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Abstract

Given a graph G and an integer d > 0, its d-defective chromatic number χd(G)
is the smallest size of a partition of the vertices into parts inducing subgraphs
with maximum degree at most d. Guo, Kang and Zwaneveld recently studied the
relationship between the d-defective chromatic number of the (d + 1)-fold (clique)
blowup G�Kd+1 of a graph G and its ordinary chromatic number, and conjectured
that χ(G) = χd(G �Kd+1) for every graph G and d > 0. In this note we disprove
this conjecture by constructing graphs G of arbitrarily large chromatic number such
that χ(G) > 30

29χ
d(G �Kd+1) for infinitely many d. On the positive side, we show

that the conjecture holds with a constant factor correction, namely χd(G�Kd+1) 6
χ(G) 6 2χd(G�Kd+1) for every graph G and d > 0.

Mathematics Subject Classifications: 05C07, 05C15, 05C76

1 Introduction

The chromatic number χ(G) of a graph G is the smallest number k > 1 such that there
exists a proper k-coloring of G, i.e., a mapping c : V (G)→ S for some color-set S of size
k such that c(u) 6= c(v) for every edge uv of G. Many important open problems in graph
theory seek upper bounds for the chromatic number of a graph given some structural
constraints on the graph. In many of these settings however, it is still of interest if we can
find a coloring that in some sense is approximately proper. To make this more precise,
let us say that an improper coloring is simply a mapping c : V (G) → S for some finite
color set S. Maybe the most popular measure of the “improperness” of the coloring c is
its maximum monochromatic degree (also called defect): For an integer d > 0, we say
that c is d-defective if for every s ∈ S the subgraph of G induced by the color class of
color s has maximum degree at most d, i.e., ∆(G[c−1(s)]) 6 d. In other words, for every
v ∈ V (G) there are at most d neighbors u ∈ NG(v) such that c(u) = c(v). By χd(G), we
denote the minimum size of a color set S for which a d-defective coloring of G exists.
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Defective colorings have been extensively studied in the literature, with important
connections to a diverse set of areas in structural and geometric graph theory, and to well-
known graph coloring conjectures such as Hadwiger’s conjecture. Rather than attempting
the elusive task of giving a comprehensive overview, we refer to the 70 page survey article
by Wood [5] for previous work.

In this note, we shall be concerned with the d-defective chromatic number of blowups
of graphs by cliques. Concretely, given a graph G and an integer d > 0, we will consider
d-defective colorings of the strong product G �Kd+1, which can be equivalently seen as
the graph obtained from G by replacing each vertex by a clique of size d + 1, and by
adding all possible edges between the cliques replacing vertices u and v for every edge
uv ∈ E(G). Formally, we will view the strong product G � Kt for some t > 1 as the
graph with vertex set V (G) × [t] such that two vertices (u, i) and (v, j) are adjacent if
and only if u = v and i 6= j or uv ∈ E(G). We remark in passing that Campbell et
al. [7] and Esperet and Wood [6] recently also studied (improper) colorings of strong
products of graphs. However, their results are not directly relevant to the discussion in
this paper. Instead, we shall be concerned with a recent conjecture by Guo, Kang and
Zwaneveld [1], which we introduce next. Motivated by studying the tightness of Hoffman’s
classic spectral bound on the chromatic number [8] and its extension to the d-defective
chromatic number by Bilu [9], they were interested in the connections between the d-
defective chromatic number of G�Kd+1 and the ordinary chromatic number χ(G) of G
and made the following conjecture, which was also posed as an open problem at the 2025
Graph Theory workshop in Oberwolfach.

Conjecture 1 (Guo, Kang and Zwaneveld, cf. Conjecture 2 in [1]). For every graph G
and every integer d > 0, we have χ(G) = χd(G�Kd+1).

By lifting an optimal proper coloring of G, one can easily obtain a d-defective coloring
of G � Kd+1 with χ(G) colors, and hence χd(G � Kd+1) 6 χ(G) always holds. Thus,
at the core of Conjecture 1 lies the inequality χ(G) 6 χd(G � Kd+1). Guo, Kang and
Zwaneveld provided several pieces of evidence supporting this conjecture, for example by
proving it for perfect graphs, graphs with chromatic number at most four, and by proving
fractional, clustered and spectral analogues of Conjecture 1.

Despite these promising signs, in this paper we refute Conjecture 1 by showing that
it fails for graphs of chromatic number at least 30 and for every d > 2.

Theorem 2. For every d > 2 there exists a graph G such that χd(G � Kd+1) 6 k :=
2d3 + 2d2 + d+ 3 but χ(G) > k.

We remark that the above result is tight in terms of d, in the sense that Conjecture 1
holds for d < 2. This follows from the result of Guo, Kang and Zwaneveld [1, Corollary
20] on the clustered variant of Conjecture 1 as the maximum size of a monochromatic
component in a 1-defective coloring is at most two.

A natural follow-up question is to ask how badly the conjecture fails. For example, is
there at least an absolute constant c > 0 such that for every graph G and every d > 0 we
have χ(G) 6 c · χd(G �Kd+1)? In our next result, we show that this is indeed the case,
with c = 2.
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Theorem 3. For every graph G and every integer d > 1, we have χ(G) 6 2·χd(G�Kd) 6
2 · χd(G�Kd+1).

It would be interesting to determine the smallest value of c for which the inequality
χ(G) 6 c ·χd(G�Kd+1) always holds. Theorem 2 for d = 2 yields one example of a graph
showing that c > 30

29
is necessary.

Problem 4. Determine

sup

{
χ(G)

χd(G�Kd+1)

∣∣∣∣G is a graph and d > 0

}
.

Another natural question is whether assuming that either χ(G) or d is sufficiently large
can help to reduce the constant factor in Theorem 3 arbitrarily close to 1. Unfortunately,
by bootstrapping Theorem 2 we can show this is not the case.

Corollary 5. For all positive integers d ≡ 2 (mod 3) and k ≡ 0 (mod 30) there exists a
graph G with χ(G) = k and χ(G) > 30

29
· χd(G�Kd+1).

As a final remark, let us mention that the family of graphs from Corollary 5 gives new
examples of graphs for which the chromatic number is separated from the Hoffman lower
bound [8] (i.e., the quantity λ1−λn

−λn , where λ1, λn denote the largest and smallest eigenvalue
of the adjacency matrix of G, respectively) by a constant factor. Indeed, it was proved by
Guo et al. (see the proof of Lemma 11 in [1]) that the Hoffman lower bound also forms
a lower bound on χd(G � Kd+1) for every d > 0. Our claim then follows directly from
Corollary 5.

Notation. For an integer k > 1, we use [k] = {1, . . . , k} as a shorthand for the first
k positive integers. Given a graph G, we denote by V (G) its vertex set and by E(G)
its edge set. We further use ∆(G) to denote the maximum degree of G. For a vertex
v ∈ V (G), we denote by NG(v) its neighborhood. For a subset of vertices X ⊆ V (G), we
denote by G[X] the induced subgraph of G with vertex set X.

2 Proofs of the results

In this section, we present the proofs of our results. We start with the disproof of Conjec-
ture 1, by establishing Theorem 2. The proof of Theorem 2 is based on a result of Bohman
and Holzman [2] from 2001. To state this result, we need to introduce some additional
notation. Given a graph G and an assignment L : V (G)→ 2N of finite sets (referred to as
lists) to its vertices, an L-coloring is defined as a proper coloring c : V (G)→ N such that
each vertex picks a color from its list, that is, c(v) ∈ L(v) for every v ∈ V (G). Further,
for any vertex v ∈ V (G) and any color α ∈ L(v), let us denote by dLα(v) its color degree,
defined as the number of neighbors u ∈ NG(v) such that α ∈ L(u).

With this notation at hand, we can state the main result of Bohman and Holzman
from [2] as follows. Their result disproved a list coloring conjecture earlier made by
Reed [4].
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Theorem 6 (Bohman and Holzman [2]). For every d > 2 there exists a graph F with a
list-assignment L such that

• |L(v)| > d+ 1 for every v ∈ V (F ),

• dLα(v) 6 d for every v ∈ V (F ) and α ∈ L(v),

• there exists no L-coloring of F , and

•
∣∣∣⋃v∈V (F ) L(v)

∣∣∣ = 2d3 + 2d2 + d+ 3.

Equipped with this result, we can now present the proof of Theorem 2.

Proof of Theorem 2. Let d > 2 be any given integer, and let F be the graph and L the list
assignment as given by Theorem 6. Set k := 2d3 +2d2 +d+3 =

∣∣⋃
v∈F L(v)

∣∣. By reducing
list sizes if necessary and renaming colors, we may assume w.l.o.g. in the remainder of
the proof that |L(v)| = d+ 1 for every v ∈ V (F ) and

⋃
v∈V (F ) L(v) ⊆ [k].

We now construct a graph G based on F as follows. The vertex set of G equals
V (G) = V (F ) ∪ {v1, . . . , vk}, where v1, . . . , vk /∈ V (F ) are k additional “new” vertices.
The edge set of G is obtained from the edge set of F by adding the following additional
edges: The vertices {v1, . . . , vk} are made pairwise adjacent, i.e. form a clique in G.
Furthermore, for every u ∈ V (F ) and i ∈ [k], we have uvi ∈ E(G) if and only if i /∈ L(u).
This finishes the description of G. We now claim that it satisfies the properties required
by the theorem statement, that is, χd(G�Kd+1) 6 k and χ(G) > k.

The first inequality can be easily verified as follows: For each vertex v ∈ V (G), let
L(v) = {αv1, . . . , αvd+1} be an enumeration of the colors in its list, and let us define a
mapping cd : V (G�Kd+1)→ [k] by setting cd(v, i) := αvi for every (v, i) ∈ V (F )× [d+ 1],
as well as cd(vt, i) := t for every t ∈ [k] and i ∈ [d + 1]. We claim that cd is a d-defective
coloring of G�Kd+1. First of all, note that by our definition of the edges in G, for every
t ∈ [k] the vertices in the fiber {vt} × [d + 1] are only connected to the vertices in fibers
of the form {u} × [d + 1] for some u such that t /∈ L(u) or of the form {vt′} × [d + 1]
for some t′ 6= t. For both cases, the definition of cd readily implies that there are no
monochromatic edges spanned between the fiber {vt} × [d+ 1] and the rest of the graph
G�Kd+1. Hence, each fiber {v1}×[d+1], . . . , {vk}×[d+1] spans their own monochromatic
component of the coloring cd of G�Kd+1, and the maximum degree in these components
is trivially exactly d. Hence, in the following it suffices to verify that the restriction of
the coloring cd to the induced subgraph F �Kd+1 is d-defective. To see this, consider any
vertex (v, i) ∈ V (G �Kd+1). Then by definition of cd, the number of neighbors of (v, i)
in G �Kd+1 that are assigned the same color as (v, i) by cd, equals exactly the number
of neighbors u of v in G such that L(u) contains the color cd(v, i) = αvi . In other words,
the degree of (v, i) in its color class induced by cd equals the color degree dLαv

i
(v), which

by our choice of F is bounded from above by d. This confirms that cd is a d-defective
coloring of V (G�Kd+1).

It remains to show that χ(G) > k. Towards a contradiction, suppose there exists a
proper k-coloring c : V (G) → [k] of G. Since {v1, . . . , vk} form a clique of size k in G,
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possibly after permuting colors we may then assume that c(vi) = i for every i ∈ [k]. By
definition of G, every vertex v ∈ V (F ) is adjacent to all the vertices {vi | i ∈ [k] \ L(v)}.
Hence, c(v) must be distinct from all colors in [k] \ L(v), in other words, we must have
c(v) ∈ L(v) for every v ∈ V (F ). But then the coloring c, restricted to F , forms an L-
coloring of F , contradicting that we have chosen F such that no L-coloring exists. This is
the desired contradiction, showing that indeed χ(G) > k. This concludes the proof.

With Theorem 2 proved, we next present the deduction of Corollary 5 from Theorem 2.

Proof of Corollary 5. Let d, k be positive integers such that d ≡ 2 (mod 3) and k ≡
0 (mod 30).

By applying Theorem 2 with defect 2, we find that there exists a graph G0 such that
χ2(G0 � K3) 6 29 and χ(G0) > 30. By removing vertices if necessary, we may assume
w.l.o.g. that χ(G0) = 30. Let m := k

30
, and let G′ be the graph obtained from the disjoint

union of m copies G1, . . . , Gm of G0 by adding all possible edges between Gi and Gj for
all distinct i, j ∈ [m]. It is then easy to see that χ(G′) = m · χ(G0) = 30m = k.

Next we would like to show that χd(G′ �Kd+1) 6 29m. To that end, fix a 2-defective
coloring c : V (G0�K3)→ [29] of G0�K3. Now, let c′ : V (G′�Kd+1)→ [29m] be defined
as follows:

For every vertex (v, i) ∈ V (G′)× [d + 1], we set c′(v, i) := c(v∗, i∗) + 29(t− 1), where
t ∈ [m] is the unique index such that v ∈ V (Gt), v

∗ ∈ V (G0) denotes the vertex in G0

corresponding to v, and i∗ ∈ [3] is unique such that 1 + d+1
3

(i∗ − 1) 6 i 6 d+1
3
i∗.

We now want to bound the maximum monochromatic degree in the coloring c′. Note
that c′ assigns disjoint sets of colors on V (G1) × [d + 1], . . . , V (Gm) × [d + 1]. Thus,
w.l.o.g. it suffices to bound the maximum monochromatic degree in the restriction of c′ to
V (G1)�Kd+1. So, consider any vertex (v, i) ∈ V (G1)�[d+1] and let (v∗, i∗) ∈ V (G0)×[3]
be defined as above. Let N denote the set of vertices in the closed neighborhood of (v, i)
in G1�Kd+1 which gets assigned the same color as (v, i) by c′. We can then see from the
definition of c′ that (u, j) ∈ N if and only if (u∗, j∗) is a vertex in the closed neighborhood
of (v∗, i∗) in G1 �K3 that gets assigned the same color as (u∗, j∗) by c, where u∗ is the
vertex of G0 corresponding to u and j∗ ∈ [3] is such that 1 + d+1

3
(j∗ − 1) 6 j 6 d+1

3
j∗.

By our choice of c there can be in total at most three such vertices (u∗, j∗), and hence in
total at most 3 · d+1

3
= d+1 vertices in N . Hence, there are at most |N |−1 6 d neighbors

of (v, i) with the same color as (v, i) under c′. This shows that c′ is indeed a d-defective
coloring. Hence, we have χd(G′ �Kd+1) 6 29m, as desired. This concludes the proof of
the corollary.

We proceed with the proof of our second main result, Theorem 3. It is based on
the following sufficient condition for so-called independent transversals due to Haxell [3].
Given a graph H and a partition (V1, . . . , V`) of its vertex set, an independent transversal
of this partition in G is defined to be a subset I ⊆ V (G) such that I is independent in G
and |I ∩ Vi| = 1 for every i ∈ [`].
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Theorem 7 (cf. Theorem 2 in [3]). If H is a graph with a partition (V1, . . . , V`) of its
vertex set such that |Vi| > 2 · ∆(H) for every i ∈ [`], then there exists an independent
transversal.

Finally, we prove Theorem 3.

Proof of Theorem 3. Let G be any given graph and let d > 1 be an integer. The graph
G�Kd is isomorphic to a subgraph of G�Kd+1, and so χd(G�Kd) 6 χd(G�Kd+1) holds
trivially and it suffices to show that χ(G) 6 2χd(G�Kd). Let us denote k := χd(G�Kd)
and let c : V (G) × [d] → [k] be a d-defective coloring of G � Kd. Define an auxiliary
graph H as follows: The vertex set is V (H) := V (G) × [d] × {1, 2}, and two distinct
vertices (g1, i, a) and (g2, j, b) of H are connected to each other if and only if g1g2 ∈ E(G),
c(g1, i) = c(g2, j) and a = b. Note first that the maximum degree ∆(H) is bounded from
above by d: For every vertex (g1, i, a) ∈ V (H), each of its neighbors is of the form (g2, j, a)
where (g2, j) ∈ V (G �Kd) is a neighbor of (g1, i) in G �Kd which is assigned the same
color as (g1, i) by the coloring c. Since c by assumption was a d-defective coloring, the
number of such neighbors can be at most d. Thus, ∆(H) 6 d, as desired.

Next, consider the vertex-partition (Vg)g∈V (G) of V (H) given by the fibers Vg := {g}×
[d] × {1, 2} for every g ∈ V (G). Since |Vg| = 2d > 2∆(H) for every g ∈ V (G), the
conditions of Theorem 7 are met, implying that there exists an independent transversal
I for the partition (Vg)g∈V (G) in H. By definition, this means that for every g ∈ V (G)
we have |I ∩ Vg| = 1. For each g ∈ V (G), let us define c′(g) ∈ [k] × {1, 2} as the pair
(c(g, i), a), where (i, a) ∈ [d]× {1, 2} is chosen uniquely such that (g, i, a) ∈ I.

Finally, we claim that the so-defined mapping c′ : V (G) → [k] × {1, 2} forms a
proper coloring of G. Towards a contradiction, suppose that there exists an edge g1g2 ∈
E(G) with c′(g1) = c′(g2). Then there exist i, j ∈ [d] and a, b ∈ {1, 2} such that
(g1, i, a), (g2, j, b) ∈ I as well as (c(g1, i), a) = c′(g1) = c′(g2) = (c(g2, j), b). Hence,
g1g2 ∈ E(G), c(g1, i) = c(g2, j) and a = b. By definition of H, this implies that the mem-
bers (g1, i, a) and (g2, j, b) of I are adjacent in H, contradicting that I is an independent
set in H. This shows that c is indeed a proper coloring of G, and hence (since it uses
at most 2k colors), we have χ(G) 6 2k = 2χd(G � Kd), as desired. This concludes the
proof.
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