
Sharp Bounds on Lengths

of Linear Recolouring Sequences

Stijn Cambiea Wouter Cames van Batenburgb

Daniel W. Cranstonc

Submitted: Jan 18, 2025; Accepted: Dec 23, 2025; Published: Jan 23, 2026

© The authors. Released under the CC BY license (International 4.0).

Abstract

A recolouring sequence, between k-colourings α and β of a graph G, transforms
α into β by recolouring one vertex at a time, such that after each recolouring step
we again have a proper k-colouring of G. The diameter of the k-recolouring graph,
diam Ck(G), is the maximum over all pairs α and β of the minimum length of a
recolouring sequence from α to β. Much previous work has focused on determining
the asymptotics of diam Ck(G): Is it Θ(|G|)? Is it Θ(|G|2)? Or even larger? Here
we focus on graphs for which diam Ck(G) = Θ(|G|), and seek to determine more
precisely the multiplicative constant implicit in the Θ(). In particular, for each
k > 3, for all positive integers p and q we exactly determine diam Ck(Kp,q), up to a
small additive constant. We also sharpen a recolouring lemma that has been used
in multiple papers, proving an optimal version. This improves the multiplicative
constant in various prior results. Finally, we investigate plausible relationships
between similar reconfiguration graphs.

Mathematics Subject Classifications: 05C85, 05C15, 05C12

1 Introduction

The k-recolouring graph, Ck(G), has as its vertices the k-colourings of G; two vertices are
adjacent precisely when those k-colourings differ in the colour of a single vertex of G. A
walk in Ck(G) between two k-colourings α and β is called a recolouring sequence from α
to β. It is well-known [15], and easy to prove by induction, that Ck(G) is connected when
k > ∆(G) + 2. In fact, in this case the diameter of Ck(G) is linear in |G|; specifically [9,
Thm. 1], we have diam Ck(G) 6 2|G|. Much previous research [2–5, 7, 8, 11–13, 16] has
focused on determining sufficient conditions on integers k and graph classes G to imply
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that diam Ck(G) = Θ(|G|) for all G ∈ G. In this paper we revisit some of these graphs,
and prove sharper upper bounds on diam Ck(G).

In Section 2, we prove the Optimal Renaming Lemma, which is a sharper version of
a lemma used in numerous papers. As a consequence, we improve the upper bounds in
these previous works. In Section 3, we consider the complete bipartite graph Kp,q; for
each number k of colours we determine, up to a small additive constant, diam Ck(Kp,q).
We show, perhaps surprisingly, that diam Ck(Kp,q) moves through 3 distinct phases, as
the ratio q/p decreases. Namely, we prove our main result, stated below.

Theorem 1. Fix positive integers p, q, k. If p 6 q and k > 3, then

diam Ck(Kp,q) =



2p+ q +
⌊
q−p
k−1

⌋
if q > kp

3p+ q +

⌊
q−kp⌊
k2

4

⌋
⌋
− g1(k, p, q) if

⌈
k
2

⌉
p 6 q 6 kp,

2p+ q +

⌊
q−p
d k2e

⌋
− g2(k, p, q) if q 6

⌈
k
2

⌉
p,

where 0 6 g1(k, p, q) 6
⌊
k2

4

⌋
and 0 6 g2(k, p, q) 6

⌊
k
2

⌋
.

Finally, in Section 4 we consider list-colouring. For each list-assignment L we define
CL(G), analogous to Ck(G). Naturally, we look for relationships between diam CL(G) and
diam Ck(G), particularly when |L(v)| = k for all vertices v. We mainly construct examples
disproving many statements we might hope were true. We also pose as open problems
some statements that we have neither been able to prove or disprove, regarding relation-
ships between diam Ck(G) and diam Ck+1(G), or between rad Ck(G) and rad Ck+1(G).

Most of our notation is standard. We note that we write [i] for {1, . . . , i} and we write
[i, j] for {i, . . . , j}.

1.1 Intuition behind Theorem 1

To better understand Theorem 1, it is instructive to compare to each other the upper
bounds for its 3 regimes. When k = 3, these upper bounds for all regimes are identical;
furthermore, in that case the functions g1 and g2 are identically zero. We state this
formally below and prove it just before Subsection 3.2.

Proposition 2. For every complete bipartite graph Kp,q, we have

diam C3(Kp,q) =
⌊
3(p+q)

2

⌋
.

In Fig. 1 below, we plot the 3 upper bounds in Theorem 1 as functions in q, for k = 4
and p fixed. But where do these bounds come from? A natural guess for colourings α
and β that are far apart is to have α use a of the colours, equally, on part U and the
remaining k − a of the colours, equally, on part V ; and β swaps the parts of all colours,
relative to α, again using the colours on each part as equally as possible.

Formalising this intuition does indeed give a pair α, β that is far apart. But we still
must specify a, the number of colours used by α on U . When q is large relative to p,
namely q > kp, the worst case (largest distance) arises with a = 1; and when q < kp, the
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worst case arises with a =
⌊
k
2

⌋
. For the pair α, β of colourings arising with a = 1, the

number of recolouring steps needed is shown in Fig. 1 in blue (we call this function B).
For the pair α, β of colourings arising with a =

⌊
k
2

⌋
, we have two candidate recolouring

strategies, shown in Fig. 1 in orange and green (functions O and G). The first of these
(O) is optimal when q 6

⌈
k
2

⌉
p, and the second (G) is optimal when

⌈
k
2

⌉
p 6 q 6 kp. So

our upper bound for the diameter is max{B,min{O,G}}.

q

d

1 · p 2 · p 4 · p

Figure 1: The three upper bounds in Theorem 1 for k = 4 and p 6 q 6 6p.
The bold line segments indicate the value of diam Ck(Kp,q), up to the error
terms g1(k, p, q) and g2(k, p, q).

To prove the upper bounds in Theorem 1, we consider a few candidate recolouring
sequences (constructed inductively). We use an averaging argument to show, for each pair
of colourings α, β, not just those defined above, that one of these candidates recolours α
to β in a number of steps at most the bound in Theorem 1; examples of these candidate
recolouring sequences, when k = 4, (applied on a pair of extremal colourings α, β) are
shown in Fig. 2.

To prove the lower bound in Theorem 1, we show further that indeed no recolour-
ing sequence can do better. We remark briefly about the error terms g1(k, p, q) and

g2(k, p, q). When p and q are both multiples of
⌊
k
2

⌋⌈
k
2

⌉
=
⌊
k2

4

⌋
, these error terms vanish.

In the general case, they arise because we cannot quite use all colours “equally” on a part
when the number of colours does not divide the order of that part. (We suspect that
g1(k, p, q) = O(k), but our efforts to prove this encountered various technical complica-
tions.) Moreover, the error term g2(k, p, q) becomes 1 or 0 when q is sufficiently small
compared to k. Similarly, as proved in [9, Thm. 20], the diameter of Ck(Kp,q) equals 2p+q
whenever p 6 q 6 k − 2.

As Theorem 1 illustrates, finding the diameter of Ck(G) for graphs G in even a simple
class like complete bipartite graphs is already quite involved. This example hints at the
complexity of the problem in general. In this light, proving that diamCk(G) = n(G) +
µ(G) for all k > ∆(G) + 2, and all graphs G, (see [9, Conj. 1]) would be very interesting.
(Here µ(G) denotes the maximum size of a matching in G.) When we restrict to regular
graphs, this problem becomes Regular Cereceda’s Conjecture [9, Conj. 3]. In a sense
(expressed in the maximum degree), once k is big enough to guarantee connectedness of
Ck(G), the diameter of Ck(G) would be known as well. For smaller k, one can expect
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Figure 2: Examples, for k = 4, of recolouring sequences between extremal colourings of Kp,q

in the 3 regimes. Each coloured rectangle shows the proportion of vertices coloured in a
particular colour. Each grey area indicates the edges of Kp,q. Top: An optimal recolouring
sequence from α to β when a = 1. The number of steps needed is shown in Fig. 1 as B.
Middle: One candidate for an optimal recolouring sequence from α to β when a =

⌊
k
2

⌋
.

The number of steps needed is shown in Fig. 1 as G. Bottom: The other candidate for an
optimal recolouring sequence from α to β when a =

⌊
k
2

⌋
. The number of steps needed is

shown in Fig. 1 as O.
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many different regimes, and it seems impossible to state a precise answer in general.

2 Optimal Renaming Lemma

Bonamy and Bousquet [5, Lemma 5] proved a variant of the Optimal Renaming Lemma
below; for clarity, we call their version the Rough Renaming Lemma. It has been reused
in several papers as a subroutine. In a typical application, we are given two colourings
α and β that can be efficiently recoloured to some carefully chosen colourings α′, β′ that
induce the same partition into colour classes. The Rough Renaming Lemma is then used
as a ‘finishing blow’ to recolour α′ to β′, thus establishing a short recolouring sequence
between α and β. But the upper bound in the Rough Renaming Lemma, of 2n, is
suboptimal. In fact, this recolouring can be done with only b3n/2c steps, which is sharp.

So reusing the Rough Renaming Lemma is wasteful, especially in papers that prove a
linear bound on the diameter of the reconfiguration graph. In a sense, the ideas needed
to prove the Optimal Renaming Lemma were already present in the argument of Bonamy
and Bousquet, but authors of subsequent papers seem to be unaware. By making this
improvement explicit, we indirectly strengthen the upper bounds in the papers that have
used this Rough Renaming Lemma.

Optimal Renaming Lemma. Let G be a graph on n vertices, fix k > χ(G), and let
α and β be two proper k-colourings of G that induce the same partition of vertices into
colour classes C1, . . . , Ck. If ` > k+ 1, then α can be recoloured to β in C`(G) in at most
b3n/2c steps, with each vertex recoloured at most 2 times.

Proof. We define an auxiliary loopless digraph D with vertex set V (D) := {C1, . . . , Ck},
and with (Ci, Cj) a directed edge of D if and only if α(Ci) = β(Cj) and i 6= j. By
construction, the vertices of D have pairwise distinct colours, so each vertex has in-
degree and out-degree both at most 1. So the vertices of D can be partitioned into
directed paths and directed cycles. Now we sequentially recolour the vertices of each
directed path and cycle. For a directed path Ci1 , . . . , Cit (possibly with t = 1), we simply
recolour Ci1 to β(Ci1), then recolour Ci2 to β(Ci2), etcetera, finally recolouring Cit to
β(Cit). This takes

∑t
j=1 |Cij | recolouring steps. Note that every recolouring step induces

an updated directed graph D. But this is of no consequence for us since every colour
class Ci that is currently coloured β(Ci) has in-degree and out-degree in D both 0.

For a directed cycle Ci1 , . . . , Cit with t > 2, we assume without loss of generality
that Ci1 has minimum size among Ci1 , . . . , Cit . We first recolour Ci1 to some free colour
in [`] \ γ(V (G)), where γ denotes the current colouring. Note that this cannot create
a new arc incident to the current directed cycle. Next, we proceed along the directed
cycle, starting by recolouring Ci2 to β(Ci2) and ending by recolouring Cit to β(Cit). To
finish, we recolour Ci1 again, this time to β(Ci1). In total, the number of recolouring
steps we use is |Ci1| +

∑t
j=1 |Cij |. This is at most b3/2 ·

∑t
j=1 |Cij |c because t > 2 and

we chose Ci1 to be of minimum size. In this way we can recolour every directed path
and cycle, one after the other. So the total number of recolouring steps we use is at
most b3/2 ·

∑k
i=1 |Ci|c = b3n/2c. Moreover, every vertex is recoloured only once or, if it

belonged to the smallest colour class of its directed cycle, twice.

Corollary 3. The upper bound in [4, Thm. 6], for (P3+P1)-free graphs, improves from 6n
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to b(4 + 1/2)nc; and the upper bound in [4, Thm. 7], for (2K2, C4)-free graphs, improves
from 4n to b7n/2c.

Proof. In these proofs, the authors use the Rough Renaming Lemma, which promises a
recolouring sequence of length at most 2n, rather than of length at most b3n/2c. So we
gain dn/2e steps each time the lemma is applied. To prove Theorem 6 it is applied 3
times, while to prove Theorem 7 it is applied 1 time.

Corollary 4. In [3] its authors prove that for every 2K2-free bipartite n-vertex graph
G, and for every ` > χ(G) + 1, we have diam C`(G) 6 4n. That proof uses the Rough
Renaming Lemma once. By instead using The Optimal Renaming Lemma, we improve
the bound to b7n/2c. In the same paper, the authors also prove that for every 2K2-free
3-chromatic n-vertex graph G, and for every ` > χ(G) + 1, we have diam C`(G) 6 14n.
They use the Rough Renaming Lemma three times (once explicitly, and twice implicitly
via the result for 2K2-free bipartite graphs), so the bound now improves to b(12 + 1/2)nc.

Corollary 5. In [2], the Rough Renaming Lemma is used once to show that for every
{triangle, co-diamond}-free graph G and for every ` > χ(G) + 1, we have diam C`(G) 6
6n, unless G is isomorphic to K`,` minus a perfect matching. The Optimal Renaming
Lemma improves this bound to b(5 + 1/2)nc.

Corollary 6. In [16] it is shown that every 3K1-free graph G satisfies diam Cχ(G)+1(G) 6
4n. The Rough Renaming Lemma is used once, so the Optimal Renaming Lemma im-
proves this bound to b(3 + 1/2)nc.

3 Reconfiguration graphs of complete bipartite graphs

In this section, we consider k-colourings of Kp,q and prove Theorem 1. To begin, we prove
the lower bound.

3.1 Lower Bounds for Kp,q

It is trivial to get a lower bound of the order of the graph, p + q, by constructing two
colourings that differ on each vertex. To improve this bound, our basic idea is to construct
two k-colourings that require the colours on many pairs of vertices (in opposite parts) to
“swap”; that is, the old colour of vertex 1 is the new colour of vertex 2 and vice versa.
For every such pair, a recolouring step must be “wasted”, since the first vertex in the
pair to be recoloured cannot immediately receive its desired new colour.

Proof of the lower bound in Theorem 1. Fix integers a, b, k with 1 6 a 6 b and k = a+b.
For convenience, we assume through most of the proof that ab divides both p and q;
however, near the end we comment about how to remove this assumption. In fact we will
mainly care about the cases that (a, b) ∈ {(1, k − 1), (

⌊
k
2

⌋
,
⌈
k
2

⌉
)}, but for the time being

we consider the more general case above. We define the colourings α and β using ab pairs
of sets Ui,j, Vi,j of sizes (respectively) p

ab
and q

ab
, with i ∈ [a] and j ∈ [a + 1, k], where U

and V are the unions of these sets. The colourings α and β are defined by α(Ui,j) = i =
β(Vi,j) and β(Ui,j) = j = α(Vi,j). For convenience, we also let Ui := ∪j∈[a+1,k]Ui,j and
Vj := ∪i∈[a]Vi,j.
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Since the colours on U and V swap from α to β, there is always a first moment that U
resp. V , and in particular Ui (or Vj), is completely coloured with colours different from
i (resp. j). We call this the time when colour i or colour j is erased. (We do not care
about a colour disappearing and reappearing on a part, since we are only proving a lower
bound.) We order the sets Ui (renaming colours if needed) so that colour 1 is erased from
U1 before colour 2 is erased from U2, which happens before colour 3 is erased from U3,
etc. Similarly, if j < j′, then we assume that colour j is erased from Vj before colour j′

is erased from Vj′ .
When colour i gets erased from Ui, let f(i) denote the number of the b colours on V

that are not yet erased. So there are at least f(i) sets Ui,j which have been recoloured
entirely with colours different from their corresponding target colour j. Analogously, we
define f(j), for each j ∈ [a+ 1, k], as the number of colours that are not yet erased on U
when j is erased from V (for the first time).

For each pair (i, j) ∈ [a] × [a + 1, k], one of the two colours i and j must be erased
first, when the other is not yet erased. Since we do not consider reoccurence of a colour
after being erased, this implies

∑k
h=1 f(h) = ab. More specifically, for all distinct i ∈ [a]

and j ∈ [a + 1, k], we define Xi<j to be 1 if colour i is erased from U before colour j is
erased from V and define it to be 0 otherwise; and we define Xj<i as 1−Xi<j. Now we

get
∑k

h=1 f(h) =
∑a

h=1 f(h)+
∑b

h=a+1 f(h) =
∑a

h=1

∑k
`=a+1Xh<`+

∑k
`=a+1

∑a
h=1X`<h =∑a

h=1

∑k
`=a+1(Xh<` +X`<h) =

∑a
h=1

∑k
`=a+1 1 = a(k − (a+ 1) + 1) = ab.

When colour i is erased from U , for each of the f(i) colours j that are not yet erased
from V , the vertex subset Ui,j has been completely recoloured with colours other than j,
so all its vertices will need to be recoloured again to reach β. An analogous argument
works when each colour j is erased from V . Thus, a lower bound for the number of
recolourings needed to transform α into β is

p+ q +
a∑
i=1

f(i)
p

ab
+

k∑
j=a+1

f(j)
q

ab
= 2p+ q +

k∑
j=a+1

f(j)
q − p
ab

. (1)

Before continuing, we mention that if q > kp, then we let (a, b) := (1, k − 1); and if
q < kp, then we let (a, b) := (bk/2c, dk/2e). Depending on the order in which the colours
were erased, we get different lower bounds. Recall from above that the first colour erased
is either 1 or a+ 1, and the last colour erased is either a or k. Thus, we are in one of the
following two cases.

Case 1: a + 1 is the first colour erased or a is the last colour erased. In
the first case f(a + 1) = a, and in the second case f(j) > 1 for every a + 1 6 j 6 k.
In both cases

∑k
j=a+1 f(j) > a. Hence the number of recolourings needed is at least

2p + q + a q−p
ab

= 2p + q + q−p
b

. If q > kp, then b = k − 1, so we have the desired bound.
And if q 6

⌈
k
2

⌉
p, then b =

⌈
k
2

⌉
, so we again have the desired bound. Finally, suppose

that
⌈
k
2

⌉
p < q < kp. In this case, substituting q >

⌈
k
2

⌉
p shows that the above bound

2p+ q+ q−p
d k2e

exceeds the desired bound: q−p
d k2e
−
(
p+ q−kp⌊

k2

4

⌋
)

>
d k2ep−p
d k2e

−
(
p+
d k2ep−kp⌊

k2

4

⌋
)

=(
p− p

d k2e

)
−
(
p− pb k2c
d k2eb k2c

)
= 0. In this case, we are done. So we now assume that we

are in Case 2, below.
Case 2: 1 is the first colour erased and k is the last one. We define x and y

as follows. Let a+ 1 be the (x+ 1)th colour to be erased; that is, we first erase x colours
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on U . Let a be the (k − y)th colour to be erased; that is, y is the number of colours on
V that we erase after erasing colour a from U .

Note that when we erase from U colours 1 up to x, we must recolour all vertices that
used these colours with colours from [a]. All of these vertices must be recoloured again,
before the colours k− y + 1 up to k are erased from V (since all colours in [a] are erased
before any colours in [k− y+ 1, k]). This implies that in addition to (1), we have at least
xy p

ab
more recolourings. Also, f(a + 1) = a − x and f(j) > 1 for all j ∈ [a + 2, k − y].

Thus
∑k

j=a+1 f(j) > (a − x) + (k − y − (a + 1)) = k − x − y − 1. As a lower bound on
the number of recolourings, we thus get

2p+ q + (k − x− y − 1)
q − p
ab

+ xy
p

ab
. (2)

Because we are in Case 2, we know that a > 2, since we first erase colour 1, and all
vertices that were coloured 1 must be recoloured with other colours in [a]. This implies
that q < kp and thus that a =

⌊
k
2

⌋
and b =

⌈
k
2

⌉
. By definition, x ∈ [a] and y ∈ [b]. But

in fact we may assume x ∈ [a− 1]. (If instead we have x = a, then erasing colour a from
U will require reintroducing to U some colour in [a− 1], before erasing any colour from
V . Such a sequence can always be “shortcut” to a sequence that is no longer but that
has x ∈ [a − 1].) Similarly, we assume y ∈ [b − 1]. So we must show that the minimum
value of (2), when x ∈ [a− 1] and y ∈ [b− 1] is at least the value claimed in the theorem.
We have 2 subcases, depending on whether or not q >

⌈
k
2

⌉
p.

First suppose that q >
⌈
k
2

⌉
p. Since max{x, y} 6 b− 1 6

⌈
k
2

⌉
− 1 6 q−p

p
, we see that

(k − x − y − 1) q−p
ab

+ xy p
ab

is non-increasing in x and y; specifically, when we increase x
or y, the increase in the second term is at most the decrease in the first term. So the
minimum is attained when both x and y are maximal, i.e. x = a − 1 and y = b − 1. In
that case (k − x− y − 1) q−p

ab
+ xy p

ab
= q−p

ab
+ (ab− k + 1) p

ab
= p+ q−kp

ab
= p+ q−kp⌊

k2

4

⌋ .

Now suppose instead that q <
⌈
k
2

⌉
p. Consider an arbitrary pair (x, y). If x /∈ {1, a−1},

then we can either increase or decrease x without increasing the value of (2); by repeating
this process, we can assume that x ∈ {1, a− 1} and, similarly, that y ∈ {1, b− 1}.

Due to the symmetry of (2) in x and y, evaluating (2) with (x, y) = (a − 1, 1) gives
the same value as evaluating with (x, y) = (1, a − 1). So the case (x, y) = (a − 1, 1)
is settled once we have settled the case (x, y) ∈ {(1, b − 1), (1, 1)}. Thus, we assume
that (x, y) ∈ {(1, 1), (1, b − 1), (a − 1, b − 1)}. When (x, y) = (a − 1, b − 1), as in the
previous paragraph, we get the lower bound p + q−kp

ab
. Since q <

⌈
k
2

⌉
p = bp, we have

aq − q = (a − 1)q < (a − 1)bp = abp − bp. Thus, we get p + q−kp
ab

= pab+q−kp
ab

>
(aq−q+bp)+q−kp

ab
= aq−ap

ab
= q−p

b
= q−p
d k2e

, as desired. When (x, y) = (1, b − 1), we get

(k− x− y− 1) q−p
ab

+ xy p
ab

= (a− 1) q−p
ab

+ (b−1)p
ab

= q−p
b

+ bp−q
ab

> q−p
b
. When (x, y) = (1, 1),

the conclusion is immediate if b > 3, since then (a+b−3)(q−p)
ab

> q−p
b

. Instead suppose
a = b = 2. Now (2) gives the lower bound 2p+ q + q−p

4
+ p

4
= 2p+ q + q

4
. By assumption

2p =
⌈
k
2

⌉
p > q. Thus, q

4
> q

4
+ q−2p

4
= q−p

2
= q−p
d k2e

.

The paragraph above finishes the proof when ab divides both p and q. Now we handle
the general case.

• We begin with the first regime; that is, when q > kp. We show that in the lower
bound we do not lose anything due to rounding except for what comes from the floor
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(in the statement of the theorem). In the construction of α and β, we make each set
U1,j of size

⌈
p
ab

⌉
or size

⌊
p
ab

⌋
, and each set V1,j of size

⌈
q
ab

⌉
or size

⌊
q
ab

⌋
. Furthermore,

we take the larger sets (those of size
⌈
p
ab

⌉
or size

⌈
q
ab

⌉
) to be the ones with smaller

indices. Now it is straightforward to check that |V1,j| − |U1,j| −
⌊
q−p
ab

⌋
> 0 for all

j ∈ [2, k]. (For example, it is enough to consider 2 cases based on whether or not q
(mod b) > p (mod b).)

Recall that when q > kp, we let a := 1 and b := k − 1. Thus, we must be in Case
1; that is, colour 1 is not the first colour erased. In other words, Xj<1 = 1 for some
j ∈ [2, k]. Now the argument proving (1) can be refined to give the following lower
bound:

d(α, β) =
k∑
j=2

(|U1,j|+ |V1,j|+ (|U1,j|X1<j + |V1,j|Xj<1))

= |U |+ |V |+
k∑
j=2

((|U1,j|X1<j + |U1,j|Xj<1) + (|V1,j| − |U1,j|)Xj<1)

= 2|U |+ |V |+
k∑
j=2

(|V1,j| − |U1,j|)Xj<1

> 2p+ q + min
j∈[2,k]

(|V1,j| − |U1,j|)

> 2p+ q +

⌊
q − p
b

⌋
.

• Now we consider the second regime; in particular, q >
⌈
k
2

⌉
p. If q ≡ p (mod

⌊
k2

4

⌋
),

then instead of a term xy p
ab

(in the calculation above), we have xy terms that are
each equal to

⌊
p
ab

⌋
or
⌈
p
ab

⌉
. So the number of terms that are rounded is xy 6

(a − 1)(b − 1) = ab − k + 1; thus, g1(k, p, q) < ab − k + 1. Next, we consider the

case when q 6≡ p (mod
⌊
k2

4

⌋
). Let q′ be the largest integer which is at most q and

satisfies q′ ≡ p (mod
⌊
k2

4

⌋
). In that case, we obtain a lower bound on the diameter

observing that diam Ck(Kp,q) > diam Ck(Kp,q′)+(q− q′); we let the q− q′ additional
vertices satisfy α(v) 6= β(v). By comparing the main terms in the estimate of the
diameter, we can conclude an upper bound on g1(k, p, q). For this, we check two
cases.

If
⌈
k
2

⌉
p 6 q′, then we get g1(k, p, q) 6 g1(k, p, q

′) + 1, since
⌊
q−kp
ab

⌋
−
⌊
q′−kp
ab

⌋
6

1. So assume instead that q′ <
⌈
k
2

⌉
p 6 q. We have analogously g1(k, p, q) 6

g1(k, p,
⌈
k
2

⌉
p) + 1 = g2(k, p,

⌈
k
2

⌉
p) + 1 6

⌊
k
2

⌋
+ 1. For this equality, note that in The-

orem 1 the bounds for the second and third regimes are equal when q =
⌈
k
2

⌉
p. For

this second inequality, we applied the upper bound for g2, which we prove in the
following paragraph.

• Finally, we consider the third regime. If q ≡ p (mod
⌊
k2

4

⌋
), then we can ensure

that |Vi,j| − |Ui,j| = q−p
ab

for every (i, j) ∈ [a]× [a+ 1, k]. Now the analysis is nearly
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identical to that above when p and q are both divisible by
⌊
k2

4

⌋
; consequently,

g2(k, p, q) = 0. In the more general case, let q := q′ + r, where q′ ≡ p (mod
⌊
k2

4

⌋
)

and 0 6 r <
⌊
k2

4

⌋
. Now diam Ck(Kp,q) > diam Ck(Kp,q′) + r. This holds because

any pair of colourings (α, β) of Kp,q′ can be extended to colourings of Kp,q such that
each of the additional r vertices has different colours in α and in β. In the third

regime, diam Ck(Kp,q) > diam Ck(Kp,q′) + r implies g2(k, p, q) 6
⌊
q−p
b

⌋
−
⌊
q′−p
b

⌋
6⌈

q−q′

d k2e

⌉
6
⌊
k
2

⌋
.

Now we can sketch the proof of Proposition 2. For convenience, we restate it.

Proposition 2. For every complete bipartite graph Kp,q, we have diam C3(Kp,q) =
⌊
3(p+q)

2

⌋
.

Proof. Let k = 3. Note that each of the three upper bounds in Theorem 1 (for easier
reference, see Theorem 11 below) is equal to 3(p+q)/2; these bounds are 2p+q+(q−p)/2
and 3p+ q + (q − 3p)/2 and 2p+ q + (q − p)/2. Since the diameter is always an integer,
in all 3 regimes Theorem 11 gives the desired upper bound. So we just need a matching
lower bound. For this, we note that the lower bound in the previous proof, stated for the
case q > kp, actually works for all values of p and q. (Although when k > 4 and q < kp,
it is not sharp.) But here it matches our upper bound for all p and q.

3.2 Upper Bounds for Kp,q

In the remainder of this section, we prove the upper bounds in Theorem 1. First, we
prove a proposition and a lemma that will be used in the proofs of the three statements
of the theorem.

Definition 7. Fix a complete bipartite graph Kp,q, where p and q are positive integers.
By symmetry, we assume p 6 q. Fix an integer k > 3 and [k]-colourings α and β of Kp,q.
Denote the parts of Kp,q by U and V , with |U | = p and |V | = q. Let C1 := α(V )∩ β(V ),
let C2 := α(V ) \C1, and let C3 := β(V ) \C1. By symmetry, we assume that |C3| > |C2|;
if not, then we swap α and β.

Lemma 8. Fix positive integers p, q, k and [k]-colourings α and β as in Definition 7. If
there exists c ∈ [k] used on V by neither α nor β, then d(α, β) 6 2p+ q.

Proof. Recolour each vertex of U with c, recolour each v ∈ V with β(v), and recolour
each u ∈ U with β(u). The number of recolouring steps is at most p+ q+ p = 2p+ q.

Remark 9. Throughout this section, we assume Definition 7. When proving the upper
bounds for Theorem 1, we assume that α(V ) ∪ β(V ) = [k], since otherwise we are done
by Lemma 8. That is, C1, C2, C3 partition [k]. Note also that C2 6= ∅ and C3 6= ∅, since
U is coloured under both β and α.

Proposition 10. Fix integers p, q, k, the graph Kp,q, and [k]-colourings α and β, as in
Theorem 7. Assume that α(U) = β(V ) = C3 and α(V ) = β(U) = C2, where C2∪C3 = [k].
If |C3| > |C2|, then

d(α, β) 6 q + 2p+ min

{
q − p
|C3|

,
q − kp
|C2||C3|

+ p

}
.
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Proof. Fix a non-empty subset C ′3 ⊂ C3 (not equal to the whole set C3; this is possible,
since |C3| > dk/2e > 2) and a non-empty subset C ′2 ⊆ C2 (possibly equal to C2).

We now sketch a possible series of recolourings from α to β. First recolour α−1(C ′3) ⊂ U
(with colours from C3\C ′3). Then recolour each vertex v ∈ α−1(C ′2) ⊂ V , with its colour
β(v) whenever β(v) ∈ C ′3, and otherwise recolour each such v with an arbitrary colour in
C ′3 ∪ (C2 \ C ′2). Now recolour all of U with C ′2, such that U does not use any colour of
C3, and such that each u ∈ U is coloured with β(u) if possible. Next, we recolour each
remaining vertex v ∈ V with β(v); finally, we recolour each vertex u ∈ U with β(u).

In total, the number of steps we used is |α−1(C ′3)| + |α−1(C ′2)| + |α−1(C2 \ C ′2)| +
|α−1(C ′2)∩β−1(C3 \C ′3)|+ |β−1(C2 \C ′2)| = p+ q+ |α−1(C ′3)|+ |α−1(C ′2)∩β−1(C3\C ′3)|+
|β−1(C2\C ′2)|.

Rather than fix sets C ′2 and C ′3, we just fix their sizes |C ′2| and |C ′3|. Let f2 :=
|C′

2|
|C2| and

f3 :=
|C3\C′

3|
|C3| . Averaging over all possible sets C ′2 and C ′3 of these fixed sizes, the number

of steps we use is p+ q + (1− f3)p+ f2f3q + (1− f2)p = 2p+ q + f2f3q + (1− f2 − f3)p.
Doing this for |C ′2| = |C2| and |C ′3| = |C3| − 1, as well as for |C ′2| = 1 and |C ′3| = 1 results
in

d(α, β) 6 2p+ q + min

{
q − p
|C3|

,
q

|C2||C3|
+

(
1− 1

|C2|
− 1

|C3|

)
p

}
.

Noting that 1
|C2| +

1
|C3| = |C2|+|C3|

|C2||C3| and |C2|+ |C3| = k results in the formulation of the
proposition.

We are now ready to prove the upper bounds of Theorem 1. For ease of presentation,
we restate the upper bounds. Since the diameter is always an integer, the bounds also
hold when taking the floor function.

Theorem 11. Fix positive integers p, q, k. If p 6 q and k > 3, then

diam Ck(Kp,q) =



2p+ q +
⌊
q−p
k−1

⌋
if q > kp

3p+ q +

⌊
q−kp⌊
k2

4

⌋
⌋
− g1(k, p, q) if

⌈
k
2

⌉
p 6 q 6 kp,

2p+ q +

⌊
q−p
d k2e

⌋
− g2(k, p, q) if q 6

⌈
k
2

⌉
p,

where 0 6 g1(k, p, q) 6
⌊
k2

4

⌋
and 0 6 g2(k, p, q) 6

⌊
k
2

⌋
.

Proof. Fix Kp,q, [k], α, β, C1, C2, C3 as in Definition 7.
If |C1| = 0, then we are done by Theorem 10; below, we check this for the 3 regimes:

• In the first regime, it is sufficient to note that q − kp > 0 and |C3| |C2| > k − 1.
Together, these imply that q−kp

|C2||C3| + p 6 q−kp
k−1 + p = q−p

k−1 .

• In the second regime, since q − kp 6 0 and |C2||C3| 6
⌊
k2

4

⌋
, we have

q − kp
|C2||C3|

+ p 6 p+
q − kp⌊

k2

4

⌋ .
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• In the third regime, it is sufficient to note that |C3| > dk/2e and thus q−p
|C3| 6

q−p
d k2e

.

Thus, we assume below that |C1| > 1.
We proceed by induction on k. The base case is k = 3, and thus |C1| = |C2| = |C3| = 1.

When k = 3, we also denote by Ci the single colour of each set Ci. We describe 2
recolouring sequences; by an averaging argument we will show that at least one of them
has length at most p+ q + p+q

2
(when k = 3, all 3 upper bounds above are equal).

As a first method to recolour α into β, we: (i) recolour α−1(C2) with C1, (ii) recolour
U with C2, and (iii) recolour β−1(C3) with colour C3. This implies

d(α, β) 6 p+
∣∣α−1(C2)

∣∣+
∣∣β−1(C3)

∣∣ . (3)

As a second method, we: (i) recolour α−1(C1) with C2, (ii) recolour each u ∈ U
with C1, (iii) recolour each v ∈ V with C3, (iv) recolour each u ∈ U with β(u) = C2,
and (v) recolour each v ∈ β−1(C1) with β(v) = C1. The number of steps this takes is
|α−1(C1)|+ p+ q + p+ |β−1(C1)|. That is,

d(α, β) 6 2p+ q + |α−1(C1)|+ |β−1(C1)|. (4)

Since |α−1(C1)| + |α−1(C2)| = |V | = |β−1(C1)| + |β−1(C3)|, adding (3) and (4) gives
2d(α, β) 6 3(p+ q), as desired. This concludes the base case.

For the induction step, we assume k > 4 and the statement is true for k − 1 colours.
For a fixed colour c ∈ C1, we let y0 := |α−1(c) ∩ β−1(c)|, y1 := |α−1(c) \ β−1(c)|, y2 :=
|β−1(c) \ α−1(c)|, and y := |α−1(c) ∪ β−1(c)| = y0 + y1 + y2. Again we will use two
recolouring sequences, which imply the following two statements.

Claim 1.
d(α, β) 6 diam Ck−1(Kp,q−y) + y − y0 (5)

Proof. We (i) recolour β−1(c) \ α−1(c) in colour c. Now (ii) every vertex w in U ∪ (V \
(β−1(c) ∪ α−1(c))) can be recoloured into β−1(u) using at most diam Ck−1(Kp,q−y) steps.
Finally, we (iii) recolour every v ∈ α−1(c) \ β−1(c) with β(v). In total, the number of
steps we use is at most y2 + diam Ck−1(Kp,q−y) + y1. ♦

Claim 2.
d(α, β) 6 2p+ q + y + y0 (6)

Proof. We (i) recolour α−1(c) from C2, (ii) recolour U with c, (iii) recolour every v ∈
V \ β−1(c) with β(v), (iv) recolour every v ∈ β−1(c) with an arbitrary colour from C3,
(v) recolour every u ∈ U with β(u), and (vi) recolour β−1(c) with c. In total, the number
of steps we use is (y0 + y1) + p+ q + p+ (y0 + y2) = 2p+ q + y + y0. ♦

With regards to the 3 cases in the theorem, we have 3 possibilities for q: (a) q > kp,
(b) kp > q > dk/2ep, and (c) dk/2ep > q. We also have 3 possibilities for q − y: (i)
q − y > (k − 1)p, (ii) (k − 1)p > q − y > d(k − 1)/2ep, and (iii) d(k − 1)/2ep > q − y.
These possibilities for q and q − y combine below to give us 9 cases: (a.i) through (c.iii),
although we handle (a.i) and (b.i) together, and also handle (c.i) and (c.ii) together.
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• (a.i) and (b.i): q >
⌈
k
2

⌉
p and q − y >>> (k − 1)p. Adding (k − 2) times (5)

to (6), then dividing by k − 1 gives

d(α, β)− (2p+ q) 6
1

k − 1

[
(k − 2)

(
−y0 +

q − y − p
k − 2

)
+ y + y0

]
6
q − p
k − 1

.

If q > kp, then this gives the desired bound on d(α, β). But if kp > q > dk/2ep,
then

q − p
k − 1

= p+
q − kp
k − 1

6 p+
q − kp⌊

k2

4

⌋ ,

since k − 1 = b(4k − 4)/4c 6 bk2/4c.

• (a.ii): q >>> kp and (k − 1)p > q − y >
⌈
k−1
2

⌉
p. From (5), we have

d(α, β)− (2p+ q) 6 p− y0 +
q − y − (k − 1)p⌊

(k−1)2
4

⌋ < p =
kp− p
k − 1

6
q − p
k − 1

.

• (a.iii): q >>> kp and
⌈
k−1
2

⌉
p >>> q − y. From (5), we have

d(α, β)− (2p+ q) 6 −y +
q − y − p
d(k − 1)/2e

+ y − y0 6
d(k − 1)/2ep− p
d(k − 1)/2e

= p− p

d(k − 1)/2e
6 p− p

k − 1
=
pk − p− p
k − 1

6
q − p
k − 1

.

• (b.ii) kp > q >
⌈
k
2

⌉
p and (k − 1)p > q − y >

⌈
k−1
2

⌉
p.

Adding
⌊
(k−1)2

4

⌋
times (5) to (6), then dividing by

⌊
(k−1)2

4

⌋
+ 1 6

⌊
k2

4

⌋
, gives

d(α, β)−(2p+q)6

(⌊
(k−1)2

4

⌋(
p−y+

q−y−(k−1)p

b(k − 1)2/4c
+y−y0

)
+y+y0

)
/

(⌊
(k−1)2

4

⌋
+1

)
6

(
p

(⌊
(k−1)2

4

⌋
+1

)
+ q−kp

)
/

(⌊
(k−1)2

4

⌋
+1

)
6 p+

q−kp⌊
k2

4

⌋ .
• (b.iii): kp > q >

⌈
k
2

⌉
p and

⌈
k−1
2

⌉
p >>> q − y. From (5), we have

d(α, β)− (2p+ q) 6 −y0 +
q − y − p⌈

k−1
2

⌉ 6

⌈
k−1
2

⌉
p− p⌈

k−1
2

⌉
= p− p⌊

k
2

⌋ = p−
p
⌈
k
2

⌉⌊
k2

4

⌋ 6 p+
q − kp⌊

k2

4

⌋ .

Here the last equality holds because
⌊
k
2

⌋⌈
k
2

⌉
=
⌊
k2

4

⌋
, and the last inequality holds

because q − kp >
⌈
k
2

⌉
p− kp = −

⌊
k
2

⌋
p > −

⌈
k
2

⌉
p.
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• (c.i) and (c.ii):
⌈
k
2

⌉
p >>> q and q− y >

⌈
k−1
2

⌉
p. This case can only occur when⌈

k
2

⌉
>
⌈
k−1
2

⌉
; that is, when k is odd. So let r := (k − 1)/2. Since

⌈
k
2

⌉
< k − 1, we

must show that d(α, β) 6 3p+ q+ q−kp⌈
k2

4

⌉ . (That is, we must be in (c.ii); in fact, (c.i)

is impossible.) If d(α, β)− (2p+ q) 6 q−p
r+1

, then we have

d(α, β)− (2p+ q) 6
q − p
r + 1

= p+
q − p− p

⌈
k
2

⌉⌈
k
2

⌉ = p+
q − p

⌈
k
2

⌉⌈
k
2

⌉ +
−p⌈
k
2

⌉
6 p+

q − p
⌈
k
2

⌉⌈
k2

4

⌉ +
−p
⌊
k
2

⌋⌊
k2

4

⌋ = p+
q − pk⌊

k2

4

⌋ .

So instead we assume d(α, β) − (2p + q) > q−p
r+1

. By (6) and (5), respectively, this
implies the following.

y + y0 >
q − p
r + 1

(7)

p− y0 +
q − y − 2rp

r2
>
q − p
r + 1

(8)

(If we are in (c.ii), then (8) follows directly from the induction hypothesis. But if we
are in (c.i), then we note that the left side of (8) is greater than the upper bound
guaranteed by the induction hypothesis; this can be verified by a bit of algebra,
which we omit.) Since we are in (c.i) or (c.ii), we have pr = p

⌈
k−1
2

⌉
< q − y =

q − (y + y0) + y0 < q − q−p
r+1

+ y0 = rq+p
r+1

+ y0; equivalently,

(r2 + r − 1)p < rq + (r + 1)y0. (9)

Adding r2 times (8) to (7) gives

r2p− (r2 − 1)y0 + q − 2rp >
r2 + 1

r + 1
(q − p)

r3p+ r2p− (r2 − 1)(r + 1)y0 + qr + q − 2r2p− 2rp > (r2 + 1)q − (r2 + 1)p

(r3 − 2r + 1)p > (r2 − r)q + (r2 − 1)(r + 1)y0

(r2 + r − 1)p > rq + (r + 1)2y0.

But this final inequality contradicts (9), which finishes the case.

• (c.iii)
⌈
k
2

⌉
p >>> q and

⌈
k−1
2

⌉
p >>> q − y. If k is even, then

⌈
k−1
2

⌉
=
⌈
k
2

⌉
, so (5)

gives

d(α, β)− (2p+ q) 6 −y +
q − y − p⌈

k−1
2

⌉ + y − y0 6
q − p⌈
k
2

⌉ .
If k is odd, then adding k−1

2
times (5) to (6), and dividing by k+1

2
, gives

d(α, β)− (2p+ q) 6
1
k+1
2

((
k − 1

2

)
q − y − p

k−1
2

− k − 1

2
y0 + (y + y0)

)

6
q − p⌈
k
2

⌉ − k−3
2

k+1
2

y0 6
q − p⌈
k
2

⌉ .
This finishes the last of the 9 cases in the induction step, and thus concludes the proof.
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4 Non-relationships between Ck(G), Ck+1(G), and CL(G)

In [7], the authors sketched some typical behaviour of configuration graphs. In particu-
lar, they mentioned that by increasing the number of colours, the recolouring sequences
typically become shorter and shorter. Note that two factors are at play. If the number
of colours, k, increases, then this also increases both the total number of colourings and
the number of possible local changes, the degrees in the reconfiguration graph. The first
factor often leads to a higher diameter, but the second to a lower diameter. Here, we give
some exceptions to the typical behaviour. A classical example from [14] and [10, Prop. 2]
is the following.

Example 12. IfG = Km,m\M (Km,m minus a perfect matching), then Ck(G) is connected
if and only if k > 3 and k 6= m.

The key idea in Theorem 12 is that if k = m, then G has a frozen colouring,
namely, the one that uses each colour once on each part; see Fig. 4. (Otherwise,
by the Pigeonhole Principle each part has a colour that is used either 0 times or at
least 2 times.) Theorem 12 is the inspiration for more counterexamples. Bard [1, 17]
asked whether Ck(G) being Hamiltonian implies that Ck+1(G) is Hamiltonian. In https:

//github.com/StijnCambie/reconfiguration (document Check Ham), it is e.g. verified
that if G = K5,5\M then the reconfiguration graph C3(G) is Hamiltonian. Since C5(G)
is disconnected and thus not Hamiltonian, this answers the question of Bard negatively
(either for k = 3 or for k = 4, but it is not clear which one). This counterexample was
mentioned in [17, Sec. 9.6], attributed to the first author of the present paper, but no
proof was provided; so the code referenced above provides this proof.

Our next example modifies K4,4\M , by replacing one vertex with 3 (each of which
inherits exactly 2 of its 3 initial neighbours ). In each of the 4-colourings shown (see the
right of Fig. 3), the colours on many of the vertices are frozen. Not surprisingly, the two
4-colourings are far apart.

Example 13. The graph G presented in Fig. 3 is bipartite with order 10, matching
number 4, and degeneracy δ?(G) = 2. For k > 3, Ck(G) is connected. It satisfies
diam C3(G) = 15 and diam C4(G) = 17, thus diam Ck(G) < diam Ck+1(G) for k = 3. So
G is a graph for which an additional colour can increase the diameter of the recolouring
graph. Furthermore, rad C3(G) = 15 and rad C4(G) = 14.

We verify these numbers in https://github.com/StijnCambie/reconfiguration

(document NonMonotoneC3vsC4). As we know from [9, Cor. 14], for k sufficiently large,
the diameter of the reconfiguration graph stabilises at the minimum possible bound (this
is the graph’s order plus its matching number). The graph in Theorem 13 illustrates that
for small k, this behaviour can be harder to predict. By simply taking many disjoint
copies of it, we obtain infinitely many graphs G with diam Ck+1(G)

diam Ck(G)
= 17/15. We do not

know if this ratio can become arbitrarily large, while staying finite.

Question 14. Fix an integer k > 3. Does there exist a sequence of graphs (Gi)i∈N such

that diam Ck+1(Gi) <∞ for all i, but limi→∞
diam Ck+1(Gi)

diam Ck(Gi)
=∞?

Interestingly, we were unable to find an analogue of Theorem 13 for radius. An
affirmative answer to the following question would imply that the ratio diam Ck+1(G)

diam Ck(G)
is

actually bounded by 2, whenever it is well-defined.
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Figure 3: Left: A graph G for which diam C3(G) < diam C4(G). Right: Two [4]-colourings
of G (drawn differently from the figure on the left) that in C4(G) lie at distance 17.

Question 15. Fix an integer k > 3 and let G be a graph such that Ck(G) and Ck+1(G)
are both connected. Is it necessarily true that rad Ck(G) > rad Ck+1(G)?

Next, we compare the diameter of the k-colour reconfiguration graph and the list
reconfiguration graph for a k-list-assignment. Despite identical lists imposing the most
restrictions, we prove that the k-colour reconfiguration graph is not extremal; more pre-
cisely, for arbitrary k-list-assignments L, no relationships hold in general between the
connectedness (or diameter) of Ck(G) and that of CL(G).

Proposition 16. For each of the four statements below, there are examples of graphs G,
integers k, and list-assignments L with |L(v)| = k for every v ∈ V (G) that satisfy the
statement.

(a) Ck(G) is disconnected, while CL(G) is connected

(b) diam CL(G) < diam Ck(G) <∞

(c) CL(G) is disconnected, while Ck(G) is connected

(d) diam Ck(G) < diam CL(G) <∞

Proof. We prove the first two statements together, and the third and fourth thereafter.
(a,b) The first two statements are true almost trivially. Take an n-vertex graph G

and a value k for which diam Ck(G) > n. Let the lists L(v), for all v ∈ V , be disjoint;
so diam CL(G) = n. Here we can choose diam Ck(G) to be finite or infinite (equivalently
Ck(G) can be connected or disconnected). For example, with G = Km,m, when either
k > 2 or k = 2. By instead letting G := Pn and k := 3, by [6, Thm. 3] we know that
diam Ck(G)
diam CL(G)

can be arbitrarily large (while being finite).

(c) Fix m > 4, let G be the graph Km,m\M for a perfect matching M , and let
k := m− 1. We denote the vertices in the two parts by v1, . . . , vm and w1, . . . , wm, with
viwi /∈ E(G) for all i ∈ [m]. Let L(vi) = L(wi) := [m]\{i}. Then there exist L-colourings
that are frozen in CL(G), e.g. ϕ(vi) = ϕ(wi) = (i+ 1) mod m; see Fig. 4. As such, CL(G)
is disconnected; in contrast, Ck(G) is connected, as proven in [10] (the intuition behind
this final statement is that on each part some colour must appear at least twice, by
pigeonhole principle; so we can recolour the whole part with that colour).

(d) Let k := 4, let G := K18,18, and call its parts U and V . Recall that 54 =
n(G) + µ(G) 6 diam C4(G) 6 54; the upper bound is true by Theorem 1. So it suffices
to construct a 4-assignment L for G such that diam CL(G) > 55. This is what we do.

For every triple (i, j, `) with i ∈ {1, 3, 5}, with j ∈ {2, 4}, and with ` ∈ [5] \ {i, j}, for
unique vertices u ∈ U and v ∈ V we set L(u) = L(v) := [5]\{`}, and define L-colourings
α and β by α(u) = i = β(v) and β(u) = j = α(v). These colourings are depicted in Fig. 5.

the electronic journal of combinatorics 33(1) (2026), #P1.18 16



Figure 4: A frozen colouring of K5,5\M

1→ 2

1→ 4

3→ 2

3→ 4

5→ 2

5→ 4

2→ 1

2→ 3

2→ 5

4→ 1

4→ 3

4→ 5

Figure 5: Initial and final L-colouring of K18,18 where every “box” represents 3 vertices
(having different lists), which requires at least 55 recolourings. Left: These colourings
are shown as α(v)→ β(v). Right: These colourings are shown with explicit colours.

Note that due to the choice of lists, we cannot colour either part with only a single
colour. So each part must always use at least 2 colours; so 4 colours in total. This implies
that we can only move one colour at a time between U and V . When recolouring α into
β, we may assume, by possibly renaming colours, that 1 is the first colour completely
removed from its part (which must be U), followed next by 2 (removed from V ), and
followed next by 3 (removed from U). (Note that completely removing a colour from a
part and then immediately again using that colour on that part will always be inefficient.)
While removing colours 1, 2, 3 from their parts, we need to recolour some vertices without
giving each of them its final colour; we call each instance of this a bad recolouring. We
will prove that, to recolour α to β, we need at least 19 bad recolourings. This will finish
the proof, since then the total number of recolourings we use to get from α to β is at
least 19 + |U |+ |V | = 19 + 36 = 55, as desired.

We start by recolouring vertices (in U) initially coloured 1 with either 3 or 5; we do
this for at least 6 vertices, so begin with at least 6 bad recolourings. Next we remove
colour 2 from V . Initially, 2 is used on 9 vertices of V ; since 6 of these are coloured
with 3 or 5 in β, we perform at least 6 more bad recolourings. Initially, 6 vertices of
U are coloured with 3. In β, we use colour 4 on exactly 3 of these; but colour 4 is not
yet available for use on U , so we need 3 more bad recolourings. In addition, consider
the vertex u ∈ U that corresponds to triple (1, 4, 5); that is α(u) = 1, β(u) = 4, and
L(u) = [5] \ {5} = [4]. When 1 was removed from U , vertex u must have been recoloured
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with 3. So now that colour 3 is being removed, we need another bad recolouring.
When we next completely remove a colour from V , it is either 1 or 4. If 4, then we

need at least 3 more bad recolourings, since colour 5 is not yet available to use on V .
But if we instead remove 1, then we will also incur at least 3 more bad recolourings (the
vertices in V with α(v) = 2, β(v) = 1 all have been recoloured badly as well). Thus, the
total number of bad recolourings is at least 6 + 6 + 3 + 1 + 3 = 19, as desired.

The following result, combined with Remark 18, extends Theorem 16(d), exhibiting
an even larger (unbounded) gap between diam CL(G) and diam Ck(G).

Lemma 17. For all n > 1 there exists an n-vertex graph Gn with a 4-fold list-assignment
L, such that c1 · n 6 diam CL(Gn)

diam C4(Gn)
6 c2 · n, where c1 and c2 are some uniform positive

constants.

Proof. For each positive integer k, we construct a graph Gk with |V (Gk)| = 260k and a
4-assignment L such that (k2 − 1)/4 + 255k 6 diam CL(Gk) 6 2k2 + 255k and 260k 6
diam C4(Gk) 6 691k. We use these graphs Gk to prove the result when n = 260k for
some positive integer k. It is straightforward (but a bit tedious) to extend the result to
all positive integers n; so we just sketch the ideas. In general when n > 260, we pick an
integer k such that 260k 6 n < 260(k + 1), and we take our graph G to be an n-vertex
subgraph of Gk+1 that contains as an induced subgraph Gk. Now n/2 6 260k 6 n <
260(k+ 1) 6 2n, so by applying the bounds for Gk and Gk+1, we lose at most a constant
factor in both the upper and lower bounds.

The most interesting part of our construction is the lower bound on diam CL(Gk),
so we begin with that. We start with a path of order k and “hang off” of each path
vertex a copy of K4,255 that uses its lists to enforce that the recolouring of the path
simulates the recolouring of a path with only 3 colours (and no lists). Since [6] showed
that (k2 − 1)/4 6 diam C3(Pk) 6 2k2, we are done. Thus, we need only to describe these
lists and show how they enforce the desired simulation of C3(Pk).

Let H be the complete bipartite graph K4,255. To the four vertices v1, v2, v3, v4 in the
part of size 4, assign four disjoint lists: L(v1) = {1, 2, 3, 4}, L(v2) = {5, 6, 7, 8}, L(v3) =
{9, 10, 11, 12}, L(v4) = {13, 14, 15, 16}. In the part of size 255 = 44−1, assign each vertex
a unique list that contains precisely one element from each of L(v1), L(v2), L(v3), L(v4),
except that no vertex is assigned {1, 5, 9, 13}. Note that in every proper L-colouring c of
H, we must have c(v1) = 1, c(v2) = 5, c(v3) = 9 and c(v4) = 13. From this it follows that
CL(H) is connected, as any two L-colourings only differ on the part of size 255 (since that
is an independent set, in fact the diameter of CL(H) is 255). In what follows we call v1
the special vertex of H and we only need that it is coloured 1 in every L-colouring.

Now consider a path Pk = p1, . . . , pk on k vertices. Let Gk denote the graph formed
by taking the disjoint union of Pk and k copies H1, . . . , Hk of H, and then for every i ∈ [k]
adding an edge between pi and the special vertex of Hi.

Here we tacitly assumed that each Hi is equipped with the list-assignment L described
above. Moreover, we assign each vertex of P the list {1, a, b, c}, where {a, b, c} is disjoint
from {1, 2, . . . , 16}. Since in a proper L-colouring each special vertex must have colour 1,
it follows that each vertex of Pk must use a colour in {a, b, c}. In other words, restricted
to P the L-colourings correspond precisely to the 3-colourings of P . As noted above,
by [6, Thm. 3], we know that (k2 − 1)/4 6 diam C3(Pk) 6 2k2.
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It follows that diam CL(Gk) = diam CL(Pk) + k · diam CL(H) = diam C3(Pk) + 255k =
Θ(k2), because any two L-colourings of Gk only differ on Pk and the size-255 parts of the
copies of H, taking note that these parts are separated from each other by the special
vertices that have the same colour in every L-colouring.

Now we must prove that diam C4(Gk) = Θ(k). The lower bound is trivial, since
|V (Gk)| = (255 + 4 + 1)k and permuting the colors (with no fixed points) in an arbitrary
colouring α gives a colouring β with d(α, β) > |V (Gk)| = 260k. For the upper bound,
let α, β be two 4-colourings of Gk, and let α(Pk), β(Pk) be their restriction to Pk. As
4 = ∆(Pk) + 2, it follows (e.g. see [9, Thm. 1]) that diam C4(Pk) 6 2k. Thus there is
a sequence S of at most 2k vertex recolourings that transforms α(Pk) into β(Pk) while
maintaining a proper colouring of Pk, but not necessarily of Gk.

Consider an arbitrary step of S where we need to recolour some vertex pi of Pk,
without loss of generality from colour 1 to colour 2. This recolouring step is also allowed
in Gk unless the special vertex v(Hi) of Hi has colour 2 as well. In this case, we first
recolour v(Hi) to either 3 or 4. This can be done in one step if either 3 or 4 does not
appear in the size-255 part Bi of Hi. Otherwise, we recolour Bi to remove either 3 or 4
from Bi, using at most b255/2c = 127 steps, and then recolour v(Hi) to either 3 or 4. In
total we need at most 128 extra recolourings to accomodate the recolouring of pi. Doing
this for every step of S, we need at most 129 · 2k steps to recolour α in such a way that
it agrees with β on the vertices of Pk.

After recolouring Pk, we must finally recolour each copy of H, which can be done in
at most 433 steps per copy. (This needs a small argument; it does not follow directly
from Theorem 1 because throughout the colour β(pi) is forbidden at the special vertex
of Hi.) Here is one way to prove this upper bound. Let α̂ denote the current colouring.
For some colour c ∈ L(v1), we first remove c from part Bi (using β(w) for each w ∈ Bi

when possible, and using some other colour in β(Bi) when needed); then we recolour
{v1, v2, v3, v4} with c; then we recolour each w ∈ Bi \ β−1(c) with β(w); then we recolour
each vi with β(vi); and finally we recolour each w ∈ β−1(c) with c. We choose colour
c to minimise |α̂−1(c) ∩ V | + |β−1(c) ∩ V |. Thus, the number of recolouring steps is at
most |α̂−1(c)∩ V |+ 4 + |Bi|+ 4 + |β−1(c)∩ V | = 255 + 8 + |α̂−1(c)∩ V |+ |β−1(c)∩ V | 6
263 + b255 · 2/3c = 263 + 170 = 433. Thus, in total the distance between α and β is at
most 129 · 2k + 433k = 691k.

Remark 18. The construction above can be generalized to k-colourings and `-fold list-
assignments for any ` > k > 4, by replacing the graph H with a larger complete bipartite
graph that has > 1 + ` − k uniquely L-coloured vertices, and replacing the path with a
(k−2)-colourable n-vertex graph with (k−1)-colour diameter Θ(n2) and k-colour diameter
Θ(n), the existence of which is guaranteed by constructions in [6]. In this modification
of Theorem 17 the constants c1 and c2 depend on k and `.
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