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Abstract

In 2020, Coregliano and Razborov introduced a general framework to study
limits of combinatorial objects, using logic and model theory. They introduced the
abstract chromatic number and proved/reproved multiple Erdős-Stone-Simonovits-
type theorems in different settings. In 2022, Coregliano extended this by showing
that similar results hold when we count copies of Kt instead of edges.

Our aim is threefold. First, we provide a purely combinatorial approach. Sec-
ond, we extend their results by showing several other graph parameters and other
settings where Erdős-Stone-Simonovits-type theorems follow. Third, we go beyond
determining asymptotics and obtain corresponding stability, supersaturation, and
sometimes even exact results.

Mathematics Subject Classifications: 05C35

1 Introduction

One of the most fundamental results in extremal combinatorics is the theorem of Turán
[43], which determines the maximum number of edges among n-vertex graphs that do not
contain Kk+1 as a subgraph, in other words, Kk+1-free graphs. More generally, given a
graph F , let ex(n, F ) denote the largest size among all n-vertex F -free graphs G. Turán’s
theorem [43] states that ex(n,Kk+1) = |E(T (n, k))|, where T (n, k) is the complete k-
partite graph with each part of order bn/kc or dn/ke. The celebrated Erdős-Stone-
Simonovits (ESS) theorem [13, 15] is the most general result in the area, which states
that the same holds if we forbid another graph with chromatic number k + 1, apart from
an error term o(n2), i.e., for any graph F we have ex(n, F ) = |E(T (n, χ(F )−1))|+ o(n2).
Note that this determines the asymptotics of ex(n, F ), if F is not bipartite.
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There have been attempts to study these types of problems in a unified and general
way. Coregliano and Razborov [9] introduced a general model theoretic framework to
study limits of combinatorial objects. They define abstract chromatic number of “open
interpretations” on theories of graphs to capture such different notions of chromatic num-
bers in a unified way. They obtained the ESS result for the density of the edges in this
general setting and Coregliano [8] extended this to the density of cliques.

Both in the ad hoc manner and in the unified approach, the general aim is to determine
the objective extremum (e.g. the maximum number of edges or cliques) among the set
of all graphs that can be underlying graphs of the graphs with the extra structure that
possess some desired properties (e.g. not containing certain forbidden configurations). For
example, in vertex-ordered graphs, we are interested in the maximum number of edges
of an n-vertex vertex-ordered graph G avoiding F in an ordered sense. The ordering
does not play any role in counting the edges; thus, we can think of this as counting the
edges of the underlying graph of G, i.e., the ordinary graph we obtain from G by simply
ignoring the ordering. The problem then reduces to finding the largest number of edges
among graphs that can be underlying graphs of F -free vertex-ordered graphs. This way,
the family of all graphs is partitioned into a family A(F ) of allowed graphs and a family
F(F ) of forbidden graphs. In each case of graphs with an extra structure, and in the
model theoretic approach, the corresponding chromatic number is defined in a way that
if its value for a graph F is k, then we have T (n, k − 1) is among A(F ) and for n large
enough T (n, k) is in F(F ). This is the core idea in the proofs for the ESS-like results.

In this paper, we introduce a general, unified and yet purely combinatorial approach.
We consider partitions (A,F) of the family of all graphs into A and F , and define the
“abstract chromatic number” of such partitions. Let Kk(n) denote T (nk, k) and let
T (n,∞) = Kn.

Definition 1. We say that a partition (A,F) is Turán-suitable if for all sufficiently large
n one of the following condition holds:

• Kn ∈ A.

• There exists an integer k such that each complete (k − 1)-partite graph with each
part of order at least n is in A but no G ∈ A contains T (n, k) as a subgraph.

For simplicity, we will say suitable instead of Turán-suitable for the rest of this paper.

Let us show some examples of suitable partitions. We say that a partition is monotone
if G ∈ A implies that every subgraph of G is in A. This is clearly the case when a graph
with extra structure is forbidden. We say that the partition is hereditary if G ∈ A
implies that every induced subgraph of G is in A. This is the case where some graphs are
forbidden as induced subgraphs. Clearly, monotone partitions are hereditary.

Lemma 2. Hereditary partitions are suitable.

Proof. If Kn ∈ A for every n sufficiently large, then we are done. Otherwise, there exists
a maximum value of k such that for sufficiently large n, T (n, k − 1) ∈ A.
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Then T (m, k) 6∈ A for every sufficiently large m. Then for G ∈ A, T (m, k) is not an
induced subgraph of G by the hereditary property. We may pick m such that Km 6∈ A.
Let n be large enough with respect to m. More precisely, let n > R(m,m), where R(m,m)
is the Ramsey number defined as the smallest n such that every n-vertex graph contains
either an m-vertex clique or an independent set of size m. Such a number exists by
Ramsey’s Theorem.

Assume that G contains a T (n, k) as a subgraph (not necessarily induced) and let
U1, . . . , Uk be the partite sets of this T (n, k). If each Ui contains an independent set
of order at least m, we found an induced T (m, k). Otherwise, one of the parts, say U1

does not contain an independent set of order m, thus it contains Km by the assumption
n > R(m,m), a contradiction.

A graph with extra structure is given by a pair (G,X) where G is a graph, and X
represents some extra structure, such as ordering of vertices or edges, or coloring, etc. Let
Q denote a family of pairs (G,X). Assume that we are given a transitive relation < on the
pairs in Q such that if (G,X) < (G′, X ′), then G is a subgraph of G′. Moreover, assume
that for every (G,X) and every subgraph G′ of G, there is X ′ such that (G′, X ′) < (G,X).
Note that in our examples of extra structures, X ′ can be the restriction of X to G′.

Given a family F0 ⊂ Q, we say that a pair (G,X) is F0-free if there is no (F, Y ) ∈ F0

with (F, Y ) < (G,X). For F0 the corresponding partition (A,F) of the graph families
is defined in the following way. We have that G ∈ A if there is an X such that (G,X)
is F0-free. Then this partition is monotone, since for each subgraph G′ of G ∈ A, we
have an X ′ such that (G′, X ′) < (G,X). If G′ 6∈ A, then there is (F, Y ) ∈ F0 with
(F, Y ) < (G′, X ′). Therefore, (F, Y ) < (G,X) by the transitivity of <, hence G 6∈ A, a
contradiction.

Next, we define the abstract chromatic number of a suitable partition, which coincides
with the definition given in [9] in the simple specific cases they present as examples.

Definition 3. Given a suitable partition (A,F), its abstract chromatic number is ∞ if
Kn ∈ A for all sufficiently large n. Otherwise, the abstract chromatic number is the
largest k such that every complete (k − 1)-partite graph with each part of order at least
n is in A.

Note that k is the same as in the definition of suitable partitions. When (A,F) is the
corresponding partition of some family F0 of graphs with extra structure, then we say
that the abstract chromatic number of F0 is the abstract chromatic number of (A,F).

Also note that our approach is in some sense stronger than that of [9]. They deal
only with finitely axiomatizable theories (although mention that it is easy to extend their
results). For example, the case that A is the family of bipartite graphs does not fit into
their setting but is handled by our approach.

Let us consider some graph parameter h(G), where h is a function from the finite
graphs to the real numbers. Let

g(n, F ) = gh(n, F ) = max{h(G) : G is an n-vertex F -free graph}.
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Then we say that g is a Turán-type function. For instance, in the classical Turán problem
h(G) = |E(G)|. For other examples, see Section 3.

We extend this to suitable partitions as follows.

g(n, (A,F)) := max{h(G) : G is an n-vertex graph in A}.

Note that if (A,F) is a monotone partition, then g(n, (A,F)) is simply g(n,F).

As we mentioned above, an essential result in those generalizations of the Turán prob-
lem is the ESS theorem. Therefore, we define the notion of k-ESS for the Turán type
functions.

Definition 4. Let h(G) be some real-valued graph parameter. We say that g = gh is
weakly k-ESS if for any graph F with chromatic number k, g(n, F ) = (1 + o(1))h(T ) for
some n-vertex complete (k − 1)-partite graph T . We say that g is strongly k-ESS if the
above holds with T being the Turán graph T (n, k − 1).

We say that g is weakly k-ESS with respect to a partition (A,F) if g(n, (A,F)) =
(1 + o(1))h(T ) for a complete (k − 1)-partite graph T on n vertices. We say that g is
strongly k-ESS with respect to (A,F) if the above holds with T being the Turán graph
T (n, k − 1).

Theorem 5. If g is a weakly (resp. strongly) k-ESS Turán-type function, then g is also
weakly (resp. strongly) k-ESS with respect to any suitable partition with abstract chromatic
number k.

Note that if the abstract chromatic number of (A,F) is infinity, then clearly we have
g(n, (A,F)) = h(Kn).

Proof. Let n be sufficiently large and n′ > kn. We have that T (n′, k − 1) ∈ A, by the
definition of the abstract chromatic number. Let T be such that h(T ) > (1 + o(1))h(T ′)
for every T ′ such that T and T ′ are both n′-vertex complete (k − 1)-partite graphs with
each part of order at least n. Then T ∈ A because the partition is suitable. This gives
the lower bound.

We also have that T (m, k) ∈ F and Km ∈ F for some m by the definition of the
abstract chromatic number. Let n be large enough and G be an n-vertex graph in A.
Then we have that G is T (m, k)-free by the definition of suitable partitions. Together
with the weak (or strong) k-ESS property, we obtain the upper bound.

The rest of the paper is organized as follows. In Section 2 we define some Turán type
properties and show that such properties imply analogous results with respect to suitable
partitions. In Section 3 we list several Turán-type functions that are known to be weakly
or strongly k-ESS. We also present some examples for the various properties studied in
Section 2. Afterwards, we present some suitable partitions. In Section 4 we show how
some natural restriction on h allows us to obtain further exact results. We finish the
paper with some concluding remarks in Section 5.
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2 Stability, supersaturation and more

We say that a Turán-type function g = gh is weakly k-ESS-stable, if g is weakly k-ESS
and for any graph F with chromatic number k, any F -free n-vertex G with h(G) >
(1 − o(1))g(n, F ) can be turned into an n-vertex complete (k − 1)-partite graph T by
adding and/or deleting o(n2) edges. We say that g is strongly k-ESS-stable if the above
holds with T being the Turán graph T (n, k − 1) and g is strongly k-ESS.

We say that g is weakly k-ESS-stable with respect to a partition (A,F) if the following
holds. If G is an n-vertex graph in A with h(G) > (1− o(1))g(n, (A,F)), then G can be
turned into an n-vertex complete (k−1)-partite graph T by adding and/or deleting o(n2)
edges. We say that g is strongly k-ESS-stable with respect to (A,F) if the above holds
with T being the Turán graph T (n, k − 1).

Theorem 6. If g is a weakly (resp. strongly) k-ESS-stable Turán-type function, then
g is also weakly (resp. strongly) k-ESS-stable with respect to any suitable partition with
abstract chromatic number k.

Proof. Let T be a complete (k−1)-partite graph with g(n, (A,F)) = (1+o(1))h(T ), which
exists by Theorem 5. Let G be an n-vertex graph in A with h(G) > (1−o(1))g(n, (A,F)).
We have that for large enough m, T (m, k) ∈ F and G is T (m, k)-free by definition of the
abstract chromatic number. We claim that g(n, T (m, k)) = (1 + o(1))h(T ). Indeed, this
holds for some n-vertex complete (k−1)-partite graph T ′ because g is k-ESS, and we must
have h(T ′) 6 (1+o(1))h(T ), since g(n, (A,F)) = (1+o(1))h(T ) and g(n, (A,F)) > h(T ′).

Now we have h(G) > (1− o(1))h(T ) = (1− o(1))g(n, T (m, k)) and we are done since
g is weakly k-ESS-stable. The strong case follows similarly.

Given a graph F of chromatic number k, we let σ(F ) denote the cardinality of the
smallest color class among all possible proper k-colorings of F . Given a family F of graphs
with smallest chromatic number k, we let σ(F) be the smallest σ(F ) among k-chromatic
elements of F .

We say that a Turán-type property g = gh is weakly k-ESS-sigma if g(n, F ) = h(T )
for some n-vertex complete k + σ(F ) − 1-partite graph T with σ(F ) − 1 parts of order
1. In other words, we obtain T from an (n − σ(F ) + 1)-vertex complete (k − 1)-partite
graph by adding σ(F ) − 1 vertices and joining each of them to each other vertex. Let
T (n, k− 1, t) be the graph we obtain from T (n− t, k− 1) by adding t vertices and joining
each of them to each other vertex.

We say that g is strongly k-ESS-sigma if the above holds with T being T (n, k −
1, σ(F ) − 1). We remark that we know of only one example of such functions, counting
T ((k − 1)a, a) for a large enough, see Section 3 for more details.

Given a suitable partition (A,F) with abstract chromatic number k < ∞, we let
σ(A,F) be the smallest σ(T ) for complete k-partite graphs T such that no element of A
contains T as a subgraph. Note that if the partition is monotone, then σ(A,F) = σ(F).

We say that a Turán-type function g = gh is weakly k-ESS-sigma with respect to a
partition (A,F) if g(n, (A,F)) = h(T ) for some n-vertex complete k-partite graph T with
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σ(A,F)−1 parts of order 1. We say that g is strongly k-ESS-sigma with respect to (A,F)
if the above holds with T being the Turán graph T (n, k − 1).

Theorem 7. If g is a weakly (resp. strongly) k-ESS-sigma Turán-type function, then
g is also weakly (resp. strongly) k-ESS-sigma with respect to any suitable partition with
abstract chromatic number k.

We remark that this is quite shocking to obtain an exact bound here. For example,
in the case of edge-ordered graphs and counting edges, the only exact results are the
trivial cases with infinite abstract chromatic number, the other trivial cases of stars and
triangles where there is only one edge-ordering, and the simplest remaining cases, the two
edge-orderings of the 3-edge path. Now we obtain an exact result for every edge-ordered
graph, provided we can calculate the abstract chromatic number and σ. Note that both
of these tasks seem very complicated.

Proof. By the definition of σ(A,F) we have that T ∈ A, giving the lower bound. For
the upper bound, recall that there is a complete k-partite graph F ∈ F with χ(F ) = k,
σ(F ) = σ(A,F) such that no element of A contains F as a subgraph. Then we clearly
have g(n, (A,F)) 6 g(n, F ). Using the weakly k-ESS-sigma property of g as a Turán-type
function completes the proof. The strong version follows similarly.

We say that a Turán-type function g = gh is k-ESS-supersat if for any ε > 0 there is δ >
0 such that for any sufficiently large n, any n-vertex graph G with h(G) > (1 + ε)g(n, F )
we have that G contains at least δn|V (F )| copies of F , for any k-chromatic graph F .

We say that a Turán-type function g = gh is k-ESS-supersat with respect to a partition
(A,F) if for any ε > 0 there is δ > 0 such that for any sufficiently large n, any n-vertex
graph G with h(G) > (1 + ε)g(n, (A,F)), there is an F ∈ F such that G contains at least
δn|V (F )| copies of F .

Theorem 8. If g is a k-ESS-supersat Turán-type function, then g is also k-ESS-supersat
with respect to any suitable partition with abstract chromatic number k.

Proof. Let G be an n-vertex graph with h(G) > (1+ε)g(n, (A,F)), where n is sufficiently
large. Since the abstract chromatic number of (A,F) is k, then T (m, k) ∈ F , for some
m, and every graph in A is T (m, k)-free. Thus, g(n, (A,F)) > g(n, T (m, k)), and hence
h(G) > (1 + ε)g(n, T (m, k)). Thus, G contains at least δnm copies of T (m, k) by the
k-ESS-supersat property.

Assume now that (A,F) corresponds to a graph (F, Y ) with extra structure. The
above theorem does not say anything about the number of copies of (F, Y ) in (G,X)
since the number of copies of (F, Y ) in (G,X) is not well-defined. In all the examples
of extra structures we consider, the extra structure is defined using the vertices and/or
edges of the graph, thus the extra structure X in G creates some extra structure on the
subgraphs of G, simply by restricting (G,X) to the subgraph. This is what we try to
capture formally in the next definition.

the electronic journal of combinatorics 33(1) (2026), #P1.19 6



Assume that we have an equivalence relation on the pairs in Q such that (G,X) ≡
(G′, X ′) implies that G is isomorphic to G′. In our examples, the isomorphism is extended
to keep the extra structure, e.g., if u is before v in a vertex ordering, then the same holds
for their images. Given a graph G and U ⊂ V (G), G|U denotes the restriction of G to U ,
i.e., the graph with vertex set U where for u, v ∈ U , uv is an edge of G|U if and only if
uv ∈ E(G).

We say that Q and < are ordinary if for every (G,X) ∈ Q we have a function f from
the power set of V (G) to the extra structures such that for each U ⊂ V (G) we have
that (G|U , f(U)) ∈ Q and (F, Y ) < (G,X) if and only if there is a U ⊂ V (G) such that
(F, Y ) ≡ (G|U , f(U)). Then a copy of (F, Y ) in (G,X) is a subgraph of G with vertex set
U such that (F, Y ) ≡ (G|U , f(U)).

Theorem 9. Let g = gh be a k-ESS-supersat Turán-type function and Q be a family of
graphs with extra structure, < be a relation on Q such that Q and < are ordinary. Let
(F, Y ) ∈ Q, (A,F) be the corresponding partition and k be the abstract chromatic number
of (A,F). Let G be an n-vertex graph with h(G) > (1 + ε)g(n, (A,F)) and (G,X) ∈ Q.
Then (G,X) contains at least δn|V (F )| copies of (F, Y ).

Proof. Similar to the previous proof, we have that G contains at least δnm copies of
T (m, k). By the ordinary property, each copy T of T (m, k) has an extra structure X ′ =
f(V (T )), and (T,X ′) contains a copy of (F, Y ). Clearly less than δn|V (F )| copies of F
are contained in less than δn|V (F )|(n−|V (F )|

m−|V (F )|

)
< δnm copies of T (m, k), a contradiction

completing the proof.

3 Turán-type functions and suitable partitions

Let us list some Turán-type functions that satisfy the requirements of some of our theo-
rems. We start with k-ESS functions.

Counting edges, cliques. The examples in [8] and [9]. The Erdős-Stone-Simonovits
theorem [13, 15] itself shows that counting edges is strongly k-ESS, and a theorem of Alon
and Shikhelman [1] shows that counting Kt is strongly k-ESS if k > t.

Counting asymptotically (weakly) Turán-good graphs. Considering that the
Turán graph is the extremal graph when we forbid cliques and count edges, it is a natural
to ask: What graphs H have the property that ex(n,H,Kk) = N (H,T (n, k − 1)), at
least for n large enough? This property was named as k-Turán-good in [24]. The graph
H is weakly k-Turán-good if ex(n,H,Kk) = N (H,T ) for some complete (k − 1)-partite
graph. Recall that N (H,T ) denotes the number of copies of H in G. We only need an
asymptotic version, but we need it to hold for every k-chromatic graph F in place of Kk.
However, this requirement follows from the k-Turán-goodness using the removal lemma
[12]: if we have an n-vertex F -free graph, we can remove each copy of Kk by deleting
o(n2) edges. This way we removed o(n|V (H)|) = o(ex(n,H, F )) copies of H.

Asymptotic (and usually exact) k-Turán-goodness has been proved for several graphs.
Most usually it is accompanied with a stability result that we will return to shortly.
Highlights include the following results: complete t-partite graphs with t < k are weakly
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k-Turán-good, [25], paths are k-Turán-good [24], and each graph is k-Turán-good if k is
large enough [35].

Functions of degree sequences. Let f be a non-decreasing log-continuous function
and h(G) :=

∑
v∈V f(d(v)). Here log-continuous means that for every ε > 0 there exists

δ > 0 such that for any m,n with m 6 n 6 (1 + δ)m we have f(m) 6 (1 + ε)f(n).
Pikhurko and Taraz [39] showed that gh is weakly k-ESS. The study of the special case
f(n) = nr, r is an integer was initiated by Caro and Yuster [7], who conjectured that this
function is weakly k-ESS. It was proved for any real r > 1 by Bollobás and Nikiforov [2].
They showed in [3] that if r 6 k, then this function is strongly k-ESS.

Some topological indices. There are several topological indices of the form

h(G) =
∑

uv∈E(G)

f(d(u), d(v)).

They are used in chemical graph theory. Gerbner [19] showed that if f is a monotone
increasing polynomial, then gh is weakly 3-ESS, moreover, weakly 3-ESS-stable.

Spectral radius. Let h(G) denote the spectral radius of the adjacency matrix of G.
Nikiforov [36] showed that gh is strongly k-ESS.

p-spectral radius. Kang and Nikiforov [28] initiated the study of Turán-type prob-
lems for the p-spectral radius. This is defined as

h(G) = max

2
∑

uv∈E(G)

xuxv : x1, . . . , xn ∈ R, |x1|p + · · ·+ |xn|p = 1

 .

Li and Peng [31] showed that gh is strongly k-ESS.
Higher order spectral radius. The t-clique tensor of a graph G is an order t

dimension n tensor, with entries

ai1i2...it =


1

(t− 1)!
, if vi1 , . . . , vit form a clique in G,

0 , otherwise.

Let h(G) denote the spectral radius of this tensor. Liu, Zhou and Bu [32] showed that gh
is strongly (t+ 1)-ESS.

Local density. Let h(G) = hα(G) denote the smallest number of edges spanned by
αn vertices of G. Keevash and Sudakov [30] showed that if 1− 1/2(k− 1)2 6 α 6 1, then
gh is strongly k-ESS.

Small perturbations and combinations of k-ESS functions. Clearly, if we add
or multiply strongly k-ESS functions, we obtain new strongly k-ESS functions. An exam-
ple where such functions have been studied is counting multiple graphs at the same time.
Also, adding to a weakly or strongly h(G) a function that is o(h(G)) results in another
weakly or strongly k-ESS function. For example, counting stars Sr and

∑
v∈V (G) d(v)r

differs by a constant factor and a negligible additive term, thus one being weakly k-ESS
implies the same for another.
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Let us continue with some k-ESS-stable functions.
Counting edges. The well-known Erdős-Simonovits stability [10, 11, 41] means that

ex(n, F ) is k-ESS-stable.
Counting (weakly) F -Turán-stable graphs. The first stability result concerning

ex(n,H, F ) is due to Ma and Qiu [34], who showed that counting cliques Kt is k-ESS-
stable if k > t. Several other results followed, and in fact by now in most cases when we
know that counting H is k-ESS, we also know that it is k-ESS-stable. Highlights include
paths [27], complete t-partite graphs with t < k, and every graph if k is large enough [20].
Several other results can be found in [17].

Spectral radius. Nikiforov [37] showed that the spectral radius is strongly k-ESS-
stable.

p-spectral radius. Li and Peng [31] showed that gh is strongly k-ESS-stable.

Let us continue with a strongly k-ESS-sigma function.
Counting large complete balanced (k−1)-partite graphs. Gerbner [18] showed

that if H is the complete (k−1)-partite graph Ka,...,a and a is large enough, then counting
H is strongly k-ESS-sigma.

Let us list some k-ESS-supersat functions.
Counting subgraphs. It was shown in [14] that ex(n, F ) is k-ESS-supersat. It was

extended to every subgraph of chromatic number at most k by Halfpap and Palmer [26].

Let us continue with listing some suitable partitions. It is clear that we obtain results
for several partitions, in particular for several forbidden graphs with extra structure. Let
us list some examples where F is defined by some objects that have been studied before.

Edge-ordered, vertex-ordered, cyclically ordered graphs. These were the main
examples of graphs with extra structure in [8, 9]. The interested reader may find more
details [4, 42, 23].

Forbidden induced family of graphs. This is another important example from
[9]. This corresponds to hereditary partitions.

Rainbow Turán. Keevash, Mubayi, Sudakov and Verstraëte [29] introduced the
following problem. What is the maximum number of edges in an n-vertex graph that has
a proper edge-coloring without a rainbow copy of F? Here rainbow copy of F means that
each edge gets a distinct color. Counting other subgraphs in this setting was initiated in
[22].

Keevash, Mubayi, Sudakov and Verstraëte [29] showed that the abstract chromatic
number of F is χ(F ) by showing that any proper edge-coloring of the complete k-partite
graph Kk3t3,...,k3t3 contains a rainbow copy of the complete k-partite graph Kt,...,t. Here
we extend this by showing that σ does not increase either.

Lemma 10. Let χ(F ) = k, σ(F ) = t and n be sufficiently large. Then any proper
edge-coloring of the complete k-partite graph Kt,n,...,n contains a rainbow copy of F .

Proof. Consider a properly edge-colored Kt,n,...,n with parts |X1| = t and X2, . . . , Xk. We
let the color classes of F be |Y1| = t and Y2, . . . , Yk. We will embed the sets Yi into Xi

greedily to obtain a rainbow copy of F . First we embed Y1 into X1 arbitrarily. After
embedding Y1, . . . , Yi, we will embed Yi+1. At this point we have embedded less than
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|V (F )| vertices, thus there are less than
(|V (F )|

2

)
colors used on the already embedded

edges. For each of the already embedded vertices u, we remove each vertex v from Xi+1

if uv is of a color already used. As there is at most one neighbor of u in each color, less
than |V (F )|

(|V (F )|
2

)
vertices were deleted from Xi+1, thus we can pick |Yi+1| other vertices

if n is sufficiently large. We can complete the embedding, thus the proof is complete.

4 An exact result for balanced graph parameters

So far, we have not made any assumption on the graph parameter h itself. We can prove
another exact result if h is balanced in the following sense. We think of the increase of
h when adding an edge to a graph as the contribution of that edge. We are interested
in h where we are given an upper bound on the order of magnitude of the contribution
of every edge. Furthermore, when the graph is closer to a complete multipartite graph,
then we also have the same lower bound on the order of magnitude of the contribution of
every edge, i.e., the contributions have the same order of magnitude.

Definition 11. We say that a graph parameter h is balanced for a positive integer k if
the following properties hold for some a:

(a) For any graph G and any non-edge e of G, if G′ is obtained from G by adding e,
then h(G′) = h(G) +O(na).

(b) If G′′ is obtained from G by adding a new vertex u and joining u to all the neighbors
of an arbitrary vertex v, then h(G′′) = h(G) +O(na+1).

(c) For any c > 0 there is n0 such that if n > n0 and G is a complete (k − 1)-partite
n-vertex graph with each part of order at least cn, then h(G′) = h(G) + Θ(na) and
h(G′′) = h(G) + Θ(na+1).

(d) If G is a complete (k− 1)-partite n-vertex graph with each part of order at least cn
and G′′′ is obtained from G by deleting x edges, then h(G′′′) = h(G)−Θ(xna).

Recall that if the abstract chromatic number of (A,F) is k, then each complete (k−1)-
partite graph with each part of order at least n is in A, for every sufficiently large n.

Definition 12. A partition (A,F) is edge-critical if it is suitable with abstract chromatic
number k but for large enough n, no G ∈ A contains T+(n, k − 1) as a subgraph, where
T+(n, k−1) is obtained from T (n, k−1) by adding an edge into one of the smallest parts.

One particular example is when F = F(F ) for a k-chromatic graph F with a color-
critical edge, i.e., an edge whose deletion decreases the chromatic number. We will show
in Proposition 16 that the rainbow Turán problem for a k-chromatic graph F with a
color-critical edge gives an edge-critical partition. However, in general, if we take some
extra structure on F , it is unclear whether the corresponding partition is edge-critical. In
fact, we are not aware of any such example.
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Simonovits [40] proved that if F has a color-critical edge and n is sufficiently large,
then ex(n, F ) = |E(T (n, χ(F ) − 1))|. We can extend this result to our setting in the
balanced case if we also have stability.

Theorem 13. Let g = gh be a Turán-type function that is weakly k-ESS-stable such that h
is balanced for k. Let (A,F) be an edge-critical partition with abstract chromatic number
k. Then g(n, (A,F)) = h(T ) for some complete (k − 1)-partite graph T on n vertices
where n is sufficiently large.

We follow the proof of Theorem 1.5 in [17], which deals with counting copies of some
graphs. We remark that in that theorem the assumption is slightly more general than
being edge-critical. It is likely that a similar generalization would also hold in our setting.

Proof. We pick ε > 0 sufficiently small depending on h and A. We also pick a sufficiently
large m depending on A such that no graph in A contains T+(m, k − 1) as a subgraph.
We pick n to be sufficiently large with respect to h, A, ε and m.

Let G be an n-vertex graph in A with h(G) = g(n, (A,F)). By the weakly k-ESS-
stable property, G can be turned into a complete (k−1)-partite graph T by adding and/or
deleting o(n2) edges. We pick T so that we need to add and/or delete the smallest number
of edges this way. Let Vi be the i-th part of T with |V1| 6 |V2| 6 . . . 6 |Vk−1|. Observe
that if v ∈ Vi has d neighbors in Vi in G, then v has at least d neighbors in every Vj in
G, otherwise we could move it to Vj and obtain another complete (k − 1)-partite graph
instead of T that can be obtained from G by adding and/or deleting a smaller number of
edges.

Claim 14. |V1| > εn if n is sufficiently large.

Proof of Claim. Assume not and let ` be the largest integer such that |V`| < εn. Let us
pick arbitrary vertex-disjoint subsets Ui ⊂ Vk−1 with |Ui| = bn/(k − 2)2c for each i 6 `.
We move each Ui form Vk−1 to Vi to obtain another complete (k − 1)-partite n-vertex
graph T ′. In other words, we delete each edge between Ui and Vi for every i, and then
add each edge uv with u ∈ Ui, v ∈ Vk−1 \Ui, for every i. Let us compare h(T ) and h(T ′).
We deleted o(n2) edges, which decreases h by o(na+2).

Now we consider the edges added in two steps. Let us pick a set U ′i ⊂ Ui with |U ′i | = εn
for each i. First, we add the edges connecting vertices in U ′i to vertices in Vk−1 \ Ui. Let
G0 denote the graph we obtain by deleting the vertices in Ui \ U ′i for every i. Therefore
G0 is a complete (k − 1)-partite graph on at least n/2 vertices with each part of order
at least εn. Then we add linearly many additional vertices, so that each vertex creates
a complete (k − 1)-partite graph, thus we can apply the definition of the balanced graph
parameters to adding the next vertex. Therefore, each vertex increases h by Θ(na+1),
which implies that altogether h is increased by Θ(na+2).

Thus we have obtained that h(T ′) = h(T ) + Θ(na+2). We also have h(T ) = (1 +
o(1))h(G). Observe that h(T ) = O(na+2), since we can get T from the empty graph by
adding O(n2) edges. These imply that h(T ′) = h(T ) + Θ(na+2) > h(G), a
contradiction.
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Let us return to the proof of the theorem and let E denote the set of edges in G that
are not in T , i.e., the edges inside some Vi. Let r(u) denote the number of edges incident
to u in T that are not in G, i.e., the edges between parts that are missing from G. Then
by the definition of T , we have |E| = o(n2) and

∑
u∈V (G) r(u) = o(n2). Let A denote the

set of vertices with r(u) = o(n), then |V (G) \A| = o(n). Let Ai = Vi ∩A, then by Claim
14, |Ai| = Ω(n).

Let Bi denote the set of vertices in Vi with Ω(n) neighbors inside Vi.

Claim 15. Any u ∈ Ai has no neighbor in Ai ∪Bi.

Proof of Claim. Assume that uv ∈ E(G) with v ∈ Ai ∪Bi. We will show that G contains
T+(m, k−1), contradicting the definition ofm. Let Uj denote the j-th part of T+(m, k−1),
and assume without loss of generality that we added the extra edge inside the i-th part.
Then we embed the extra edge into uv arbitrarily. We embed the other vertices of Ui
into Ai arbitrarily. Next we embed some Uj with j 6= i. Observe that v has a set Wj of
Ω(n) neighbors in Aj, and only o(n) vertices of Wj are not adjacent to any given vertex of
Ai. Therefore, with the exception of at most (m− 1)o(n) = o(n) vertices, the vertices of
Wj are in the common neighborhood of the already picked vertices. We pick m of those
vertices in Wj, and embed Uj into those vertices.

We continue similarly, embedding the parts of T+(m, k − 1) one by one. When we
embed a part U`, we pick m vertices from the common neighborhood inside A` of the
already embedded vertices. We have embedded 1 vertex into v ∈ Ai ∪ Bi and each
other vertex (at most m − 1 vertices) into some Aj with j 6= k. Therefore, out of the
Ω(n) neighbors of v in A`, only o(n) vertices are not in the common neighborhood of
the already picked vertices. This shows that indeed we can complete the embedding and
obtain a contradiction.

Let us return to the proof of the theorem. The above claim implies that Bi = ∅, since
a vertex in Bi has at most |Vi \ Ai| = o(n) neighbors inside Vi. Let X denote a smallest
set of vertices inside V (G) \A such that each edge of G inside parts is incident to at least
one vertex of X. Then

∑
u∈X r(u) = Ω(n|X|). On the other hand, there are o(n|X|)

edges incident to X inside Vi because Bi = ∅. Let G′ denote the graph we obtain from
T by deleting the edges that are in T but not in G. Then by the definition of balanced
graph parameters, h(G) = h(T ) − Ω(na+1|X|). We obtain G from G′ by adding o(n|X|)
edges inside the parts, thus h(G) = h(G) + o(na+1|X|) < h(T ) if |X| 6= 0, a contradiction
completing the proof.

It is easy to see that several graph parameters mentioned earlier are balanced. We
remark that our definition of balancedness was chosen to satisfy the requirements of each
step of the proof. It would be interesting to find a simpler, yet similarly general definition
of balancedness such that the above theorem holds.

Let us now show an edge-critical partition. Recall the rainbow Turán problem from
the previous section.
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Proposition 16. Let F be a k-chromatic graph with a color-critical edge. Let A denote
the family of graphs that have a proper coloring without a rainbow copy of F , and F
denote the family of other graphs. Then (A,F) is an edge-critical partition.

Proof. Let us assume that G contains T+(n, k − 1) for n sufficiently large and let Ai be
the i-th part of T+(n, k − 1), with the extra edge uv in A1. Since F has a color-critical
edge, there is a (k − 1)-partition of F into B1, . . . , Bk−1 such that the only edge inside
parts is the edge u′v′ inside B1.

We will embed F into a properly colored T+(n, k − 1) in a rainbow way, obtaining a
contradiction. First we map u′ into u and v′ into v. Then we embed the rest of B1 to
the rest of A1 arbitrarily. Afterward, we will embed the rest of the vertices of B2 into A2,
then B3 into A3, and so on. We pick the order of the vertices inside the parts arbitrarily.

When we embed a vertex w′ ∈ Bi, we have to pick a vertex w of Ai such that the
edges connecting w to the already embedded less than |V (F )| vertices have color distinct
from each of the at most |E(F )| colors used earlier in the embedding. For each already
embedded vertex z and each already used color c, there is at most one vertex of Ai that
is joined by an edge of color c to z. This shows that there are at most |V (F )||E(F )|
forbidden vertices in Ai, thus we can pick one where we embed w. We continue this way
till we embed F , which gives us a contradiction and thus completes the proof.

5 Concluding remarks

There are several other Erdős-Stone-Simonovits-type theorems we can obtain by modi-
fying our definitions a little bit. We say that gh is robust if the following holds. If G
contains T (n, k − 1) and G′ is obtained from G by adding and/or deleting o(n2) edges,
then h(G′) = (1 + o(1))h(G). Counting subgraphs of chromatic number at most k − 1
clearly has this property.

Let us say that a partition is suitable for robust Turán-type functions if there is a k
such that the following two properties hold. For sufficiently large n, for each complete
(k − 1)-partite graph T with each part of order at least n, there is a graph in A that
can be obtained from T by adding and/or deleting o(n2) edges. For every G ∈ A, we
can delete o(n2) edges from G to obtain a graph G′ that does not contain T (n, k) as a
subgraph, or if Kn ∈ A for sufficiently large n.

It is easy to see that some of the arguments in this paper extend to this situation. For
example, if the lower bound in Theorem 1.1 is obtained by a complete (k−1)-partite graph
T , then we can find a graph G ∈ A that is close to T by the suitability for robustness,
and h(G) is close to h(T ) by the robustness.

This can be applied to regular Turán problems. Let A consist of regular F -free
graphs and F consist of the graphs not in A. The study of Turán problems for regular
graphs was initiated in [5, 6], where it was shown that for k > 4 and any n, there is a
(k − 1)-partite regular graph with (1 − o(1))|E(T (n, k − 1))| edges. This implies that
(A,F) is suitable for robust Turán-type functions. Note that counting other subgraphs
in regular F -free graphs was studied in [21].
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Another example is the shadow graph of Berge-F -free hypergraphs. We omit
the definitions here and only mention here that an Erdős-Stone-Simonovits-type theorem
was proved for such graphs in [33], and the proof was by showing that the second property
of the above definition holds (the first one holds trivially). Therefore, these graphs define
a suitable partition for robust Turán-type functions. Note that counting other subgraphs
in such shadow graphs was initiated in [16].

Instead of (1 + o(1))h(T ), we can aim to obtain different bounds. An example is
counting graphs H on h vertices, where this bound is of the form ex(n,H, F ) = N (H,T )+
o(nh). It is known that in several cases o(nh) can be replaced by O(nh−ε) for some
ε = ε(H) > 0; this implies g(n, (A,F)) = N (H,T ) + O(nh−ε), which is analogous to
Theorem 5.

Another example is counting n-vertex F -free graphs. A theorem of Erdős, Frankl
and Rödl [12] states that there are 2(1+o(1))ex(n,F ) distinct labeled F -free graphs on n
vertices, if F is not bipartite. This implies that if (A,F) is a monotone partition with
abstract chromatic number k, then there are 2(1+o(1))|E(T (n,k−1))| distinct n-vertex labeled
graphs in A. The lower bound is obtained by the subgraphs of T (n, k − 1), while the
upper bound comes from the above-mentioned theorem of Erdős, Frankl and Rődl, since
some k-chromatic graph is forbidden.

Note that if we consider graphs with extra structures, this result only states how
many underlying graphs there are, and does not say anything about the possible extra
structures. For example, in the case of vertex-ordered graphs, this result does not say
how many orderings of the vertices of such a graph avoid the forbidden subgraphs.

However, for some of the extra structures mentioned in this paper, the difference is
negligible. For example, for a vertex-ordered graph F with abstract chromatic number
k > 2, we obtain that there are at most 2(1+o(1))|E(T (n,k−1))|n! = 2(1+o(1))|E(T (n,k−1))| distinct
F -free edge-ordered n-vertex labeled graphs.

In the case of Turán problems for oriented graphs, a parameter called com-
pressibility plays the role of the chromatic number in the analogue of the Erdős-Stone-
Simonovits theorem [44]. It can be a direction of future research to examine whether some
of our results extend to that setting.
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