

On Cube-Free Problems

Yuchen Meng

Submitted: Apr 7, 2025; Accepted: Oct 12, 2025; Published: Jan 23, 2026

© The author. Released under the CC BY license (International 4.0).

Abstract

Eberhard and Pohoata conjectured that every 3-cube-free subset of $[N]$ has size less than $2N/3 + o(N)$. In this paper we show that if we replace $[N]$ with \mathbb{Z}_N the upper bound of $2N/3$ holds, and the bound is tight when N is divisible by 3 since we have $A = \{a \in \mathbb{Z}_N : a \equiv 1, 2 \pmod{3}\}$. Inspired by this observation we conjecture that every d -cube-free subset of \mathbb{Z}_N has size less than $(d-1)N/d$ where N is divisible by d , and we show the tightness of this bound by providing an example $B = \{b \in \mathbb{Z}_N : b \equiv 1, 2, \dots, d-1 \pmod{d}\}$. We prove the conjecture for several interesting cases, including when d is the smallest prime factor of N , or when N is a prime power.

We also discuss some related issues regarding $\{x, dx\}$ -free and $\{x, 2x, \dots, dx\}$ -free sets. A main ingredient we apply is to arrange all the integers into some square matrix, with $m = d^s \times l$ having the coordinate $(s+1, l - \lfloor l/d \rfloor)$. Here d is a given integer and l is not divisible by d .

Mathematics Subject Classifications: 11B30

1 Introduction

A set is called sum-free if there are no solutions to the equation $x + y = z$. For example, any subset of integers consisting of odd numbers is sum-free, as the sum of any two odd numbers results in an even number. The study on sum-free set traces its roots back to the early 20th century when Schur [9] used a combinatorial argument to show that Fermat's Last Theorem does not hold in the finite field \mathbb{F}_p .

In addition to exploring the sum-free problem, the research community has shown considerable interest in generalizations. For instance, one of them is to study the so-called (k, l) -sum-free sets, which is a set with no solutions to $x_1 + \dots + x_k = y_1 + \dots + y_l$. In particular, the avoidance density for such sets was recently determined by Jing and Wu [6, 7], generalizing the line of research for sum-free sets by Bourgain [1], by Eberhard, Green, and Manners [5], and by Eberhard [4].

In this note our primary focus lies in yet another branch of generalization for sum-free problems — the study of cube-free subsets within the cyclic group \mathbb{Z}_N . To establish

Department of Mathematics, The Ohio State University, Ohio, U.S.A. (meng.730@osu.edu).

the foundation for our exploration, we present the definition of cubes, or more precisely, projective cubes:

Definition 1. Given a multiset $S = \{a_1, \dots, a_d\}$ of size d , we define the projective d -cube generated by S as

$$\Sigma^* S = \left\{ \sum_{i \in I} a_i : \emptyset \neq I \subset [d] \right\}.$$

Definition 2. We say A is d -cube-free if there does not exist a multiset S of size d with $(\Sigma^* S) \subset A$.

For example, a set is 3-cube-free if it contains no $\{x, y, z, x+y, y+z, x+z, x+y+z\}$ as a subset.

The motivation behind this research is derived from a similar problem concerning cube-free subsets of the set $[N]$, which was conjectured by Eberhard and Pohoata¹:

Conjecture 3 (Eberhard–Pohoata). Suppose $A \subset [N]$ is 3-cube-free, then

$$|A| \leq (2/3 + o(1))N.$$

The equality holds when $A = \{x \equiv 1, 2 \pmod{3}\}$ or $A = (N/3, N]$.

It is easy to verify that the two examples are 3-cube-free. However, it is important to note that when discussing the problem within cyclic groups whose order is divisible by 3, the latter condition is no longer 3-cube-free, while the former still holds. This observation suggests the following conjecture:

Conjecture 4. Let A be a d -cube-free subset of \mathbb{Z}_N where $d \mid N$, then

$$|A| \leq \frac{d-1}{d}N.$$

The main result of this note verifies Conjecture 4 for many interesting cases:

Theorem 5. Let A be a d -cube-free subset of \mathbb{Z}_N where $d \mid N$. We have

$$|A| \leq \frac{d-1}{d}N$$

when one of following is true:

- (i) $d = 3$.
- (ii) d is the smallest prime factor of N .
- (iii) N is the power of some prime p .

Notably, the method we employed in proving Theorem 5 (i) holds considerable promise for addressing similar problems. To establish this theorem, we concentrate on subsets that are free of the diagonal solutions, namely $\{x, 2x, \dots, (d-1)x\}$ -free, and the proofs for Theorem 5 (ii) and Theorem 5 (iii) are subsequently derived from this fundamental idea.

¹This question was mentioned in a blog of Eberhard: <https://seaneberhard.com/2020/01/17/the-avoidance-density-of-k1-sum-free-sets/>

2 The tightness of the upper bound

The bound in Conjecture 4 is tight, since we have the following result.

Theorem 6. *Let d, N be positive integers with $d \mid N$, then*

$$A = \{a \in \mathbb{Z}_N : a \equiv 1, 2, \dots, d-1 \pmod{d}\}$$

is a d -cube-free subset of \mathbb{Z}_N .

We are going to prove a lemma to show the correctness of the example, which is based on the Cauchy–Davenport Theorem [2, 3]. Throughout this section we use standard definitions and notations in Additive Combinatorics as given in [10]. Given $A, B \subset \mathbb{Z}$, we write

$$A + B := \{a + b : a \in A, b \in B\}, \quad \text{and} \quad AB := \{ab : a \in A, b \in B\}.$$

When $A = \{x\}$, we simply write $x + B := \{x\} + B$ and $x \cdot B := \{x\}B$.

Theorem 7 (Cauchy–Davenport). *Let $A, B \subset \mathbb{F}_p$, then*

$$|A + B| \geq \min\{|A| + |B| - 1, p\}.$$

Lemma 8. *Let $t \leq d$ be a positive integer, let $a_i \in \mathbb{Z}_d \setminus \{0\}$ be not necessarily distinct elements and let $\lambda_i \in \{0, 1\}$. We define*

$$S_t := \left\{ \sum_{i=1}^t \lambda_i a_i : (\lambda_1, \lambda_2, \dots, \lambda_t) \neq (0, 0, \dots, 0) \right\}.$$

If $0 \notin S_t$, then $|S_t| \geq t$.

Proof. When $d = p$ is a prime, the lemma is indicated by the Cauchy–Davenport Theorem. Indeed, note that

$$S_t \supseteq \{a_1\} + \sum_{i=2}^t \{0, a_i\}.$$

We only need to consider the case that the size of the right hand side is strictly less than d , or else $|S_t| = d$ so that $0 \in S_t$.

Now we have for all $k \leq t$, $|\{a_1\} + \sum_{i=2}^k \{0, a_i\}| < d$. Then the Cauchy–Davenport Theorem implies

$$|\{a_1\} + \sum_{i=2}^k \{0, a_i\}| \geq |\{a_1\} + \sum_{i=2}^{k-1} \{0, a_i\}| + |\{0, a_k\}| - 1.$$

By using the Cauchy–Davenport Theorem for $(t-1)$ times, we have

$$|\{a_1\} + \sum_{i=2}^t \{0, a_i\}| \geq |\{a_1\}| + \sum_{i=2}^t |\{0, a_i\}| - (t-1) = t.$$

Thus

$$|S_t| \geq |\{a_1\} + \sum_{i=2}^k \{0, a_i\}| \geq t.$$

When d is not a prime, the proof goes by induction on d and then induction on t . According to the discussion above, we have already proved the lemma for prime factors, as a foundation of the induction on d . Now we suppose that the lemma holds in \mathbb{Z}_k with k being all the factors of d and start our induction on t . To begin with, $|S_t| \geq t$ for $t = 1, 2$. Indeed, when $t = 2$, $S_t = \{a_1, a_2, a_1 + a_2\}$. It is impossible to have $a_1 = a_2 = a_1 + a_2$, which implies that $a_1 = a_2 = 0$. Now we assume $|S_k| \geq k$ for all integers $k \leq t$. Note that

$$S_{t+1} \supseteq S_t + \{0, a_{t+1}\} \supseteq S_t.$$

The induction hypothesis gives $|S_{t+1}| \geq |S_t| \geq t$. Suppose $|S_{t+1}| = t < t + 1$, then

$$S_{t+1} = S_t = S_t + a_{t+1}.$$

Adding up all the elements in three sets respectively, we have

$$\sum_{x \in S_{t+1}} x = \sum_{x \in S_t} x = \sum_{x \in S_t} (x + a_{t+1}).$$

The second equality implies

$$ta_{t+1} \equiv 0 \pmod{d}.$$

Similarly by symmetry we have

$$ta_i \equiv 0 \pmod{d}$$

for $i = 1, 2, \dots, t + 1$. Let s be the greatest common divisor $\gcd(t, d)$ of t and d , and let $t = st_1, d = sd_1$, then $\gcd(t_1, d_1) = 1$ and $d_1 \mid a_i$. We may assume $s > 1$, or else $d \mid a_i$, i.e. $a_i = 0$. Write $a'_i = a_i/d_1$, then the fact that $d \nmid a_i$ implies

$$a'_i \not\equiv 0 \pmod{s}.$$

Now we consider S'_{t+1} as defined by

$$S'_{t+1} = \left\{ \sum_{i=1}^{t+1} \lambda_i a'_i : (\lambda_1, \lambda_2, \dots, \lambda_{t+1}) \neq (0, 0, \dots, 0) \right\}.$$

In other words, S'_{t+1} is defined by dividing every element in S_{t+1} by d_1 , thus $|S'_{t+1}| = |S_{t+1}| = t$. So by induction hypothesis there exist $\lambda_1, \lambda_2, \dots, \lambda_{t+1}$ not all zero such that

$$\sum_{i=1}^{t+1} \lambda_i a'_i \equiv 0 \pmod{s}.$$

Hence

$$\sum_{i=1}^{t+1} \lambda_i a_i \equiv 0 \pmod{d}.$$

Now we finish the proof by showing that $0 \in S_{t+1}$ if $|S_{t+1}| \leq t$. \square

Proof of Theorem 5 assuming Lemma 8. We may reduce to the case in which $N = d$, by considering the quotient group $\mathbb{Z}_N/(d \cdot \mathbb{Z}_N) \cong \mathbb{Z}_d$. Now, by setting $t = d$, Lemma 8 implies that every d -cube generated by elements in $A = \mathbb{Z}_d \setminus \{0\}$ which is still a subset of A has size at least d . This conflicts with the fact that $|A| = d - 1$, hence such d -cube doesn't exist and thus A is d -cube-free. \square

3 Related problems

To start further discussion, we prove the case $d = 3$ in advance. Recall Theorem 5 (i).

Theorem 9. *Let A be a 3-cube-free subset of \mathbb{Z}_N where $3 \mid N$, then*

$$|A| \leq \frac{2}{3}N.$$

Proof. The proof consists of two parts discussing whether A contains $\{x, 2x\}$ as a subset for some x , namely $\{x, 2x\}$ -free or not. When A is $\{x, 2x\}$ -free, it is equivalent to

$$A \cap 2 \cdot A = \emptyset.$$

Here $2 \cdot A$ is defined by $2 \cdot A := \{2a : a \in A\}$, as mentioned in Section 2. Note that for all $a \in \mathbb{Z}_N$, there is at most one pair (b, c) with $b \neq c$ such that $2b = 2c = a$, which implies

$$|2 \cdot A| \geq \frac{1}{2}|A|.$$

Thus

$$N \geq |A| + |2 \cdot A| \geq \frac{3}{2}|A|,$$

and then $|A| \leq 2N/3$.

Now let A be not $\{x, 2x\}$ -free, then there exists x such that $x, 2x \in A$. Considering the cube generated by $\{x, x, y\}$ where y is selected among all the elements in A , we have

$$A \cap (A - x) \cap (A - 2x) = \emptyset.$$

By taking the complementary set

$$A^c \cup (A - x)^c \cup (A - 2x)^c = \mathbb{Z}_N.$$

Note that both $(A - x)$ and $(A - 2x)$ are copies of A , thus

$$3|A^c| \geq N,$$

and then $|A| \leq 2N/3$. \square

Actually the proof above can be generalized to all cyclic group, not necessarily $3 \mid N$. It gives a quite trivial upper bound of $2N/3$, but in some cases there might exist a better one, for instance $(5/8 + o(1))N$ conjectured by Long and Wagner [8] where $N = 2^k$.

Inspired by the proof on 3-cube discussing whether $\{x, 2x\}$ is forbidden, one can naturally expect to generalize the proof to larger cubes, which leads to the conjecture as follows.

Conjecture 10. Let A be a $\{x, 2x, \dots, (d-1)x\}$ -free subset of \mathbb{Z}_N where $d \mid N$, then

$$|A| \leq \frac{d-1}{d}N.$$

Proof of Conjecture 4 assuming Conjecture 10. It suffices to prove it when A is not $\{x, 2x, \dots, (d-1)x\}$ -free. Now there must be an x such that $x, 2x, \dots, (d-1)x \in A$. Consider the d -cube generated by $\{x, x, \dots, x, y\}$ where y is selected among all the elements in A , we have

$$A \cap (A - x) \cap (A - 2x) \cap \dots \cap (A - (d-1)x) = \emptyset.$$

This implies

$$|A| \leq \frac{d-1}{d}N. \quad \square$$

It must be pointed out that we have a similar bound for $\{x, dx\}$ -free subsets as follows.

Theorem 11. Let A be a $\{x, dx\}$ -free subset of $[N]$, then

$$|A| \leq \frac{d}{d+1}N + O(\log N).$$

Proof. Given d , note that every positive integer m can be uniquely written as $m = d^s \times l$ with s being a non-negative integer and l being a positive integer not divisible by d . Thus we can divide all the integers into different chains, each starting with some integer l not divisible by d : l, dl, d^2l, \dots . We denote the chain starting with l by C_l .

It is clear that A is $\{x, dx\}$ -free if and only if there are no two elements of A adjacent in one chain. To acquire the upper bound, we just need to consider the extreme cases on different chains independently. Given l and C_l , since only one of $\{d^k l, d^{k+1} l\}$ can be contained in A for all $k \geq 0$ such that $d^{k+1} l \leq N$, the extreme case appears when the elements are selected alternately. More precisely, when $|[N] \cap C_l|$ is odd, the elements of $A \cap C_l$ take up all the odd positions in C_l ; when $|[N] \cap C_l|$ is even, the elements of $A \cap C_l$ take up either all the odd positions or all the even positions in C_l .

Since different chains have different lengths, it is difficult to count $|A \cap C_l|$ respectively and then add them together. Instead, we count them by layers which are defined by

$$L_i := \{x \in \mathbb{Z}_+ : d^{i-1} \mid x, d^i \nmid x\}.$$

It is clear that all the integers can be divided into different layers, i.e.

$$\mathbb{Z}_+ = \bigcup_{i=1}^{\infty} L_i.$$

For convenience, we may assume the elements of A take up all the odd positions in C_l no matter whether $|[N] \cap C_l|$ is even or odd, as it does not change the size. Based on this assumption, the maximal A can be written as

$$A = \left(\bigcup_{i=0}^{\infty} L_{2i+1} \right) \cap [N].$$

Also all the layers are pairwise disjoint, thus

$$|A| = \sum_{i=0}^{\infty} |L_{2i+1} \cap [N]|.$$

Suppose $d^s \leq N < d^{s+1}$. When s is odd, we have

$$\begin{aligned} |A| &= \sum_{i=0}^{(s-1)/2} |L_{2i+1} \cap [N]| \\ &= \sum_{i=0}^{(s-1)/2} \left\lfloor \frac{d-1}{d^{2i+1}} N + \frac{d-1}{d} \right\rfloor \\ &= \sum_{i=0}^{(s-1)/2} \left(\frac{d-1}{d^{2i+1}} N + \frac{d-1}{d} \right) + O(s) \\ &= \frac{d}{d+1} \left(1 - \frac{1}{d^{s+1}} \right) N + \frac{(s+1)(d-1)}{2d} + O(s) \\ &= \frac{d}{d+1} N + O(s) = \frac{d}{d+1} N + O(\log N). \end{aligned}$$

And when s is even, we have

$$\begin{aligned} |A| &= \sum_{i=0}^{s/2} |L_{2i+1} \cap [N]| \\ &= \sum_{i=0}^{s/2} \left\lfloor \frac{d-1}{d^{2i+1}} N + \frac{d-1}{d} \right\rfloor \\ &= \sum_{i=0}^{s/2} \left(\frac{d-1}{d^{2i+1}} N + \frac{d-1}{d} \right) + O(s) \\ &= \frac{d}{d+1} \left(1 - \frac{1}{d^{s+2}} \right) N + \frac{(s+2)(d-1)}{2d} + O(s) \\ &= \frac{d}{d+1} N + O(s) = \frac{d}{d+1} N + O(\log N). \end{aligned}$$

□

This bound may be helpful when we consider cube-free subsets of $[N]$. It is worth noticing that the remainder term $O(\log N)$ cannot be removed. Indeed, take the case $d = 2$ as an example and we have the following result.

Theorem 12.² *Let A be an $\{x, 2x\}$ -free subset of $[N]$, then*

$$|A| \leq \frac{2}{3} N + O(\log N).$$

²The author appreciates Sean Eberhard for providing the idea of comparing $[N]$ with $[4N]$, which helped give rise to the construction in the following proof.

Moreover, there exists $\varepsilon > 0$, such that for all $n > 0$, there exists $N > n$ such that $[N]$ contains a $\{x, 2x\}$ -free subset with size at least $2N/3 + \varepsilon \log N$.

Proof. Take $d = 2$ in Theorem 11 then we have $|A| \leq 2N/3 + O(\log N)$. Now consider the sequence $a_n = (4^n - 1)/3$ which converges to infinity, we are going to show that $D(a_n) = 2a_n/3 + n/3$, so that $\{a_n\}$ is the sequence we want. Here $D(N)$ is the size of the largest $\{x, 2x\}$ -free subsets of $[N]$.

The proof goes by induction. Recall that

$$D(N) = \sum_{k=0}^{\infty} \left\lfloor \frac{N + 4^k}{2 \cdot 4^k} \right\rfloor.$$

Since $a_{n+1} = 4a_n + 1$, we have

$$\begin{aligned} D(a_{n+1}) &= \sum_{k=0}^{\infty} \left\lfloor \frac{a_{n+1} + 4^k}{2 \cdot 4^k} \right\rfloor \\ &= \sum_{k=0}^{\infty} \left\lfloor \frac{4a_n + 1 + 4^k}{2 \cdot 4^k} \right\rfloor \\ &= \sum_{k=1}^{\infty} \left\lfloor \frac{4a_n + 4^k}{2 \cdot 4^k} \right\rfloor + 2a_n + 1 \\ &= \sum_{k=0}^{\infty} \left\lfloor \frac{a_n + 4^k}{2 \cdot 4^k} \right\rfloor + 2a_n + 1 \\ &= D(a_n) + 2a_n + 1 \end{aligned}$$

It remains to show that $D(1) = 1$, which is clear. \square

As for cyclic group case, we can get rid of the remainder term.

Theorem 13. *Let A be a $\{x, dx\}$ -free subset of \mathbb{Z}_N and $k = (d, N)$, then*

$$|A| \leq \frac{k}{k+1}N.$$

Proof. We are going to count the number of solutions to the equation $x_0 = da$ where x_0 is fixed. Suppose $da \equiv db \pmod{N}$, then

$$a \equiv b \pmod{N/k}.$$

This implies there will be at most k solutions to the equation. Thus

$$|d \cdot A| \geq \frac{1}{k}|A|.$$

Since $A \cap d \cdot A = \emptyset$, we have

$$|A| \leq \frac{k}{k+1}N. \quad \square$$

Corollary 14. *Let A be a $\{x, (d-1)x\}$ -free subset of $[N]$ where $d \mid N$, then $k = (d-1, N) \leq d-1$ and*

$$|A| \leq \frac{k}{k+1}N \leq \frac{d-1}{d}N.$$

Since $\{x, (d-1)x\}$ is a subset of $\{x, 2x, \dots, (d-1)x\}$, a larger density is implied when the latter is forbidden. But comparing Conjecture 10 with Corollary 14, we find that these two sets give rise to a same density when forbidden (or at least we expect them to).

4 Specific cases

In this section we are going to prove Theorem 5 (ii) and Theorem 5 (iii) by showing Conjecture 10 holds respectively. It must be pointed out that the idea of counting the family of sets partly comes from Long and Wagner [8].

4.1 When d is the smallest prime factor

We define the set \mathcal{F} as

$$\mathcal{F} := \{\{x, 2x, 3x, \dots, (d-1)x\} : x \in \mathbb{Z}_N \setminus \{0\}\}.$$

Note that every element B in \mathcal{F} has size exactly $d-1$. Otherwise, there exist $i_1, i_2 \in [d-1]$ and $x \in \mathbb{Z}_N \setminus \{0\}$ such that

$$N \mid (i_1 - i_2)x.$$

Since $|i_1 - i_2| \leq d-2$ and N has no prime factors smaller than d , we have

$$(i_1 - i_2, N) = 1$$

and then $N \mid x$ which is contradictory.

Moreover, observe that every element in $\mathbb{Z}_N \setminus \{0\}$ appears in precisely $d-1$ many different choices of B . Indeed, for all $x_0 \in \mathbb{Z}_N \setminus \{0\}$ and $t \in [d-1]$, the congruence equation with respect to x

$$x_0 \equiv tx \pmod{N}$$

has one and only solution. This is because $(t, N) = 1$ and thus $0, t, 2t, \dots, (N-1)t$ form a complete system of residues modulo N .

Now we are able to figure out the size of \mathcal{F} by double counting all the elements covered.

$$(d-1)|\mathcal{F}| = (d-1)(N-1).$$

Let A be a $\{x, 2x, \dots, (d-1)x\}$ -free subset, it is clear that for every $B \in \mathcal{F}$ there exist at least one element $a_B \in A^c$. Moreover, since each fixed $x \in \mathbb{Z}_N$ can appear as a_B , for some choice of B , at most $d-1$ times, one has

$$|A^c| \geq \frac{|\mathcal{F}|}{d-1} = \frac{N-1}{d-1} \geq \frac{N}{d}.$$

Then

$$|A| \leq N - \frac{N}{d} = \frac{d-1}{d}N.$$

4.2 When $N = p^l$

We are to prove a better result for an $\{x, 2x, \dots, (p^d - 1)x\}$ -free subset A :

$$|A| \leq (1 - \frac{1}{p^d - 1})N.$$

First we define the layers in \mathbb{Z}_{p^l} by

$$L_i := \{x \in \mathbb{Z}_{p^l} : p^{i-1} \mid x, p^i \nmid x\}.$$

For convenience we write

$$L_{[a,b]} := L_a \cup L_{a+1} \cup \dots \cup L_{b-1} \cup L_b.$$

The proof goes by dividing \mathbb{Z}_{p^l} into $\lceil (l+1)/d \rceil$ blocks, each block consisting of several continuous layers. Indeed, with q being the largest integer such that $qd \leq l+1$, the division is

$$\mathbb{Z}_{q^l} = L_{[1,d]} \cup L_{[d+1,2d]} \cup \dots \cup L_{[(q-1)d+1,qd]} \cup L_{[qd+1,l+1]}.$$

For an integer $a \leq l-d+1$, we define the set \mathcal{F}_a as

$$\mathcal{F}_a := \{\{x, 2x, 3x, \dots, (p^d - 1)x\} : x \in L_a\}.$$

Note that for any $B \in \mathcal{F}_a$, B has size exactly $p^d - 1$. Otherwise there exists $i_1, i_2 \in [p^d - 1]$ and $x \in L_a$ such that

$$p^l \mid (i_1 - i_2)x.$$

Since $|i_1 - i_2| \leq p^d - 2$, $(i_1 - i_2)$ is not divisible by p^d . Recall that $x \in L_a$ with $a \leq l-d+1$, thus we can find a contradiction.

Moreover, observe that for every $B \in \mathcal{F}_a$, $B \subset L_{[a,a+d-1]}$ and every element of $L_{[a,a+d-1]}$ appears in precisely $(p-1)p^{d-1}$ (that is, the size of $[p^d - 1] \cap L_1$) different sets in \mathcal{F}_a .

Now we are able to figure out the size of \mathcal{F}_a by double counting all the elements covered.

$$(p^d - 1)|\mathcal{F}_a| = (p-1)p^{d-1}|L_{[a,a+d-1]}|.$$

Let A be an $\{x, 2x, \dots, (p^d - 1)x\}$ -free subset. It is clear that for every set $B \in \mathcal{F}_a$ there exists an element $x_B \in B$ with $x_B \notin A$, and every x_B recurs at most $(p-1)p^{d-1}$ times, therefore

$$|A^c \cap L_{[a,a+d-1]}| \geq \frac{|\mathcal{F}_a|}{(p-1)p^{d-1}} = \frac{1}{p^d - 1}|L_{[a,a+d-1]}|.$$

$$\frac{|A \cap L_{[a,a+d-1]}|}{|L_{[a,a+d-1]}|} \leq 1 - \frac{1}{p^d - 1}.$$

Especially, we set $a = 1 + td$, $t = 0, 1, \dots, q-1$ to obtain

$$\frac{|A \cap L_{[1+td,(t+1)d]}|}{|L_{[1+td,(t+1)d]}|} \leq 1 - \frac{1}{p^d - 1}. \quad (1)$$

Since $0 = p^l \notin A$ and $qd + 1 \geq l - d + 2$ we have

$$\frac{|A \cap L_{[qd+1, l+1]}|}{|L_{[qd+1, l+1]}|} \leq 1 - \frac{1}{|L_{[qd+1, l+1]}|} \leq 1 - \frac{1}{p^{d-1}} \leq 1 - \frac{1}{p^d - 1}. \quad (2)$$

Finally we combine (1) and (2) to draw the conclusion that in each block A has a density less than $1 - 1/(p^d - 1)$, therefore $|A| \leq (1 - 1/(p^d - 1))N$.

Acknowledgements

The author thanks Yifan Jing and Jiaao Li for discussion and guidance.

References

- [1] Jean Bourgain, *Estimates related to sumfree subsets of sets of integers*, Israel J. Math. **97** (1997), 71–92. MR 1441239
- [2] Augustin Louis Baron Cauchy, *Recherches sur les nombres*, J. École Polytech **9** (1813), 99–116.
- [3] Harold Davenport, *On the addition of residue classes*, J. Lond. Math. Soc. **10** (1935), 30–32.
- [4] Sean Eberhard, *Følner sequences and sum-free sets*, Bull. Lond. Math. Soc. **47** (2015), no. 1, 21–28. MR 3312960
- [5] Sean Eberhard, Ben Green, and Freddie Manners, *Sets of integers with no large sum-free subset*, Ann. of Math. (2) **180** (2014), no. 2, 621–652. MR 3224720
- [6] Yifan Jing and Shukun Wu, *The largest (k, l) -sum-free subsets*, Trans. Amer. Math. Soc. **374** (2021), no. 7, 5163–5189.
- [7] ———, *A note on the largest sum-free sets of integers*, J. Lond. Math. Soc. (2023), 1–19.
- [8] Jason Long and Adam Zsolt Wagner, *The largest projective cube-free subsets of \mathbb{Z}_{2^n}* , Eur. J. Combin. **81** (2019), 156–171.
- [9] Issai Schur, *Über die kongruenz $x^m + y^m \equiv z^m \pmod{p}$* , Jber. Deutseh. Math. Verein. **25** (1916), 114–117.
- [10] Terence Tao and Van H Vu, *Additive combinatorics*, vol. 105, Cambridge University Press, 2006.