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Abstract

Eberhard and Pohoata conjectured that every 3-cube-free subset of [N ] has size
less than 2N/3 + o(N). In this paper we show that if we replace [N ] with ZN

the upper bound of 2N/3 holds, and the bound is tight when N is divisible by 3
since we have A = {a ∈ ZN : a ≡ 1, 2 (mod 3)}. Inspired by this observation we
conjecture that every d-cube-free subset of ZN has size less than (d−1)N/d where N
is divisible by d, and we show the tightness of this bound by providing an example
B = {b ∈ ZN : b ≡ 1, 2, . . . , d − 1 (mod d)}. We prove the conjecture for several
interesting cases, including when d is the smallest prime factor of N , or when N is
a prime power.

We also discuss some related issues regarding {x, dx}-free and
{x, 2x, . . . , dx}-free sets. A main ingredient we apply is to arrange all the integers
into some square matrix, with m = ds × l having the coordinate (s + 1, l − bl/dc).
Here d is a given integer and l is not divisible by d.

Mathematics Subject Classifications: 11B30

1 Introduction

A set is called sum-free if there are no solutions to the equation x+ y = z. For example,
any subset of integers consisting of odd numbers is sum-free, as the sum of any two odd
numbers results in an even number. The study on sum-free set traces its roots back to the
early 20th century when Schur [9] used a combinatorial argument to show that Fermat’s
Last Theorem does not hold in the finite field Fp.

In addition to exploring the sum-free problem, the research community has shown
considerable interest in generalizations. For instance, one of them is to study the so-
called (k, l)-sum-free sets, which is a set with no solutions to x1 + · · ·+ xk = y1 + · · ·+ yl.
In particular, the avoidance density for such sets was recently determined by by Jing and
Wu [6, 7], generalizing the line of research for sum-free sets by Bourgain [1], by Eberhard,
Green, and Manners [5], and by Eberhard [4].

In this note our primary focus lies in yet another branch of generalization for sum-
free problems — the study of cube-free subsets within the cyclic group ZN . To establish
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the foundation for our exploration, we present the definition of cubes, or more precisely,
projective cubes:

Definition 1. Given a multiset S = {a1, . . . , ad} of size d, we define the projective d-cube
generated by S as

Σ∗S =

{∑
i∈I

ai : ∅ 6= I ⊂ [d]

}
.

Definition 2. We say A is d-cube-free if there does not exist a multiset S of size d with
(Σ∗S) ⊂ A.

For example, a set is 3-cube-free if it contains no {x, y, z, x+ y, y+ z, x+ z, x+ y+ z}
as a subset.

The motivation behind this research is derived from a similar problem concerning
cube-free subsets of the set [N ], which was conjectured by Eberhard and Pohoata1:

Conjecture 3 (Eberhard–Pohoata). Suppose A ⊂ [N ] is 3-cube-free, then

|A| 6 (2/3 + o(1))N.

The equality holds when A = {x ≡ 1, 2 (mod 3)} or A = (N/3, N ].

It is easy to verify that the two examples are 3-cube-free. However, it is important to
note that when discussing the problem within cyclic groups whose order is divisible by 3,
the latter condition is no longer 3-cube-free, while the former still holds. This observation
suggests the following conjecture:

Conjecture 4. Let A be a d-cube-free subset of ZN where d | N , then

|A| 6 d− 1

d
N.

The main result of this note verifies Conjecture 4 for many interesting cases:

Theorem 5. Let A be a d-cube-free subset of ZN where d | N . We have

|A| 6 d− 1

d
N

when one of following is true:

(i) d = 3.

(ii) d is the smallest prime factor of N .

(iii) N is the power of some prime p.

Notably, the method we employed in proving Theorem 5 (i) holds considerable promise
for addressing similar problems. To establish this theorem, we concentrate on subsets that
are free of the diagonal solutions, namely {x, 2x, . . . , (d − 1)x}-free, and the proofs for
Theorem 5 (ii) and Theorem 5 (iii) are subsequently derived from this fundamental idea.

1This question was mentioned in a blog of Eberhard: https://seaneberhard.com/2020/01/17/

the-avoidance-density-of-kl-sum-free-sets/
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2 The tightness of the upper bound

The bound in Conjecture 4 is tight, since we have the following result.

Theorem 6. Let d,N be positive integers with d | N , then

A = {a ∈ ZN : a ≡ 1, 2, . . . , d− 1 (mod d)}

is a d-cube-free subset of ZN .

We are going to prove a lemma to show the correctness of the example, which is based
on the Cauchy–Davenport Theorem [2, 3]. Throughout this section we use standard
definitions and notations in Additive Combinatorics as given in [10]. Given A,B ⊂ Z, we
write

A+B := {a+ b : a ∈ A, b ∈ B}, and AB := {ab : a ∈ A, b ∈ B}.

When A = {x}, we simply write x+B := {x}+B and x ·B := {x}B.

Theorem 7 (Cauchy–Davenport). Let A,B ⊂ Fp, then

|A+B| > min{|A|+ |B| − 1, p}.

Lemma 8. Let t 6 d be a positive integer, let ai ∈ Zd\{0} be not necessarily distinct
elements and let λi ∈ {0, 1}. We define

St :=

{
t∑

i=1

λiai : (λ1, λ2, . . . , λt) 6= (0, 0, . . . , 0)

}
.

If 0 /∈ St, then |St| > t.

Proof. When d = p is a prime, the lemma is indicated by the Cauchy–Davenport Theorem.
Indeed, note that

St ⊇ {a1}+
t∑

i=2

{0, ai}.

We only need to consider the case that the size of the right hand side is strictly less than
d, or else |St| = d so that 0 ∈ St.

Now we have for all k 6 t, |{a1} +
∑k

i=2{0, ai}| < d. Then the Cauchy–Davenport
Theorem implies

|{a1}+
k∑

i=2

{0, ai}| > |{a1}+
k−1∑
i=2

{0, ai}|+ |{0, ak}| − 1.

By using the Cauchy–Davenport Theorem for (t− 1) times, we have

|{a1}+
t∑

i=2

{0, ai}| > |{a1}|+
t∑

i=2

|{0, ai}| − (t− 1) = t.
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Thus

|St| > |{a1}+
k∑

i=2

{0, ai}| > t.

When d is not a prime, the proof goes by induction on d and then induction on t.
According to the discussion above, we have already proved the lemma for prime factors,
as a foundation of the induction on d. Now we suppose that the lemma holds in Zk with k
being all the factors of d and start our induction on t. To begin with, |St| > t for t = 1, 2.
Indeed, when t = 2, St = {a1, a2, a1 + a2}. It is impossible to have a1 = a2 = a1 + a2,
which implies that a1 = a2 = 0. Now we assume |Sk| > k for all integers k 6 t. Note that

St+1 ⊇ St + {0, at+1} ⊇ St.

The induction hypothesis gives |St+1| > |St| > t. Suppose |St+1| = t < t+ 1, then

St+1 = St = St + at+1.

Adding up all the elements in three sets respectively, we have∑
x∈St+1

x =
∑
x∈St

x =
∑
x∈St

(x+ at+1).

The second equality implies
tat+1 ≡ 0 (mod d).

Similarly by symmetry we have

tai ≡ 0 (mod d)

for i = 1, 2, . . . , t + 1. Let s be the greatest common divisor gcd(t, d) of t and d, and let
t = st1, d = sd1, then gcd(t1, d1) = 1 and d1 | ai. We may assume s > 1, or else d | ai, i.e.
ai = 0. Write a′i = ai/d1, then the fact that d - ai implies

a′i 6≡ 0 (mod s).

Now we consider S ′t+1 as defined by

S ′t+1 =

{
t+1∑
i=1

λia
′
i : (λ1, λ2, . . . , λt+1) 6= (0, 0, . . . , 0)

}
.

In other words, S ′t+1 is defined by dividing every element in St+1 by d1, thus |S ′t+1| =
|St+1| = t. So by induction hypothesis there exist λ1, λ2, . . . , λt+1 not all zero such that

t+1∑
i=1

λia
′
i ≡ 0 (mod s).

Hence
t+1∑
i=1

λiai ≡ 0 (mod d).

Now we finish the proof by showing that 0 ∈ St+1 if |St+1| 6 t.
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Proof of Theorem 5 assuming Lemma 8. We may reduce to the case in which N = d,
by considering the quotient group ZN/(d · ZN) ∼= Zd. Now, by setting t = d, Lemma 8
implies that every d-cube generated by elements in A = Zd\{0} which is still a subset of
A has size at least d. This conflicts with the fact that |A| = d − 1, hence such d-cube
doesn’t exist and thus A is d-cube-free.

3 Related problems

To start further discussion, we prove the case d = 3 in advance. Recall Theorem 5 (i).

Theorem 9. Let A be a 3-cube-free subset of ZN where 3 | N , then

|A| 6 2

3
N.

Proof. The proof consists of two parts discussing whether A contains {x, 2x} as a subset
for some x, namely {x, 2x}-free or not. When A is {x, 2x}-free, it is equivalent to

A ∩ 2 · A = ∅.

Here 2 ·A is defined by 2 ·A := {2a : a ∈ A}, as mentioned in Section 2. Note that for all
a ∈ ZN , there is at most one pair (b, c) with b 6= c such that 2b = 2c = a, which implies

|2 · A| > 1

2
|A|.

Thus

N > |A|+ |2 · A| > 3

2
|A|,

and then A 6 2N/3.
Now let A be not {x, 2x}-free, then there exists x such that x, 2x ∈ A. Considering

the cube generated by {x, x, y} where y is selected among all the elements in A, we have

A ∩ (A− x) ∩ (A− 2x) = ∅.

By taking the complementary set

Ac ∪ (A− x)c ∪ (A− 2x)c = ZN .

Note that both (A− x) and (A− 2x) are copies of A, thus

3|Ac| > N,

and then |A| 6 2N/3.

Actually the proof above can be generalized to all cyclic group, not necessarily 3 | N .
It gives a quite trivial upper bound of 2N/3, but in some cases there might exist a better
one, for instance (5/8 + o(1))N conjectured by Long and Wagner [8] where N = 2k.

Inspired by the proof on 3-cube discussing whether {x, 2x} is forbidden, one can
naturally expect to generalize the proof to larger cubes, which leads to the conjecture as
follows.
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Conjecture 10. Let A be a {x, 2x, . . . , (d− 1)x}-free subset of ZN where d | N , then

|A| 6 d− 1

d
N.

Proof of Conjecture 4 assuming Conjecture 10. It suffices to prove it when A is not
{x, 2x, . . . , (d − 1)x}-free. Now there must be an x such that x, 2x, . . . , (d − 1)x ∈ A.
Consider the d-cube generated by {x, x, . . . , x, y} where y is selected among all the ele-
ments in A, we have

A ∩ (A− x) ∩ (A− 2x) ∩ · · · ∩ (A− (d− 1)x) = ∅.

This implies

|A| 6 d− 1

d
N.

It must be pointed out that we have a similar bound for {x, dx}-free subsets as follows.

Theorem 11. Let A be a {x, dx}-free subset of [N ], then

|A| 6 d

d+ 1
N +O(logN).

Proof. Given d, note that every positive integer m can be uniquely written as m = ds× l
with s being a non-negative integer and l being a positive integer not divisible by d. Thus
we can divide all the integers into different chains, each starting with some integer l not
divisible by d: l, dl, d2l, . . .. We denote the chain starting with l by Cl.

It is clear that A is {x, dx}-free if and only if there are no two elements of A adjacent
in one chain. To acquire the upper bound, we just need to consider the extreme cases
on different chains independently. Given l and Cl, since only one of {dkl, dk+1l} can be
contained in A for all k > 0 such that dk+1l 6 N , the extreme case appears when the
elements are selected alternately. More precisely, when |[N ] ∩ Cl| is odd, the elements of
A∩Cl take up all the odd positions in Cl; when |[N ]∩Cl| is even, the elements of A∩Cl

take up either all the odd positions or all the even positions in Cl.
Since different chains have different lengths, it is difficult to count |A∩Cl| respectively

and then add them together. Instead, we count them by layers which are defined by

Li := {x ∈ Z+ : di−1 | x, di - x}.

It is clear that all the integers can be divided into different layers, i.e.

Z+ =
∞⋃
i=1

Li.

For convenience, we may assume the elements of A take up all the odd positions in Cl

no matter whether |[N ]∩Cl| is even or odd, as it does not change the size. Based on this
assumption, the maximal A can be write as

A =

(
∞⋃
i=0

L2i+1

)
∩ [N ].
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Also all the layers are pairwise disjoint, thus

|A| =
∞∑
i=0

|L2i+1 ∩ [N ]|.

Suppose ds 6 N < ds+1. When s is odd, we have

|A| =
(s−1)/2∑

i=0

|L2i+1 ∩ [N ]|

=

(s−1)/2∑
i=0

⌊
d− 1

d2i+1
N +

d− 1

d

⌋

=

(s−1)/2∑
i=0

(
d− 1

d2i+1
N +

d− 1

d

)
+O(s)

=
d

d+ 1
(1− 1

ds+1
)N +

(s+ 1)(d− 1)

2d
+O(s)

=
d

d+ 1
N +O(s) =

d

d+ 1
N +O(logN).

And when s is even, we have

|A| =
s/2∑
i=0

|L2i+1 ∩ [N ]|

=

s/2∑
i=0

⌊
d− 1

d2i+1
N +

d− 1

d

⌋

=

s/2∑
i=0

(
d− 1

d2i+1
N +

d− 1

d

)
+O(s)

=
d

d+ 1
(1− 1

ds+2
)N +

(s+ 2)(d− 1)

2d
+O(s)

=
d

d+ 1
N +O(s) =

d

d+ 1
N +O(logN).

This bound may be helpful when we consider cube-free subsets of [N ]. It is worth
noticing that the remainder term O(logN) cannot be removed. Indeed, take the case
d = 2 as an example and we have the following result.

Theorem 12. 2 Let A be an {x, 2x}-free subset of [N ], then

|A| 6 2

3
N +O(logN).

2The author appreciates Sean Eberhard for providing the idea of comparing [N ] with [4N ], which helped
give rise to the construction in the following proof.
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Moreover, there exists ε > 0, such that for all n > 0, there exists N > n such that [N ]
contains a {x, 2x}-free subset with size at least 2N/3 + ε logN .

Proof. Take d = 2 in Theorem 11 then we have |A| 6 2N/3 + O(logN). Now consider
the sequence an = (4n − 1)/3 which converges to infinity, we are going to show that
D(an) = 2an/3 +n/3, so that {an} is the sequence we want. Here D(N) is the size of the
largest {x, 2x}-free subsets of [N ].

The proof goes by induction. Recall that

D(N) =
∞∑
k=0

⌊
N + 4k

2 · 4k

⌋
.

Since an+1 = 4an + 1, we have

D(an+1) =
∞∑
k=0

⌊
an+1 + 4k

2 · 4k

⌋
=
∞∑
k=0

⌊
4an + 1 + 4k

2 · 4k

⌋
=
∞∑
k=1

⌊
4an + 4k

2 · 4k

⌋
+ 2an + 1

=
∞∑
k=0

⌊
an + 4k

2 · 4k

⌋
+ 2an + 1

= D(an) + 2an + 1

It remains to show that D(1) = 1, which is clear.

As for cyclic group case, we can get rid of the remainder term.

Theorem 13. Let A be a {x, dx}-free subset of ZN and k = (d,N), then

|A| 6 k

k + 1
N.

Proof. We are going to count the number of solutions to the equation x0 = da where x0
is fixed. Suppose da ≡ db (mod N), then

a ≡ b (mod N/k).

This implies there will be at most k solutions to the equation. Thus

|d · A| > 1

k
|A|.

Since A ∩ d · A = ∅, we have

|A| 6 k

k + 1
N.
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Corollary 14. Let A be a {x, (d − 1)x}-free subset of [N ] where d | N , then k = (d −
1, N) 6 d− 1 and

|A| 6 k

k + 1
N 6

d− 1

d
N.

Since {x, (d−1)x} is a subset of {x, 2x, . . . , (d−1)x}, a larger density is implied when
the latter is forbidden. But comparing Conjecture 10 with Corollary 14, we find that
these two sets give rise to a same density when forbidden(or at least we expect them to).

4 Specific cases

In this section we are going to prove Theorem 5 (ii) and Theorem 5 (iii) by showing
Conjecture 10 holds respectively. It must be pointed out that the idea of counting the
family of sets partly comes from Long and Wagner [8].

4.1 When d is the smallest prime factor

We define the set F as

F := {{x, 2x, 3x, . . . , (d− 1)x} : x ∈ ZN\{0}}.

Note that every element B in F has size exactly d− 1. Otherwise, there exist i1, i2 ∈
[d− 1] and x ∈ ZN\{0} such that

N | (i1 − i2)x.

Since |i1 − i2| 6 d− 2 and N has no prime factors smaller than d, we have

(i1 − i2, N) = 1

and then N | x which is contradictory.
Moreover, observe that every element in ZN\{0} appears in precisely d − 1 many

different choices of B. Indeed, for all x0 ∈ ZN\{0} and t ∈ [d − 1], the congruence
equation with respect to x

x0 ≡ tx (mod N)

has one and only solution. This is because (t, N) = 1 and thus 0, t, 2t, . . . , (N − 1)t form
a complete system of residues modulo N .

Now we are able to figure out the size of F by double counting all the elements covered.

(d− 1)|F| = (d− 1)(N − 1).

Let A be a {x, 2x, . . . , (d−1)x}-free subset, it is clear that for every B ∈ F there exist
at least one element aB ∈ Ac. Moreover, since each fixed x ∈ ZN can appear as aB, for
some choice of B, at most d− 1 times, one has

|Ac| > |F|
d− 1

=
N − 1

d− 1
>
N

d
.

Then

|A| 6 N − N

d
=
d− 1

d
N.
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4.2 When N = pl

We are to prove a better result for an {x, 2x, . . . , (pd − 1)x}-free subset A:

|A| 6 (1− 1

pd − 1
)N.

First we define the layers in Zpl by

Li := {x ∈ Zpl : pi−1 | x, pi - x}.

For convenience we write

L[a,b] := La ∪ La+1 ∪ · · · ∪ Lb−1 ∪ Lb.

The proof goes by dividing Zpl into d(l+ 1)/de blocks, each block consisting of several
continuous layers. Indeed, with q being the largest integer such that qd 6 l + 1, the
division is

Zql = L[1,d] ∪ L[d+1,2d] ∪ · · · ∪ L[(q−1)d+1,qd] ∪ L[qd+1,l+1].

For an integer a 6 l − d+ 1, we define the set Fa as

Fa := {{x, 2x, 3x, . . . , (pd − 1)x} : x ∈ La}.

Note that for any B ∈ Fa, B has size exactly pd − 1. Otherwise there exists i1, i2 ∈
[pd − 1] and x ∈ La such that

pl | (i1 − i2)x.
Since |i1−i2| 6 pd−2, (i1−i2) is not divisible by pd. Recall that x ∈ La with a 6 l−d+1,
thus we can find a contradiction.

Moreover, observe that for every B ∈ Fa, B ⊂ L[a,a+d−1] and every element of L[a,a+d−1]
appears in precisely (p− 1)pd−1(that is, the size of [pd − 1] ∩ L1) different sets in Fa.

Now we are able to figure out the size of Fa by double counting all the elements
covered.

(pd − 1)|Fa| = (p− 1)pd−1|L[a,a+d−1]|.
Let A be an {x, 2x, . . . , (pd − 1)x}-free subset. It is clear that for every set B ∈ Fa

there exists an element xB ∈ B with xB /∈ A, and every xB recurs at most (p − 1)pd−1

times, therefore

|Ac ∩ L[a,a+d−1]| >
|Fa|

(p− 1)pd−1
=

1

pd − 1
|L[a,a+d−1]|.

|A ∩ L[a,a+d−1]|
|L[a,a+d−1]|

6 1− 1

pd − 1
.

Especially, we set a = 1 + td, t = 0, 1, . . . , q − 1 to obtain

|A ∩ L[1+td,(t+1)d]|
|L[1+td,(t+1)d]|

6 1− 1

pd − 1
. (1)
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Since 0 = pl /∈ A and qd+ 1 > l − d+ 2 we have

|A ∩ L[qd+1,l+1]|
|L[qd+1,l+1]|

6 1− 1

|L[qd+1,l+1]|
6 1− 1

pd−1
6 1− 1

pd − 1
. (2)

Finally we combine (1) and (2) to draw the conclusion that in each block A has a
density less than 1− 1/(pd − 1), therefore |A| 6 (1− 1/(pd − 1))N .
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