T' be an antipodal bipartite distance-
reqular Cayley graph with diameter 4 over G. Let r be the common size of antipodal
classes of I'. If r is an odd prime, then G = M & Z, for some abelian group M of
order |G|/r, and T is isomorphic to a Cayley graph over M & Z, in which the antipodal
class and the bipartition set containing the identity vertex are So U Sy = (Opr,Z,) and
SoU Sy U Sy = My & Z,, respectively, where My is an index 2 subgroup of M.

Proof. Since r is a prime divisor of |G|, as in Proposition 28, we assert that G = M & Z,,
with M being an abelian group of order |G|/m and m = r* for some ¢ > 1, and that T
is isomorphic to a Cayley graph IV over M & Z,, in which the antipodal class containing
the identity vertex is SoU Sy = (0ar, *Zy,). Furthermore, since I" is bipartite and m = rt
is odd, we have 2 | |M|. Let H = Sy U Sy U Sy be the bipartition set in I['. Then H is an
index 2 subgroup of M & Z,,, and so H = M, & Z,,, where M is an index 2 subgroup of
M. Therefore, it remains to prove m = r.

Since M is an abelian group of even order, we can assume that M = K @ Zgs; @
Ziyss @-n@ZQst, where s; 2 Sg =228 2=21((>1)and 2 ¢ ]K| Then M, =
K ® Zosi & --- D ZZQS @ -+ @D Los, for some i € {1,...,t}. Let m’ = 2%m. Asr
is odd and m = r‘, we have Zosi @ Ly, = Lypy. Let M' = K @ (®'_, ;,;%2s). Then
M & 2, = M "B Zm , and it is easy to check that I is isomorphic to a Cayley graph
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over M' ® Z,,, in which the antipodal class and the bipartition set containing the identity
vertex are SoU Sy = (0p, mT/Zm/) and SoU S, USy = M' & 2Z,,, respectively. By Lemma
15,

(00 2 ) - 81 = (Su-+ 51) $1 = S1+ S = (M1 4 2,

which implies that mTIZm/ -Lo,, =14 2Zyy. Thus |Lg, | = ”2%/, and Ly,, contains exactly

one element from each coset in the set {i+"2Z,y, | i € 1+2Z,,}. Let Loy = {Ug |9 €Zp}
be the set of all irreducible characters of Z,,,. In what follows, we shall determine the
value of ¢,(Ly,,,) for all g € Zpy. Cleatly, ¢,(Lo,,) = |Lo,,| = 2 if ¢ = 0, and

Yy(Lo,,) = —|Lo,,| = — 5= " if g = 2 due to Lo,, € 1+ 2Zyy. Again by Lemma 15, we

7‘
have

/
§2:k‘€—}—lu&:kj€+[L<M/@2Zm/—(OM/,%Zm/)> (13)

If g € rZp \ %’Zm/, then from (13) and [7, p. 425] we obtain (x,,)(S)* = k — ur = 0,
and hence (x,1,)(S) =0 for all x € M?. Therefore, by Lemma 27,

wg(ﬂ |M/| Z Xawg

xGM/

If g ¢ rZ,,, then from (13) we get ((x,1,)(S))? = k, and hence (¢, x,)(S) € {—Vk, Vk}
for all x € M'’. Again by Lemma 27,

ik :
Vo(Loy,) = IM’I > (wg)(S { 7 |z—o,1,...,|M\}. (14)

xGM’
We consider the following two cases.

Case A. Vk € Q.

In this situation, for any g € Zyy, ¢y4(Lo,,) € Z because it is a rational algebraic
integer. Thus Lg,, is a union of some atoms for B(Fz,,). Furthermore, since Ly,
is a subset of 1 + 27Z,,, that contains exactly one element from each coset in the set
{i+ mTIZm/ | i € 1+2Zy, }, there exists some a € Ly, , such that (14 mT,Zm/) NLy,, = {a}.
If 1+ mTIZm/ CZ, thena € Z;,. AsZ;, is exactly an atom, we assert that 14 mT'Zm/ -
Zy, € Lg,,. Thus 1+ mT/Zm/ = {a}, and it follows that m’ = r, which is impossible. If
1+ mT/Zm/ Z 7, then there exists some i € Z,, such that 1+i™ ¢ Z*,. Combining this
with m’ = 2%m = 2%7% and ged(1 + im7/, m7/) = 1, we obtain ged(1 + imT,,m’) = r, which
implies that r%{ m/. Therefore, we have m = r, and the result follows.

Case B. Vk ¢ Q.
In this situation, v¥4(Lo,,) € Q for any g € rZy,, and 94(Lo,,) € { |M, =
0,1,...,|M'|} € Q(w)\Q for any g ¢ rZ,,, where w is a primitive m/-th root of unity.
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Then there exists an element o, with ¢g € Z* , in the Galois group Gal[Q(w) : Q] = {o. :

w— w® | c€Z,} such that UCO(\/E) — —Vk. By applying o, on both sides of (14), we
obtain

Wy(coLo,,) = M,, > (0 g)(8) = —ty(Loy,,) for g & rZn
xEM’
Recall that 4,(Lo,,) = |Lo,,| = % if g = 0, ¢y(Lo,,,) = —|Lo,,| = 2 if g = 7, and

Yg(Lo,, ) = 0if g € 12y \ %'Zm/. Thus ¥4(coLo,, ) = ¥g(Lo,,) € Q for all g € rZy,
According to the Fourier inversion formula (3), for each g € Z,,/, we have

ao(Loy,) + aglcoLoy,) =5 3 (n(Lay,) + vnleoloy,)) dulo™)

hEZm/

= S (vnloy) + dleokoy,)) vnlo™)

he™@ 7,

Y alLoy ().
he™7, .,

2
m

Therefore,
2 1 1 m 2
nax (%(Lo )+ %(COLOM/)) = max - Z Un(Loy )¥nl9™) < — -4 oo = -,
hE%Zm/
which is impossible because Ly, , # @ and r > 3.
We complete the proof. O

Proposition 31. Let G be an abelian group and let p be an odd prime. Assume that
I' = Cay(G @ Z,, S) is an antipodal bipartite distance-reqular Cayley graph with diameter
4 an which the antipodal class and the bipartition set containing the identity vertex are
SoUSy = (0¢, Zy) and SyUS2USy = H@Z,, respectively, where H is an index 2 subgroup
of G. Then the following statements hold.

(i) The sets R;, fori € Z,, form a partition of G\ H.

(ii) For every non-trivial character ¢ € Z;, B={g¢€G]| (x,,¥)S) = Vk} isa
non-empty set such that

xi(B |G| Z Y(t)a_i(R;) + Vk-a_(0g) | foralll e G.

1€Lp

. lal . .
(1i1) ;7% is an integer.
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Proof. (i) As in Proposition 29, from Lemma 15 we can deduce that )
Thus the sets R;, for i € Z,,, form a partition of G \ H.
(ii) Again by Lemma 15, we have

R =G\ H.

1€ZLp

§2:k-e+u§:k‘-e+u<H@ZP—(Og,Zp)>. (15)

Let v € 2; be a non-trivial character of Z, and let x € G. By applying the character
(x,%) € G @ Z, on both sides of (15), we obtain

(O6¥)(8))* =k,

implying that (x,%)(S) = Vk or —Vk. Let B = {g € G | (x4,%)(S) = Vk}. By a similar
analysis as in Proposition 29, we can deduce that

Xl ’G| Zw + \/E a_ Z(OG) forl € GG.

1E€Lp

= =1 and so B is non-empty.
(i ) we get

)
nd
< G| ) G\ H)+ VEP - az(OG)> forl € G.

In particular, |B| = xo(B
(iii) Combining (i )

Let 0 : G — C be the mapping defined by
1, if g e H;
o(g) = .
-1, ifge G\ H.

As H is an index 2 subgroup of G, the mapping o is exactly an irreducible representation
of G, and so o € G because G is abelian. Thus we assert that there exists some involution
a € G such that 0 = x, € G. Then from the Fourier inversion formula (3) we obtain

(5 (o0

Therefore, 2'%% is an integer because p is odd and B € ZG. n

7 Distance-regular Cayley graphs over Z, @ Z,

In this section, we shall prove Theorem 4, which determines all distance-regular Cayley
graphs over the group Z,, ® Z,. To achieve this goal, we need the following two lemmas.

Lemma 32. Let p be an odd prime and let n be a positive integer such that p | n. Then
there are no antipodal non-bipartite distance-reqular Cayley graphs with diameter 3 over
Ly, ® ZLy.
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Proof. By contradiction, assume that I' = Cay(Z,, & Z,, S) is an antipodal non-bipartite
distance-regular Cayley graph of diameter 3 over Z,, & Z, with n as small as possible (with
respect to p). Let k and r (r > 2) denote the valency and the common size of antipodal
classes (or fibres) of I', respectively. According to [7, p. 431], k+1 = "2, k = p(r—1)+A+1,
and I' has the intersection array {k, u(r —1),1;1, u, k} and eigenvalues k, 0y, 0, = —1, 03,

where
A — A - A= p’

2

Let H = S3U{(0,0)} denote the antipodal class containing the identity vertex. Then
|H| = r. By Lemma 10, H is a subgroup of Z, @& Z,. If r is not a prime, then H has
a non-trivial subgroup K. Let B denote the partition of Z, @ Z, consisting of all cosets
of K in Z, ® Z, and let I'g be the quotient graph of I' with respect to B. Then, in a
similar way as in Lemma 10, we can verify that I'y = Cay((Z, ® Z,)/K,S/K), where
S/K ={sK | s € S}. Since KN (S;USy) =@, for any two distinct s, 52 € S, we have
s1K # soK. Also, by Corollary 16,

{§2 =k-0¢+ (A —p)S + p(Zy & Z, — H),

H-(S+e)=2,®Z, (17)

Let f be the mapping from the group algebra Z - (Z, & Z,) to the group algebra Z - ((Z,, &
Z,)/ K) defined by

f Z a,r | = Z a, - K.
©€L, BTy T€Ln Ly
By applying f on both sides of the two equations in (17), we obtain
(S/K)? =k K+ (\—u)S/K + plK|(Z. © Z,y) /K — H/K),
{IKIM- (S/K + K) =|K|(Zn & Z)/ K,

or equivalently,
(S/K)* =k K+ (A= p+ plK|) — ulK[)S/K + p|K|(Z, & Z,) | K — H/K),
H/K-(S/K+K)=(Z2,®%Z,)/K.

(18)

Then from (18) and Corollary 16 we can deduce that I's is an (/| K|)-antipodal distance-
regular graph of diameter 3 with intersection array {k, k—(A—pu+u|K|)—1 = u|K|(r/| K|—
1),1;1, u|K|, k}. If T'g is bipartite, then T is also bipartite, a contradiction. Hence, I's
is an antipodal non-bipartite distance-regular Cayley graph of diameter 3 over the cyclic
group or the group Z, & Z, with n’ | n. By Theorem 2, we assert that the former
case cannot occur. For the later case, this violates the minimality of n. Therefore, r
is a prime. Then, by Proposition 28, Z, ® Z, = M @ Z, and I' is isomorphic to a
Cayley graph over M & Z, in which the antipodal class containing the identity vertex is
S3 U {(0ar,0)} = (0pr,Z,), where M is an abelian group of order |G|/r. Thus we only
need to consider the following two cases.
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Case A. M = Z,, r =p and SopU S5 = (0pr,Zy).

In this situation, 7 = p is odd. By Proposition 29 (ii), there exists a non-empty
(n, —550s, 27 — J#)—polynomial addition set B in Z,. Note that [B| = —363. On the
other hand, by Lemma 21, we assert that |[B| € {1,n — 1,n}. If |[B| = =503 = 1, then
from (16) and &k = n — 1 we can deduce that A — ,u =n —2 =k — 1, which is impossible
because k = pu(p —1) + A+ 1> 2u+ A+ 1 and p > 1. Similarly, if |B| —5ss =n—1
then p—A=n—-2=k—1,and if |[B| = —303 = n then k = 0, which are also impossible.

Case B. M = Zn ® Z,, and Sy U S3 = (Orry Zy).
In this situation, we must have ged(r, %) = 1.

Subcase B.1. r = 2.

Since p is odd and ged(2, §) = 1, we see that |[M| = “£ is odd. By Proposition 29
(iii), there exists a strongly regular Cayley graph I over M with parameters (|M|, k" =
Mg N = Lf;' (6> — 1), 1/ = 292 — 1)), where 6 = 6, or —65. Clearly, I" is non-bipartite
because it is of odd order. If k' = 2, then I" is a cycle, and hence IV = C,, which is
impossible. Now suppose k&’ > 3. We see that I" must be primitive or antipodal. If T” is
antipodal, then it is a complete multipartite graph, which is impossible because A = 1/'.
If I is primitive, then Corollary 14 indicates that § = p and M = Z, @ Z, because I"
cannot be a complete graph. Thus, by Lemma 24, I'" is isomorphic to the line graph of a
transversal design T'D(r’, p) with 2 < r’ < p— 1. However, this is also impossible because

N=y.
Subcase B.2. r # 2.
If r = p, then we are done by Case A. Now suppose r # p. Recall that S = 57 =

Uiez, (R;, 7). By Proposition 29 (i), the sets R;, for i € Z,, form a partition of M \ {0}.

M|

Furthermore, by Proposition 29 (ii), both |2—5 and #3 are integers, and for every non-trivial

character ¢ € Z:, there exists a non-empty polynomial addition set B C M such that

i(B) = ‘M| {Zz/} —Hg-a_l(OM)} for all [ € M. (19)

ZEZT

Let lp € M \ {0p/}. Then there exists some iy € Z, \ {0} such that —l, € R;, and (19)
implies that
| M]

i (B) = 550, (20)

Since r is an odd prime and ¢ € Z, is non-trivial, we assert that (o) € Q(w,)\ Q, where
w, is a primitive r-th root of unity. Thus it follows from (20) and | | € 7 that Xi(B) (B) €
Q(wr) \ Q. On the other hand, we have x;,(B) € Q(w=) because Xlo e M = Zg ® Z,
and p | % due to p | n and p # r, where wz is a primitive 2-th root of unity. Hence,
Xio(B) € (Qwz2) NQ(w,)) \ Q. However, this is impossible because Q(w,) N Q(w=) = Q
due to ged(r, %) = 1.
Therefore, we conclude that there are no antipodal non-bipartite distance-regular
graphs with diameter 3 over Z,, © Z,. O
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Lemma 33. Let p be an odd prime and let n be a positive integer such that p | n.
Then there are no antipodal bipartite distance-reqular Cayley graphs with diameter 4 over
Ly, ® ZLy.

Proof. By contradiction, assume that I' = Cay(Z, & Z,,S) is an antipodal bipartite
distance-regular Cayley graph with diameter 4. Then n is even and the bipartition set of
I' containing the identity vertex is So U Sy U Sy = 2Z,, & Z,,. Let k and r (r > 2) denote
the valency and the common size of antipodal classes (or fibres) of I', respectively. By |7,
p. 425,

np =2r’y and k= rpu, (21)

and T' has the intersection array {ru,rpu —1,(r — 1)p, 1;1, u, e — 1, ru}. Moreover, by
Lemma 15,
S*=k-e+uSy=k-0+ pu(2Z, & Z, — So U Sy). (22)

Note that Sy U Sy is the antipodal class of I" containing the identity vertex, and so
is a subgroup of Sy U Sy U Sy = 2Z,, & Z,. Since S is inverse closed, from (21) and
(22) we see that S is exactly an (ru,r,ru, p)-relative difference set relative to Sy U Sy
in SoU S USy = 2Z, ® Z, Then from Lemma 20 we can deduce that 5 = TQT“ is
a divisor of ru, that is, r = p. Furthermore, by Proposition 30, we may assume that
So U Sy = (0,Z,). In this context, by Proposition 31, the sets R;, for i € Z,, form a

partition of Z,, \ 2Z, = 1 + 27, and for every non-trivial character ¢ € Z;, there exists
a non-empty set B in Z, such that

xu(B) = % S w(i)ay(Ry) + V- ai(0) | for all l € Z,. (23)

i€Z,

Moreover, we have ﬁg € 7Z. Clearly, ﬁg # 1 by (21). Let ¢ be a prime dividor of #E

Since the sets R;, for i € Z,, form a partition of 1 4 27Z,, we can deduce from (23) that
xi(B) =0 (mod q) for all [ € Z,,. Then, by Lemma 22, there exist some Xy, X, € Z - Z,
with non-negative cofficients only such that

EZqX1+QZn'X2-
=S L A2

Since ¢ > 1 and the cofficients of B in Z - Z,, is either 0 or 1, we assert that

B="7 X,
JLn X2

Note that (1+2Zy,) \ ¢Zy # @. Taking ly € (1+2Zy) \ qZy, we have xi,(B) = xi,(5Zn) -
Xio(X2) = 0. Let ig € Zy be such that —ly € R;,. Then (23) gives that x;,(B) = 772v(io),
and hence 9 (ip) = 0, which is impossible.

Therefore, we conclude that there are no antipodal bipartite distance-regular Cayley
graphs with diameter 4 over Z,, © Z,. O]
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Now we are in a position to give the proof of Theorem 4.

Proof of Theorem /. First of all, it is easy to verify that the graphs listed in (i)-(iii) are
distance-regular Cayley graphs over Z,, ®Z,. Furthermore, by Lemma 24, the graph listed
in (iv) is a distance-regular graph with diameter 2.

Conversely, suppose that I' = Cay(Z,, & Z,, S) is a distance-regular Cayley graph over
Zy,, ® Z,. Let k be the valency of I" and let p denote the number of common neighbors of
two vertices at distance 2 in I'. If n = p, then from Lemma 24 we see that I is isomorphic
to one of the graphs listed in (i), (ii) and (iv). Thus we may assume that n # p. If T is
primitive, by Corollary 14, I' is isomorphic to the complete graph K,,, as desired. Now
suppose that I' is imprimitive. Clearly, I' cannot be isomorphic to a cycle because it is a
Cayley graph over Z,, ® Z,. Thus k > 3, and it suffices to consider the following three
situations.

Case A. T is antipodal but not bipartite.

By [7, pp. 140-141] and Lemma 10, the antipodal quotient T’ of T' is a primitive
distance-regular Cayley graph over a cyclic group or a group of the form Z,, @ Z, for
some n' | n. Then it follows from Theorem 2, Corollary 14 and Lemma 24 that T is a
complete graph, a cycle of prime order, a Payley graph of prime order, or the line graph
of a transversal design TD(r, p) with 2 < < p— 1. If T is a cycle of prime order, then I'
would be a cycle, which is impossible. If T is a Payley graph of prime order, by Lemma
11, we also deduce a contradiction. If T is the line graph of a transversal design T'D(r, p)
with 2 < r < p — 1, then [7, pp. 140-141] implies that d = 4 or 5. By Lemma 23, we
assert that d = 4 and r = 2, and hence I is the Hamming graph H(2,p). However, by
Lemma 12, H(2,p) has no distance-regular antipodal covers for p > 2, and we obtain a
contradiction. Therefore, T is a complete graph, and so d = 2 or 3. By Lemma 32, d # 3,
whence d = 2. Since complete multipartite graphs are the only antipodal distance-regular
graphs with diameter 2, we conclude that I' is a complete multipartite graph with at least
three parts.

Case B. T is antipodal and bipartite.

In this situation, n is even. If d is odd, by [7, pp. 140-141], T is primitive. Also,
by Lemma 10, T is a distance-regular Cayley graph over a cyclic group or a group of the
form Z, & Z, for some n’ | n. As in Case A, we assert that T is a complete graph. Hence,
d=3. Slnce I' is antipodal and bipartite, we obtain I" = Knp np — 2 K,. Moreover, we
assert that n/2 must be odd, i.e., n =2 (mod 4), since I' is a Cayley graph over Zy, ® Z,.
Now suppose that d is even. Then (7, pp. 140-141] and Lemma 10 imply that 1F is
an antipodal non-bipartite distance-regular Cayley graph over Zz & Z, with diameter
dip = d/2. Clearly, d # 2. By Lemma 33, d # 4. Thus d > 6 and dlr =d/2 > 3.
However this is impossible by Case A.

Case C. T is bipartite but not antipodal.

In this situation, n is even. By [7, pp. 140-141] and Lemma 10, %I‘ is a primitive
distance-regular Cayley graph over Zz ©Z,. As in Case A, %F is a complete graph or the
line graph of a transversal design T'D(r,p) with 2 <r < p— 1.
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First suppose that %F is a complete graph. Then we have d = 2 or 3. If d = 2,
then I' is a complete bipartite graph, which is impossible because I' is not antipodal. If
d = 3, then I' is a non-antipodal bipartite distance-regular graph with diameter 3 over
the abelian group Z,, @ Z,. By Proposition 26, the dual graph I' of I" is an antipodal
non-bipartite distance-regular graph with diameter 3 over Z, © Z,. However, there are
no such graphs by Lemma 32, and we obtain a contradiction.

Now suppose that %F is the line graph of a transversal design T'D(r,p) with 2 <
r < p—1. Then we have p = 1 by Lemma 25. If there exist two distinct elements
a,b € S such that —a # b, then by the bipartiteness of I', we have 0(0,a + b) = 2, and
hence the vertices 0,a,a + b,b form a cycle of length 4 in I". This implies that u > 2,
a contradiction. Thus S = {a, —a} for some a € Z, ® Z,, and we see that I' is a cycle,
which is also impossible. O
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