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Abstract

For a given symmetric association scheme A and its eigenspace Sj there exists
a mapping of vertices of A to unit vectors of Sj , known as the spherical represen-
tation of A in Sj , such that the inner products of these vectors only depend on the
relation between the corresponding vertices; furthermore, these inner products only
depend on the parameters of A. We consider parameters of imprimitive associa-
tion schemes listed as open cases in the list of parameters for quotient-polynomial
graphs recently published by Herman and Maleki, and study embeddings of their
substructures into some eigenspaces consistent with spherical representations of the
putative association schemes. Using this, we obtain nonexistence for two parameter
sets for 4-class association schemes and one parameter sets for a 5-class association
scheme passing all previously known feasibility conditions, as well as uniqueness for
two parameter sets for 5-class association schemes.

Mathematics Subject Classifications: 05E30

1 Introduction

Association schemes were first introduced within the theory of experimental design, how-
ever, since Delsarte [11], they have been primarily studied as combinatorial objects of their
own, representing the basic underlying structures in various fields such as coding theory,
design theory, and finite geometry. Much of the research on association schemes has been
focused on some special cases, such as strongly regular graphs (i.e., 2-class association
schemes), distance-regular graphs (corresponding to P -polynomial association schemes)
and Q-polynomial association schemes. Nevertheless, even for these subfamilies, a com-
plete classification is still a widely open problem. Tables of feasible parameters for various
families of association schemes have been compiled, in particular, by Brouwer et al. [4, 5, 6]
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for strongly regular and distance-regular graphs, by Van Dam [10] for three-class associ-
ation schemes, and by Williford [17, 38] for Q-polynomial association schemes. Recently,
two new surveys of feasible parameter sets of association schemes have been compiled by
Herman and Maleki: one for association schemes with noncyclotomic eigenvalues [23] and
one for quotient-polynomial graphs [22, 24].

Contributions to the classification of association schemes come in the form of new
constructions and characterizations of association schemes with a certain parameter set
or belonging to a family of parameter sets – in particular, it may be possible to prove
that there is a unique association scheme with a given parameter set (uniqueness proof),
or that there are none (nonexistence proof). Many families and sporadic examples of
association schemes are known, and constructing new ones, particularly in the more stud-
ied subfamilies, has proved to be increasingly difficult. On the other hand, there are
many parameter sets which pass the known feasibility conditions, but no corresponding
association scheme has been constructed; there are also many cases when one or more
corresponding association schemes are known, but it is not known whether there are any
more.

One of the techniques that can be used to study association schemes is to study their
spherical representations in their eigenspaces. Bannai, Bannai and Bannai [3] have used
this technique to prove uniqueness of two association schemes arising from spherical codes;
more recently, Gavrilyuk, Suda et al. have used a similar technique to prove uniqueness
of an association scheme related to the Witt design on 11 points [16], and of a non-
symmetric commutative association scheme arising from a set of equiangular lines in
C8 [15]. In the present paper, we apply such a technique to study imprimitive association
schemes with parameters which are listed as open cases in the aforementioned list of
parameter sets of association schemes corresponding to quotient-polynomial graphs. We
first apply the known feasibility conditions and find numerous cases when they either
rule out a parameter set, or there is a known example (see Appendix A). Then, using
software [36, 37] developed on top of the SageMath computer algebra system [32], we
conduct some computer searches and conclude nonexistence for three of the cases that
satisfy the known feasibility conditions, and uniqueness for two more cases.

2 Preliminaries

In this section we review some basic definitions and concepts. See Brouwer, Cohen and
Neumaier [6] for further details.

Let X be a set of n vertices, and R ⊆ X2 a binary relation on X. The matrix
A ∈ {0, 1}X×X such that Axy = 1 if and only if (x, y) ∈ R is called the adjacency matrix
of the relation R. If R is an irreflexive relation, then the pair Γ = (X,R) is called a (simple,
directed) graph – such a graph has the set X as its vertex set and the set R as its arc set
(i.e., the set of its directed edges), and A is its adjacency matrix. In the case when R is
a symmetric relation, we will understand the graph Γ to be undirected, and its edges are
precisely the unordered pairs {x, y} such that (x, y) ∈ R. For a subset Y ⊆ X, we define
the induced subgraph of Γ on Y as Γ|Y = (Y,R|Y ), where R|Y = {(x, y) ∈ R | x, y ∈ Y } is
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the restriction of the relation R onto the subset Y .
Let R = {Ri | i ∈ I}, where I is an index set of size d+1 for some d, be a partition of

X2 such that IdX := {(x, x) | x ∈ X} ∈ R and ∅ ̸∈ R – i.e., R is a set of binary relations
on X containing the identity relation such that each pair of vertices of X lies in precisely
one relation of R. A relation scheme is defined by a pair A = (X,R). A non-identity
relation of R is also called a class, so we may refer to A as a d-class relation scheme.
Customarily, we will have I = {0, 1, . . . , d} and R0 = IdX , although we may occasionaly
deviate from this convention. A relation scheme may be concisely represented by its
relation matrix M ∈ IX×X satisfying (x, y) ∈ RMxy (x, y ∈ X).

An isomorphism between relation schemes A = (X,R) and A′ = (X ′,R′) is a pair
(ϕ, ψ) of bijective maps ϕ : X → X ′ and ψ : R → R′ such that for each pair of vertices
x, y ∈ X and for each relation R ∈ R we have (x, y) ∈ R if and only if (xϕ, yϕ) ∈ Rψ.
The relation schemes A and A′ are isomorphic if there exists such an isomorphism. An
automorphism of A is an isomorphism between A and itself.

If all the relations of R are symmetric, then A is called a symmetric relation scheme.
For a subset Y ⊆ X, we define the induced subscheme of A on Y as A|Y = (Y,R|Y ),
where R|Y = {R|Y | R ∈ R} \ {∅} is the restriction of the partition R onto the subset
Y . Note that (IdX)|Y = IdY ∈ R|Y , so A|Y is also a relation scheme. Clearly, if A is
symmetric, A|Y is symmetric as well.

Suppose that A = (X,R) is a symmetric relation scheme with the additional property
that there exist numbers phij (h, i, j ∈ I) such that for each pair (x, y) ∈ Rh, there
are precisely phij vertices z ∈ X with (x, z) ∈ Ri and (z, y) ∈ Rj. Then A is called a
(symmetric) association scheme, and the numbers phij (h, i, j ∈ I) are its intersection
numbers. The number ki := p0ii is the valency of the relation Ri (i ∈ I) – i.e., for each
vertex x ∈ X, there exist precisely ki vertices y ∈ X such that (x, y) ∈ Ri. From now on,
we will assume that A is an association scheme.

Let Ai be the adjacency matrix of the relation Ri (i ∈ I) – then we say that Ai (i ∈ I)
are the adjacency matrices of the association scheme A. We also define the corresponding
graphs Γi = (X,Ri) (i ∈ I, Ri ̸= IdX). Note that AiAj =

∑
h∈I p

h
ijAh (i, j ∈ I) holds. In

particular, since the adjacency matrices of a symmetric association scheme are symmetric,
they can be simultaneously diagonalized, giving a decomposition of RX as a direct sum
of d + 1 common eigenspaces forming a set S = {Sj | j ∈ J }, where J is an index
set of size d + 1. Note that the all-ones matrix J =

∑
i∈I Ai has an eigenvalue n with

multiplicity 1 and its corresponding eigenspace is ⟨1X⟩, i.e., the one-dimensional subspace
of RX spanned by the all-ones vector; this subspace is also an eigenspace of Ai (i ∈ I)
for the eigenvalue ki. Therefore, ⟨1X⟩ ∈ S. Customarily, we will have J = {0, 1, . . . , d}
and S0 = ⟨1X⟩, although we may, again, occasionaly deviate from this convention (in
particular, it may happen that I and J are different sets of the same cardinality).

Let Ej ∈ RX×X (j ∈ J ) be the projector matrix onto the eigenspace Sj – these
matrices are called the minimal idempotents of A. We note that the Bose-Mesner algebra
of A, i.e., the algebra generated by the basis of adjacency matrices {Ai | i ∈ I} with
respect to ordinary matrix addition and multiplication, has a second basis {Ej | j ∈
J } [6, §2.2]. Therefore, there exist matrices P ∈ RJ×I and Q ∈ RI×J (called the
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eigenmatrix and the dual eigenmatrix, respectively) such that Ai =
∑

j∈J PjiEj (i ∈ I)
and Ej = 1

n

∑
i∈I QijAi (j ∈ J ). We note that for each choice of i ∈ I, the value Pji

(j ∈ J ) corresponds to the eigenvalue of Ai on the eigenspace Sj (thus covering all distinct
eigenvalues of Ai, possibly with some repetitions). In particular, we have P0i = ki (i ∈ I).
In the case when there exists a bijection ι : I → J , ι : i→ i′ (i ∈ I) such that Pi′j = Qij′

holds for all i, j ∈ I, we say that the association scheme A is formally self-dual.
Since the Bose-Mesner algebra M is also closed under the entrywise multiplication

of matrices (denoted by ◦, also known as Schur or Hadamard multiplication), it follows
that there exist numbers qhij (h, i, j ∈ J ), known as the Krein parameters, such that
Ei ◦ Ej = 1

n

∑
h∈J q

h
ijEh. These numbers are nonnegative (cf. [6, Theorem 2.3.2]), but

not necessarily integral or rational, yet they exhibit properties similar to those of the
intersection numbers of an association scheme – there is a formal duality between the
two. We also define the number mj := q0jj as the multiplicity of the eigenspace Sj (j ∈ J )
– i.e., it corresponds to the dimension of Sj and is therefore a positive integer. Note that
Q0j = mj (j ∈ J ) also holds.

Any of the parameter sets {phij | h, i, j ∈ I}, P , Q and {qhij | h, i, j ∈ J } uniquely
determines the others, but not necessarily an association scheme itself – for any given
parameter set, there may be one or more association schemes, or none at all.

An imprimitivity set of the association scheme A = (X,R) is a set of relation indices
0̃ ⊆ I such that R0̃ :=

⋃
i∈0̃Ri is an equivalence relation partitioning the vertex set X

into the set of equivalence classes X̃ := X/R0̃ = {Xℓ | ℓ = 1, 2, . . . , ñ}. We note that
|Xℓ| =

∑
i∈0̃ ki =: n (1 ⩽ ℓ ⩽ ñ) and n = n · ñ. Furthermore, for each equivalence class

Xℓ (1 ⩽ ℓ ⩽ ñ), the induced subscheme A|Xℓ
is an association scheme with intersection

numbers phij = phij (h, i, j ∈ 0̃). The association scheme A is called imprimitive (cf. [6,

§2.4]) if there exists a nontrivial imprimitivity set 0̃ (i.e., {0} ⊂ 0̃ ⊂ I, where R0 = IdX).
An imprimitivity set 0̃ also determines an equivalence relation ∼ on I defined by

h ∼ j ⇐⇒ ∃i ∈ 0̃. phij ̸= 0 (h, j ∈ I).

Note that 0̃ is an equivalence class of ∼, and we define ı̃ as the equivalence class of ∼
containing i ∈ I. This allows us to define the quotient scheme Ã = A/0̃ = (X̃, R̃ = {R̃ı̃ |
ı̃ ∈ Ĩ}), where Ĩ = I/∼ and

R̃ı̃ = {(x̃, ỹ) ∈ X̃2 | ∃x ∈ x̃, y ∈ ỹ, i ∈ ı̃. (x, y) ∈ Ri} (̃ı ∈ Ĩ).

The quotient scheme Ã is an association scheme with intersection numbers p̃h̃ı̃ȷ̃ =
1
n

∑
i∈ı̃
∑

j∈ȷ̃ p
h
ij for all h ∈ h̃ (h̃, ı̃, ȷ̃ ∈ Ĩ). Thus, the imprimitivity sets and the parameters

of the resulting subschemes and quotient scheme only depend on the parameters of the
parent association scheme.

Dually, we may also define a dual imprimitivity set as a set of eigenspace indices 0 ⊆ J
such that E0 :=

n
ñ

∑
j∈0Ej is the adjacency matrix of an equivalence relation on X, where

ñ equals the number of the resulting equivalence classes. A dual imprimitivity set is
nontrivial if {0} ⊂ 0 ⊂ J , where S0 = ⟨1X⟩. It turns out that there is a one-to-one
relationship between (nontrivial) imprimitivity sets and (nontrivial) dual imprimitivity
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sets, i.e., E0 is the adjacency matrix of R0̃, where 0̃ is the corresponding imprimitivity
set. In fact, both imprimitivity sets and dual imprimitivity sets can be recognized from
the parameters of the association scheme.

Similarly as before, the dual imprimitivity set 0 determines an equivalence relation ≃
on J defined by

h ≃ i ⇐⇒ ∃j ∈ 0. qhij ̸= 0 (h, i ∈ J ).

Again we note that 0 is an equivalence class of ≃, and we define ȷ as the equivalence class
of ≃ containing j ∈ J . We find that the induced subschemes A|Xℓ

(1 ⩽ ℓ ⩽ ñ) have the
set of eigenspaces S|Xℓ

= {Sȷ|Xℓ
| ȷ ∈ J }, where J = J /≃ and

Sȷ|Xℓ
=

{
v|Xℓ

∣∣∣∣∣ v ∈∑
j∈ȷ

Sj

}
(ȷ ∈ J ),

i.e., the restriction to Xℓ of the sum of eigenspaces with indices from ȷ. The Krein
parameters of A|Xℓ

are then qhıȷ = 1
ñ

∑
i∈ı
∑

j∈ȷ q
h
ij for all h ∈ h (h, ı, ȷ ∈ J ), and its

eigenmatrix P and dual eigenmatrix Q satisfy P ȷi = Pji for all j ∈ ȷ, and Qiȷ =
1
ñ

∑
j∈ȷQij

(i ∈ 0̃, ȷ ∈ J ). In particular,
Qij

mj
=

Qiȷ

mȷ
holds for all j ∈ ȷ, where mȷ = q0ȷȷ = Q0ȷ. For the

quotient scheme Ã, we find the set of eigenspaces S̃ = {S̃j = {ṽ | v ∈ Sj} | j ∈ 0}, where
ṽ =

(∑
x∈x̃ vx

)
x̃∈X̃ ∈ RX̃ . The Krein parameters of Ã are then q̃hij = qhij (h, i, j ∈ 0), and

its eigenmatrix P̃ and dual eigenmatrix Q̃ satisfy P̃jı̃ =
1
n

∑
i∈ı̃ Pji, and Q̃ı̃j = Qij for all

i ∈ ı̃ (̃ı ∈ Ĩ, j ∈ 0). In particular,
Pji

ki
=

P̃jı̃

k̃ı̃
holds for all i ∈ ı̃, where k̃ı̃ = p̃0̃ı̃̃ı = P̃0ı̃. Since

the eigenmatrices are square matrices, we see that |0̃| = |J | and |0| = |Ĩ|.

3 Quotient-polynomial graphs

Quotient-polynomial graphs (QPGs) were introduced by Fiol [12], whose results allow us
to state the following definition.

Definition 1. Let Γ = (X,R) be an undirected graph with adjacency matrix A. The
graph Γ is quotient-polynomial if the algebra generated by the powers of A is the Bose-
Mesner algebra of an association scheme A = (X,R = {Ri | i ∈ I}).

Let Γ be a quotient-polynomial graph and A the corresponding association scheme by
the above definition. Clearly, the graph Γ must be connected and regular, as its adja-
cency matrix must be a sum of some adjacency matrices of A. Furthermore, there exist
polynomials pi (i ∈ I) such that Ai = pi(A). This shows that the notion of a quotient-
polynomial graph generalizes the notion of a distance-regular graph (see [6, §4]), as we
drop the requirement on the degrees of these polynomials and thus lose the equivalence
between the relations of A and distances in Γ.

Given the parameters of an association scheme A, we can verify whether a sum of
some adjacency matrices of A generates its Bose-Mesner algebra – each relation corre-
sponding to such an adjacency matrix thus gives us a quotient-polynomial graph. A given
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association scheme may therefore correspond to one or more quotient-polynomial graphs
(which need not be mutually non-isomorphic), or none at all (similarly to how an associ-
ation scheme may have multiple P -polynomial orderings, thus corresponding to multiple
distance-regular graphs). In particular, if a relation

⋃
i∈I′ Ri (I ′ ⊂ I) of an association

scheme A = (X, {Ri | i ∈ I}) gives rise to a quotient-polynomial graph, this will also be
true for the relation

∑
i∈I′ R′

i of an association scheme A′ = (X ′, {R′
i | i ∈ I}) with the

same parameters as A.
Herman and Maleki [24] define a relational quotient-polynomial graph as a quotient-

polynomial graph Γ = (X,R) such that R is a relation of the corresponding d-class
association scheme A with relation index set I = {0, 1, . . . , d}. In this case, we will
assume R0 = IdX and R1 = R. For such an association scheme, they define the parameter
array

[[k1, k2, . . . , kd], [p
2
11, p

3
11, . . . p

d
11; p

3
12, p

4
12, . . . p

d
12; . . . ; p

d−1
1,d−2, p

d
1,d−2; p

d
1,d−1]]

and show that the remaining parameters of A can be computed from it. This notation
has been used to build a database of parameter arrays (subject to limitations on number
of classes, order and valency) passing some basic feasibility conditions. At the time of
writing, a subset of this database is available online [22], with tables for parameters arrays
for QPGs with 3 classes of order at most 60, 4 or 5 classes of order at most 60 and valency
at most 12, and with 6 classes of order at most 70 and valency at most 12 marking each
entry either as infeasible (i.e., some further basic checks fail), existing (an association
scheme with the corresponding parameters has been found) or feasible (all checks pass,
but no example has been found).

We use the sage-drg package [35, 36] to perform more feasibility checks for the pa-
rameter arrays marked as feasible. For those parameter arrays which pass all the checks,
we attempt to identify known constructions. The results are presented in Appendix A.
We also verify that the parameter sets for association schemes with noncyclotomic eigen-
values in [23, §4.3.2] pass the forbidden quadruple check (see [17, Corollary 4.2]), as the
other feasibility condition had already been verified. For the parameter arrays which have
neither been ruled out as infeasible nor are there any known constructions for them, we
may use the technique presented in the following section to study their feasibility.

4 Eigenspace embeddings of association schemes

Let A = (X,R = {Ri | i ∈ I}) be an association scheme with n vertices, dual eigenmatrix
Q and multiplicities mj (j ∈ J ), and Sj (j ∈ J ) be one of its eigenspaces. The entries of
the corresponding minimal idempotent Ej satisfy (Ej)xy =

Qij

n
(x, y ∈ X) if (x, y) ∈ Ri

(i ∈ I). Let 1x ∈ RX be the indicator vector of the vertex x ∈ X, i.e., a unit vector with
entry 1 at index x and entries 0 elsewhere. Then the vector Ej1x ∈ Sj is the orthogonal
projection of 1x onto the eigenspace Sj and coincides with the column of Ej at index
x. Consider the inner product of two such vectors: for two vertices x, y ∈ X such that
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(x, y) ∈ Ri, we have

⟨Ej1x, Ej1y⟩ = 1⊤
xE

⊤
j Ej1y = 1⊤

xEj1y = (Ej)xy =
Qij

n
.

The inner product of Ej1x and Ej1y therefore only depends on the relation in which the

vertices x and y are. In particular, we have ∥Ej1x∥ =
√

mj

n
(x ∈ X), i.e., all the orthogonal

projections of the vectors 1x (x ∈ X) onto Sj have the same norm. Consequently, the angle
between two such projections only depends on the relation in which the corresponding

vertices are. We may therefore define unit vectors ux :=
√

n
mj
Ej1x (x ∈ X), and note

that, for two vertices x, y ∈ X, if (x, y) ∈ Ri (i ∈ I) holds, then we have ⟨ux, uy⟩ = Qij

mj
.

The map x 7→ ux is said to be a spherical representation of the association scheme A in
the eigenspace Sj. A spherical representation is called faithful if it is injective. Note that
a spherical representation of A in the eigenspace Sj is faithful if and only if Sj ̸= ⟨1X⟩
and j is not contained in any nontrivial dual imprimitivity set.

Let A′ = (Y,R′) be a relation scheme with vertex set Y ⊆ X and relations R′ = {R′
i |

i ∈ I ′} for some I ′ ⊆ I. We say that the relation scheme A′ admits an embedding into
Sj if there exist unit vectors u′x ∈ Sj (x ∈ Y ) such that for every two vertices x, y ∈ Y ,

we have ⟨u′x, u′y⟩ =
Qij

mj
whenever (x, y) ∈ R′

i (i ∈ I ′). Clearly, if R′
i = Ri|Y holds for every

i ∈ I ′, then we have A′ = A|Y , and we can just take u′x = ux (x ∈ Y ), so the relation
scheme A′ admits an embedding into Sj. Conversely, if no embedding of A′ into Sj exists,
then A′ is not an induced subscheme of A.

Given a relation scheme A′, we may therefore attempt to determine the coefficients of
the vectors u′x (x ∈ Y ) in terms of the coordinates with respect to an orthonormal basis
{eh | h = 1, 2, . . . ,mj} of Sj. Let us write u′x =

∑mj

h=1 axheh, where axh ∈ R (x ∈ Y ,
1 ⩽ h ⩽ mj). We impose a linear order on the set Y , say, by assuming Y = {1, 2, . . . , n′},
and define a matrix U := {axh}

n′,mj

x,h=1 (i.e., the rows of U correspond to the coefficients of
the sought vectors). Assume that F is a subfield of the field of real numbers R such that
the dual eigenmatrix Q of A has entries from F (i.e., Q ∈ FI×J ). We may build a matrix

C ∈ FY×Y such that Cxy =
Qij

mj
holds whenever (x, y) ∈ R′

i (x, y ∈ Y , i ∈ I ′), and pass it

as an input to Algorithm 1 along with the chosen index j ∈ J . If the algorithm succeeds,
it computes all the entries in the matrix U , thus giving an embedding of A′ into Sj. On
the other hand, if the algorithm fails, we may conclude that no such embedding exists.

For an element β ∈ F such that β > 0, we define the set F
√
β = {α

√
β | α ∈ F}, where√

β is the unique positive real number such that (
√
β)2 = β. Furthermore, we define the

set F
√
F =

⋃
β∈F
β>0

F
√
β. We note that the sets F

√
β are closed under addition, and for

γ, δ ∈ F
√
β, we have γδ ∈ F; similarly, for α ∈ F, γ ∈ F

√
β \ {0}, we have α

γ
∈ F
√
β. This

implies that there exist numbers βh ∈ F, βh > 0 (1 ⩽ h ⩽ mj) such that axh ∈ F
√
βh for

all x ∈ Y – i.e., all the entries of the h-th column of U are elements of F
√
βh. Therefore,

we have U ∈ (F
√
F)Y×mj .

The eigenspace-embeddings repository [37] contains an implementation of Algo-
rithm 1 based on SageMath [32]. We use the sage-drg package [35, 36] to compute the
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Algorithm 1 The algorithm for computing the coefficients of the unit vectors u′x (x ∈ Y )
in an orthonormal basis of Sj.

Input: j ∈ J , C ∈ FY×Y such that Cxy =
Qij

mj
⇐⇒ (x, y) ∈ R′

i (x, y ∈ Y , i ∈ I ′)
for x = 1, 2, . . . , n′ do ▷ Y = {1, 2, . . . , n′}

h← 1
for y = 1, 2, . . . , x− 1 do

d← Cxy −
∑h−1

k=1 axkayk
if h ⩽ mj ∧ ayh ̸= 0 then

axh ← d
ayh

h← h+ 1
else if d ̸= 0 then

fail ▷ Cannot obtain the inner products
end if

end for
s←

∑h−1
k=1 a

2
xk

if s > 1 then
fail ▷ The norm is larger than one

else if s < 1 then
if h > mj then

fail ▷ The norm is smaller than one
end if
axh ←

√
1− s

h← h+ 1
end if
for k = h, h+ 1, . . . ,mj do

axk ← 0
end for

end for

dual eigenmatrix Q of an association scheme A with the given parameters. The package
has been adapted so that the computed parameters (assuming they do not depend on a
variable) are returned in SageMath’s implementation of the rational field Q, provided by
the object QQ (an element of class RationalField), or a minimal extension thereof (an
element of the class NumberField). In both cases, SageMath’s implementation is based
on PARI [30]. Thus, F is a (possibly trivial) extension of Q. For the computation of the
entries of U in Algorithm 1, we implement a class IncompleteSqrtExtension to provide
the required arithmetic in the pseudo-field F

√
F. Note that the latter set is closed under

multiplication, but not under addition, and is therefore not a field, yet it is implemented
as a subclass of NumberField, with addition of elements of F

√
F not belonging to a com-

mon subset F
√
β triggering an error (note that this cannot happen in Algorithm 1). Such

an approach has a great performance and correctness advantage over using the symbolic
ring, provided by SageMath’s object SR (which is still used by sage-drg in the presence
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of variables), as the generality of the latter means that the obtained expressions often
cannot be adequately simplified, thus leading to bad performance and incorrect results.

Since the existence of an embedding into the eigenspace Sj only depends on the pa-
rameters of A and not its structure, we may use the method described above to check
for feasibility of parameters of association schemes and possibly attempt to find new con-
structions or characterizations for a given parameter set. In particular, this method will
prove to be useful when some substructure of the association scheme is already known,
as we can then build on this substructure and explore which possibilities are admissible
until either a contradiction occurs, or the desired characterization or construction has
been reached.

Suppose that A is an imprimitive d-class association scheme with a nontrivial imprimi-
tivity set 0̃. Then, for every equivalence class Y of R0̃, A|Y is a d′-class association scheme
on n′ vertices, where d′ = |0̃| − 1 < d and n′ < n. We thus obtain smaller association
schemes on subsets of vertices of A, and their parameters are determined by the param-
eters of A. Even when A is only specified by its parameters and its precise structure is
not known, the subschemes on these subsets might be determined or characterized by the
parameters, allowing further consideration by the above method.

Let 0 be the dual imprimitivity set corresponding to the imprimitivity set 0̃, and let

{Xℓ | ℓ = 1, 2, . . . , ñ} be the set of the equivalence classes of R0̃. As
Qij

mj
=

Qiȷ

mȷ
holds for

all i ∈ 0̃, ȷ ∈ J and j ∈ ȷ, we see that an embedding of A|Xℓ
(1 ⩽ ℓ ⩽ ñ) into Sȷ|Xℓ

can
be naturally extended to an embedding into Sj for each j ∈ ȷ. In particular, when the
imprimitivity set is of the form 0̃ = {0, i∗}, the graph (X,Ri∗) is isomorphic to a union of
(ki∗ +1)-cliques, and we call the sets Xℓ (1 ⩽ ℓ ⩽ ñ) the Ri∗-cliques, and the embeddings
of their vertices into Sj (j ∈ J \ 0) correspond to the vertices of a ki∗-dimensional regular
simplex, thus spanning a ki∗-dimensional subspace of Sj. Generalizing this to the case
when |0̃| > 2, we may call the sets Xℓ (1 ⩽ ℓ ⩽ ñ) the R-cliques, where R =

⋃
i∈0̃\{0}Ri.

For several parameter sets, we will determine the possible induced subschemes of A
on a small number of R-cliques (or subsets thereof). If we manage to determine that
none of these possibilities admit an embedding into an eigenspace of A, we then conclude
that such an association scheme does not exist. To this end, we will consider eigenspaces
Sj with mȷ > 1 of small dimension. In particular, we will consider cases when

mj

mȷ
⩽ 3.

Once we manage to construct a set Y ⊆ X such that the vectors {u′x | x ∈ Y } span the
eigenspace Sj, we may use the intersection numbers of A to determine the possible choices
for the relations Rxy ∈ R (x ∈ Y ) such that (x, y) ∈ Rxy for a candidate vertex y ̸∈ Y ,
and examine which of the corresponding vectors u′y are unit vectors. We may then try
to find a subset Z of these vectors such that |Y | + |Z| = n and for each pair of vertices

y, z ∈ Z we have ⟨u′y, u′z⟩ =
Qij

mj
for some i ∈ I (i.e., (y, z) ∈ Ri). Finally, we may verify

that (Y ∪Z,R) is indeed an association scheme with the parameters of A. Alternatively,
if no such set Z can be found for any of the choices of Y such that the association scheme
A necessarily contains a subscheme isomorphic to A|Y , we conclude that A does not exist.

In particular, given an association scheme A = (X,R), we will define the vertex

subsets X(t) =
⋃t
ℓ=1Xℓ (1 ⩽ t ⩽ ñ), the induced subschemes A(t) = A|X(t) = (X(t), {R(t)

i |
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i ∈ I} \ {∅}) with R
(t)
i = Ri|X(t) (i ∈ I), and the graphs Γ

(t)
i = (X(t), R

(t)
i ) (i ∈ I,

Ri ̸= IdX). We will consider the candidate relation schemes for A(t) for certain choices

of t by considering the possible choices of the graphs Γ
(t)
i (i ∈ I), as well as some other

induced subschemes and their corresponding graphs, and attemtpt to find the embeddings
of these relation schemes into an eigenspace Sj of A for some j ∈ J \ 0.

4.1 A small example

We will now apply the method described above on a small example. Consider a formally
self-dual 3-class association scheme A on 8 vertices with index sets I = J = {0, 1, 2, 3}
given by its eigenmatrices

P = Q =


1 3 3 1
1 1 −1 −1
1 −1 −1 1
1 −3 3 −1

 .

The association scheme A is imprimitive with imprimitivity set 0̃ = {0, 2} and the cor-
responding dual imprimitivity set 0 = {0, 3}. Since the scheme is formally self-dual, the
roles of these two sets can also be reversed. We note that R0̃ has two equivalence classes
X1 and X2 of size 4 – they are the R2-cliques of A.

We will consider the embedding of A(1) = A|X1 into the eigenspace S1 of dimension
m1 = 3. We use Algorithm 1 to compute the matrix U with the coefficients of the unit
vectors u′x ∈ S1 (x ∈ X1).

U =


1 0 0

−1
3

2
√
2

3
0

−1
3
−

√
2
3

√
6
3

−1
3
−

√
2
3
−

√
6
3


Since the above matrix has full column rank, we may consider the candidates for the
remaining four vertices in the R2-clique X2. As we have k1 = 3 and k3 = 1, it follows
that each vertex of X2 is in relation R3 with precisely one vertex of X1 and in relation R1

with the remaining three vertices of X1. We thus have precisely four candidates for the
vertices y ∈ X2, and we find that the coefficients of the correspoding unit vectors u′y ∈ S1

are given by the matrix −U . By considering the inner products between the rows of the
matrices U and −U , we build the relation matrix R of the obtained relation scheme.

R =



0 2 2 2 3 1 1 1
2 0 2 2 1 3 1 1
2 2 0 2 1 1 3 1
2 2 2 0 1 1 1 3
3 1 1 1 0 2 2 2
1 3 1 1 2 0 2 2
1 1 3 1 2 2 0 2
1 1 1 3 2 2 2 0


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It can be easily verified that R is the relation matrix of the association scheme corre-
sponding to the 3-cube Q3. This confirms the well-known fact that this is the unique
association scheme with the parameters given above.

5 Nonexistence results

We will now attempt to use the technique described in Section 4 to study the parameter
sets marked as feasible in [22] which pass all known feasibility conditions (see Appendix A
for those that do not). We find three parameter sets for which we show nonexistence, of
which two correspond to imprimitive 4-class association schemes and one corresponds to
an imprimitive 5-class association scheme.

Besides the software and algorithms mentioned in Section 4, we also use the following
software which is included in the SageMath computer algebra system [32]: nauty [29]
for graph generation, bliss [25, 26] for automorphism group computation, GAP [14]
for group manipulation, and GLPK [27] for solving integer linear programs (for graph
coloring).

5.1 QPG with parameter array [[12, 4, 4, 24], [6, 0, 3; 0, 1; 2]]

Let A be a 4-class association scheme with intersection numbers

(p0ij)
4
i,j=0 =


1 0 0 0 0
0 12 0 0 0
0 0 4 0 0
0 0 0 4 0
0 0 0 0 24

 , (p1ij)
4
i,j=0 =


0 1 0 0 0
1 3 2 0 6
0 2 0 0 2
0 0 0 0 4
0 6 2 4 12

 ,

(p2ij)
4
i,j=0 =


0 0 1 0 0
0 6 0 0 6
1 0 1 2 0
0 0 2 2 0
0 6 0 0 18

 , (p3ij)
4
i,j=0 =


0 0 0 1 0
0 0 0 0 12
0 0 2 2 0
1 0 2 1 0
0 12 0 0 12

 ,

(p4ij)
4
i,j=0 =


0 0 0 0 1
0 3 1 2 6
0 1 0 0 3
0 2 0 0 2
1 6 3 2 12

 .

(1)

Note that each of the above matrices (phij)
4
i,j=0 (0 ⩽ h ⩽ 4) shows the number of vertices in

relations Ri and Rj from a pair of vertices in relation Rh, or, equivalently, the coefficients
of Ah in the product AiAj. The intersection numbers appearing in the parameter array
are shown in italics – note that due to A being a symmetric association scheme, the
matrices above are symmetric and some of these parameters are thus marked twice. The
same notation will also be used in the remaining examples.
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The graph Γ1 = (X,R1) is a quotient-polynomial graph on 45 vertices with param-
eter array [[12, 4, 4, 24], [6, 0, 3; 0, 1; 2]]. The association scheme A is imprimitive with
imprimitivity set 0̃ = {0, 2, 3}. The dual eigenmatrix of A is

Q =


1 10 20 4 10

1 5
√
2

2
0 −1 −5

√
2

2

1 5
2

−10 4 5
2

1 −5 5 4 −5
1 −5

√
2

4
0 −1 5

√
2

4

 .

By the ordering of eigenspaces used in the above matrix, the corresponding dual imprimi-
tivity set is 0 = {0, 3}, and we also have 1 = 4 = {1, 4} and 2 = {2}. Let {Xℓ | 1 ⩽ ℓ ⩽ 5}
be the set of the equivalence classes of R0̃, and note that the graphs Γ2|Xℓ

= (Xℓ, R2|Xℓ
)

(1 ⩽ ℓ ⩽ 5) are isomorphic to the graph K3□K3, or, equivalently, the Hamming graph
H(2, 3). We will call their maximal cliques (of size 3) lines – taking the vertices as points,
this gives us a geometry of generalized quadrangle GQ(2, 1). The sets Xℓ (1 ⩽ ℓ ⩽ 5) are
thus the (R2 ∪R3)-cliques of A, and we also have Xℓ = Yℓ1 ∪ Yℓ2 ∪ Yℓ3 = Zℓ1 ∪ Zℓ2 ∪ Zℓ3,
where Yℓr and Zℓs (1 ⩽ ℓ ⩽ 5, 1 ⩽ r, s ⩽ 3) are the lines of Γ2|Xℓ

such that |Yℓr ∩Zℓs| = 1.
In particular, {Yℓ1, Yℓ2, Yℓ3} and {Zℓ1, Zℓ2, Zℓ3} are partitions of Xℓ into disjoint lines – we
call these partitions the spreads of Γ2|Xℓ

.
We will consider embeddings of subschemes induced on three (R2 ∪ R3)-cliques of

A into the eigenspace S1 of dimension m1 = 10. We note that m1 = 4 and therefore
m1

m1
= 5

2
< 3, which may severely restrict which of such subschemes admit an embedding

into S1. Since we will encounter a similar situation later, let us first prove the following
lemma.

Lemma 2. Let A = (X,R = {Ri | i ∈ I}) be an association scheme with imprimitivity
set 0̃ and intersection numbers pjij = e− 1 and pji′j = 0 for some i ∈ 0̃, j ∈ I \ 0̃, and all

i′ ∈ 0̃ \ {0, i}. Suppose that Y and Y ′ are equivalence classes of R0̃ such that the graphs
Γi|Y and Γi|Y ′ are both isomorphic to the Hamming graph H(d, e) for some d < e, and
for all x ∈ Y , y ∈ Y ′, (x, y) ∈ Rj′ holds for some j′ ∈ ȷ̃. Then the graph Γj|Y ∪Y ′ is
isomorphic to ed−1Ke,e, and the partitions of Y and Y ′ corresponding to the connected
components of Γj|Y ∪Y ′ coincide with spreads of Γi|Y and Γi|Y ′ (i.e., they are partitioned
into maximal Ri-cliques of size e).

Proof. Since
∑

i′∈0̃ p
j
i′j = e, the graph Γj|Y ∪Y ′ is e-regular; since Y and Y ′ are equivalence

classes of R0̃, it is also bipartite with bipartition Y + Y ′. Let x be a vertex from Y ,
and denote the set of neighbours of x by L′. As pji′j = 0 for all i′ ∈ 0̃ \ {0, i}, the set
L′ ⊆ Y ′ forms a maximal Ri-clique. Furthermore, the set of neighbours of each vertex
from L′ forms a maximal Ri-clique inside Y containing x. Since x is contained in precisely
d maximal Ri-cliques, which is less than |L′| = e, by the pigeonhole principle, there exist
two distinct vertices y, y′ ∈ L′ with the same set of neighbours, which we denote by
L. Then, every vertex of L is adjacent to all vertices in the unique maximal Ri-clique
containing y and y′ – i.e., Γj|L∪L′ is a connected component of Γj|Y ∪Y ′ and is isomorphic to
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Figure 1: The candidates for the relation schemeA(3). In each case, the lines are represented with
rounded rectangles and form three GQ(2, 1) geometries; the vertices are implied at intersections

of lines. Two distinct vertices are in relation R
(3)
1 if they are contained in two lines connected

by an edge, in relation R
(3)
2 if they are contained in a common line, in relation R

(3)
3 if they are

contained in distinct lines of the same GQ(2, 1), and in relation R
(3)
4 otherwise.

Ke,e. Since x was arbitrary, it follows that Γj|Y ∪Y ′ consists of ed−1 connected components
isomorphic to Ke,e whose bipartitions consist of maximal Ri-cliques in Y and Y ′.

We may now give the following result.

Theorem 3. An association scheme A with intersection numbers (1) does not exist.

Proof. Since p112 = 2 and p113 = 0, we may apply Lemma 2 to conclude that for each choice
of (R2 ∪ R3)-cliques Xℓ and Xℓ′ of A (1 ⩽ ℓ < ℓ′ ⩽ 5), the graph Γ1|Xℓ∪Xℓ′

is isomorphic
to 3K3,3, with the partitions of vertices of Xℓ and Xℓ′ corresponding to the connected
components of Γ1|Xℓ∪Xℓ′

coincinding with spreads of Γ2|Xℓ
and Γ2|Xℓ′

.
We will now consider the possibilities for the relation scheme A(3). There are six

mutually non-isomorphic possibilities for the graph Γ
(3)
1 : either the same spread is used in

each of Γ1|Xℓ
(1 ⩽ ℓ ⩽ 3) to determine the edges to the other two (R2 ∪ R3)-cliques, and

Γ
(3)
1 has one, two or three connected components, or different spreads are used for one,

two or three of Γ1|Xℓ
(1 ⩽ ℓ ⩽ 3), see Figure 1. The choice of this graph thus uniquely

determines the relation scheme A(3).
For each of these possibilities, we thus build a candidate for the relation scheme A(3)

and attempt to compute the corresponding matrix U with the coefficients of the unit
vectors u′x ∈ S1 (x ∈ X(3)) using Algorithm 1. We find all the coefficients can only be
determined in the case when different spreads are used to determine the edges from two
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of the three (R2∪R3)-cliques, and thus conclude that the relation schemes corresponding
to the other cases do not admit an embedding into S1.

Let us consider the sole remaining possibility. Without loss of generality, we may
assume that the connected components of Γ1|X1∪X2 , Γ1|X1∪X3 and Γ1|X2∪X3 are Y1r ∪ Y2r,
Y1r∪Y3r and Z2s∪Z3s (1 ⩽ r, s ⩽ 3), respectively. The corresponding matrix of coefficients
has full column rank, thus uniquely determining the orthonormal basis of S1 being used.

By the argument above, each vertex y ∈ X4∪X5 must be in relation R1 precisely with
all vertices of one line within each of X1, X2, X3. Since there are 6 lines in each of Γ2|Xℓ

(1 ⩽ ℓ ⩽ 3), we examine the 63 = 216 candidates for such vertices y and attempt to find
the corresponding unit vectors u′y. However, we find that no such unit vectors exist, from
which it follows that the association scheme A does not exist.

The QPG4-12-45-52.ipynb notebook on the eigenspace-embeddings repository [37]
illustrates the computation needed to obtain the above result.

5.2 QPG with parameter array [[8, 8, 4, 24], [1, 0, 2; 2, 1; 1]]

Let A be a 4-class association scheme with intersection numbers

(p0ij)
4
i,j=0 =


1 0 0 0 0
0 8 0 0 0
0 0 8 0 0
0 0 0 4 0
0 0 0 0 24

 , (p1ij)
4
i,j=0 =


0 1 0 0 0
1 0 1 0 6
0 1 3 1 3
0 0 1 0 3
0 6 3 3 12

 ,

(p2ij)
4
i,j=0 =


0 0 1 0 0
0 1 3 1 3
1 3 1 0 3
0 1 0 0 3
0 3 3 3 15

 , (p3ij)
4
i,j=0 =


0 0 0 1 0
0 0 2 0 6
0 2 0 0 6
1 0 0 3 0
0 6 6 0 12

 ,

(p4ij)
4
i,j=0 =


0 0 0 0 1
0 2 1 1 4
0 1 1 1 5
0 1 1 0 2
1 4 5 2 12

 .

(2)

The graph Γ1 = (X,R1) is a quotient-polynomial graph on 45 vertices with parameter
array [[12, 4, 4, 24], [6, 0, 3; 0, 1; 2]]. The association scheme A is imprimitive with imprim-
itivity set 0̃ = {0, 3}. This parameter set is also listed in [23] as a feasible parameter set
for an association scheme with noncyclotomic eigenvalues, as the dual eigenmatrix of A
has entries from a degree 6 extension of Q. Therefore, we only list their first three decimal
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places:

Q =


1 12 12 8 12
1 3.829 2.086 −1 −5.915
1 −5.430 4.925 −1 0.505
1 −3 −3 8 −3
1 0.534 −2.337 −1 1.803

 .

By the ordering of eigenspaces used in the above matrix, the corresponding dual imprim-
itivity set is 0 = {0, 3}, and we also have 1 = {1, 2, 4}. We will consider embeddings of
subschemes induced on three R3-cliques of A into the eigenspace S1 of dimensionm1 = 12.
We note that m1 = 4 and therefore m1

m1
= 3, which may severely restrict which of such

subschemes admit an embedding into S1.
Let αi =

Qi1

m1
(0 ⩽ i ⩽ 4) be the inner product of the unit vectors in S1 corresponding

to two vertices in relation Ri. We note that α0 = 1, α3 = −1
4
, α1 + α2 + 3α4 = 0 and

α2 = 8α2
1 + 2α1 − 1. Since the minimal polynomial of α1 is x3 − 3

16
x+ 7

256
, it follows that

αi ∈ F (0 ⩽ i ⩽ 4), where F is a degree 3 extension of Q. We may therefore use the field F
when computing coefficients of vectors in an orthonormal basis of S1 using Algorithm 1.
This allows us to obtain the following result.

Theorem 4. An association scheme A with intersection numbers (2) does not exist.

Proof. Since p131 +1 = p231 = p431 = 1 and p132 = p232 +1 = p432 = 1, each vertex x of A is in
relations R1 and R2 with precisely one vertex in each of the R3-cliques not containing x.
As p111 = 0 and p222 = 1, the graph Γ1 does not contain triangles, while the graph Γ2 does
contain a triangle x1x2x3. Without loss of generality, we may assume xℓ ∈ Xℓ (1 ⩽ ℓ ⩽ 3).
We will consider the possibilities for the relation scheme A(3) under this labelling of the
R3-cliques.

By the above argument, the graphs Γ
(3)
1 and Γ

(3)
2 are unions of cycles of lengths divisible

by 3. Since Γ
(3)
1 has no triangles, it must be isomorphic to either C15 or C9 +C6. On the

other hand, by the above assumption, the graph Γ
(3)
2 does contain a triangle. The choice

of these two graphs uniquely determines the relation scheme A(3).
Given a choice of Γ

(3)
1 , we define an asymmetric relation R⃗

(3)
2,4 = {(x, y) ∈ R

(3)
2 ∪ R

(3)
4 |

x ∈ Xi, y ∈ Xj, j − i ≡ 1 (mod 3)} and a directed graph Γ⃗
(3)
2,4 = (X(3), R⃗

(3)
2,4). The

candidates for Γ
(3)
2 are then precisely the underlying graphs of 1-factors of Γ⃗

(3)
2,4 (i.e.,

spanning subgraphs with in- and out-degrees of all vertices equal to 1). In the cases when

Γ
(3)
1 is isomorphic to C15 and C9+C6, we find 5704 and 4736 distinct (up to isomorphism)

1-factors of Γ⃗
(3)
2,4, respectively, of which 3637 and 3028, respectively, contain a triangle.

For each of these possibilities, we thus build a candidate for the relation scheme A(3) and
attempt to compute the corresponding matrix U with the coefficients of the unit vectors
u′x ∈ S1 (x ∈ X(3)) using Algorithm 1. We find all the coefficients can only be determined

in 55 cases with Γ
(3)
1
∼= C15 and 45 cases with Γ

(3)
1
∼= C9 + C6. In each of these cases, the

matrix U has full column rank, thus uniquely determining the orthornomal basis of S1

being used.

the electronic journal of combinatorics 33(1) (2026), #P1.2 15



For each of these 100 cases, we examine the (5·4)3 = 8000 candidates for the remaining
vertices y of A (determined by the choice of vertices in relations R1 and R2 with y in
each of the R3-cliques X1, X2, X3) and attempt to find the corresponding unit vectors u′y.
However, in none of the cases we find any such unit vectors, from which it follows that
the association scheme A does not exist.

The QPG4-8-45-18.ipynb notebook on the eigenspace-embeddings repository [37]
illustrates the computation needed to obtain the above result.

5.3 QPG with parameter array [[6, 18, 2, 6, 12], [1, 0, 2, 0; 0, 0, 3; 0, 1; 2]]

Let A be a 5-class association scheme with intersection numbers

(p0ij)
5
i,j=0 =


1 0 0 0 0 0
0 6 0 0 0 0
0 0 18 0 0 0
0 0 0 2 0 0
0 0 0 0 6 0
0 0 0 0 0 12

 , (p1ij)
5
i,j=0 =


0 1 0 0 0 0
1 0 3 0 2 0
0 3 9 0 0 6
0 0 0 0 0 2
0 2 0 0 0 4
0 0 6 2 4 0

 ,

(p2ij)
5
i,j=0 =


0 0 1 0 0 0
0 1 3 0 0 2
1 3 0 2 6 6
0 0 2 0 0 0
0 0 6 0 0 0
0 2 6 0 0 4

 , (p3ij)
5
i,j=0 =


0 0 0 1 0 0
0 0 0 0 0 6
0 0 18 0 0 0
1 0 0 1 0 0
0 0 0 0 6 0
0 6 0 0 0 6

 ,

(p4ij)
5
i,j=0 =


0 0 0 0 1 0
0 2 0 0 0 4
0 0 18 0 0 0
0 0 0 0 2 0
1 0 0 2 3 0
0 4 0 0 0 8

 , (p5ij)
5
i,j=0 =


0 0 0 0 0 1
0 0 3 1 2 0
0 3 9 0 0 6
0 1 0 0 0 1
0 2 0 0 0 4
1 0 6 1 4 0

 .

(3)

The graphs Γ1 = (X,R1) and Γ5 = (X,R5) are quotient-polynomial graphs on 45
vertices with parameter arrays [[6, 18, 2, 6, 12], [1, 0, 2, 0; 0, 0, 3; 0, 1; 2]] and [[12, 18, 2, 6, 6],
[4, 6, 8, 0; 0, 0, 6; 0, 2; 4]], respectively. The association scheme A is imprimitive with im-
primitivity set 0̃ = {0, 3, 4}. The dual eigenmatrix of A is

Q =



1 15 2 10 15 2

1 5
√
6

2

√
5−1
2

0 −5
√
6

2
−

√
5+1
2

1 0 −
√
5+1
2

0 0
√
5−1
2

1 −15
2

2 10 −15
2

2
1 0 2 −5 0 2

1 −5
√
6

4

√
5−1
2

0 5
√
6

4
−

√
5+1
2


.
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By the ordering of eigenspaces used in the above matrix, the corresponding dual imprim-
itivity set is 0 = {0, 2, 5}. We also have 1̃ = {1, 5}, 2̃ = {2}, and 1 = {1, 4}, 3 = {3}. Let
{Xℓ | 1 ⩽ ℓ ⩽ 5} be the set of the equivalence classes of R0̃, and note that the graphs
Γ4|Xℓ

= (Xℓ, R4|Xℓ
) (1 ⩽ ℓ ⩽ 5) are isomorphic to the complete tripartite graph K3×3. We

will therefore call the sets Xℓ (1 ⩽ ℓ ⩽ 5) the R4-tricliques of A. Furthermore, as {0, 3}
is another imprimitivity set of A, we have Xℓ = Xℓ1 ∪Xℓ2 ∪Xℓ3 (1 ⩽ ℓ ⩽ 5), where the
sets Xℓr (1 ⩽ ℓ ⩽ 5, 1 ⩽ r ⩽ 3) are the R3-cliques of A. We also note that the quotient
scheme Ã = A/0̃ is the cyclic scheme C5 – i.e., the graphs Γ̃1̃ = (X̃, R̃1̃) and Γ̃2̃ = (X̃, R̃2̃)
are both isomorphic to the graph C5.

We will consider embeddings of subschemes induced on three R4-tricliques of A into
the eigenspace S1 of dimension m1 = 15. We note that m1 = 6 and therefore m1

m1
= 5

2
< 3,

which may severely restrict which of such subschemes admit an embedding into S1. We
obtain the following result.

Theorem 5. An association scheme A with intersection numbers (3) does not exist.

Proof. Let X1, X2, X3 be R4-tricliques of A such that (X1, X2) ∈ R̃1̃ and (X1, X3),
(X2, X3) ∈ R̃2̃ (i.e., they correspond to a path of length 2 in Γ̃2̃). Let us first con-

sider the graph Γ
(2)
1 . Since p113 = 0 and p114 = 2, each vertex of Xℓ is in relations R1 with

precisely one vertex from each R3-clique Xℓ′r ({ℓ, ℓ′} = {1, 2}, 1 ⩽ r ⩽ 3). The graph

Γ
(2)
1 is therefore a cubic bipartite graph on 18 vertices with bipartition X1+X2 such that

its distance-2 graph admits a 3-coloring (i.e., each color class partitions Xi (i = 1, 2) into
R3-cliques).

We use the geng utility from the nauty package [29] to generate bipartite cubic graphs
on 18 vertices and then use SageMath [32] to pick the ones whose distance-2 graphs have
chromatic number (at most) 3. We find 18 such graphs, all of which have at most one
connected component not isomorphic toK3,3. Therefore, each of these graphs has a unique
bipartition up to graph automorphism, which we identify with X1 + X2. Furthermore,
for each such graph Γ, we find all 6-colorings of the graph obtained by adding the edges
of the distance-2 graph of Γ to the complete bipartite graph with bipartition X1 + X2,
and find that in each case, there is a unique such 6-coloring up to graph automorphism.
By identifying the partition of Γ into these color classes with the partition of X(2) into
R3-cliques, we see that the choice of such a graph for Γ

(2)
1 uniquely determines the relation

scheme A(2).
For each of these graphs, we thus build a candidate for the relation scheme A(2) and

attempt to compute the corresponding matrix U with the coefficients of the unit vectors
u′x ∈ S1 (x ∈ X(2)) using Algorithm 1. We find that an embedding into S1 exists for

7 choices of the graph Γ
(2)
1 . Since 2̃ = {2}, the corresponding relation schemes can be

uniquely extended into candidates for the relation scheme A(3). However, we find that in
none of these cases all the coefficients can be determined, and thus conclude that none
of these relation schemes admit an embedding into S1. Since we have considered all the
possibilities for the induced subscheme A(3), it follows that the association scheme A does
not exist.
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The QPG5-6-45-22.ipynb notebook on the eigenspace-embeddings repository [37]
illustrates the computation needed to obtain the above result.

6 Uniqueness results

Applying the same technique, we obtain two more uniqueness results for parameter sets
of 5-class association schemes.

6.1 QPG with parameter array [[12, 2, 1, 12, 12], [6, 0, 4, 1; 0, 0, 1; 0, 1; 4]]

Let A be a 5-class association scheme with intersection numbers

(p0ij)
5
i,j=0 =


1 0 0 0 0 0
0 12 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 12 0
0 0 0 0 0 12

 , (p1ij)
5
i,j=0 =


0 1 0 0 0 0
1 5 1 0 4 1
0 1 0 0 0 1
0 0 0 0 0 1
0 4 0 0 4 4
0 1 1 1 4 5

 ,

(p2ij)
5
i,j=0 =


0 0 1 0 0 0
0 6 0 0 0 6
1 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 12 0
0 0 0 0 0 6

 , (p3ij)
5
i,j=0 =


0 0 0 1 0 0
0 0 0 0 0 12
0 0 2 0 0 0
1 0 0 0 0 0
0 0 0 0 12 0
0 12 0 0 0 0

 ,

(p4ij)
5
i,j=0 =


0 0 0 0 1 0
0 4 0 0 4 4
0 0 0 0 2 0
0 0 0 0 1 0
1 4 2 1 0 4
0 4 0 0 4 4

 , (p5ij)
5
i,j=0 =


0 0 0 0 0 1
0 1 1 1 4 5
0 1 0 0 0 1
0 1 0 0 0 0
0 4 0 0 4 4
1 5 1 0 4 1

 .

(4)

The graph Γ1 = (X,R1) is a quotient-polynomial graph on 40 vertices with parameter
array [[12, 2, 1, 12, 12], [6, 0, 4, 1; 0, 0, 1; 0, 1; 4]]. The association scheme A is imprimitive
with imprimitivity set 0̃ = {0, 2, 3}. The dual eigenmatrix of A is

Q =


1 5 4 10 15 5
1 5

2
2
3

0 −5
2
−5

3

1 0 4 −10 0 5
1 −5 4 10 −15 5
1 0 −8

3
0 0 5

3

1 −5
2

2
3

0 5
2
−5

3

 .

By the ordering of eigenspaces used in the above matrix, the corresponding dual imprim-
itivity set is 0 = {0, 2, 5}. We also have 1̃ = {1, 5}, 4̃ = {4}, and 1 = {1, 4}, 3 = {3}. Let
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{Xℓ | 1 ⩽ ℓ ⩽ 10} be the set of the equivalence classes of R0̃, and note that the graphs
Γ2|Xℓ

= (Xℓ, R2|Xℓ
) (1 ⩽ ℓ ⩽ 10) are isomorphic to the complete bipartite graph K2,2. We

will therefore call the sets Xℓ (1 ⩽ ℓ ⩽ 10) the R2-bicliques of A. We also note that the
quotient scheme Ã = A/0̃ is the Johnson scheme J(5, 2) – i.e., the graph Γ̃1̃ = (X̃, R̃1̃)
is isomorphic to the triangular graph T (5), and the graph Γ̃4̃ = (X̃, R̃4̃) is isomorphic to
the Petersen graph.

We will consider embeddings of subschemes induced on three R2-bicliques of A into
the eigenspace S1 of dimension m1 = 5. We note that m1 = 2 and therefore m1

m1
= 5

2
< 3,

which may severely restrict which of such subschemes admit an embedding into S1. We
obtain the following result.

Theorem 6. There is, up to isomorphism, precisely one association scheme A with in-
tersection numbers (4).

Proof. LetX1, X2, X3 be R2-bicliques ofA such that (X1, X2) ∈ R̃1̃ and (X1, X3), (X2, X3)
∈ R̃4̃ (i.e., they correspond to a path of length 2 in Γ̃4̃). Let us first consider the graph

Γ
(2)
1 . Since p112 = 1 and p113 = 0, and then 1 + p112 + p113 = p512 = p513 = 2, the graph

Γ
(2)
1 is a union of cycles of lengths divisible by 4, with the two neighbours of each vertex

being in relation R2. In particular, Γ
(2)
1 must be isomorphic to C8 or 2C4, and its choice

uniquely determines the relation scheme A(2). Since 4̃ = {4}, such a relation scheme can
be uniquely extended into a candidate for the relation scheme A(3).

We thus build two candidates for the relation scheme A(3) and attempt to compute
the corresponding matrix U with the coefficients of the unit vectors u′x ∈ S1 (x ∈ X(3))
using Algorithm 1. We find that an embedding into S1 only exists in the case when
Γ
(2)
1
∼= 2C4. The corresponding matrix U has full column rank, thus uniquely determining

the orthonormal basis of S1 being used.
By the above argument, each vertex y ∈ X \ X(3) may be in relation R4 with all

vertices in at most one of X1, X2, X3, and is in relations R1 and R5 with a pair of vertices
in relation R2 from each of the remainder of these three R2-bicliques. Since there are 4
such pairs in each of Xℓ (1 ⩽ ℓ ⩽ 3), we examine the 3 · 42 + 43 = 112 candidates for
such vertices y and attempt to find the corresponding unit vectors u′y. Among them, we
find 28 vertices y such that u′y is a unit vector, which precisely matches the size of the set

X \X(3). Let Y be the set of all such vertices. We define a graph (Y,R′), where for a pair
of vertices y, z ∈ Y we have (y, z) ∈ R′ if and only if ⟨u′y, u′z⟩ =

Qi1

m1
for some i (1 ⩽ i ⩽ 5).

We find that this graph is complete, so we may attempt to construct A by identifying Y
with X \X(3).

Note that since Q21 = Q41 = 0, we cannot determine the relations of A from the inner
products between vectors u′x (x ∈ X) alone. We do however notice that the intersection
numbers pi11 (0 ⩽ i ⩽ 5) are all distinct, so we may build a graph Γ = (X,R), where
(x, y) ∈ R if and only if ⟨u′x, u′y⟩ =

Q11

m1
= 1

2
(x, y ∈ X), and then determine the relations

Ri (0 ⩽ i ⩽ 5) so that (x, y) ∈ Ri precisely when x and y have exactly pi11 common
neighbours in Γ. We verify that the obtained relation scheme is an association scheme
with the same parameters as A, and therefore conclude that there is, up to isomorphism,
precisely one such association scheme.
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The QPG5-12-40-2.ipynb notebook on the eigenspace-embeddings repository [37]
illustrates the computation needed to obtain the above result.

Remark 7. An alternative spherical representation of the association scheme A is given by
the vectors uαβij =

√
2
2
(αei+ βej) (1 ⩽ i < j ⩽ 5, α, β ∈ {−1, 1}), where {ei | 1 ⩽ i ⩽ 5} is

an orthonormal basis of S1. The inner product of two vectors corresponding to a pair of
vertices of A in relation Ri equals

Qi1

m1
(0 ⩽ i ⩽ 5); furthermore, the vectors corresponding

to a pair of vertices in relations R2 and R4 are u
αβ
ij and uα

′β′

i′j′ for some i, i′, j, j′, α, α′, β, β′

with the sets {i, j} and {i′, j′} being equal (with αα′ββ′ = −1) or disjoint, respectively.
The graph Γ1 is a 6-regular arc-transitive graph of diameter 3 and girth 3. Its group of

automorphisms has order 3840; using GAP [14], we find that its structure can be described
as Z2×(Z4

2 ⋊S5) – this also holds for the group of automorphisms of A. Its natural action
on X2 preserves the partition R – i.e., each relation of A corresponds to an orbit of the
action.

6.2 QPG with parameter array [[6, 4, 4, 12, 18], [3, 0, 0, 1; 0, 1, 0; 2, 0; 2]]

Let A be a 5-class association scheme with intersection numbers

(p0ij)
5
i,j=0 =


1 0 0 0 0 0
0 6 0 0 0 0
0 0 4 0 0 0
0 0 0 4 0 0
0 0 0 0 12 0
0 0 0 0 0 18

 , (p1ij)
5
i,j=0 =


0 1 0 0 0 0
1 0 2 0 0 3
0 2 0 0 2 0
0 0 0 0 4 0
0 0 2 4 0 6
0 3 0 0 6 9

 ,

(p2ij)
5
i,j=0 =


0 0 1 0 0 0
0 3 0 0 3 0
1 0 1 2 0 0
0 0 2 2 0 0
0 3 0 0 9 0
0 0 0 0 0 18

 , (p3ij)
5
i,j=0 =


0 0 0 1 0 0
0 0 0 0 6 0
0 0 2 2 0 0
1 0 2 1 0 0
0 6 0 0 6 0
0 0 0 0 0 18

 ,

(p4ij)
5
i,j=0 =


0 0 0 0 1 0
0 0 1 2 0 3
0 1 0 0 3 0
0 2 0 0 2 0
1 0 3 2 0 6
0 3 0 0 6 9

 , (p5ij)
5
i,j=0 =


0 0 0 0 0 1
0 1 0 0 2 3
0 0 0 0 0 4
0 0 0 0 0 4
0 2 0 0 4 6
1 3 4 4 6 0

 .

(5)

The graphs Γ1 = (X,R1) and Γ4 = (X,R4) are quotient-polynomial graphs on 45
vertices with parameter arrays [[6, 4, 4, 12, 18], [3, 0, 0, 1; 0, 1, 0; 2, 0; 2]] and [[12, 4, 4, 6, 18],
[9, 6, 0, 4; 0, 2, 0; 4, 0; 2]], respectively. The association scheme A is imprimitive with im-
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primitivity set 0̃ = {0, 2, 3}. The dual eigenmatrix of A is

Q =



1 10 2 20 10 2

1 5
√
5−1
2

0 −5 −
√
5+1
2

1 5
2

2 −10 5
2

2
1 −5 2 5 −5 2

1 −5
2

√
5−1
2

0 5
2
−

√
5+1
2

1 0 −
√
5+1
2

0 0
√
5−1
2


.

By the ordering of eigenspaces used in the above matrix, the corresponding dual imprim-
itivity set is 0 = {0, 2, 5}. We also have 1̃ = {1, 4}, 5̃ = {5}, and 1 = {1, 4}, 3 = {3}. Let
{Xℓ | 1 ⩽ ℓ ⩽ 5} be the set of the equivalence classes of R0̃, and note that the graphs
Γ2|Xℓ

= (Xℓ, R2|Xℓ
) (1 ⩽ ℓ ⩽ 5) are isomorphic to the graph K3□K3, or, equivalently, the

Hamming graph H(2, 3). We have already encountered this situation in Subsection 5.2,
and we will reuse the same terminology. Furthermore, we also note that the quotient
scheme Ã = A/0̃ is the cyclic scheme C5 – i.e., the graphs Γ̃1̃ = (X̃, R̃1̃) and Γ̃5̃ = (X̃, R̃5̃)
are both isomorphic to the graph C5.

We will consider embeddings of subschemes induced on three (R2 ∪ R3)-cliques of
A into the eigenspace S1 of dimension m1 = 10. We note that m1 = 4 and therefore
m1

m1
= 5

2
< 3, which may severely restrict which of such subschemes admit an embedding

into S1. We obtain the following result.

Theorem 8. There is, up to isomorphism, precisely one association scheme A with in-
tersection numbers (5).

Proof. Let X1, X2, X3 be (R2 ∪ R3)-cliques of A such that (X1, X2) ∈ R̃1̃ and (X1, X3),
(X2, X3) ∈ R̃5̃ (i.e., they correspond to a path of length 2 in Γ̃5̃). Since p112 = 2 and

p113 = 0, we may apply Lemma 2 to conclude that the graph Γ
(2)
1 is isomorphic to 3K3,3,

with the partitions of vertices of X1 and X2 corresponding to the connected components
of Γ

(2)
1 coincinding with spreads of Γ2|X1 and Γ2|X2 . The relation scheme A(2) is thus

uniquely determined, and since 5̃ = {5}, it can be uniquely extended into the relation
scheme A(3).

We attempt to compute the corresponding matrix U with the coefficients of the unit
vectors u′x ∈ S1 (x ∈ X(3)) using Algorithm 1 and obtain a matrix with full column rank,
thus uniquely determining the orthonormal basis of S1 being used.

By the above argument, each vertex y ∈ X \ X(3) is in relation R5 with all vertices
in one of X1 and X2, in relation R1 with six vertices forming two lines in each of the
remaining (R2 ∪ R3)-cliques within X(3), and in relation R4 with the other vertices of
X(3). Since there are 6 lines in each of Xℓ (1 ⩽ ℓ ⩽ 3), we examine the 2 · 62 = 72
candidates for such vertices y and attempt to find the corresponding unit vectors u′y.
Among them, we find 36 vertices y such that u′y is a unit vector, which is precisely twice

the size of the set X \X(3).
Let Y be the set of all such vertices. Since X \X(3) = X4 ∪X5 and (X4, X5) ∈ R̃5̃, we

define a graph (Y,R′), where for a pair of vertices y, z ∈ Y we have (y, z) ∈ R′ if and only
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Figure 2: The association scheme A. The lines are represented with rounded rectangles and
form five GQ(2, 1) geometries; the vertices are implied at intersections of lines. Two distinct
vertices are in relation R1 if they are contained in two lines connected by an edge, in relation R2

if they are contained in a common line, in relation R3 if they are contained in distinct lines of
the same GQ(2, 1), in relation R4 if they are contained in lines of adjacent GQ(2, 1) geometries
not connected by an edge, and in relation R5 otherwise.

if ⟨u′y, u′z⟩ =
Qi1

m1
for some i ∈ {2, 3, 5}. We find that this graph consists of two disjoint

18-cliques – we label their vertex sets by Y1 and Y2. We may then attempt to construct A
by identifying Y1 or Y2 with X \X(3) and using the inner products among the vectors u′x
(x ∈ X) to determine their relations. We verify that both the obtained relation schemes
are association schemes with the same parameters as A. Since the two association schemes
are isomorphic, we conclude that there is, up to isomorphism, precisely one association
scheme with the parameters of A.

The QPG5-6-45-5.ipynb notebook on the eigenspace-embeddings repository [37]
illustrates the computation needed to obtain the above result.

Remark 9. Uniqueness can be also proved without computing a spherical representation:
Lemma 2 and the intersection number p511 = 1 imply that for each (R2 ∪ R3)-clique Y ,
different spreads of Γ2|Y are used to determine which vertices of the two (R2∪R3)-cliques
Y ′ and Y ′′ such that (Y, Y ′), (Y, Y ′′) ∈ R̃1̃ are in relation R1 with the vertices of Y . This
uniquely determines the structure of A, as shown in Figure 2.

The graph Γ1 = (X,R1) is a 6-regular arc-transitive graph of diameter 4 and girth
4. It can be described by taking the vertex set X = Z5 × Z3 × Z3 and the relation
R1 = R⃗1 ∪ R⃗⊤

1 , where R⃗1 = {((ℓ, r, s), (ℓ + 1, s, t)) | ℓ ∈ Z5, r, s, t ∈ Z3}. From this
description we can see that Γ1 is isomorphic to the graph C(3, 5, 2) as defined by Praeger
and Xu [31]. Its group of automorphisms has (large) order 77760 – this also holds for the
group of automorphisms of A. Its natural action on X2 preserves the partition R – i.e.,
each relation of A corresponds to an orbit of the action. Note in particular that, although
the graphs Γ2|Xℓ

and Γ3|Xℓ
(1 ⩽ ℓ ⩽ 5) are mutually isomorphic, no automorphism of A

exchanges R2 and R3 (as it can be seen from, e.g., p112 ̸= p113).
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A Known constructions and nonexistences

Here, we present the results of feasibility checking on parameter arrays for relational
quotient-polynomial graphs marked as feasible in [22]. The following tables present the
parameter arrays together with reasons for nonexistence or constructions. In the cases
when multiple parameter arrays correspond to the same parameter set of an association
scheme (i.e., given with different orderings of the relations), they are listed together, and
the ordering of the relations (using the index set I = {0, 1, . . . , d} for d-class association
schemes, where R0 is the identity relation and R1 is the adjacency relation of the graph) in
the given reason for nonexistence corresponds to the ordering in the first listed parameter
array. Similarly, the ordering of the eigenspaces (using the index set J = {0, 1, . . . , d})
corresponds to the decreasing ordering of eigenvalues of A1 in the ordering of the first
parameter array.

The nonexistence results for 3-, 4-, 5- and 6-class quotient-polynomial graphs are
given in Tables 1, 2, 3 and 4, respectively. The given reasons for nonexistence include the
following.

• handshake: the handshake lemma is not satisfied (i.e., kip
i
ij is odd for some i, j ∈ I),

• multiplicities: the multiplicities of the association scheme are nonintegral,

• qhij < 0: the specified Krein parameter is negative (see [6, Theorem 2.3.2]),

• absolute bound: the absolute bound is exceeded (see [6, Theorem 2.3.3]),

• k̃ı̃ or p̃
h̃
ı̃ȷ̃ ̸∈ Z in A/0̃: the specified intersection number of the quotient scheme for

the specified imprimitivity set is nonintegral,

• conference for A/0̃: the quotient scheme for the specified imprimitivity set has the
parameters of a conference graph of infeasible order (see [6, §1.3]),

• no spread in SRG [20]: the 3-class association scheme corresponds to a strongly
regular graph with a spread (see [20, Proposition 2.2]), but a strongly regular graph
with the resulting parameters (obtained by fusing two of the classes) does not admit
a spread (see [20, Theorems 2.4 and 6.1]),

• no solution for (r, s, t): there is no solution for triple intersection numbers for vertices
x, y, z such that (x, y) ∈ Rr, (x, z) ∈ Rs and (y, z) ∈ Rt (see [17, §2.2]),

• forbidden quadruple (r, s, t;h, i, j): there is a contradiction for triple intersection
numbers for vertices w, x, y, z such that (x, y) ∈ Rr, (x, z) ∈ Rs, (y, z) ∈ Rt, (w, x) ∈
Rh, (w, y) ∈ Ri and (w, z) ∈ Rj (see [17, Corollary 4.2]),
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• a reference: the nonexistence condition is given as a result in [6] (in one case applied
to a fusion scheme obtained by taking the unions of the specified relations) or the
cited paper,

• not in classification [21]: no association scheme with the given parameters appears in
the classification of association schemes with few vertices by Hanaki and Miyamoto,

• Theorem in §5: all known feasibility conditions are satisfied, but nonexistence is
shown in Section 5.

Remark 10. Nonexistence for the two examples in Table 1 which are ruled out by re-
sults in [20] can also be shown using the technique described in Section 4. The proofs
are given in the QPG3-12-35-16.ipynb and QPG3-18-40-12.ipynb notebooks on the
eigenspace-embeddings repository [37].

Tables 5, 6, 7 and 8 show the constructions of association schemes for the parameter
arrays marked as feasible in [22], together with the number of corresponding association
scheme and a reference (if applicable). When the reference is not given, the number
of corresponding association schemes can be deduced from the tables by Van Dam [10]
and the classifcation by Hanaki and Miyamoto [21] (as well as other well-known results
on distance-regular graphs, see [5] and [6] for more details), and the properties of the
constructions given below.

Most of the constructions involve derivation from smaller association schemes. Al-
though the resulting association schemes are symmetric, some of the building blocks
are asymmetric association schemes – i.e., we replace the requirement that the rela-
tions of the association scheme are symmetric with the requirement that the relation
set is closed under transposition. We use the following derivations from the associa-
tion schemes A = (X,R = {Ri | i ∈ I}), A′ = (X ′,R′ = {R′

i | i ∈ I ′}) and

A(x) = (X(x),R(x) = {R(x)
i | i ∈ I ′}) (x ∈ X), where 0 ∈ I and R0 = IdX , and

A(x) has the same parameters as A′.

• The direct product [1, §3.2]

A×A′ =
(
X ×X ′, {Ri ⊗R′

j | i ∈ I, j ∈ I ′}
)
.

An association scheme with the same parameters as A × A′ is necessarily a direct
product of association schemes with the same parameters as A and A′.

• The lexicographic coproduct [1, §10.6.1]

A[f ] =

(∐
x∈X

X(x),

{{((x, y), (x′, y′)) | (x, x′) ∈ Ri, y ∈ X(x), y′ ∈ X(x′)} | i ∈ I \ {0}}

∪ {{((x, y), (x, y′)) | x ∈ X, (y, y′) ∈ R(x)
j } | j ∈ I ′}

)
,

the electronic journal of combinatorics 33(1) (2026), #P1.2 24

https://nbviewer.org/github/jaanos/eigenspace-embeddings/blob/main/QPG3-12-35-16.ipynb
https://nbviewer.org/github/jaanos/eigenspace-embeddings/blob/main/QPG3-18-40-12.ipynb


order parameter array reason for nonexistence
35 [[12, 6, 16], [2, 3; 3]] q122 < 0
35 [[12, 6, 16], [4, 3; 3]] no spread in SRG [20]
35 [[12, 16, 6], [3, 0; 8]] q122 < 0
35 [[24, 4, 6], [18, 16; 4]] [6, Prop. 1.10.5.]
36 [[12, 3, 20], [12, 3; 0]], [[20, 3, 12], [20, 15; 0]] absolute bound
36 [[15, 5, 15], [6, 2; 3]], [[15, 5, 15], [6, 10; 3]] q113 < 0

38 [[18, 1, 18], [18, 9; 0]] p̃1̃
1̃1̃
̸∈ Z in A/{0, 2}

39 [[12, 12, 14], [5, 0; 6]] multiplicities
40 [[14, 4, 21], [14, 6; 0]], [[21, 4, 14], [21, 12; 0]] absolute bound
40 [[18, 3, 18], [6, 8; 2]] [10, Lemma 6.1]
40 [[18, 9, 12], [2, 6; 6]] q111 < 0
40 [[18, 9, 12], [10, 6; 6]] no spread in SRG [20]

44 [[10, 3, 30], [10, 2; 0]] k̃1̃ ̸∈ Z in A/{0, 2}
45 [[8, 8, 28], [1, 0; 2]] q113 < 0
45 [[8, 32, 4], [1, 0; 8]] [6, Prop. 4.3.3.]

45 [[12, 4, 28], [12, 3; 0]] k̃1̃ ̸∈ Z in A/{0, 2}
48 [[10, 2, 35], [10, 2; 0]] k̃1̃ ̸∈ Z in A/{0, 2}
50 [[14, 28, 7], [5, 0; 12]] absolute bound

51 [[8, 2, 40], [8, 1; 0]], [[40, 2, 8], [40, 35; 0]] k̃1̃ ̸∈ Z in A/{0, 2}
51 [[16, 2, 32], [16, 5; 0]], [[16, 32, 2], [5, 16; 0]], [[32, 2, 16], [32, 22; 0]] k̃1̃ ̸∈ Z in A/{0, 2}
54 [[12, 1, 40], [12, 3; 0]], [[40, 1, 12], [40, 30; 0]] p̃3̃

1̃1̃
̸∈ Z in A/{0, 2}

54 [[26, 1, 26], [26, 13; 0]] p̃1̃
1̃1̃
̸∈ Z in A/{0, 2}

56 [[13, 39, 3], [3, 0; 13]] handshake
56 [[15, 10, 30], [6, 2; 2]] absolute bound
56 [[15, 30, 10], [4, 0; 12]], [[30, 10, 15], [12, 14; 8]] q113 < 0
56 [[18, 1, 36], [18, 8; 0]], [[36, 1, 18], [36, 20; 0]] q333 < 0
56 [[18, 7, 30], [18, 6; 0]], [[30, 7, 18], [30, 20; 0]] absolute bound
56 [[20, 5, 30], [4, 8; 2]], [[30, 5, 20], [18, 15; 3]] Fon-Der-Flaass [13]
56 [[24, 7, 24], [24, 12; 0]] absolute bound
56 [[27, 27, 1], [13, 0; 27]] handshake
56 [[39, 3, 13], [39, 30; 0]] handshake
58 [[21, 28, 8], [15, 0; 21]] [6, Prop. 1.10.4.]

60 [[14, 3, 42], [14, 2; 0]], [[42, 3, 14], [42, 36; 0]] k̃1̃ ̸∈ Z in A/{0, 2}
60 [[14, 3, 42], [14, 3; 0]], [[42, 3, 14], [42, 33; 0]] k̃1̃ ̸∈ Z in A/{0, 2}
60 [[14, 42, 3], [2, 0; 14]], [[42, 3, 14], [28, 33; 3]] absolute bound

60 [[28, 3, 28], [28, 14; 0]] p̃1̃
1̃1̃
̸∈ Z in A/{0, 2}

Table 1: Parameter arrays for 3-class relational QPGs marked as feasible in [22] which fail a
known feasibility condition.
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order parameter array reason for nonexistence
20 [[8, 2, 1, 8], [4, 0, 3; 0, 1; 1]] not in classification [21]
24 [[6, 1, 6, 10], [6, 1, 0; 0, 0; 3]] multiplicities
27 [[12, 2, 6, 6], [12, 6, 4; 0, 0; 6]] absolute bound
32 [[18, 1, 6, 6], [18, 12, 9; 0, 0; 6]] no solution for (4, 4, 1)
40 [[8, 3, 12, 16], [8, 0, 2; 0, 0; 6]] no solution for (1, 1, 4)
40 [[9, 9, 3, 18], [4, 0, 0; 3, 1; 1]] q114 < 0
40 [[12, 3, 12, 12], [12, 0, 2; 0, 0; 8]] q114 < 0
42 [[10, 1, 10, 20], [10, 1, 0; 0, 0; 4]] q114 < 0
42 [[10, 1, 10, 20], [10, 1, 2; 0, 0; 4]] no solution for (1, 1, 3)
42 [[10, 20, 1, 10], [3, 0, 0; 0, 6; 1]] [6, Thm. 4.4.11.]
42 [[12, 5, 12, 12], [12, 0, 4; 0, 0; 8]] absolute bound
44 [[12, 1, 10, 20], [12, 6, 3; 0, 0; 3]] q333 < 0
45 [[8, 8, 4, 24], [1, 0, 2; 2, 1; 1]] Theorem 4
45 [[12, 2, 12, 18], [12, 3, 0; 0, 0; 6]] q114 < 0
45 [[12, 4, 4, 24], [6, 0, 3; 0, 1; 2]] Theorem 3
48 [[12, 5, 12, 18], [12, 0, 4; 0, 0; 8]] absolute bound
48 [[12, 7, 12, 16], [12, 0, 3; 0, 0; 9]] absolute bound

52 [[12, 1, 14, 24], [12, 0, 5; 0, 0; 7]] p̃4̃
1̃1̃
̸∈ Z in A/{0, 2}

54 [[12, 1, 16, 24], [12, 3, 1; 0, 0; 6]] no solution for (1, 1, 4)

54 [[12, 1, 16, 24], [12, 3, 2; 0, 0; 6]] p̃3̃
1̃1̃
̸∈ Z in A/{0, 2}

54 [[12, 5, 12, 24], [12, 0, 2; 0, 0; 6]] absolute bound
54 [[12, 8, 15, 18], [12, 0, 2; 0, 0; 10]] absolute bound
56 [[9, 36, 1, 9], [2, 0, 0; 0, 8; 1]] q444 < 0
56 [[10, 18, 9, 18], [5, 0, 0; 0, 5; 5]] q113 < 0
56 [[12, 1, 12, 30], [12, 2, 0; 0, 0; 4]] q114 < 0
57 [[10, 10, 6, 30], [2, 0, 2; 5, 1; 1]] q111 < 0
60 [[10, 4, 20, 25], [10, 0, 2; 0, 0; 8]] no solution for (1, 1, 4)

60 [[12, 2, 18, 27], [12, 0, 4; 0, 0; 8]] p̃4̃
1̃1̃
̸∈ Z in A/{0, 2}

60 [[12, 5, 18, 24], [12, 0, 3; 0, 0; 9]] no solution for (1, 1, 4)

Table 2: Parameter arrays for 4-class relational QPGs marked as feasible in [22] which fail a
known feasibility condition.
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order parameter array reason for nonexistence
32 [[6, 6, 1, 9, 9], [1, 0, 2, 0; 6, 0, 2; 0, 0; 2]] absolute bound
35 [[6, 12, 2, 2, 12], [2, 0, 0, 0; 0, 6, 2; 0, 1; 0]] multiplicities
35 [[12, 2, 2, 6, 12], [6, 0, 4, 4; 0, 0, 1; 2, 1; 2]] [6, Prop. 1.10.5.] for

({0}, {4}, {1, 5}, {2, 3})-fusion
36 [[8, 8, 1, 2, 16], [1, 0, 4, 2; 8, 4, 2; 0, 0; 0]] not in classification [21]
40 [[6, 3, 6, 12, 12], [2, 0, 2, 0; 2, 0, 0; 0, 2; 2]] q115 < 0
40 [[6, 24, 1, 2, 6], [1, 0, 3, 0; 0, 0, 4; 0, 1; 1]] forbidden quadruple (5, 5, 2; 4, 5, 5)
40 [[12, 6, 3, 6, 12], [6, 4, 2, 0; 0, 2, 1; 0, 2; 3]] q115 < 0

40 [[12, 12, 1, 2, 12], [4, 12, 0, 3; 0, 0, 4; 0, 0; 2]] p̃1̃
1̃1̃
̸∈ Z in A/{0, 3}

42 [[6, 18, 1, 4, 12], [1, 6, 0, 0; 0, 0, 3; 0, 0; 2]],
[[12, 4, 1, 6, 18], [6, 12, 2, 4; 0, 4, 0; 0, 0; 2]]

absolute bound

42 [[8, 8, 1, 8, 16], [2, 8, 0, 2; 0, 4, 0; 0, 0; 2]] q111 < 0
42 [[10, 10, 1, 10, 10], [5, 0, 0, 4; 0, 5, 0; 0, 1; 5]] conference for A/{0, 3}
42 [[10, 10, 1, 10, 10], [8, 0, 0, 1; 0, 2, 0; 0, 1; 8]] multiplicities
42 [[12, 4, 1, 12, 12], [3, 0, 5, 2; 0, 2, 1; 0, 1; 5]] absolute bound
42 [[12, 4, 1, 12, 12], [3, 0, 5, 3; 0, 2, 1; 0, 1; 5]] absolute bound
44 [[9, 9, 1, 12, 12], [4, 0, 3, 0; 9, 0, 3; 0, 0; 6]] multiplicities
45 [[6, 18, 2, 6, 12], [1, 0, 2, 0; 0, 0, 3; 0, 1; 2]],

[[12, 18, 2, 6, 6], [4, 6, 8, 0; 0, 0, 6; 0, 2; 4]]
Theorem 5

45 [[6, 18, 2, 6, 12], [1, 6, 0, 0; 0, 0, 3; 0, 0; 3]],
[[12, 6, 2, 6, 18], [6, 12, 0, 4; 0, 6, 0; 0, 0; 2]]

no solution for (1, 1, 2)

45 [[12, 4, 4, 12, 12], [6, 0, 6, 3; 0, 1, 1; 2, 2; 3]] q133 < 0
48 [[10, 5, 2, 10, 20], [2, 10, 0, 2; 0, 4, 0; 0, 0; 2]] q222 < 0
48 [[10, 5, 2, 10, 20], [2, 10, 0, 3; 0, 4, 0; 0, 0; 3]] q555 < 0
48 [[10, 5, 2, 10, 20], [2, 10, 1, 2; 0, 4, 0; 0, 0; 2]] q222 < 0
48 [[10, 10, 1, 6, 20], [1, 0, 5, 2; 10, 5, 2; 0, 0; 0]] q111 < 0
48 [[10, 10, 3, 4, 20], [1, 10, 0, 2; 0, 10, 2; 0, 0; 0]] q222 < 0
48 [[10, 20, 3, 4, 10], [3, 10, 0, 0; 0, 0, 6; 0, 0; 4]] q555 < 0
48 [[12, 4, 1, 6, 24], [6, 12, 0, 4; 0, 4, 0; 0, 0; 2]] multiplicities
48 [[12, 12, 3, 8, 12], [2, 12, 0, 1; 0, 6, 6; 0, 0; 4]] absolute bound
48 [[14, 2, 3, 7, 21], [7, 0, 4, 4; 0, 2, 0; 0, 2; 2]] handshake
48 [[14, 4, 1, 14, 14], [7, 0, 5, 3; 0, 0, 2; 0, 1; 5]] multiplicities
54 [[12, 4, 1, 12, 24], [3, 12, 0, 3; 0, 3, 0; 0, 0; 3]] absolute bound
54 [[12, 24, 2, 3, 12], [3, 12, 0, 0; 0, 0, 6; 0, 0; 3]] multiplicities
56 [[9, 9, 1, 18, 18], [1, 0, 2, 1; 9, 2, 1; 0, 0; 3]] handshake
56 [[9, 9, 9, 10, 18], [4, 0, 0, 2; 5, 0, 0; 0, 2; 5]] multiplicities
56 [[12, 12, 1, 6, 24], [1, 0, 6, 3; 12, 6, 3; 0, 0; 0]] absolute bound
56 [[12, 12, 1, 6, 24], [1, 12, 0, 2; 0, 4, 4; 0, 0; 2]] no solution for (1, 1, 2)
56 [[12, 12, 1, 6, 24], [4, 12, 0, 3; 0, 4, 1; 0, 0; 2]] q222 < 0
56 [[12, 12, 3, 4, 24], [1, 4, 6, 3; 8, 6, 3; 0, 0; 0]] absolute bound
56 [[12, 12, 3, 4, 24], [2, 4, 6, 3; 8, 6, 3; 0, 0; 0]],

[[12, 24, 3, 4, 12], [3, 4, 6, 0; 0, 0, 6; 0, 2; 2]]
q445 < 0

56 [[12, 12, 3, 4, 24], [2, 12, 0, 3; 0, 12, 3; 0, 0; 0]],
[[12, 24, 3, 4, 12], [3, 12, 0, 0; 0, 0, 6; 0, 0; 4]]

absolute bound

60 [[6, 24, 1, 12, 16], [1, 6, 0, 0; 0, 0, 3; 0, 0; 3]] multiplicities
60 [[12, 8, 3, 12, 24], [3, 12, 0, 3; 0, 6, 0; 0, 0; 3]] no solution for (1, 1, 2)
60 [[12, 12, 2, 9, 24], [1, 12, 0, 2; 0, 4, 4; 0, 0; 3]] no solution for (1, 1, 2)

60 [[12, 32, 1, 2, 12], [3, 12, 0, 0; 0, 0, 8; 0, 0; 2]] p̃2̃
1̃1̃
̸∈ Z in A/{0, 3}

Table 3: Parameter arrays for 5-class relational QPGs marked as feasible in [22] which fail a
known feasibility condition.
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order parameter array reason for nonexistence
36 [[8, 8, 1, 2, 8, 8], [4, 0, 0, 3, 0; 0, 4, 0, 3; 0, 0, 1; 1, 0; 4]] not in classification [21]
40 [[6, 6, 1, 6, 8, 12], [2, 6, 0, 0, 1; 0, 0, 3, 0; 0, 0, 0; 0, 3; 2]] q222 < 0
42 [[12, 12, 1, 4, 6, 6], [5, 0, 3, 6, 4; 12, 3, 4, 6; 0, 0, 0; 2, 2; 0]] q566 < 0

48 [[12, 12, 1, 2, 8, 12], [4, 12, 0, 3, 2; 0, 0, 6, 4; 0, 0, 0; 0, 2; 2]] p̃5̃
1̃1̃
̸∈ Z in A/{0, 3}

48 [[12, 12, 1, 2, 8, 12], [4, 0, 6, 3, 0; 0, 0, 6, 4; 0, 0, 1; 0, 1; 2]] q116 < 0
54 [[12, 6, 2, 6, 9, 18], [6, 12, 0, 0, 4; 0, 6, 0, 0; 0, 0, 0; 0, 2; 6]] no solution for (4, 4, 6)
54 [[12, 6, 3, 8, 12, 12], [6, 0, 6, 0, 4; 4, 0, 2, 0; 0, 0, 2; 4, 0; 6]] q114 < 0
54 [[12, 8, 3, 6, 12, 12], [3, 0, 8, 0, 5; 8, 0, 4, 0; 0, 0, 1; 2, 0; 6]] q111 < 0
56 [[12, 3, 4, 12, 12, 12], [4, 0, 0, 7, 3; 0, 2, 0, 0; 0, 2, 2; 3, 7; 0]] absolute bound
56 [[12, 12, 3, 4, 12, 12], [6, 12, 0, 2, 0; 0, 0, 0, 6; 0, 0, 0; 4, 0; 6]] absolute bound
60 [[12, 12, 2, 3, 6, 24], [3, 0, 0, 4, 0; 0, 4, 4, 3; 0, 0, 1; 0, 1; 1]] q116 < 0
63 [[12, 6, 2, 6, 18, 18], [6, 12, 0, 4, 0; 0, 6, 0, 0; 0, 0, 0; 2, 0; 6]] no solution for (4, 4, 5)
64 [[12, 12, 1, 6, 8, 24], [4, 0, 6, 0, 2; 12, 6, 0, 2; 0, 0, 0; 0, 0; 4]] q556 < 0
64 [[12, 12, 1, 8, 12, 18], [5, 0, 0, 0, 4; 0, 3, 5, 0; 0, 1, 0; 0, 4; 4]] q222 < 0
70 [[12, 12, 1, 8, 12, 24], [4, 0, 3, 1, 2; 0, 0, 4, 2; 0, 1, 0; 2, 2; 2]] q466 < 0

Table 4: Parameter arrays for 6-class relational QPGs marked as feasible in [22] which fail a
known feasibility condition.

where f is a map from X to the set of association schemes with the same param-
eters as A′ such that f(x) = A(x) (x ∈ X). In the case when f(x) = A′ for all
x ∈ X, we write A[f ] = A[A′] and call the resulting association scheme the lexico-
graphic product1 of A and A′. An association scheme with the same parameters as
A[f ] is necessarily a lexicographic coproduct of association schemes with the same
parameters as A and A′ (cf. [39], where it is assumed that f is constant).

• The k-th Hamming power [1, §10.6.3]

H(k,A) =

Xk,


⋃
v∈(ku)

k⊗
j=1

Rvj

∣∣∣∣∣∣∣ u ∈ ZI , u ⩾ 0,
k∑
i=1

ui = k


 ,

where
(
k
u

)
is the set of all vectors from Ik in which each entry i ∈ I occurs ui

times. The Hamming power can be seen as a generalization of Hamming schemes
(cf. [1, §1.4.3], [6, §9.2]), i.e., the Hamming scheme H(k, n) is precisely the Hamming
power H(k,Kn) of the 1-class association scheme on n vertices. Unlike the direct
and lexicographic products, an association scheme with the same parameters as
H(k,A) is not necessarily a Hamming power of an association scheme with the
same parameters of A – a counterexample is the association scheme corresponding
to the Shrikhande graph [33], which has the same parameters as H(2, 4).

1In the literature, this product is known as nesting or the wreath product [1, §3.4] and denoted by A≀A′

or A/A′. However, unlike the direct product of association schemes, which is a natural generalization of
the direct product of groups, this construction is unrelated to the wreath product of groups. Therefore,
we prefer the name lexicographic product and adopt the notation used for the lexicographic product of
graphs, as the adjacency relation of the lexicographic product of graphs whose adjacency relations are
relations of A and A′ is a union of the corresponding relations of A[A′].
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• The symmetrization
A‡ = (X, {Ri ∪R⊤

i | i ∈ I}).
If A is a commutative association scheme (i.e., phij = phji for all h, i, j ∈ I), then A‡

is a symmetric association scheme.

The following association schemes are used as building blocks. Unless noted otherwise,
these association schemes are symmetric.

• Kn: the 1-class association scheme on n vertices.

• Zn: the cyclic group on n vertices as the corresponding thin association scheme.
The association scheme Zn is commutative, but is only symmetric when n ⩽ 2.

• Cn: the cyclic scheme on n vertices (i.e., Cn = Z‡
n).

• Had(4n): the association schemes corresponding to the incidence graphs of square
2-(4n− 1, 2n, n) designs associated to Hadamard matrices of order 4n.

• GH(s, t): the association schemes corresponding to the point graphs of generalized
hexagons of order (s, t) (see [6, §6.5]).

• J(n, k): the Johnson scheme of k-subsets of a set of size n (see [1, §1.4.2], [6, §9.1]).

• Pair(n): the association scheme of ordered 2-subsets of a set of size n, with classes
corresponding to pairs matching in one coordinate, pairs matching in different co-
ordinates, disjoint pairs and reversed pairs (see [1, §5.5]).

• Cyc(q, r): the cyclotomic scheme(
Fq,
{
IdFq ,

{
(x, x+ γi+rj)

∣∣∣∣ x ∈ Fq, j = 1, . . . ,
q − 1

r

} ∣∣∣∣ i = 1, . . . , r

})
,

where q is a prime power, r divides q−1, and γ generates the multiplicative group F∗
q

(see [11, §2.4]). The association scheme Cyc(q, r) is commutative, and is symmetric
precisely when q is even or q−1

r
is even.

• Hyperbolic quadric in PG(3, q): the association scheme of the points of a hyperbolic
quadric in the projective geometry PG(3, q) (see [6, §12.2] for the construction).

• Locally Cyc(q, r): the association scheme corresponding to the distance-regular an-
tipodal r-cover of Kq+1 whose local graphs are the graphs of the association scheme
Cyc(q, r) (see [6, Proposition 12.5.3] for the construction).

• Locally Conf(q): the association schemes corresponding to distance-regular antipo-
dal double covers of Kq+1 whose local graphs are (not necessarily mutually iso-
morphic) SRG(q, q−1

2
, q−5

4
, q−1

4
) conference graphs. They are in one-to-one corre-

spondence with 2-graphs on q + 1 vertices. When q is a prime power with q ≡ 1
(mod 4), an example is given by the locally Cyc(q, 2) association scheme.
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• Named graphs: the association scheme corresponding to the (distance-regular)
named graph (see [6]).

• SRG(n, k, λ, µ): the association schemes corresponding to strongly regular graphs
with parameters (n, k, λ, µ) (when there are multiple such graphs not sharing a
common construction).

• Cay(G,S): the association scheme corresponding to the Cayley graph of the group
G with the connecting set S, under the assumption that it is quotient-polynomial.
The association scheme Cay(G,S) is symmetric if S is closed under inversion in G.

Remark 11. The parameter array [[8, 4, 3, 24], [2, 0, 2; 0, 1; 1]] uniquely determines a quoti-
ent-polynomial graph Γ1 = (X,R1) which is derived from a spherical code found by Smith,
with the following construction given by Conway and Sloane (cf. [2, 34]). Uniqueness is
due to Bannai, Bannai and Bannai [3]. An alternative proof of uniqueness paralleling the
proofs of the results in Sections 5 and 6 is given in the QPG4-8-40-15.ipynb notebook
on the eigenspace-embeddings repository [37].

Let D be the set of all symmetric relations R ⊆ (F∗
5)

2 such that ∆ = (F∗
5, R) is a graph

with the degrees of the vertices 1 and 2 having the same parity as the number of edges
of ∆ and the degrees of the vertices 3 and 4 having different parity from the number of
edges of ∆. Note that there are precisely 8 such graphs, so |D| = 8. We may then define

the unit vectors u(h,R) ∈ R(
F5
2 ) (h ∈ F5, R ∈ D) such that

u
(h,R)
{i+h,j+h} =


0 if 0 ∈ {i, j},
− 1√

6
if (i, j) ∈ R, and

1√
6

otherwise

({i, j} ∈
(F5

2

)
).

These vectors can be viewed as a spherical representation of the corresponding asso-
ciation scheme A = (X,R = {Ri | 0 ⩽ i ⩽ 4}), with two vertices being in rela-
tions R0, R1, R2, R3, R4 when their corresponding vectors have inner products equal to
1,−1

2
, 0,−1

3
, 1
6
, respectively.

The graph Γ1 is an 8-regular arc-transitive graph of diameter 3 and girth 4. It has
appeared in a census of edge-girth-regular graphs [18, 19], as each edge lies on precisely
seven 4-cycles, and in a census of rotary maps [7, 8] as a graph polyhedrally embedding
as a chiral rotary map on the orientable surface of genus 21.

The corresponding association scheme A can be reconstructed from Γ1 as follows. The
relation R1 is the adjacency relation of Γ1. For each vertex x of Γ1, there are precisely
three vertices at distance 3 from x, and they are also mutually at distance 3 – together
with x they form a R3-clique Y . There are precisely four vertices at distance 2 from all
vertices of Y – these vertices are in relation R2 with x (and with other vertices of Y ).
Finally, the remaining vertices are adjacent to a vertex of Y distinct from x – these are
in relation R4 with x.

The group of automorphisms of Γ1 has order 1920 and is isomorphic to a semidirect
product Z4

2 ⋊S5 – this also holds for the group of automorphisms of A. Its natural action
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order parameter array construction # reference
35 [[12, 4, 18], [3, 4; 2]] SRG(35, 16, 6, 8) \ spread ⩾ 1 [20]
36 [[17, 17, 1], [8, 0; 17]] locally Cyc(17, 2) 1
36 [[20, 5, 10], [8, 12; 4]] Sylvester 1
37 [[12, 12, 12], [4, 5; 3]] Cyc(37, 3) ⩾ 1
39 [[18, 2, 18], [18, 9; 0]] Cyc(13, 2)[K3] 1
39 [[24, 2, 12], [12, 22; 2]] K3 ×K13 1
42 [[13, 26, 2], [4, 0; 13]] locally Cyc(13, 3) ⩾ 1
43 [[14, 14, 14], [4, 6; 4]] Cyc(43, 3) ⩾ 1
46 [[12, 22, 11], [6, 0; 12]] Had(24) 582
51 [[16, 32, 2], [5, 0; 16]], [[32, 2, 16], [16, 20; 2]] locally Cyc(16, 3) ⩾ 1
51 [[24, 2, 24], [24, 12; 0]] Cyc(17, 2)[K3] 1
51 [[32, 2, 16], [16, 30; 2]] K3 ×K17 1
52 [[18, 6, 27], [6, 8; 2]], [[27, 6, 18], [18, 12; 3]] GH(3, 1) 1
52 [[20, 1, 30], [20, 8; 0]], [[30, 1, 20], [30, 18; 0]] SRG(26, 10, 3, 4)[K2] 10
52 [[24, 3, 24], [24, 12; 0]] Cyc(13, 2)[K4] 1
52 [[25, 25, 1], [12, 0; 25]] locally Conf(25) 4
52 [[25, 25, 1], [24, 0; 25]] K2 ×K26 1
52 [[36, 3, 12], [24, 33; 3]] K4 ×K13 1
54 [[14, 26, 13], [7, 0; 14]] Had(28) 105041
54 [[20, 1, 32], [20, 10; 0]], [[32, 1, 20], [32, 16; 0]] Schläfli[K2] 1
54 [[24, 5, 24], [24, 12; 0]] H(2, 3)[K6] 1
54 [[26, 26, 1], [25, 0; 26]] K2 ×K27 1
54 [[34, 2, 17], [17, 32; 2]] K3 ×K18 1
54 [[40, 5, 8], [32, 35; 5]] K6 ×K9 1
55 [[22, 10, 22], [22, 11; 0]] C5[K11] 1
55 [[40, 4, 10], [30, 36; 4]] K5 ×K11 1
56 [[10, 15, 30], [4, 1; 3]], [[30, 10, 15], [18, 16; 6]] J(8, 3) 1
56 [[24, 1, 30], [24, 8; 0]] J(8, 2)[K2], Changi[K2]

(i = 1, 2, 3)
4

56 [[27, 27, 1], [10, 0; 27]], [[27, 27, 1], [16, 0; 27]] Gosset 1
56 [[27, 27, 1], [26, 0; 27]] K2 ×K28 1
56 [[39, 3, 13], [26, 36; 3]] K4 ×K14 1
56 [[42, 6, 7], [35, 36; 6]] K7 ×K8 1
57 [[20, 6, 30], [10, 6; 2]], [[30, 6, 20], [15, 18; 3]] Perkel 1 [9]
57 [[36, 2, 18], [18, 34; 2]] K3 ×K19 1
58 [[28, 1, 28], [28, 14; 0]] locally Conf(29) 41
58 [[28, 28, 1], [27, 0; 28]] K2 ×K29 1
60 [[11, 44, 4], [2, 0; 11]] locally Cyc(11, 5) ⩾ 1
60 [[15, 20, 24], [3, 5; 5]], [[20, 15, 24], [8, 5; 5]],

[[24, 15, 20], [8, 12; 6]]
hyperbolic quadric in

PG(3, 5)
⩾ 1

60 [[18, 5, 36], [18, 6; 0]], [[36, 5, 18], [36, 24; 0]] Petersen[K6] 1
60 [[24, 3, 32], [24, 12; 0]], [[32, 3, 24], [32, 16; 0]] J(6, 2)[K4] 1
60 [[24, 11, 24], [24, 12; 0]] C5[K12] 1
60 [[38, 2, 19], [19, 24; 2]] locally Cyc(19, 3) ⩾ 1
60 [[42, 3, 14], [28, 39; 3]] K4 ×K15 1
60 [[44, 4, 11], [33, 40; 4]] K5 ×K12 1
60 [[45, 5, 9], [36, 40; 5]] K6 ×K10 1

Table 5: Parameter arrays for 3-class relational QPGs marked as feasible in [22] for which
constructions are known.
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order parameter array construction # reference
40 [[8, 4, 3, 24], [2, 0, 2; 0, 1; 1]] see Remark 11 1 [3]
41 [[10, 10, 10, 10], [4, 3, 2; 2, 2; 2]] Cyc(41, 4) ⩾ 1
42 [[8, 1, 16, 16], [8, 2, 0; 0, 0; 4]] GH(2, 1)[K2] 1
42 [[9, 2, 12, 18], [9, 0, 3; 0, 0; 6]],

[[12, 2, 9, 18], [12, 0, 6; 0, 0; 6]]
Heawood[K3] 1

42 [[12, 5, 12, 12], [12, 0, 6; 0, 0; 6]] C7[K6] 1
44 [[10, 1, 12, 20], [10, 0, 4; 0, 0; 6]],

[[12, 1, 10, 20], [12, 0, 6; 0, 0; 6]]
(square 2-(11, 5, 2) design)[K2] 1

52 [[8, 1, 18, 24], [8, 0, 2; 0, 0; 6]] GH(1, 3)[K2] 1
54 [[9, 24, 2, 18], [3, 0, 0; 0, 8; 1]] symmetric (3, 3)-nets 4 [28]
56 [[12, 3, 16, 24], [12, 0, 4; 0, 0; 8]] Heawood[K4] 1

Table 6: Parameter arrays for 4-class relational QPGs marked as feasible in [22] for which
constructions are known.

order parameter array construction # reference
27 [[6, 6, 2, 6, 6], [3, 6, 0, 0; 0, 0, 3; 0, 0; 3]] C9[K3] 1
36 [[8, 16, 1, 2, 8], [2, 0, 4, 0; 0, 0, 4; 0, 1; 1]] H(2,K3[K2]) 1
40 [[12, 2, 1, 12, 12], [6, 0, 4, 1; 0, 0, 1; 0, 1; 4]] see Remark 7 1 Thm. 6
40 [[12, 12, 1, 2, 12], [4, 12, 0, 4; 0, 0, 4; 0, 0; 2]] Pair(5)[K2] 1
40 [[14, 2, 2, 7, 14], [7, 0, 12, 6; 0, 0, 1; 2, 1; 0]] K8 × C5 1
41 [[8, 8, 8, 8, 8], [3, 2, 2, 0; 1, 2, 2; 1, 2; 1]] Cyc(41, 5) ⩾ 1
42 [[10, 10, 1, 10, 10], [5, 0, 4, 0; 10, 0, 4; 0, 0; 6]],

[[10, 10, 1, 10, 10], [6, 0, 0, 3; 0, 4, 0; 0, 1; 6]]
K2 × J(7, 2) 1

42 [[12, 12, 1, 4, 12], [4, 12, 0, 2; 0, 6, 6; 0, 0; 2]] (Z3 × Cyc(7, 2))‡[K2] 1
45 [[6, 4, 4, 12, 18], [3, 0, 0, 1; 0, 1, 0; 2, 0; 2]],

[[12, 4, 4, 6, 18], [9, 6, 0, 4; 0, 2, 0; 4, 0; 2]]
see Remark 9 1 Thm. 8

45 [[10, 10, 4, 10, 10], [5, 10, 0, 0; 0, 0, 5; 0, 0; 5]] C9[K5] 1
48 [[10, 2, 5, 10, 20], [5, 0, 4, 2; 2, 0, 0; 0, 2; 3]] K3 × Clebsch 1
48 [[12, 2, 6, 9, 18], [6, 4, 4, 2; 2, 0, 0; 0, 2; 4]] K3×H(2, 4), K3×Shrikhande 2
50 [[8, 8, 1, 16, 16], [3, 0, 2, 0; 8, 0, 2; 0, 0; 6]] K2 ×H(2, 5) 1
50 [[12, 4, 3, 6, 24], [9, 0, 4, 3; 4, 0, 0; 0, 1; 2]] K5 × Petersen 1
50 [[12, 12, 1, 12, 12], [4, 12, 2, 0; 0, 4, 4; 0, 0; 4]] Cyc(25, 4)[K2] 1
51 [[12, 12, 2, 12, 12], [6, 12, 3, 0; 0, 3, 3; 0, 0; 3]] Cyc(17, 4)[K3] 1
54 [[10, 10, 1, 16, 16], [1, 0, 5, 0; 10, 0, 5; 0, 0; 5]] K2 × Schläfli 1
54 [[12, 12, 5, 12, 12], [6, 12, 0, 0; 0, 0, 6; 0, 0; 6]] C9[K6] 1
56 [[6, 12, 1, 12, 24], [2, 6, 0, 0; 0, 0, 2; 0, 0; 2]],

[[12, 12, 1, 6, 24], [4, 12, 0, 2; 0, 0, 4; 0, 0; 2]]
Coxeter[K2] 1

56 [[12, 12, 1, 15, 15], [6, 0, 4, 0; 12, 0, 4; 0, 0; 8]] K2 × J(8, 2), K2 × Changi
(i = 1, 2, 3)

4

Table 7: Parameter arrays for 5-class relational QPGs marked as feasible in [22] for which
constructions are known.
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order parameter array construction #
45 [[12, 6, 2, 6, 6, 12],

[6, 12, 6, 0, 3; 0, 0, 6, 0; 0, 0, 0; 0, 3; 3]]
(K3 × C5)[K3] 1

52 [[12, 12, 1, 2, 12, 12],
[6, 12, 0, 4, 0; 0, 0, 0, 6; 0, 0, 0; 2, 0; 6]]

(K2 × Cyc(13, 2))[K2] 1

56 [[12, 12, 1, 6, 12, 12],
[4, 12, 0, 2, 0; 0, 4, 4, 2; 0, 0, 0; 2, 2; 4]]

Cay(Z14 × Z2, {(±1, 0), (±2, 1), (±3, 1)})[K2] 1

Table 8: Parameter arrays for 6-class relational QPGs marked as feasible in [22] for which
constructions are known.

on X2 preserves the partition R – i.e., each relation of A corresponds to an orbit of the
action.
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[8] M. Conder and P. Potočnik. Census of rotary maps by genus and number of edges,
2024. https://rotarymaps.graphsym.net/.

[9] K. Coolsaet and J. Degraer. A computer-assisted proof of the unique-
ness of the Perkel graph. Des. Codes Cryptogr., 34(2–3):155–171, 2005.
doi:10.1007/s10623-004-4852-9.

[10] E. R. van Dam. Three-class association schemes. J. Algebraic Combin., 10(1):69–107,
1999. doi:10.1023/A:1018628204156.

the electronic journal of combinatorics 33(1) (2026), #P1.2 33

https://doi.org/10.1017/CBO9780511610882
https://doi.org/10.1080/10586458.2009.10129052
https://doi.org/10.1016/j.ejc.2007.06.016
http://www.win.tue.nl/~aeb/drg/drgtables.html
http://www.win.tue.nl/~aeb/drg/drgtables.html
http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html
http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html
https://doi.org/10.1007/978-3-642-74341-2
https://www.math.auckland.ac.nz/~conder/ChiralMapsWithUpTo1000Edges.txt
https://www.math.auckland.ac.nz/~conder/ChiralMapsWithUpTo1000Edges.txt
https://rotarymaps.graphsym.net/
https://doi.org/10.1007/s10623-004-4852-9
https://doi.org/10.1023/A:1018628204156


[11] P. Delsarte. An algebraic approach to the association schemes of coding theory.
Philips Res. Rep. Suppl., (10):vi+97, 1973.
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