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Abstract

Eberhard and Pohoata conjectured that every 3-cube-free subset of [N] has size
less than 2N/3 + o(N). In this paper we show that if we replace [N] with Zy
the upper bound of 2N/3 holds, and the bound is tight when N is divisible by 3
since we have A = {a € Zy : a = 1,2 (mod 3)}. Inspired by this observation we
conjecture that every d-cube-free subset of Zy has size less than (d—1)N/d where N
is divisible by d, and we show the tightness of this bound by providing an example
B={beZny:b=1,2,...,d—1 (mod d)}. We prove the conjecture for several
interesting cases, including when d is the smallest prime factor of N, or when N is
a prime power.

We also discuss some related issues regarding {z,dx}-free and
{z,2z,...,dz}-free sets. A main ingredient we apply is to arrange all the integers
into some square matrix, with m = d® x [ having the coordinate (s + 1,1 — |I/d]).
Here d is a given integer and [ is not divisible by d.

Mathematics Subject Classifications: 11B30

1 Introduction

A set is called sum-free if there are no solutions to the equation x + y = 2. For example,
any subset of integers consisting of odd numbers is sum-free, as the sum of any two odd
numbers results in an even number. The study on sum-free set traces its roots back to the
early 20th century when Schur [9] used a combinatorial argument to show that Fermat’s
Last Theorem does not hold in the finite field F,,.

In addition to exploring the sum-free problem, the research community has shown
considerable interest in generalizations. For instance, one of them is to study the so-
called (k,)-sum-free sets, which is a set with no solutions to x; +-+-4+x, =11+ -+ .
In particular, the avoidance density for such sets was recently determined by by Jing and
Wu [6, 7], generalizing the line of research for sum-free sets by Bourgain [1], by Eberhard,
Green, and Manners [5], and by Eberhard [4].

In this note our primary focus lies in yet another branch of generalization for sum-
free problems — the study of cube-free subsets within the cyclic group Zy. To establish
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the foundation for our exploration, we present the definition of cubes, or more precisely,
projective cubes:

Definition 1. Given a multiset S = {ay, ..., aq} of size d, we define the projective d-cube
generated by S as
'S = {Zai: g#£IC [d]}.
iel

Definition 2. We say A is d-cube-free if there does not exist a multiset S of size d with

(X*S) C A.

For example, a set is 3-cube-free if it contains no {z,y,z,z+y,y+z, x4+ z, 2 +y+ z}
as a subset.

The motivation behind this research is derived from a similar problem concerning
cube-free subsets of the set [N], which was conjectured by Eberhard and Pohoata!:

Conjecture 3 (Eberhard-Pohoata). Suppose A C [N] is 3-cube-free, then
|A] < (2/3+0(1))N.
The equality holds when A = {z =1,2 (mod 3)} or A= (N/3, N].
It is easy to verify that the two examples are 3-cube-free. However, it is important to
note that when discussing the problem within cyclic groups whose order is divisible by 3,

the latter condition is no longer 3-cube-free, while the former still holds. This observation
suggests the following conjecture:

Conjecture 4. Let A be a d-cube-free subset of Zy where d | N, then
d—1

Al < ——N.
1< =

The main result of this note verifies Conjecture 4 for many interesting cases:
Theorem 5. Let A be a d-cube-free subset of Zy where d | N. We have
d—1

Al < ——N
41< =

when one of following is true:
(i) d = 3.
(ii) d is the smallest prime factor of N.
(iii) NV is the power of some prime p.
Notably, the method we employed in proving Theorem 5 (i) holds considerable promise
for addressing similar problems. To establish this theorem, we concentrate on subsets that

are free of the diagonal solutions, namely {z,2z,...,(d — 1)z}-free, and the proofs for
Theorem 5 (ii) and Theorem 5 (iii) are subsequently derived from this fundamental idea.

!This question was mentioned in a blog of Eberhard: https://seaneberhard.com/2020/01/17/
the-avoidance-density-of-kl-sum-free-sets/
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2 The tightness of the upper bound

The bound in Conjecture 4 is tight, since we have the following result.

Theorem 6. Let d, N be positive integers with d | N, then
A={a€Zy:a=1,2,...,d—1 (modd)}
15 a d-cube-free subset of Zy .

We are going to prove a lemma to show the correctness of the example, which is based
on the Cauchy—Davenport Theorem [2, 3]. Throughout this section we use standard
definitions and notations in Additive Combinatorics as given in [10]. Given A, B C Z, we
write

A+B:={a+b:a€c Abe B}, and AB:={ab:a€ Abec B}.
When A = {z}, we simply write z + B := {z} + B and - B := {z}B.
Theorem 7 (Cauchy-Davenport). Let A, B C IF,, then
|A+ B| > min{|A| + |B| — 1, p}.

Lemma 8. Let t < d be a positive integer, let a; € Zg\{0} be not necessarily distinct
elements and let \; € {0,1}. We define

S, = {inai C (A N # (0,0,...,0)}.

i=1
[fO ¢ St, then ’St| > t.

Proof. When d = pis a prime, the lemma is indicated by the Cauchy-Davenport Theorem.
Indeed, note that

Sy D {a} + Z{O, a;t.

We only need to consider the case that the size of the right hand side is strictly less than
d, or else |S;| = d so that 0 € S;.

Now we have for all k < t, [{a1} + 3. ,{0,a;}| < d. Then the Cauchy Davenport
Theorem implies

ok + Y (0. > e} +z_:{0,ai}| O - 1.

By using the Cauchy—Davenport Theorem for (¢ — 1) times, we have

{aa} + Z{Ovai}l > [{aa}] + Z {0,a:}| = (t = 1) =1t.
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Thus .
1S = Hai} + ) {0,a:}| > t.
i=2

When d is not a prime, the proof goes by induction on d and then induction on ¢.
According to the discussion above, we have already proved the lemma for prime factors,
as a foundation of the induction on d. Now we suppose that the lemma holds in Z; with k
being all the factors of d and start our induction on ¢. To begin with, |S;| >t for t = 1, 2.
Indeed, when t = 2, S; = {a,a2,a; + as}. It is impossible to have a; = ay = a1 + as,
which implies that a; = a; = 0. Now we assume |Si| > k for all integers k& < ¢. Note that

Sir1 2 St +{0,ai11} 2 S
The induction hypothesis gives |S;11]| = |St| = t. Suppose |Si11| =t <t + 1, then
Sty1 =5t = Sp + ary1.
Adding up all the elements in three sets respectively, we have
Z T = Zz: Z(:p+at+1).
TESt41 €St x€St

The second equality implies
tagyr =0 (mod d).

Similarly by symmetry we have
ta; =0 (mod d)

fori =1,2,...,t+ 1. Let s be the greatest common divisor gcd(t, d) of ¢ and d, and let
t = st1,d = sdy, then ged(ty,dy) =1 and d; | a;. We may assume s > 1, or else d | a;, i.e.
a; = 0. Write a} = a;/dy, then the fact that d { a; implies

a; 20 (mod s).

Now we consider Sj, | as defined by

t+1
Serl = {Z)\’La; : (>‘17>\27"'7)\t+1) # (anavo)} :
i=1

In other words, S;,, is defined by dividing every element in S,y by di, thus [S},,| =
|S¢41] = t. So by induction hypothesis there exist Aj, Ao, ..., A\ry1 not all zero such that

t+1

Z Aia; =0 (mod s).
i=1

Hence
t+1
Z Aia; =0 (mod d).
i=1
Now we finish the proof by showing that 0 € Sy, if [S;41| < t. O
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Proof of Theorem 5 assuming Lemma 8. We may reduce to the case in which N = d,
by considering the quotient group Zy/(d - Zy) = Zg4. Now, by setting ¢t = d, Lemma 8
implies that every d-cube generated by elements in A = Z;\{0} which is still a subset of
A has size at least d. This conflicts with the fact that |A] = d — 1, hence such d-cube
doesn’t exist and thus A is d-cube-free. O

3 Related problems

To start further discussion, we prove the case d = 3 in advance. Recall Theorem 5 (i).

Theorem 9. Let A be a 3-cube-free subset of Zy where 3| N, then

2
Al < =N
3

Proof. The proof consists of two parts discussing whether A contains {z,2x} as a subset
for some z, namely {z,2x}-free or not. When A is {z, 2z}-free, it is equivalent to
AN2-A=02.
Here 2- A is defined by 2+ A := {2a : a € A}, as mentioned in Section 2. Note that for all
a € Zy, there is at most one pair (b, ¢) with b # ¢ such that 2b = 2¢ = a, which implies
1
12-A| = -|Al|
2
Thus 3
N> Al +1[2-A] > §|A|,

and then A < 2N/3.
Now let A be not {z,2z}-free, then there exists x such that z,22 € A. Considering
the cube generated by {x,z,y} where y is selected among all the elements in A, we have

AN(A—xz)N(A—22)=02.
By taking the complementary set
A°U(A—2)°U(A—22)°=Zy.
Note that both (A — x) and (A — 2z) are copies of A, thus
3|A°] > N,
and then |A| < 2N/3. O

Actually the proof above can be generalized to all cyclic group, not necessarily 3 | V.
It gives a quite trivial upper bound of 2N/3, but in some cases there might exist a better
one, for instance (5/8 + 0o(1))N conjectured by Long and Wagner [8] where N = 2F.

Inspired by the proof on 3-cube discussing whether {z,2z} is forbidden, one can
naturally expect to generalize the proof to larger cubes, which leads to the conjecture as
follows.

ot
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Conjecture 10. Let A be a {z,2z,...,(d — 1)z }-free subset of Zy where d | N, then

d—1
Al < ——N.
1< =

Proof of Conjecture 4 assuming Congjecture 10. It suffices to prove it when A is not
{z,2z,...,(d — 1)x}-free. Now there must be an z such that z,2x,...,(d — 1)z € A.
Consider the d-cube generated by {x,z,...,z,y} where y is selected among all the ele-
ments in A, we have

AN(A—z2)N(A-22)Nn---N(A—-(d—1)z) = 2.
This implies

—1
IA] < dTN. O

It must be pointed out that we have a similar bound for {z, dx }-free subsets as follows.

Theorem 11. Let A be a {x,dx}-free subset of [N], then

Al < %N + O(log N).
Proof. Given d, note that every positive integer m can be uniquely written as m = d* x [
with s being a non-negative integer and [ being a positive integer not divisible by d. Thus
we can divide all the integers into different chains, each starting with some integer [ not
divisible by d: 1,dl,d?l,.... We denote the chain starting with [ by C;.

It is clear that A is {z, dz}-free if and only if there are no two elements of A adjacent
in one chain. To acquire the upper bound, we just need to consider the extreme cases
on different chains independently. Given [ and Cj, since only one of {d*I,d**'l} can be
contained in A for all £ > 0 such that d**'l < N, the extreme case appears when the
elements are selected alternately. More precisely, when |[V] N (| is odd, the elements of
AN C, take up all the odd positions in Cj; when |[N] N ()] is even, the elements of ANC;
take up either all the odd positions or all the even positions in .

Since different chains have different lengths, it is difficult to count |ANC}| respectively
and then add them together. Instead, we count them by layers which are defined by

Li={r€Z,:d |z dtz}

It is clear that all the integers can be divided into different layers, i.e.

Z+ == [OJ LZ
i=1

For convenience, we may assume the elements of A take up all the odd positions in C]
no matter whether |[N]N ()| is even or odd, as it does not change the size. Based on this
assumption, the maximal A can be write as

A == <G L2i+1> N [N]
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Also all the layers are pairwise disjoint, thus

[Al = [Laiyr N[N,
1=0

Suppose d* < N < d**'. When s is odd, we have

(s—1)/2
|Al = Z | Lair1 N [V]]
i=0

(s—1)/2
d—1 d—1
- Z {dziHNjL d J

=0
(s—1)/2
d—1 d—1

-3 (Gav+ ) o

1=0
o | (s+1)(d—1)
= 1<1_d8+1)N+—2d + O(s)

d

d

And when s is even, we have
s/2

Al = Lo N[N
=0

s/2

d—1 d—1
:Z\‘d2i+lN+ d J
=0
s/2
d—1 d—1
=Y (G ) vo
1=0
d 1 (s +2)(d— 1)
B ES U=t 2d +0(s)
d d
11 + O(s) P + O(log N) O

This bound may be helpful when we consider cube-free subsets of [N]. It is worth
noticing that the remainder term O(log V) cannot be removed. Indeed, take the case
d = 2 as an example and we have the following result.

Theorem 12. ? Let A be an {z,2x}-free subset of [N], then

2
4] < SN +O(log V).

2The author appreciates Sean Eberhard for providing the idea of comparing [N] with [4N], which helped
give rise to the construction in the following proof.
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Moreover, there exists ¢ > 0, such that for all n > 0, there exists N > n such that [N]
contains a {x,2x}-free subset with size at least 2N/3 4 €log N.

Proof. Take d = 2 in Theorem 11 then we have |A| < 2N/3 + O(log N). Now consider
the sequence a,, = (4" — 1)/3 which converges to infinity, we are going to show that
D(a,) = 2a,/3+n/3, so that {a,} is the sequence we want. Here D(N) is the size of the
largest {z, 2x}-free subsets of [NV].

The proof goes by induction. Recall that

Since a,41 = 4a, + 1, we have

NE

D(an+1) = W

ol

[e=]

M

o

da, + 1+ 4F
2.4k

|

4a,, + 4"

Ll

5 4k J+2an+1

a, + 4%

2.4k

k=1
o)
=0

=2

k
= D(a,) +2a, + 1

J+2an+1

It remains to show that D(1) = 1, which is clear.

As for cyclic group case, we can get rid of the remainder term.
Theorem 13. Let A be a {x,dz}-free subset of Zy and k = (d, N), then

k
——N.
kE+1
Proof. We are going to count the number of solutions to the equation zy = da where x

is fixed. Suppose da = db (mod N), then

Al <

a=b (mod N/k).

This implies there will be at most k£ solutions to the equation. Thus

44> 714

= k .
Since ANd-A = @, we have
k
Al < ——N O
= E+1
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Corollary 14. Let A be a {x,(d — 1)x}-free subset of [N] where d | N, then k = (d —
I,N)<d—1 and
k d—1
Al < N < N.
A k+1 d

Since {x, (d—1)z} is a subset of {z,2x,...,(d— 1)z}, a larger density is implied when
the latter is forbidden. But comparing Conjecture 10 with Corollary 14, we find that
these two sets give rise to a same density when forbidden(or at least we expect them to).

4 Specific cases

In this section we are going to prove Theorem 5 (ii) and Theorem 5 (iii) by showing
Conjecture 10 holds respectively. It must be pointed out that the idea of counting the
family of sets partly comes from Long and Wagner [8].

4.1 When d is the smallest prime factor

We define the set F as
F={{x,22,3z,...,(d— Dz} :x € Zy\{0}}.

Note that every element B in F has size exactly d — 1. Otherwise, there exist iy,iy €
[d — 1] and z € Zx\{0} such that

Since iy — i3] < d — 2 and N has no prime factors smaller than d, we have
(i1 —iy, N) =1

and then N | x which is contradictory.

Moreover, observe that every element in Zy\{0} appears in precisely d — 1 many
different choices of B. Indeed, for all zp € Zy\{0} and ¢ € [d — 1], the congruence
equation with respect to x

rg =tr (mod N)
has one and only solution. This is because (¢, N) = 1 and thus 0,¢,2¢t,..., (N — 1)t form
a complete system of residues modulo N.
Now we are able to figure out the size of F by double counting all the elements covered.

(d—1)|F|=(d—1)(N—1).

Let Abea {x,2z,...,(d—1)x}-free subset, it is clear that for every B € F there exist
at least one element ag € A°. Moreover, since each fixed © € Zy can appear as apg, for
some choice of B, at most d — 1 times, one has

Fl N-1_N

Al > = >

S e Sl

Then N d_1
AIKN—==""—N.
Al 7 7
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4.2 When N = p'
We are to prove a better result for an {z,2z, ..., (p? — 1)z }-free subset A:

1
a1

Al<(1- N.
A< - 7—7)

First we define the layers in Z, by
Li={x €Zy:p~ " |z pta}.
For convenience we write
Ligg) = Lo U Lgg1 U---U Ly_1 U Ly,

The proof goes by dividing Z, into [(Il +1)/d] blocks, each block consisting of several
continuous layers. Indeed, with ¢ being the largest integer such that qd < [ + 1, the
division is

Zig = LpgU Ligy12aq) U+ - U Liig—1)d+1,qq) Y Liga+1,41)-

For an integer a < [ — d + 1, we define the set F, as

Foo={{z,22,3z,...,(p" — )z} : v € L,}.

Note that for any B € F,, B has size exactly p? — 1. Otherwise there exists i1,y €

[p? — 1] and x € L, such that
pl | (’Ll — ZQ)Q’I

Since |i; —is| < p?—2, (i —1y) is not divisible by p?. Recall that x € L, with a <[—d+1,
thus we can find a contradiction.

Moreover, observe that for every B € F,, B C L4 414-1) and every element of L, 4441
appears in precisely (p — 1)p?~!(that is, the size of [p¢ — 1] N L;) different sets in F,.

Now we are able to figure out the size of F, by double counting all the elements
covered.

(pd - 1)|‘Fa| = (p - 1)pd_1|L[a,a+d71]|-

Let A be an {z,2x, ..., (p? — 1)z}-free subset. It is clear that for every set B € F,
there exists an element zp € B with 25 ¢ A, and every zp recurs at most (p — 1)p?~?
times, therefore

c |]:a| 1
|A° N Lig,a4d-1]] = =)y == 1\L[a,a+d—1]|.
AN Ligara—
| [,+d1]’<1_ dl .
|L[a,a+d—1]’ p = 1
Especially, we set a =1+ td,t =0,1,...,q — 1 to obtain

1 .
‘L[1+td,(t+1)d}‘ h pt—1

ANL 1
\ i e+nd] g (1)
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Since 0 = p' ¢ A and qd +1 > [ — d + 2 we have

| AN Ligat1,41| <1 1 <1 1 <1 1

|L[qd+1,l+1]| S ‘L[qd+1,l+1]| pd_l e pd -1

(2)

Finally we combine (1) and (2) to draw the conclusion that in each block A has a
density less than 1 — 1/(p? — 1), therefore |A| < (1 —1/(p? —1))N.
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