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Abstract

For a given symmetric association scheme .4 and its eigenspace S; there exists
a mapping of vertices of A to unit vectors of Sj, known as the spherical represen-
tation of A in S, such that the inner products of these vectors only depend on the
relation between the corresponding vertices; furthermore, these inner products only
depend on the parameters of A. We consider parameters of imprimitive associa-
tion schemes listed as open cases in the list of parameters for quotient-polynomial
graphs recently published by Herman and Maleki, and study embeddings of their
substructures into some eigenspaces consistent with spherical representations of the
putative association schemes. Using this, we obtain nonexistence for two parameter
sets for 4-class association schemes and one parameter sets for a 5-class association
scheme passing all previously known feasibility conditions, as well as uniqueness for
two parameter sets for 5-class association schemes.

Mathematics Subject Classifications: 05E30

Appendix 1: Introduction

Association schemes were first introduced within the theory of experimental design, how-
ever, since Delsarte [11], they have been primarily studied as combinatorial objects of their
own, representing the basic underlying structures in various fields such as coding theory,
design theory, and finite geometry. Much of the research on association schemes has been
focused on some special cases, such as strongly regular graphs (i.e., 2-class association
schemes), distance-regular graphs (corresponding to P-polynomial association schemes)
and @Q-polynomial association schemes. Nevertheless, even for these subfamilies, a com-
plete classification is still a widely open problem. Tables of feasible parameters for various
families of association schemes have been compiled, in particular, by Brouwer et al. [4, 5, 6]
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for strongly regular and distance-regular graphs, by Van Dam [10] for three-class associ-
ation schemes, and by Williford [17, 38] for @-polynomial association schemes. Recently,
two new surveys of feasible parameter sets of association schemes have been compiled by
Herman and Maleki: one for association schemes with noncyclotomic eigenvalues [23] and
one for quotient-polynomial graphs [22, 24].

Contributions to the classification of association schemes come in the form of new
constructions and characterizations of association schemes with a certain parameter set
or belonging to a family of parameter sets — in particular, it may be possible to prove
that there is a unique association scheme with a given parameter set (uniqueness proof),
or that there are none (nonexistence proof). Many families and sporadic examples of
association schemes are known, and constructing new ones, particularly in the more stud-
ied subfamilies, has proved to be increasingly difficult. On the other hand, there are
many parameter sets which pass the known feasibility conditions, but no corresponding
association scheme has been constructed; there are also many cases when one or more
corresponding association schemes are known, but it is not known whether there are any
more.

One of the techniques that can be used to study association schemes is to study their
spherical representations in their eigenspaces. Bannai, Bannai and Bannai [3] have used
this technique to prove uniqueness of two association schemes arising from spherical codes;
more recently, Gavrilyuk, Suda et al. have used a similar technique to prove uniqueness
of an association scheme related to the Witt design on 11 points [16], and of a non-
symmetric commutative association scheme arising from a set of equiangular lines in
C® [15]. In the present paper, we apply such a technique to study imprimitive association
schemes with parameters which are listed as open cases in the aforementioned list of
parameter sets of association schemes corresponding to quotient-polynomial graphs. We
first apply the known feasibility conditions and find numerous cases when they either
rule out a parameter set, or there is a known example (see Appendix A). Then, using
software [36, 37] developed on top of the SageMath computer algebra system [32], we
conduct some computer searches and conclude nonexistence for three of the cases that
satisfy the known feasibility conditions, and uniqueness for two more cases.

Appendix 2: Preliminaries

In this section we review some basic definitions and concepts. See Brouwer, Cohen and
Neumaier [6] for further details.

Let X be a set of n wertices, and R C X? a binary relation on X. The matrix
A € {0,1}**X such that A,, = 1 if and only if (z,y) € R is called the adjacency matriz
of the relation R. If R is an irreflexive relation, then the pair I' = (X, R) is called a (simple,
directed) graph — such a graph has the set X as its vertex set and the set R as its arc set
(i.e., the set of its directed edges), and A is its adjacency matrix. In the case when R is
a symmetric relation, we will understand the graph I' to be undirected, and its edges are
precisely the unordered pairs {x,y} such that (z,y) € R. For a subset Y C X, we define
the induced subgraph of I' on Y as I'ly = (Y, R|y), where R|y = {(z,y) € R|z,y € Y} is
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the restriction of the relation R onto the subset Y.

Let R = {R; | i € T}, where T is an index set of size d+ 1 for some d, be a partition of
X? such that Idy := {(z,z) |z € X} € Rand ) ¢ R — i.e., R is a set of binary relations
on X containing the identity relation such that each pair of vertices of X lies in precisely
one relation of R. A relation scheme is defined by a pair A = (X,R). A non-identity
relation of R is also called a class, so we may refer to A as a d-class relation scheme.
Customarily, we will have Z = {0, 1,...,d} and Ry = Idx, although we may occasionaly
deviate from this convention. A relation scheme may be concisely represented by its
relation matriz M € T*** satisfying (z,y) € Ru,, (z,y € X).

An isomorphism between relation schemes A = (X,R) and A = (X', R’) is a pair
(¢,1) of bijective maps ¢ : X — X’ and ¢ : R — R’ such that for each pair of vertices
z,y € X and for each relation R € R we have (z,y) € R if and only if (z?,y?) € RY.
The relation schemes A and A’ are isomorphic if there exists such an isomorphism. An
automorphism of A is an isomorphism between A and itself.

If all the relations of R are symmetric, then A is called a symmetric relation scheme.
For a subset Y C X, we define the induced subscheme of A on'Y as Aly = (Y,Rly),
where R|y = {R|y | R € R} \ {0} is the restriction of the partition R onto the subset
Y. Note that (Idx)|y = Idy € R|y, so Aly is also a relation scheme. Clearly, if A is
symmetric, Aly is symmetric as well.

Suppose that A = (X, R) is a symmetric relation scheme with the additional property
that there exist numbers p?j (h,i,j7 € I) such that for each pair (z,y) € Ry, there
are precisely pl}; vertices z € X with (z,2z) € R; and (z,y) € R;. Then A is called a
(symmetric) association scheme, and the numbers pl; (h,i,j € I) are its intersection
numbers. The number k; := p? is the valency of the relation R; (i € Z) — i.e., for each
vertex © € X, there exist precisely k; vertices y € X such that (z,y) € R;. From now on,
we will assume that A is an association scheme.

Let A; be the adjacency matrix of the relation R; (i € Z) — then we say that A; (i € 7)
are the adjacency matrices of the association scheme A. We also define the corresponding
graphs T; = (X, R;) (i € Z, R; # Idx). Note that A;A; = >, - pliA, (4,5 € Z) holds. In
particular, since the adjacency matrices of a symmetric association scheme are symmetric,
they can be simultaneously diagonalized, giving a decomposition of R¥ as a direct sum
of d + 1 common eigenspaces forming a set S = {S; | j € J}, where J is an index
set of size d +- 1. Note that the all-ones matrix J =}, ; A; has an eigenvalue n with
multiplicity 1 and its corresponding eigenspace is (1x), i.e., the one-dimensional subspace
of R spanned by the all-ones vector; this subspace is also an eigenspace of A; (i € 7)
for the eigenvalue k;. Therefore, (1x) € S. Customarily, we will have J = {0,1,...,d}
and Sy = (ly), although we may, again, occasionaly deviate from this convention (in
particular, it may happen that Z and J are different sets of the same cardinality).

Let E; € R*¥*X (j € J) be the projector matrix onto the eigenspace S; — these
matrices are called the minimal idempotents of A. We note that the Bose-Mesner algebra
of A, i.e., the algebra generated by the basis of adjacency matrices {A4; | i € Z} with
respect to ordinary matrix addition and multiplication, has a second basis {E; | j €
J} 6, §2.2]. Therefore, there exist matrices P € R7*% and Q € R¥*7 (called the
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eigenmatriz and the dual eigenmatriz, respectively) such that A; = Zjej P,E; (i € I)
and E; = L3 Qi A; (j € J). We note that for each choice of ¢ € Z, the value Pj;
(7 € J) corresponds to the eigenvalue of A; on the eigenspace S; (thus covering all distinct
eigenvalues of A;, possibly with some repetitions). In particular, we have Py, = k; (i € 7).
In the case when there exists a bijection ¢ : Z — J, ¢ : i — 4 (i € Z) such that Py; = Qi
holds for all 7, j € Z, we say that the association scheme A is formally self-dual.

Since the Bose-Mesner algebra M is also closed under the entrywise multiplication
of matrices (denoted by o, also known as Schur or Hadamard multiplication), it follows
that there exist numbers qlhj (h,i,j € J), known as the Krein parameters, such that
EioEj = £, .7 q/E,. These numbers are nonnegative (cf. [6, Theorem 2.3.2]), but
not necessarily integral or rational, yet they exhibit properties similar to those of the
intersection numbers of an association scheme — there is a formal duality between the
two. We also define the number m; := q?j as the multiplicity of the eigenspace S; (j € J)
— l.e., it corresponds to the dimension of S; and is therefore a positive integer. Note that
Qo; =m; (j € J) also holds.

Any of the parameter sets {p?j | h,i,j € I}, P, @ and {q{lj | h,i,j € J} uniquely
determines the others, but not necessarily an association scheme itself — for any given
parameter set, there may be one or more association schemes, or none at all.

An imprimitivity set of the association scheme A = (X,R) is a set of relation indices
0 C T such that Rj := U, Ri is an equivalence relation partitioning the vertex set X
into the set of equivalence classes X := X/R; = {X; | £ = 1,2,...,7}. We note that
| Xe| = > ,c5ki = (1 <€ <n)and n =n-n Furthermore, for each equivalence class
Xy (1 < ¢ < 1), the induced subscheme A|x, is an association scheme with intersection
numbers ]_a?j = p?j (h,i,j € 0). The association scheme A is called imprimitive (cf. [6,
§2.4]) if there exists a nontrivial imprimitivity set 0 (i.e., {0} C 0 C Z, where R, = Idx).

An imprimitivity set 0 also determines an equivalence relation ~ on Z defined by

h~j < 3i€0.p#0 (hjeT).

Note that 0 is an equivalence class of ~, and we define 7 as the equiyalencg class of ~
containing i € Z. This allows us to define the quotient scheme A= A/0 = (X, R = {R; |
1€1}), where Z =7/~ and

Ri={(i,9) eX*|reryeqici (v,y) e R} (iel).

The quotient scheme A is an association scheme with intersection numbers ﬁ% =
% Y i Zjejp?j for all h € h (iz, 1,] € f) Thus, the imprimitivity sets and the parameters
of the resulting subschemes and quotient scheme only depend on the parameters of the
parent association scheme.

Dually, we may also define a dual imprimitivity set as a set of eigenspace indices 0 C J
such that Fj:= 2 jeo Ij 1s the adjacency matrix of an equivalence relation on X, where
7 equals the number of the resulting equivalence classes. A dual imprimitivity set is
nontrivial if {0} € 0 C J, where Sy = (1x). It turns out that there is a one-to-one
relationship between (nontrivial) imprimitivity sets and (nontrivial) dual imprimitivity
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sets, i.e., Ej is the adjacency matrix of Ry, where 0 is the corresponding imprimitivity
set. In fact, both imprimitivity sets and dual imprimitivity sets can be recognized from
the parameters of the association scheme.
Similarly as before, the dual imprimitivity set 0 determines an equivalence relation ~
on J defined by
he~i < 3j€0.¢#0 (hicJ).

Again we note that 0 is an equivalence class of ~, and we define j as the equivalence class
of ~ containing j € J. We find that the induced subschemes Alx, (1 < ¢ < n) have the
set of eigenspaces S|x, = {Sj]x, | 7€ J}, where J = J/~ and

Sj|Xe = {U|X£ v e ZS]} (7 € ?)7

J€j
Le., the restriction to X, of the sum of eigenspaces with indices from 7. The Krein
parameters o_f Alx, are then g = _%Ziei ZL’EE qy for all b € h (h,z,j_e J), and its
eigenmatrix P and dual eigenmatrix ) satisty Py = Pj; for all j € 7, and Q;; = % > e Qij

(i €0,7€ J). In particular, ?n—; = 23 Y0lds for all J € J, where m; = G% = @03. For the

my

quotient scheme A, we find the set of eigenspaces S = {S; = {0 | v € S;} | j € 0}, where

U= (ZIEI Ul‘)ase)”( € RX. The Krein parameters of A are then (jlhj = q,flj (h,i,7 €0), and
its eigenmatrix P and dual eigenmatrix Q satisfy ﬁ’ﬂ = %Zzei Pj;, and @U = @ for all

i€i(i€T,je0). In particular, ZJI = % holds for all i € 7, where k; = 15% — Py;. Since

the eigenmatrices are square matrices, we see that [0| = [ 7| and [0] = |Z|.

Appendix 3: Quotient-polynomial graphs

Quotient-polynomial graphs (QPGs) were introduced by Fiol [12], whose results allow us
to state the following definition.

Definition 1. Let I' = (X, R) be an undirected graph with adjacency matrix A. The
graph ' is quotient-polynomial if the algebra generated by the powers of A is the Bose-
Mesner algebra of an association scheme A = (X, R = {R; |i € Z}).

Let I' be a quotient-polynomial graph and A the corresponding association scheme by
the above definition. Clearly, the graph I' must be connected and regular, as its adja-
cency matrix must be a sum of some adjacency matrices of A. Furthermore, there exist
polynomials p; (i € Z) such that A; = p;(A). This shows that the notion of a quotient-
polynomial graph generalizes the notion of a distance-regular graph (see [6, §4]), as we
drop the requirement on the degrees of these polynomials and thus lose the equivalence
between the relations of A and distances in I'.

Given the parameters of an association scheme A, we can verify whether a sum of
some adjacency matrices of A generates its Bose-Mesner algebra — each relation corre-
sponding to such an adjacency matrix thus gives us a quotient-polynomial graph. A given
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association scheme may therefore correspond to one or more quotient-polynomial graphs
(which need not be mutually non-isomorphic), or none at all (similarly to how an associ-
ation scheme may have multiple P-polynomial orderings, thus corresponding to multiple
distance-regular graphs). In particular, if a relation (J;., R; (Z' C Z) of an association
scheme A = (X, {R; | i € Z}) gives rise to a quotient-polynomial graph, this will also be
true for the relation ), ;, R} of an association scheme A" = (X', {R] | i € Z}) with the
same parameters as A.

Herman and Maleki [24] define a relational quotient-polynomial graph as a quotient-
polynomial graph I' = (X, R) such that R is a relation of the corresponding d-class
association scheme A with relation index set Z = {0,1,...,d}. In this case, we will
assume Ry = Idx and R; = R. For such an association scheme, they define the parameter
array

(1, Koy - k), (D3 Ph - P PR Do - D5 DY o P P g ]

and show that the remaining parameters of A can be computed from it. This notation
has been used to build a database of parameter arrays (subject to limitations on number
of classes, order and valency) passing some basic feasibility conditions. At the time of
writing, a subset of this database is available online [22], with tables for parameters arrays
for QPGs with 3 classes of order at most 60, 4 or 5 classes of order at most 60 and valency
at most 12, and with 6 classes of order at most 70 and valency at most 12 marking each
entry either as infeasible (i.e., some further basic checks fail), existing (an association
scheme with the corresponding parameters has been found) or feasible (all checks pass,
but no example has been found).

We use the sage-drg package [35, 36] to perform more feasibility checks for the pa-
rameter arrays marked as feasible. For those parameter arrays which pass all the checks,
we attempt to identify known constructions. The results are presented in Appendix A.
We also verify that the parameter sets for association schemes with noncyclotomic eigen-
values in [23, §4.3.2] pass the forbidden quadruple check (see [17, Corollary 4.2]), as the
other feasibility condition had already been verified. For the parameter arrays which have
neither been ruled out as infeasible nor are there any known constructions for them, we
may use the technique presented in the following section to study their feasibility.

Appendix 4: Eigenspace embeddings of association schemes

Let A = (X,R = {R; | i € Z}) be an association scheme with n vertices, dual eigenmatrix
() and multiplicities m; (j € J), and S; (j € J) be one of its eigenspaces. The entries of
the corresponding minimal idempotent Ej; satisfy (E;), = Qn“ (x,y € X) if (z,y) € R;
(i € I). Let 1, € RX be the indicator vector of the vertex z € X, i.e., a unit vector with
entry 1 at index x and entries 0 elsewhere. Then the vector E;1, € S; is the orthogonal
projection of 1, onto the eigenspace S; and coincides with the column of £} at index

x. Consider the inner product of two such vectors: for two vertices x,y € X such that
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(z,y) € R;, we have
Q

iJ
n

(EB;l,, E;1,) = 1;EJTEj1y =1 El, = (E}j)sy =

The inner product of E;1, and E;1, therefore only depends on the relation in which the
vertices z and y are. In particular, we have ||[E;1,]| = /% (z € X), i.e., all the orthogonal

projections of the vectors 1, (x € X) onto S; have the same norm. Consequently, the angle
between two such projections only depends on the relation in which the corresponding

vertices are. We may therefore define unit vectors u, := , /-~FE;1, (r € X), and note
J

that, for two vertices z,y € X, if (z,y) € R; (¢« € Z) holds, then we have (u,,u,) = %
J

The map x — u, is said to be a spherical representation of the association scheme A in
the eigenspace S;. A spherical representation is called faithful if it is injective. Note that
a spherical representation of A in the eigenspace S; is faithful if and only if S; # (1)
and j is not contained in any nontrivial dual imprimitivity set.

Let A" = (Y, R') be a relation scheme with vertex set ¥ C X and relations R’ = { R}, |
i € I'} for some 7' C Z. We say that the relation scheme A’ admits an embedding into
S; if there exist unit vectors u/, € S; (xr € Y') such that for every two vertices z,y € Y,
we have (ul,, u,) = % whenever (x,y) € R, (i € Z'). Clearly, if R, = R;|y holds for every
i € 7', then we have A" = Aly, and we can just take u/, = u, (x € Y), so the relation
scheme A" admits an embedding into S;. Conversely, if no embedding of A’ into S} exists,
then A’ is not an induced subscheme of A.

Given a relation scheme A’, we may therefore attempt to determine the coefficients of
the vectors u/, (z € Y') in terms of the coordinates with respect to an orthonormal basis
{en | h =1,2,...,m;} of S;. Let us write v/, = >}, aznen, where a,, € R (z € Y,
1 < h < mj). We impose a linear order on the set Y, say, by assuming Y = {1,2,...,n'},
and define a matrix U := {amh};‘:;g (i.e., the rows of U correspond to the coefficients of
the sought vectors). Assume that F is a subfield of the field of real numbers R such that
the dual eigenmatrix @Q of A has entries from F (i.e., Q € FZ*7). We may build a matrix
C € F¥ such that C,, = % holds whenever (z,y) € R, (z,y € Y, i € I'), and pass it
as an input to Algorithm 1 alcing with the chosen index j € J. If the algorithm succeeds,
it computes all the entries in the matrix U, thus giving an embedding of A" into S;. On
the other hand, if the algorithm fails, we may conclude that no such embedding exists.

For an element 3 € IF such that 8 > 0, we define the set Fy/3 = {av/B | a € F}, where
/B is the unique positive real number such that (1/3)? = 3. Furthermore, we define the

set FVF = User Fv/B. We note that the sets F\/ are closed under addition, and for
B8>0

7,6 € Fy/B, we have 76 € F; similarly, for « € F, v € F/B\ {0}, we have £ € Fy/B. This
implies that there exist numbers 8, € F, 8, > 0 (1 < h < m;) such that a,, € Fy/B, for
all z € Y —i.e., all the entries of the h-th column of U are elements of F\/8),. Therefore,
we have U € (FV/F)Y*ms.

The eigenspace-embeddings repository [37] contains an implementation of Algo-
rithm 1 based on SageMath [32]. We use the sage-drg package [35, 36] to compute the
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Algorithm 1 The algorithm for computing the coefficients of the unit vectors u/, (z € Y)
in an orthonormal basis of ;.
Input: j € J, C € F¥*Y such that C,, = %4 <= (2,9) € R, (r,y €Y, i €T
for x =1,2,...,n' do ’ >Y ={1,2,...,n'}
h+1
fory=1,2,...,2—1do
d < Coy — ZZ: Gk Ayk
if h <m; Aay, #0 then

else if d # 0 then
fail > Cannot obtain the inner products
end if
end for
5 & Yoy, aly
if s > 1 then
fail > The norm is larger than one
else if s < 1 then
if h > m; then
fail > The norm is smaller than one
end if
azn <— V1 —3s
h+ h+1
end if
for k=h,h+1,...,m; do
g <+ 0
end for
end for

dual eigenmatrix ) of an association scheme 4 with the given parameters. The package
has been adapted so that the computed parameters (assuming they do not depend on a
variable) are returned in SageMath’s implementation of the rational field Q, provided by
the object QQ (an element of class RationalField), or a minimal extension thereof (an
element of the class NumberField). In both cases, SageMath’s implementation is based
on PARI [30]. Thus, F is a (possibly trivial) extension of Q. For the computation of the
entries of U in Algorithm 1, we implement a class IncompleteSqrtExtension to provide
the required arithmetic in the pseudo-field Fy/F. Note that the latter set is closed under
multiplication, but not under addition, and is therefore not a field, yet it is implemented
as a subclass of NumberField, with addition of elements of Fv/F not belonging to a com-
mon subset Fy/f3 triggering an error (note that this cannot happen in Algorithm 1). Such
an approach has a great performance and correctness advantage over using the symbolic
ring, provided by SageMath’s object SR (which is still used by sage-drg in the presence
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of variables), as the generality of the latter means that the obtained expressions often
cannot be adequately simplified, thus leading to bad performance and incorrect results.

Since the existence of an embedding into the eigenspace S; only depends on the pa-
rameters of A and not its structure, we may use the method described above to check
for feasibility of parameters of association schemes and possibly attempt to find new con-
structions or characterizations for a given parameter set. In particular, this method will
prove to be useful when some substructure of the association scheme is already known,
as we can then build on this substructure and explore which possibilities are admissible
until either a contradiction occurs, or the desired characterization or construction has
been reached.

Suppose that A is an imprimitive d-class association scheme with a nontrivial imprimi-
tivity set 0. Then, for every equivalence class Y of Ry, Aly is a d’-class association scheme
on n' vertices, where d = [0] — 1 < d and n’ < n. We thus obtain smaller association
schemes on subsets of vertices of A, and their parameters are determined by the param-
eters of A. Even when A is only specified by its parameters and its precise structure is
not known, the subschemes on these subsets might be determined or characterized by the
parameters, allowing further consideration by the above method.

Let 0 be the dual imprimitivity set corresponding to the imprimitivity set 0, and let

X, | ¢=1,2,...,7} be the set of the equivalence classes of R;. As Qs — %3 y0]ds for
{ q 0

alli € 0,7 € J and j € 7, we see that an embedding of A|x, (1 < ¢ < @) into S;|x, can
be naturally extended to an embedding into S; for each j € 7. In particular, when the
imprimitivity set is of the form 0 = {0,4*}, the graph (X, R;+) is isomorphic to a union of
(ki + 1)-cliques, and we call the sets X, (1 < ¢ < n) the R;«-cliques, and the embeddings
of their vertices into S; (j € J \ 0) correspond to the vertices of a k;«-dimensional regular
simplex, thus spanning a k;-dimensional subspace of S;. Generalizing this to the case
when |0] > 2, we may call the sets X, (1 < ¢ < 7) the R-cliques, where R = Uica 10 Bs-
For several parameter sets, we will determine the possible induced subschemes of A
on a small number of R-cliques (or subsets thereof). If we manage to determine that
none of these possibilities admit an embedding into an eigenspace of A, we then conclude
that such an association scheme does not exist. To this end, we will consider eigenspaces
S; with m; > 1 of small dimension. In particular, we will consider cases when % < 3.

Once we manage to construct a set Y C X such that the vectors {u), | v € Y} spz]m the
eigenspace S;, we may use the intersection numbers of A to determine the possible choices
for the relations R,, € R (x € Y) such that (z,y) € R, for a candidate vertex y € Y,
and examine which of the corresponding vectors wu; are unit vectors. We may then try
to find a subset Z of these vectors such that |Y|+ |Z| = n and for each pair of vertices
Y,z € Z we have (u,,u,) = ?n—j for some i € 7 (i.e., (y,2) € R;). Finally, we may verify
that (Y U Z,R) is indeed an association scheme with the parameters of A. Alternatively,
if no such set Z can be found for any of the choices of Y such that the association scheme
A necessarily contains a subscheme isomorphic to Aly, we conclude that A does not exist.

In particular, given an association scheme A = (X,R), we will define the vertex
subsets X = J,_, X, (1 <t < 7), the induced subschemes A® = Al v = (X®, {R" |
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i€ I} \ {0}) with R” = Rj|xw (i € I), and the graphs I'\") = (X® R (i € T,
R; # Idx). We will consider the candidate relation schemes for A® for certain choices
of t by considering the possible choices of the graphs th) (1 € 7), as well as some other
induced subschemes and their corresponding graphs, and attemtpt to find the embeddings
of these relation schemes into an eigenspace S; of A for some j € J \ 0.

Appendix 4.1: A small example

We will now apply the method described above on a small example. Consider a formally
self-dual 3-class association scheme 4 on 8 vertices with index sets Z = J = {0,1,2,3}
given by its eigenmatrices

3 3 1
1 -1 -1
-1 -1 1
-3 3 -1

— = = =

The association scheme A is imprimitive with imprimitivity set 0 = {0,2} and the cor-
responding dual imprimitivity set 0 = {0,3}. Since the scheme is formally self-dual, the
roles of these two sets can also be reversed. We note that 5 has two equivalence classes
X, and X, of size 4 — they are the Ry-cliques of A.

We will consider the embedding of A = Alx, into the eigenspace S; of dimension
my = 3. We use Algorithm 1 to compute the matrix U with the coefficients of the unit
vectors ul, € 51 (v € X7).

10 0
12
U=|_1 % w
3 3 3
1 _ V2 e
3 3 3

Since the above matrix has full column rank, we may consider the candidates for the
remaining four vertices in the Rs-clique X,. As we have k; = 3 and k3 = 1, it follows
that each vertex of X5 is in relation R3 with precisely one vertex of X; and in relation R;
with the remaining three vertices of X;. We thus have precisely four candidates for the
vertices y € Xy, and we find that the coefficients of the correspoding unit vectors u;, € S
are given by the matrix —U. By considering the inner products between the rows of the
matrices U and —U, we build the relation matrix R of the obtained relation scheme.

o= =W NN NN O
== W NN O N
=W =N O NN
W = = O DN NN
NN O = =W
NN~ = W
N NN = W =
DN NN W ==
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It can be easily verified that R is the relation matrix of the association scheme corre-
sponding to the 3-cube (J3. This confirms the well-known fact that this is the unique
association scheme with the parameters given above.

Appendix 5: Nonexistence results

We will now attempt to use the technique described in Section 4 to study the parameter
sets marked as feasible in [22] which pass all known feasibility conditions (see Appendix A
for those that do not). We find three parameter sets for which we show nonexistence, of
which two correspond to imprimitive 4-class association schemes and one corresponds to
an imprimitive 5-class association scheme.

Besides the software and algorithms mentioned in Section 4, we also use the following
software which is included in the SageMath computer algebra system [32]: nauty [29]
for graph generation, bliss [25, 26] for automorphism group computation, GAP [14]
for group manipulation, and GLPK [27] for solving integer linear programs (for graph
coloring).

Appendix 5.1: QPG with parameter array [[12, 4,4, 24], 6,0, 3;0, 1; 2]]

Let A be a 4-class association scheme with intersection numbers

1 0 0 0 O 01 00 O
0 12 0 0 O 1 3 2 0 6
(p?j)ij:ﬂ: 00 4 0 0f, (pz‘lj>;1,j:[): 0200 21,
0 0 0 4 0 0000 4
0 0 0 0 24 0 6 2 4 12
0010 O 0 0 01 0
06 00 6 0 0 0 0 12
(p?jﬁ,j:o: 1012 0], (p?jﬁ,j:(): 00 22 0/, (1)
00 2 2 0 1 0 21 0
0 6 00 18 0 12 0 0 12
00 0 0 1
08 1 2 6
i)t _o=101 0 0 3
02 0 0 2
1 6 3 2 12

Note that each of the above matrices (pl});_, (0 < h < 4) shows the number of vertices in

relations R; and R; from a pair of vertices in relation Ry, or, equivalently, the coefficients
of A, in the product A;A;. The intersection numbers appearing in the parameter array
are shown in italics — note that due to A being a symmetric association scheme, the
matrices above are symmetric and some of these parameters are thus marked twice. The
same notation will also be used in the remaining examples.
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The graph I'; = (X, Ry) is a quotient-polynomial graph on 45 vertices with param-
eter array [[12,4,4,24], [6,0,3;0,1;2]]. The association scheme A is imprimitive with
imprimitivity set 0 = {0,2,3}. The dual eigenmatrix of A is

1 10 20 4 10

5v2 5v2

N
Q=1 3 -0 4 3
1 -5 5 4 -5

5v2 5v2

== 0 -1 =F

By the ordering of eigenspaces used in the above matrix, the corresponding dual imprimi-
tivity set is 0 = {0, 3}, and we also have 1 =4 = {1,4} and 2 = {2}. Let {X, | 1 </ <5}
be the set of the equivalence classes of Rg, and note that the graphs I's|x, = (X, Ra|x,)
(1 < ¢ < 5) are isomorphic to the graph K30Kj, or, equivalently, the Hamming graph
H(2,3). We will call their maximal cliques (of size 3) lines — taking the vertices as points,
this gives us a geometry of generalized quadrangle GQ(2,1). The sets X, (1 < ¢ < 5) are
thus the (Ry U R3)-cliques of A, and we also have Xy, = Yy U Y U Y = Zpy U Zp U Zy3,
where Yy, and Zs (1 < €< 5,1 < r,s < 3) are the lines of I'y| x, such that |V, N Zg| = 1.
In particular, {Ys1, Yoo, Yoz} and {Zp1, Zse, Zy3} are partitions of X, into disjoint lines — we
call these partitions the spreads of I';|x,.

We will consider embeddings of subschemes induced on three (Ry U R3)-cliques of
A into the eigenspace S; of dimension m; = 10. We note that my = 4 and therefore
= g < 3, which may severely restrict which of such subschemes admit an embedding
into S1. Since we will encounter a similar situation later, let us first prove the following
lemma.

Lemma 2. Let A= (X,R ={R; | i € I}) be an association scheme with imprimitivity
set 0 and intersection numbers pzj =e—1 and pg,j =0 for somei €0, j€T \ 0, and all
i€ 6\ {0,i}. Suppose that Y and Y' are equivalence classes of Ry such that the graphs
Lily and T';lys are both isomorphic to the Hamming graph H(d,e) for some d < e, and
forallz € Y,y €Y', (z,y) € Ry holds for some j' € 7. Then the graph T'j|yyuy is
isomorphic to e 'K, ., and the partitions of Y and Y’ corresponding to the connected
components of I'j|yuy coincide with spreads of I';ly and T';|y: (i.e., they are partitioned
into maximal R;-cliques of size e).

Proof. Since ) .o i', ; = ¢, the graph [';|yuy- is e-regular; since Y and Y’ are equivalence
classes of Rj, it is also bipartite with bipartition Y + Y’. Let x be a vertex from Y,
and denote the set of neighbours of 2z by L'. As p{,j =0 for all i' € 0\ {0,4}, the set
L' C Y’ forms a maximal R;-clique. Furthermore, the set of neighbours of each vertex
from L' forms a maximal R;-clique inside Y containing x. Since x is contained in precisely
d maximal R;-cliques, which is less than |L'| = e, by the pigeonhole principle, there exist
two distinct vertices y,y’ € L' with the same set of neighbours, which we denote by
L. Then, every vertex of L is adjacent to all vertices in the unique maximal R;-clique
containing y and v’ —i.e., I';| Lz is a connected component of I';|yy+ and is isomorphic to
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C D) ( D
C D) ( D
C ) C D

Figure 1: The candidates for the relation scheme A®) . In each case, the lines are represented with
rounded rectangles and form three GQ(2, 1) geometries; the vertices are implied at intersections
of lines. Two distinct vertices are in relation Rg?’) if they are contained in two lines connected

by an edge, in relation Rég) if they are contained in a common line, in relation Rg?’) if they are

contained in distinct lines of the same GQ(2, 1), and in relation Rf’) otherwise.

K. .. Since x was arbitrary, it follows that I';|y_y+ consists of e4~! connected components
isomorphic to K., whose bipartitions consist of maximal R;-cliques in Y and Y. O

We may now give the following result.
Theorem 3. An association scheme A with intersection numbers (1) does not exist.

Proof. Since p}, = 2 and pj; = 0, we may apply Lemma 2 to conclude that for each choice
of (Ry U R3)-cliques X, and Xy of A (1 <€ < <5), the graph I't|x,ux, is isomorphic
to 3K33, with the partitions of vertices of X, and X, corresponding to the connected
components of I'|x,ux, coincinding with spreads of I';|x, and I';|x,, .

We will now consider the possibilities for the relation scheme A®). There are six
mutually non-isomorphic possibilities for the graph F§3): either the same spread is used in
each of I'1|x, (1 < ¢ < 3) to determine the edges to the other two (Ry U R3)-cliques, and
Ff’) has one, two or three connected components, or different spreads are used for one,
two or three of I'1|x, (1 < ¢ < 3), see Figure 1. The choice of this graph thus uniquely
determines the relation scheme A®).

For each of these possibilities, we thus build a candidate for the relation scheme A®)
and attempt to compute the corresponding matrix U with the coefficients of the unit
vectors u/, € Sy (z € X®) using Algorithm 1. We find all the coefficients can only be
determined in the case when different spreads are used to determine the edges from two
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of the three (Ry U R3)-cliques, and thus conclude that the relation schemes corresponding
to the other cases do not admit an embedding into Sj.

Let us consider the sole remaining possibility. Without loss of generality, we may
assume that the connected components of I'y | x,ux,, I'1]x,ux; and I't|x,ux, are Y3, U Ys,,
Y1,UY3,. and Z5,UZs, (1 < r, s < 3), respectively. The corresponding matrix of coefficients
has full column rank, thus uniquely determining the orthonormal basis of S; being used.

By the argument above, each vertex y € X, U X5 must be in relation R; precisely with
all vertices of one line within each of X, X, X3. Since there are 6 lines in each of I's|x,
(1 < ¢ < 3), we examine the 62 = 216 candidates for such vertices y and attempt to find
the corresponding unit vectors u; However, we find that no such unit vectors exist, from
which it follows that the association scheme A does not exist. O

The QPG4-12-45-52. ipynb notebook on the eigenspace-embeddings repository [37]
illustrates the computation needed to obtain the above result.

Appendix 5.2: QPG with parameter array [[8, 8,4, 24|, [1,0, 2;2,1;1]]

Let A be a 4-class association scheme with intersection numbers

1 0 0 0 O 0100 O
08 0 0 0 1010 6
(5)ij=0 = 8 8 ﬁ 3 8 s (Pij)ij—0 = 8 é :i é g :
0 00 0 24 06 3 3 12
0010 O 00 01 0
01 3 1 3 00 2 0 6
(p?jﬁ,j:(): 1310 3], (p?j)fjf(): 0200 61, (2)
0100 3 1 0 0 3 0
0 3 3 3 15 0 6 6 0 12
00 0 0 1
0 2 1 1 4
(p?jﬁ,j:o: 07 1 15
017 1 0 2
1 4 5 2 12

The graph T'; = (X, R;) is a quotient-polynomial graph on 45 vertices with parameter
array [[12,4,4,24], [6,0,3;0,1;2]]. The association scheme A is imprimitive with imprim-
itivity set 0 = {0,3}. This parameter set is also listed in [23] as a feasible parameter set
for an association scheme with noncyclotomic eigenvalues, as the dual eigenmatrix of A
has entries from a degree 6 extension of (Q. Therefore, we only list their first three decimal
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places:
12 12 8 12

3.829 2,08 -1 —-5.915
—5.430 4925 -1 0.505
-3 -3 8 -3
0.534 —2337 —1 1.803

)
I
ISl e e S S

By the ordering of eigenspaces used in the above matrix, the corresponding dual imprim-
itivity set is 0 = {0, 3}, and we also have 1 = {1,2,4}. We will consider embeddings of
subschemes induced on three Rs-cliques of A into the eigenspace S; of dimension m; = 12.
We note that m7 = 4 and therefore =t = 3, which may severely restrict which of such

1
subschemes admit an embedding into Sj.

Let o; = ?n—ll (0 < i < 4) be the inner product of the unit vectors in S} corresponding
to two vertices in relation R;. We note that ag = 1, ag = —}l, a1 + as + 3a4 = 0 and

ay = 8a? + 2a; — 1. Since the minimal polynomial of «; is 2% — %x + ﬁ, it follows that
a; € F (0 <i<4), where F is a degree 3 extension of Q. We may therefore use the field F
when computing coefficients of vectors in an orthonormal basis of S} using Algorithm 1.
This allows us to obtain the following result.

Theorem 4. An association scheme A with intersection numbers (2) does not exist.

Proof. Since pi, +1=p2, = pi, = 1 and pl, = p3, + 1 = pa, = 1, each vertex = of A is in
relations R; and R, with precisely one vertex in each of the R3-cliques not containing x.
As p}; = 0 and p3, = 1, the graph I'; does not contain triangles, while the graph I'y does
contain a triangle zyzoz3. Without loss of generality, we may assume x, € X, (1 < £ < 3).
We will consider the possibilities for the relation scheme A® under this labelling of the
Rs-cliques.

By the above argument, the graphs Fg?’) and F§3) are unions of cycles of lengths divisible
by 3. Since Ff’) has no triangles, it must be isomorphic to either Ci5 or Cg 4+ Cg. On the
other hand, by the above assumption, the graph Fg?’) does contain a triangle. The choice
of these two graphs uniquely determines the relation scheme A®).

Given a choice of Ff’ , we define an asymmetric relation Rg’i = {(x,y) € Rég) U Rf) |

r e X, ye X, j—i=1 (mod3)} and a directed graph fé?’i = (X(?’),ﬁgj’i). The
candidates for Fgg) are then precisely the underlying graphs of 1-factors of fégi (i.e.,
spanning subgraphs with in- and out-degrees of all vertices equal to 1). In the cases when
ng) is isomorphic to C5 and Cy+ Cg, we find 5704 and 4736 distinct (up to isomorphism)
1-factors of fé‘o’i, respectively, of which 3637 and 3028, respectively, contain a triangle.
For each of these possibilities, we thus build a candidate for the relation scheme A®) and
attempt to compute the corresponding matrix U with the coefficients of the unit vectors
u', € S (x € X®) using Algorithm 1. We find all the coefficients can only be determined
in 55 cases with Fg?’) = (15 and 45 cases with F§3> = Oy + Cg. In each of these cases, the
matrix U has full column rank, thus uniquely determining the orthornomal basis of S}

being used.
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For each of these 100 cases, we examine the (5-4)® = 8000 candidates for the remaining
vertices y of A (determined by the choice of vertices in relations R; and Ry with y in
each of the R3-cliques X7, Xo, X3) and attempt to find the corresponding unit vectors Uy
However, in none of the cases we find any such unit vectors, from which it follows that
the association scheme 4 does not exist. O]

The QPG4-8-45-18.ipynb notebook on the eigenspace-embeddings repository [37]
illustrates the computation needed to obtain the above result.

Appendix 5.3: QPG with parameter array [[6,18,2,6,12],[1,0,2,0;0,0, 3;0, 1; 2]

Let A be a 5-class association scheme with intersection numbers

10 0 0 0 O 01 00O0O0
06 0 0 0 O 103 020
05 10 0 18 0 0 O 17\5 {039 00 6
(pij)i,jzo 1o 0 0 2 0 0| (pij)i,jZO “loooo0oo0 21|’
0O 0 0O 0 6 0 02000 4
0O 0 0 0 0 12 006 240
0O 01 0O0O 0 0O 0O1 0O
0 17 300 2 0 0 0 00 6
1 3 02 6 6 0 0 18 0 0 O
2\5 —
(pij)z‘,jzo 1o o 200 0 pl] %J =0 — 1 0 0 1 0 o} (3)
0 06 00O 0 0 0 06 0
0 26 004 06 0 0O0G6
0 00O 0 1O0 0 00 0 01
0 2 0 0 0 4 00 3 1 20
0 0 18 0 0 O 08 9 0 06
4\5 _ 5
(pij)i,j:()— 00 0 020l (pz])zj =~1o0 7 0 090 11|
10 0 2 30 02 0 0 0 4
04 0 0 O0 8 10 6 1 4 0

The graphs Iy = (X, R;) and I's = (X, Rs) are quotient-polynomial graphs on 45
vertices with parameter arrays [[6, 18,2, 6,12],[1,0,2,0;0,0,3;0, 1;2]] and [[12, 18, 2,6, 6],
[4,6,8,0;0,0,6;0,2;4]], respectively. The association scheme A is imprimitive with im-
primitivity set 0 = {0,3,4}. The dual eigenmatrix of A is

1 15 2 10 15 2
1 6 V51 g 56 Vol
: \/25+1 ’ ﬁzl
o[t 0 =52 0 o :
T S (| NS - R
10 2 -5 0 2
1 56 V51 g 56 V5l
4 2 4 2
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By the ordering of eigenspaces used in the above matrix, the corresponding dual imprim-
itivity set is 0 = {0,2,5}. We also have 1 = {1,5}, 2 = {2}, and T = {1,4}, 3 = {3}. Let
{X¢ | 1 <€ < 5} be the set of the equivalence classes of Ry, and note that the graphs
L4lx, = (X¢, Ra|x,) (1 < €< 5) are isomorphic to the complete tripartite graph Ks.3. We
will therefore call the sets X, (1 < ¢ < 5) the Ry-tricliques of A. Furthermore, as {0,3}
is another imprimitivity set of A, we have X, = Xy U Xy U X3 (1 < £ < 5), where the
sets Xy (1 <€ <5, 1< r < 3) are the Rs-cliques of A. We also note that the quotient
scheme A = A/0 is the cyclic scheme C5 — i.e., the graphs I'; = (X, R;) and T's = (X, R;)
are both isomorphic to the graph Cs.

We will consider embeddings of subschemes induced on three R4-tricliques of A into
the eigenspace S of dimension m; = 15. We note that m7; = 6 and therefore % = g < 3,
which may severely restrict which of such subschemes admit an embedding into S;. We
obtain the following result.

Theorem 5. An association scheme A with intersection numbers (3) does not exist.

Proof. Let X1, X5, X3 be Ry-tricliques of A such that (X, X,) € Ri and (X1, X3),
(X9, X3) € Rs (i.e., they correspond to a path of length 2 in fQ) Let us first con-
sider the graph FgQ). Since pl; = 0 and p}, = 2, each vertex of X, is in relations R; with
precisely one vertex from each Rs-clique Xy, ({¢,0'} = {1,2}, 1 < r < 3). The graph
F§2) is therefore a cubic bipartite graph on 18 vertices with bipartition X; + X5 such that
its distance-2 graph admits a 3-coloring (i.e., each color class partitions X; (i = 1,2) into
Rs-cliques).

We use the geng utility from the nauty package [29] to generate bipartite cubic graphs
on 18 vertices and then use SageMath [32] to pick the ones whose distance-2 graphs have
chromatic number (at most) 3. We find 18 such graphs, all of which have at most one
connected component not isomorphic to K3 3. Therefore, each of these graphs has a unique
bipartition up to graph automorphism, which we identify with X; + X,. Furthermore,
for each such graph I', we find all 6-colorings of the graph obtained by adding the edges
of the distance-2 graph of I" to the complete bipartite graph with bipartition X; + X,
and find that in each case, there is a unique such 6-coloring up to graph automorphism.
By identifying the partition of T into these color classes with the partition of X® into
Rs3-cliques, we see that the choice of such a graph for ng) uniquely determines the relation
scheme A®),

For each of these graphs, we thus build a candidate for the relation scheme A® and
attempt to compute the corresponding matrix U with the coefficients of the unit vectors
u', € S; (x € X®@) using Algorithm 1. We find that an embedding into S; exists for
7 choices of the graph FEZ). Since 2 = {2}, the corresponding relation schemes can be
uniquely extended into candidates for the relation scheme A®). However, we find that in
none of these cases all the coefficients can be determined, and thus conclude that none
of these relation schemes admit an embedding into S;. Since we have considered all the
possibilities for the induced subscheme A®), it follows that the association scheme A does
not exist. [
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The QPG5-6-45-22. ipynb notebook on the eigenspace-embeddings repository [37]
illustrates the computation needed to obtain the above result.

Appendix 6: Uniqueness results

Applying the same technique, we obtain two more uniqueness results for parameter sets
of 5-class association schemes.

Appendix 6.1: QPG with parameter array [[12,2,1,12,12],[6,0,4,1;0,0, 1;0, 1; 4]]

Let A be a 5-class association scheme with intersection numbers

10 0 0 0 O 01 00O0O
0 12 0 0 0 O 151041
0O 0 2 0 0 O 010001
0\5 _ 145 —
(pij)i,j:O_ O 0 o0 1 0 0] (pij>i,j=0_ O 0 O0O0O0OT1L1|
0O 0 0 0 12 O 0400414
0O 0 0 0 0 12 011145
0010 00 o0 010 O
06 00 0 6 0 0 00 0 12
1001 0 0 0 0 20 0 O
2\5 _ 315 —
(pij)i,jzo_ 0010 0 0} (pij)iyjio_ 1 0 00 O o011 (4)
0 000 12 0 0 0 00 12 0
0000 O 6 012 0 0 0 O
00 0 0120 0 00 0 01
0 4 0 0 4 4 01 1 1 4 5
00 0 0 20 01 00 01
415 _ 515 —
(pij)i,j:O_ 00 0 01 0| (pij)i,jzo_ 0O 1 0 0 00
1 42104 0 4 00 4 4
04 00 414 1 51 0 41

The graph I'; = (X, R;) is a quotient-polynomial graph on 40 vertices with parameter
array [[12,2,1,12,12], L6,0,4, 1;0,0,1;0,1;4]]. The association scheme A is imprimitive
with imprimitivity set 0 = {0,2,3}. The dual eigenmatrix of A is

1 5 4 10 15 5
R TR BT
o— |1 0 4 -0 0 5
1 -5 4 10 —-15 5
8 5

Lo pooo0
2 3 2 -3

By the ordering of eigenspaces used in the above matrix, the corresponding dual imprim-
itivity set is 0 = {0,2,5}. We also have 1 = {1,5}, 4 = {4}, and 1 = {1,4}, 3 = {3}. Let
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{X, ] 1< €< 10} be the set of the equivalence classes of R, and note that the graphs
Ia|x, = (X¢, R2|x,) (1 < €< 10) are isomorphic to the complete bipartite graph K, 5. We
will therefore call the sets X, (1 < ¢ < 10) the Ry-bicliques of A. We also note that the
quotient scheme A = A/0 is the Johnson scheme J(5,2) — i.e., the graph T'; = (X, R;)
is isomorphic to the triangular graph T(5), and the graph T'; = (X, R;) is isomorphic to
the Petersen graph.

We will consider embeddings of subschemes induced on three Rs-bicliques of A into
the eigenspace S; of dimension m; = 5. We note that my = 2 and therefore % = g <3,
which may severely restrict which of such subschemes admit an embedding into S;. We
obtain the following result.

Theorem 6. There is, up to isomorphism, precisely one association scheme A with in-
tersection numbers (4).

Proof. Let X1, Xo, X3 be Ry-bicliques of A such that (X, X5) € Ri and (X1, X3), (Xa, X3)
S R4 (i.e., they correspond to a path of length 2 in f;l). Let us first consider the graph
I'?. Since pl, = 1 and ply = 0, and then 1 + pl, + ply = pd, = ply = 2, the graph
F§2) is a union of cycles of lengths divisible by 4, with the two neighbours of each vertex
being in relation R,. In particular, ng) must be isomorphic to Cg or 2Cy, and its choice
uniquely determines the relation scheme A®). Since 4 = {4}, such a relation scheme can
be uniquely extended into a candidate for the relation scheme A®).

We thus build two candidates for the relation scheme A®) and attempt to compute
the corresponding matrix U with the coefficients of the unit vectors u/, € S; (z € X®)
using Algorithm 1. We find that an embedding into S; only exists in the case when
ng) = 2C}y. The corresponding matrix U has full column rank, thus uniquely determining
the orthonormal basis of S; being used.

By the above argument, each vertex y € X \ X® may be in relation R, with all
vertices in at most one of X, Xy, X3, and is in relations R; and R5 with a pair of vertices
in relation R, from each of the remainder of these three Rs-bicliques. Since there are 4
such pairs in each of X, (1 < ¢ < 3), we examine the 3 - 42 + 43 = 112 candidates for
such vertices y and attempt to find the corresponding unit vectors u;. Among them, we
find 28 vertices y such that u’y is a unit vector, which precisely matches the size of the set
X\ X® . Let Y be the set of all such vertices. We define a graph (Y, R'), where for a pair
of vertices y, 2 € Y we have (y,2) € R’ if and only if (uy,u}) = ?n—ll for some i (1 <1 < 5).
We find that this graph is complete, so we may attempt to construct A by identifying Y
with X \ X®),

Note that since (027 = Q41 = 0, we cannot determine the relations of A from the inner
products between vectors u, (z € X) alone. We do however notice that the intersection
numbers p%; (0 < ¢ < 5) are all distinct, so we may build a graph T' = (X, R), where
(z,y) € Rif and only if (u},u;) = ?n—lll = 1 (z,y € X), and then determine the relations
R; (0 < i < 5) so that (z,y) € R; precisely when x and y have exactly p}; common
neighbours in I'. We verify that the obtained relation scheme is an association scheme
with the same parameters as A, and therefore conclude that there is, up to isomorphism,
precisely one such association scheme. O
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The QPG5-12-40-2.ipynb notebook on the eigenspace-embeddings repository [37]
illustrates the computation needed to obtain the above result.

Remark 7. An alternative spherical representation of the association scheme A is given by
the vectors u®’ = Y2 (cve; + fe;) (1 <i < j <5, a,8 € {—1,1}), where {e; | 1 <i <5} is

i T2
an orthonormal basis of S;. The inner product of two vectors corresponding to a pair of
vertices of A in relation R; equals ?n—ll (0 < i < 5); furthermore, the vectors corresponding

to a pair of vertices in relations Ry and R, are u?jﬁ and uff/é " for some i,7,5,7,a,d', 3,3
with the sets {i,j} and {7, j'} being equal (with /35" = —1) or disjoint, respectively.

The graph I'; is a 6-regular arc-transitive graph of diameter 3 and girth 3. Its group of
automorphisms has order 3840; using GAP [14], we find that its structure can be described
as Zy x (Z3 x Ss) — this also holds for the group of automorphisms of A. Tts natural action
on X? preserves the partition R — i.e., each relation of A4 corresponds to an orbit of the
action.

Appendix 6.2: QPG with parameter array [[6,4,4,12,18],[3,0,0,1;0,1,0;2,0; 2]]

Let A be a 5-class association scheme with intersection numbers

100 0 0 O 01 0O0O0O0

06 00 0 O 10200 3

00 4 0 0 0 020020
05 _ 115 —

(pij>i7j:0 “looo0o 4 0 ol (pij)i,jzo “looo0o0 4 0l
00 0 0 12 O 00 2406
00 0 0 0 18 03 00©69
00100 O 00010 0
053 003 0 00 0 06 O
1 0120 O 00 2 20 0

2\5 _ 3\5 _

(pij>i,j:0_ 002 20 01" (pij)m:O_ 1 0 2 1.0 01’ (5)
03 009 0 06 00 6 O
00000 18 00 0 0 0 18
00 0 0 10 00 0 0 01
00 1 20 3 01 0 0 2 3

4\5 _ 010030 51\5 o 00 0 0 0 4

(pij)i,j:() 1o 2 0 0 2 0] (pij)ivjzo 10 0 0 0 O 4
10 3 2 06 02 0 0 4 6
03 006 9 1 3 4 4 6 0

The graphs I'1 = (X, R;) and I'y = (X, Ry) are quotient-polynomial graphs on 45
vertices with parameter arrays [[6,4,4,12,18],[3,0,0, 1;0,1,0;2,0;2]] and [[12,4,4, 6, 18],
9,6,0,4;0,2,0;4,0;2]], respectively. The association scheme A is imprimitive with im-
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primitivity set 0 = {0,2,3}. The dual eigenmatrix of A is

1 10 2 20 10 2
— 1
Lo S ) - Vot
o 1 3 2 —10 3 2
1 -5 2 5 -5 2
1 -5 V-1 g 5 _ V54l
2 2 2 2
1 0 —¥stl g g V5ol

2

By the ordering of eigenspaces used in the above matrix, the corresponding dual imprim-
itivity set is 0 = {0,2,5}. We also have 1 = {1,4}, 5 = {5}, and T = {1,4}, 3 = {3}. Let
{X, ] 1< ¢ <5} be the set of the equivalence classes of Rg, and note that the graphs
Io|x, = (X¢, R2|x,) (1 < £ < 5) are isomorphic to the graph K30Kj3, or, equivalently, the
Hamming graph H(2,3). We have already encountered this situation in Subsection 5.2,
and we will reuse the same terminology. Furthermore, we also note that the quotient
scheme A = A/0 is the cyclic scheme C5 —i.e., the graphs I'; = (X, R;) and T'; = (X, Rz)
are both isomorphic to the graph Cj.

We will consider embeddings of subschemes induced on three (Ry U Rs)-cliques of
A into the eigenspace S; of dimension m; = 10. We note that my = 4 and therefore
% = g < 3, which may severely restrict which of such subschemes admit an embedding

into S;. We obtain the following result.

Theorem 8. There is, up to isomorphism, precisely one association scheme A with in-
tersection numbers (5).

Proof. Let X1, X5, X5 be (Ry U Rs)-cliques of A such that (X1, X,) € R; and (X3, X3),
(X3, X3) € R; (i.e., they correspond to a path of length 2 in I';). Since pl, = 2 and
pi; = 0, we may apply Lemma 2 to conclude that the graph I’§2) is isomorphic to 3K 3,
with the partitions of vertices of X; and X, corresponding to the connected components
of FgQ) coincinding with spreads of I's|x, and I's|x,. The relation scheme A®) is thus
uniquely determined, and since 5 = {5}, it can be uniquely extended into the relation
scheme A®),

We attempt to compute the corresponding matrix U with the coefficients of the unit
vectors u!, € 1 (v € X®) using Algorithm 1 and obtain a matrix with full column rank,
thus uniquely determining the orthonormal basis of S; being used.

By the above argument, each vertex y € X \ X is in relation R5 with all vertices
in one of X; and Xs, in relation R; with six vertices forming two lines in each of the
remaining (Ry U R3)-cliques within X and in relation R, with the other vertices of
X®) " Since there are 6 lines in each of X, (I < ¢ < 3), we examine the 2 - 62 = 72
candidates for such vertices y and attempt to find the corresponding unit vectors wu,.
Among them, we find 36 vertices y such that u;, is a unit vector, which is precisely twice
the size of the set X \ X

Let Y be the set of all such vertices. Since X \ X®) = X, U X; and (X4, X5) € Rg, we
define a graph (Y, R'), where for a pair of vertices y, z € Y we have (y, z) € R if and only
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Figure 2: The association scheme A. The lines are represented with rounded rectangles and
form five GQ(2,1) geometries; the vertices are implied at intersections of lines. Two distinct
vertices are in relation Rj if they are contained in two lines connected by an edge, in relation Ry
if they are contained in a common line, in relation Rg if they are contained in distinct lines of
the same GQ(2, 1), in relation Ry if they are contained in lines of adjacent GQ(2,1) geometries
not connected by an edge, and in relation R5 otherwise.

if (uy,ul) = % for some i € {2,3,5}. We find that this graph consists of two disjoint
18-cliques — we label their vertex sets by Y7 and Y;. We may then attempt to construct A
by identifying Y7 or Y5 with X \ X® and using the inner products among the vectors u/,
(x € X) to determine their relations. We verify that both the obtained relation schemes
are association schemes with the same parameters as A. Since the two association schemes
are isomorphic, we conclude that there is, up to isomorphism, precisely one association
scheme with the parameters of A. O

The QPG5-6-45-5.1ipynb notebook on the eigenspace-embeddings repository [37]
illustrates the computation needed to obtain the above result.

Remark 9. Uniqueness can be also proved without computing a spherical representation:
Lemma 2 and the intersection number p}; = 1 imply that for each (Ry U R3)-clique Y/,
different spreads of I's|y are used to determine which vertices of the two (Ry U R3)-cliques
Y’ and Y such that (Y,Y”),(Y,Y"”) € R; are in relation Ry with the vertices of Y. This
uniquely determines the structure of A, as shown in Figure 2.

The graph I'y = (X, Ry) is a 6-regular arc-transitive graph of diameter 4 and girth
4. It can be described by taking the vertex set X = Zj5 X Z3 X Zs and the relation
R, = Ry UR/, where R, = {((t,r,s),({ + 1,s,t)) | £ € Zs,r,s,t € Z3}. From this
description we can see that I'y is isomorphic to the graph C'(3,5,2) as defined by Praeger
and Xu [31]. Its group of automorphisms has (large) order 77760 — this also holds for the
group of automorphisms of A. Its natural action on X? preserves the partition R - i.e.,
each relation of A corresponds to an orbit of the action. Note in particular that, although
the graphs I'y|y, and I's|x, (1 < ¢ < 5) are mutually isomorphic, no automorphism of A
exchanges Ry and R3 (as it can be seen from, e.g., pj, # pi;)-
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Appendix A: Known constructions and nonexistences

Here, we present the results of feasibility checking on parameter arrays for relational
quotient-polynomial graphs marked as feasible in [22]. The following tables present the
parameter arrays together with reasons for nonexistence or constructions. In the cases
when multiple parameter arrays correspond to the same parameter set of an association
scheme (i.e., given with different orderings of the relations), they are listed together, and
the ordering of the relations (using the index set Z = {0, 1,...,d} for d-class association
schemes, where Ry is the identity relation and R; is the adjacency relation of the graph) in
the given reason for nonexistence corresponds to the ordering in the first listed parameter
array. Similarly, the ordering of the eigenspaces (using the index set J = {0,1,...,d})
corresponds to the decreasing ordering of eigenvalues of A; in the ordering of the first
parameter array.

The nonexistence results for 3-, 4-, 5- and 6-class quotient-polynomial graphs are
given in Tables 1, 2, 3 and 4, respectively. The given reasons for nonexistence include the
following.

e handshake: the handshake lemma is not satisfied (i.e., k:,-péj is odd for some i, j € 7),
e multiplicities: the multiplicities of the association scheme are nonintegral,
. qzhj < 0: the specified Krein parameter is negative (see [6, Theorem 2.3.2]),

e absolute bound: the absolute bound is exceeded (see [6, Theorem 2.3.3]),

o k; or ﬁ% ¢ Z in A/0: the specified intersection number of the quotient scheme for
the specified imprimitivity set is nonintegral,

e conference for A/0: the quotient scheme for the specified imprimitivity set has the
parameters of a conference graph of infeasible order (see [6, §1.3]),

e 10 spread in SRG [20]: the 3-class association scheme corresponds to a strongly
regular graph with a spread (see [20, Proposition 2.2]), but a strongly regular graph
with the resulting parameters (obtained by fusing two of the classes) does not admit
a spread (see [20, Theorems 2.4 and 6.1]),

e 10 solution for (r, s,t): there is no solution for triple intersection numbers for vertices
x,y, z such that (z,y) € R,, (z,2) € Ry and (y, z) € R, (see [17, §2.2]),

e forbidden quadruple (7, s,t;h,i,j): there is a contradiction for triple intersection
numbers for vertices w, x, y, z such that (z,y) € R,, (z,2) € R, (y,2) € Ry, (w,x) €
Ry, (w,y) € R; and (w, 2) € R; (see [17, Corollary 4.2]),
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e areference: the nonexistence condition is given as a result in [6] (in one case applied
to a fusion scheme obtained by taking the unions of the specified relations) or the
cited paper,

e 1ot in classification [21]: no association scheme with the given parameters appears in
the classification of association schemes with few vertices by Hanaki and Miyamoto,

e Theorem in §5: all known feasibility conditions are satisfied, but nonexistence is
shown in Section 5.

Remark 10. Nonexistence for the two examples in Table 1 which are ruled out by re-
sults in [20] can also be shown using the technique described in Section 4. The proofs
are given in the QPG3-12-35-16.ipynb and QPG3-18-40-12.ipynb notebooks on the
eigenspace-embeddings repository [37].

Tables 5, 6, 7 and 8 show the constructions of association schemes for the parameter
arrays marked as feasible in [22], together with the number of corresponding association
scheme and a reference (if applicable). When the reference is not given, the number
of corresponding association schemes can be deduced from the tables by Van Dam [10]
and the classifcation by Hanaki and Miyamoto [21] (as well as other well-known results
on distance-regular graphs, see [5] and [6] for more details), and the properties of the
constructions given below.

Most of the constructions involve derivation from smaller association schemes. Al-
though the resulting association schemes are symmetric, some of the building blocks
are asymmetric association schemes — i.e., we replace the requirement that the rela-
tions of the association scheme are symmetric with the requirement that the relation
set is closed under transposition. We use the following derivations from the associa-
tion schemes A = (X,R = {R; | i € Z}), A = (X',R' = {R, | i € 7'}) and
A® = (X@ R@ = (R™ | i € T'}) (x € X), where 0 € T and Ry = Idy, and
A®) has the same parameters as A’

e The direct product [1, §3.2]
Ax A =(XxX {R®R)|iecl jel}).

An association scheme with the same parameters as A x A’ is necessarily a direct
product of association schemes with the same parameters as A and A’.

e The lexicographic coproduct [1, §10.6.1]

Alf] = ( [T x@,

{{((z.y), (")) | (x,2") € Riy € X&)y € X} [i e T\ {0}}

U{{((z,y), (z.9) |2 € X, (y,y/) € RV | j € z'}),
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order parameter array reason for nonexistence
35 12,6, 16], [2, 3; 3] 7, <0
35 [[12,6,16], [4, 3; 3]] no spread in SRG [20]
35 (12,16, 6], [3,0; 8] ghy < 0
35 [[2 4,4,6},[ ,16; 4]] [6, Prop. 1.10.5.]
36 [[12,3,20], [12, 3; 0]], [[20 3,12],[20,15;0]] absolute bound
36 [[15,5,15], [6, 2; 3]], [[15, 5, 15], [6, 10; 3]] qi3 <0
38 18,1, 18], [18,9; 0]] Pl & 7 in A/{0,2}
39 [12,12,14], [5,0;6]] multiplicities
40 ([14,4,21], [14, 6; O]], [[21,4, 14], [21,12;0]] absolute bound
40 ([18,3,18], [6,8; 2] 10, Lemma 6.1]
40 [118,9,12], [2, 6: 6] gl <0
40 [[18,9,12],]10, 6; 6]] no spread in SRG [20]
44 [[10,3,30], [10,2; 0]] ki ¢ Z in A/{0,2}
45 (18,8, 28], [1, 0; 2]] gy <0
45 [[8,32,4],[1,0;8]] [6, Prop. 4.3.3.]
45 (12,4, 28], [12, 3;0]] k; € Z in A/{0,2}
48 (10,2, 35], [10, 2; 0]] kr & Z in A/{0,2}
50 [[14,28,7],[5,0; 12]] absolute bound
51 18, 2, 40], [8, 1; 0]], [[40, 2, 8], [40, 35; 0]] ki ¢ 7 in A/{0,2}
51| [[16,2,32],[16,5;0]], [16,32, 2], [5, 16; 0]], [[32,2,16],[32,22;0]] | ks & Z in A/{0,2}
54 [[12,1,40], [12, 3; 0]], [[40, 1, 12], [40, 30; 0]] 3 ¢ Zin A/{0,2}
54 ([26,1,26], [26,13;0]] Pl ¢ Z in A/{0,2}
56 [[13,39, 3], [3, O; 13]] handshake
56 [[15, 10, 30], 6, 2; 2]] absolute bound
56 (115,30, 10], [4, 0: 12]], [[30, 10, 15], [12, 14: 8] gy <0
56 (118, 1, 36], [18, 8: 0]). [[36, 1, 18], [36, 20; 0] Gy < 0
56 ([18,7,30], [18, 6; 0], [[30,7, 18], 30, 20; 0]] absolute bound
56 [[20, 5, 30], [4, 8; 2]], [[30, 5, 20], [18, 15; 3]] Fon-Der-Flaass [13]
56 [[24,7 24],[24,12;0]] absolute bound
56 [[27,27,1],[13,0; 27]] handshake
56 [[39, 3, 13], [39, 30; 0]] handshake
58 (121,28, 8], [15, 0 21]] [6, Prop. 1.10.4.]
60 [[14, 3,42], [14, 2; 0]], [[42, 3, 14], [42, 36; 0]] ];1 ¢ 7 in A/{0,2}
60 (14,3, 42], 14, 3; 0]], [[42, 3, 14], [42, 33; 0] ki € 7 in A/{0,2}
60 [[14,42,3],[2,0; 14]], [[42, 3, 14], [28, 33; 3]] absolute bound
60 ([28,3, 28], [28, 14; 0]] Pl @ Z in A/{0,2}

Table 1: Parameter arrays for 3-class relational QPGs marked as feasible in [22] which fail a
known feasibility condition.
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reason for nonexistence

order parameter array

20 8,2,1,8],[4,0,3:0,1;1]]
24 H6,1,6 10],16,1,0;0,0; 3]]
27 [12,2,6,6],[12,6,4;0,0; 6]]
32 I 8,1,6,6][ 8,12,9;0,0;6]]
40 [8,3,12,16],[8,0,2;0,0; 6]
40 | 09,9,3,18],4,0,0;3,1; 1]
40 | [[12,3,12,12],[12,0,2;0,0;8]
42 | [[10,1,10,20],[10,1,0;0,0;4]
42 | [[10,1,10,20],[10,1,2;0,0;4]
42 (10,20, 1,10], [3,0, 0; 0, 6; 1]]
42 | [[12,5,12,12],[12,0,4;0,0; 8]
44 | [[12,1,10,20],[12,6,3;0,0; 3]
45 ([8,8,4,24],1,0,2; 2, 1; 1]]
45 | [[12,2,12,18],[12,3,0;0, 0-6]
45 [[12,4,4,24],[6,0,3;0,1;2]]
48 | [[12,5,12, 18L[12,0,4,0,0,8]
48 | [[12,7,12,16],[12,0,3;0,0;9]
52 | [[12,1,14,24],[12,0,5:0,0;7]
54 | [[12,1,16,24],[12,3,1;0,0;6]
54 | [[12,1,16,24],[12,3,2;0,0; 6]
54 | [[12,5,12,24],[12,0,2;0,0;6]
54 | [[12,8,15,18],[12,0,2;0,0; 10]]
56 (19, 36,1,9],[2,0,0:0,8; 1]]
56 [[10,18,9,18],[5,0,0;0,5; 5]
56 H12,1,12 30],[12, 2,0;0,0; 4]]
57 [[10,10,6,30], [2,0,2;5, 1; 1]]
60 | [[10,4,20,25],[10,0,2;0,0;8]
60 | [[12,2,18,27],[12,0,4;0,0;8]
60 | [[12,5,18,24],[12,0,3;0,0;:9]

Table 2: Parameter arrays for 4-class relational QPGs marked as feasible in [22] which fail a

known feasibility condition.
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not in classification [21]
multiplicities
absolute bound
no solution for (4,4, 1)
no solution for (1,1,4)
q14 <0
q14 <0
g1y <0
no solution for (1,1, 3)
6, Thm. 4.4.11]
absolute bound
gi3 <0
Theorem 4
qis <0
Theorem 3
absolute bound
absolute bound
pi; € Z in A/{0,2}
no solution for (1,1,4)
P ¢ Z in A/{0,2}
absolute bound
absolute bound
q34 <0
a5 <0
14 <0
g1 <0
no solution for (1,1,4)
pi; & Z in A/{0,2}

no solution for (1,1,4)
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Table 3: Parameter arrays for 5-class relational QPGs marked as feasible in [22] which fail a

known feasibility condition.
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order parameter array reason for nonexistence
36 8,8,1,2,8.8],[4,0,0,3,0;0,4,0,3;0,0,1;1,0;4]] | not in classification [21]
40 (16,6,1,6,8,12], [2,6,0,0,1;0,0,3,0:0,0,0; 0, 3: 2] a2, < 0
42 [[12,12,1,4,6,6],[5,0,3,6,4;12,3,4,6;0,0,0;2,2;0]] 056 < 0
48| [[12,12,1,2,8,12], [4,12,0,3,2:0,0,6,4;0,0,0;0,2 2] | % &7 in A/{0,3}
48 | [[12,12,1,2,8,12],[4,0,6,3,0;0,0,6,4:0,0,1;0, 1; 2]] g <0
54 [[12,6,2,6,9,18],[6,12,0,0,4;0,6,0,0;0,0,0;0, 2; 6]] no solution for (4,4, 6)
54 | [[12,6,3,8,12,12],[6,0,6,0,4;4,0,2,0;0,0,2; 4, 0; 6]] ¢, <0
54| [[12,8.3,6,12,12],[3.0,8.0,5:8.0, 4. 0: 0,0, 1: 2, 0: 6]] ¢y <0
56 [[12,3,4,12,12,12],[4,0,0,7,3;0,2,0,0;0,2,2;3,7;0]] absolute bound
56 | [[12,12,3,4,12,12],[6,12,0,2,0:0,0,0,6:0,0,0; 4, 0; 6]] absolute bound
60 | [[12,12,2,3,6,24],[3.0,0,4,0:0,4,4,3: 0,0, 1;0, 1; 1] g <0
63 [[12,6,2,6,18,18],[6,12,0,4,0;0,6,0,0;0,0,0;2,0;6]] | no solution for (4,4,5)
64 | [[12,12,1,6,8,24], [4.0,6,0,2: 12.6,0.2:0,0.0; 0, 0: 4]] @5 <0
64 | [[12,12,1,8,12,18],[5,0,0,0,4:0,3,5,0;0,1,0; 0, 4; 4] @, <0
70 | [[12,12,1,8,12,24],[4,0,3,1,2:0,0,4,2;0,1,0;2, 2; 2]] 4 <0

Table 4: Parameter arrays for 6-class relational QPGs marked as feasible in [22] which fail a
known feasibility condition.

where f is a map from X to the set of association schemes with the same param-
eters as A’ such that f(z) = A® (r € X). In the case when f(z) = A’ for all
z € X, we write A[f] = A[A’] and call the resulting association scheme the lezico-
graphic product' of A and A’. An association scheme with the same parameters as
A[f] is necessarily a lexicographic coproduct of association schemes with the same
parameters as A and A" (cf. [39], where it is assumed that f is constant).

e The k-th Hamming power [1, §10.6.3]

k
H(k,A) = | X*, U@R weZ uz0Y uw=ky|,
ve(t) J= i=1

where (ﬁ) is the set of all vectors from Z* in which each entry i € Z occurs u;
times. The Hamming power can be seen as a generalization of Hamming schemes
(cf. [1, §1.4.3], [6, §9.2]), i.e., the Hamming scheme H (k,n) is precisely the Hamming
power H(k, K,) of the 1-class association scheme on n vertices. Unlike the direct
and lexicographic products, an association scheme with the same parameters as
H(k, A) is not necessarily a Hamming power of an association scheme with the
same parameters of A — a counterexample is the association scheme corresponding
to the Shrikhande graph [33], which has the same parameters as H(2,4).

'In the literature, this product is known as nesting or the wreath product [1, §3.4] and denoted by A2.A’
or A/ A’. However, unlike the direct product of association schemes, which is a natural generalization of
the direct product of groups, this construction is unrelated to the wreath product of groups. Therefore,
we prefer the name lexicographic product and adopt the notation used for the lexicographic product of
graphs, as the adjacency relation of the lexicographic product of graphs whose adjacency relations are
relations of A and A’ is a union of the corresponding relations of A[A'].
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The symmetrization

A= (X, {R,UR] |ie1}).

If A is a commutative association scheme (i.e., p?j = p;?,; for all h,i,j € Z), then A*
is a symmetric association scheme.

The following association schemes are used as building blocks. Unless noted otherwise,
these association schemes are symmetric.

K,,: the 1-class association scheme on n vertices.

Zn: the cyclic group on n vertices as the corresponding thin association scheme.
The association scheme Z,, is commutative, but is only symmetric when n < 2.

C,: the cyclic scheme on n vertices (i.e., C, = Z}).

Had(4n): the association schemes corresponding to the incidence graphs of square
2-(4n — 1,2n,n) designs associated to Hadamard matrices of order 4n.

GH(s, t): the association schemes corresponding to the point graphs of generalized
hexagons of order (s,t) (see [6, §6.5]).

J(n, k): the Johnson scheme of k-subsets of a set of size n (see [1, §1.4.2], [6, §9.1]).

Pair(n): the association scheme of ordered 2-subsets of a set of size n, with classes
corresponding to pairs matching in one coordinate, pairs matching in different co-
ordinates, disjoint pairs and reversed pairs (see [1, §5.5]).

Cyc(g,7): the cyclotomic scheme

(Fq,{ldyq,{(:ﬁ,x%—’y””) izl,...,r}),

where ¢ is a prime power, r divides ¢—1, and y generates the multiplicative group Fj
(see [11, §2.4]). The association scheme Cyc(q, r) is commutative, and is symmetric
precisely when ¢ is even or q;—l is even.

r

1
veF,j=1,...1% }

Hyperbolic quadric in PG(3, ¢): the association scheme of the points of a hyperbolic
quadric in the projective geometry PG(3,¢q) (see [6, §12.2] for the construction).

Locally Cyc(g,r): the association scheme corresponding to the distance-regular an-
tipodal r-cover of K, whose local graphs are the graphs of the association scheme
Cyc(g,7) (see [6, Proposition 12.5.3] for the construction).

Locally Conf(q): the association schemes corresponding to distance-regular antipo-
dal double covers of K, whose local graphs are (not necessarily mutually iso-
morphic) SRG(q, q;21, ‘%5, %) conference graphs. They are in one-to-one corre-
spondence with 2-graphs on ¢ + 1 vertices. When ¢ is a prime power with ¢ = 1

(mod 4), an example is given by the locally Cyc(q,2) association scheme.
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e Named graphs: the association scheme corresponding to the (distance-regular)
named graph (see [6]).

e SRG(n,k, A\, 1): the association schemes corresponding to strongly regular graphs
with parameters (n,k, A\, u) (when there are multiple such graphs not sharing a
common construction).

e Cay(G,S): the association scheme corresponding to the Cayley graph of the group
G with the connecting set S, under the assumption that it is quotient-polynomial.
The association scheme Cay(G, S) is symmetric if S is closed under inversion in G.

Remark 11. The parameter array [[8,4, 3,24],[2,0,2;0, 1; 1]] uniquely determines a quoti-
ent-polynomial graph I'y = (X, R;) which is derived from a spherical code found by Smith,
with the following construction given by Conway and Sloane (cf. [2, 34]). Uniqueness is
due to Bannai, Bannai and Bannai [3]. An alternative proof of uniqueness paralleling the
proofs of the results in Sections 5 and 6 is given in the QPG4-8-40-15.ipynb notebook
on the eigenspace-embeddings repository [37].

Let D be the set of all symmetric relations R C (F%)? such that A = (F:, R) is a graph
with the degrees of the vertices 1 and 2 having the same parity as the number of edges
of A and the degrees of the vertices 3 and 4 having different parity from the number of
edges of A. Note that there are precisely 8 such graphs, so |D| = 8. We may then define

the unit vectors u®® ¢ R(?) (h € F5, R € D) such that

0 if 0 € {i,j},
h7 . . . N .
u*({zﬁz),ﬁh} - _\/Lé if (¢,7) € R, and ({i,j} € (IFQS))

1 .
7 otherwise

These vectors can be viewed as a spherical representation of the corresponding asso-
ciation scheme A = (X, R = {R; | 0 < i < 4}), with two vertices being in rela-
tions Ry, Ry, Ry, R3, R4 when their corresponding vectors have inner products equal to
1, —%, 0, —%, %, respectively.

The graph I'y is an 8-regular arc-transitive graph of diameter 3 and girth 4. It has
appeared in a census of edge-girth-regular graphs [18, 19], as each edge lies on precisely
seven 4-cycles, and in a census of rotary maps [7, 8] as a graph polyhedrally embedding
as a chiral rotary map on the orientable surface of genus 21.

The corresponding association scheme A can be reconstructed from I'y as follows. The
relation R; is the adjacency relation of I'y. For each vertex x of 'y, there are precisely
three vertices at distance 3 from z, and they are also mutually at distance 3 — together
with x they form a Rs-clique Y. There are precisely four vertices at distance 2 from all
vertices of Y — these vertices are in relation Ry with = (and with other vertices of Y').
Finally, the remaining vertices are adjacent to a vertex of Y distinct from z — these are
in relation R, with x.

The group of automorphisms of I'; has order 1920 and is isomorphic to a semidirect
product Zj x S5 — this also holds for the group of automorphisms of A. Its natural action
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order parameter array construction # reference
35 [[12,4,18],[3,4;2]] SRG(35,16,6,8) \ spread >1 [20]
36 [[17,17,1],[8,0;17]] locally Cyc(17,2) 1
36 [[20,5,10], [8,12;4]] Sylvester 1
37 [[12,12,12], [4 5,3]] Cyc(37,3) =1
39 [[18,2, 18] [18,9;0]] Cyc(13,2)[K3] 1
39 ([24,2,12],[12, 22;2]] K3 x K3 1
42 [[13 26, 2], [4,0;13]] locally Cyc(13,3) >1
43 (14,14, 14], [4, 6; 4]] Cyc(43,3) >1
46 [[12, 22,11] [6,0;12]] Had(24) 582
o1 [[16,32,2], [5,0; 16]], [[32, 2, 16], [16, 20; 2]] locally Cyc(16, 3) =1
51 [[24 2,24], [ 4,12,0]] Cyc(17,2)[K3] 1
52 118.6,27],[6, 8: 2], [12 7,6, 5], [18,12; 3] GH(3,1) 1
52 [[20,1, O],[2O 8 0]], [[30, 1, 20], [30, 18; 0]] SRG(26, 10, 3,4)[K>] 10
52 [[24, 3, 24], [24,12; 0]] Cyc(13,2)[K4] 1
52 [[25, 25, 1], [12, 0; 25]] locally Conf(25) 4
52 (125,25, 1], [24, 0; 25]] Ko x Kog 1
92 (136, 3, 12], [24, 33; 3]] Ky x K3 1
54 [[14,26,13],[7,0; 14]) Had(28) 105041
54 [[20, 1, 32],[20, 10; 0]], [[32, 1, 20], [32, 16; 0]] Schlafli[ K] 1
54 [[24 5,24],[24,12;0]] H(2,3)[Kg] 1
54 [[26, 26, 1], [25, 0; 26]] Ko x Ko7 1
o4 ([34,2 17], [17,32;2]] K3 x K3 1
o4 [[40, 5,8] [32, 35; 5]] K¢ x Kg 1
55 [[22,10,22],[22,11;0]] Cs[K11] 1
55 [[40 4,10], [30, 36; 4]] Ky x K11 1
56 [[10, 15, 30], [4,1,3]], [[30, 10, 15], [18, 16; 6]] J(8,3) 1
56 [124,1,30], [24, 8; 0]] J(8,2)[K>], Chang;[ K] 4
(i=1,2,3)
56 [[27,27,1],[10,0;27]], [[27 27,1],[16,0; 27]] Gosset 1
56 [[27 27 1]7[ ]] KQ X K28 1
56 [[39,3,13],[2 6 36, 3]] Ky x Kq4 1
56 [[42,6, 7], [35, 36; 6]] K7 x Kg 1
o7 [[20, 6, 30], [10, 6; 2]], [[30 6,20], [15, 18; 3]] Perkel 1 [9]
57 (36,2, 18], [18, 34; 2]] K3 x Kig 1
58 [[28,1,28],[28,14; 0]] locally Conf(29) 41
58 [[28, 28, 1], [27, 0; 28]] Ko x Kog 1
60 [[11,44,4],[2,0; 11]] locally Cyc(11,5) >1
60 [[15,20,24], [3, 5; 5]], [[20, 15, 24], [8, 5; 5]], hyperbolic quadric in >1
[[24,15,20], 8, 12; 6]] PG(3,5)
60 [[18,5, 36], [1 ,6 1], [[36, 5, 18], [36, 24; 0]] Petersen|[ K] 1
60 [[24,3, 32], [24, ,O]]7 [[32, 3, 24], [32, 16; 0]] J(6,2)[K4) 1
60 (24,11, 24], [24,12; 0]} C5[ K1) 1
60 ([38,2,19], [19, 24; 2]] locally Cyc(19, 3) >1
60 ([42,3,14],[28, 39; 3]] Ky x K5 1
60 ([44,4,11],[33,40; 4]] K5 x K9 1
60 [[45,5,9], [36, 40; 5]] Kg x Kqo 1

Table 5: Parameter arrays for 3-class relational QPGs marked as feasible in [22] for which
constructions are known.
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order parameter array construction # | reference

40 (I8,4,3,24],[2,0,2;0,1;1]] see Remark 11 1 3]

41 | [[10,10,10,10], [4,3,2;2,2; 2]] Cyc(41,4) >1

42 (8, 1,16,16], 8, 2, 0; 0, 0; 4]] GH(2, 1)[K>)] 1

42 ([9,2,12,18],]9, 0,3,0 0,6}], Heawood[ K] 1
[[12,2,9,18],[12,0,6;0,0; 6]]

42 | [[12,5,12,12],]12,0,6;0,0;6]] C7[K6] 1

44 [[10,1,12,20],[10,0,4;0,0;6]], | (square 2-(11,5,2) design)[Ks] | 1
(12,1, 10, 20], [12, 0 6:0,0;6]]

52 18,1 18,24],[8, .2; ,(),6]] GH(1, 3)[ K] 1

54 (19, 24,2, 18], [3,0 8 1]] symmetric (3,3)-nets 4 28]

56 [[12,3,16,24],[12,0,4;0, 0; 8]] Heawood[K4] 1

Table 6: Parameter arrays for 4-class relational QPGs marked as feasible in [22] for which
constructions are known.

order parameter array construction # | reference
97 6,6, 2,6,6],3,6,0,0;0,0,3;0, 0; 3]] Co[ K] 1
36 (I8, 16,1, ,8] [2,0,4,0;0,0,4;0,1;1]] H(2, K3[K>)]) 1
40 [[12,2,1,12,12],16,0,4,1;0,0,1;0, 1;4]] see Remark 7 1 Thm. 6
40 | [[12,12,1,2,12],[4,12,0,4;0,0,4;0,0; 2]] Pair(5)[Ko) 1
40 ([14,2,2,7,14],[7,0,12,6;0,0,1;2,1; 0]] Kg % Cs 1
41 18,8,8,8,8],[3,2,2,0;1,2,2; 1,2; 1]] Cyc(41,5) >1
42 | [[10,10,1,10,10], [5,0,4,0; 10,0, 4; 0, 0; 6]], Ko x J(7,2) 1
[[10, 10,1, 10, 10], [6, 0,0, 3; 0,4, 0; 0, 1; 6]]
42 | [[12,12,1,4,12],[4,12,0,2;0,6,6;0,0; 2]] (Z3 x Cye(7,2))}[K,)] 1
45 [[6,4,4,12,18],[3,0,0,1;0,1,0;2,0;2]], see Remark 9 1 Thm. 8
[12,4,4,6,18],[9,6,0,4;0,2,0; 4,0; 2]]
45 | [[10,10,4,10,10],[5,10,0,0;0,0,5;0, 0; 5] ColK5] 1
48 | []10,2,5,10,20],[5,0,4,2;2,0,0;0,2; 3] K3 x Clebsch 1
48 ([12,2,6,9,18],[6,4,4,2;2,0,0;0,2;4]] | K3 x H(2,4), K3 x Shrikhande | 2
50 (18,8, 1,16, 16]. [3, 0,2, 0: 8, 0. 2: 0, 0: 6] Ky x H(2,5) 1
50 (12, 4,3,6,24],]9,0,4,3;4,0,0;0, 1; 2]] K5 x Petersen 1
50 | [[12,12,1,12,12],[4,12,2,0;0,4, 4;0,0; 4]] Cyc(25,4)[Ko) 1
51| [[12,12,2,12,12],(6,12,3,0;0,3,3;0,0; 3] Cyc(17,4)[ K] 1
54 | [[10,10,1,16,16],[1,0,5,0;10,0,5;0,0;5]] Ko x Schlifli 1
54 | [[12,12,5,12,12],[6,12,0,0;0,0,6;0, 0; 6] Co[ Ky 1
56 [[6,12,1,12,24],]2,6,0,0;0,0,2;0,0; 2], Coxeter[K5] 1
[12,12,1,6,24], [4,12,0,2;0,0,4;0,0; 2]]
56 | [[12,12,1,15,15],[6,0,4,0;12,0,4;0,0;8]] | Ka x J(8,2), K5 x Chang, 4
(i=1,2,3)

Table 7: Parameter arrays for 5-class relational QPGs marked as feasible in [22] for which
constructions are known.
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order parameter array construction #

45 [[12,6,2,6,6,12], (K3 x C5)[K3] 1
[6,12,6,0,3;0,0,6,0;0,0,0;0, 3; 3]]

52 [[12,12,1,2,12,12], (K3 x Cyc(13,2))[Ks] 1
[6,12,0,4,0;0,0,0,6;0,0,0;2,0; 6]]

56 [[12,12,1,6,12,12], Cay(Z14 X Zo,{(£1,0), (£2,1), (£3,1)})[K2] | 1
[4,12,0,2,0;0,4,4,2;0,0,0;2,2;4]]

Table 8: Parameter arrays for 6-class relational QPGs marked as feasible in [22] for which
constructions are known.

on X? preserves the partition R — i.e., each relation of A corresponds to an orbit of the

action.
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