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Abstract

There is a long list of open questions rooted in the same underlying problem: un-
derstanding the structure of bases or common bases of matroids. These conjectures
suggest that matroids may possess much stronger structural properties than are
currently known. One example is related to cyclic orderings of matroids. A rank-r
matroid is called cyclically orderable if its ground set admits a cyclic ordering such
that any interval of r consecutive elements forms a basis. In this paper, we show
that if the ground set of a split matroid decomposes into pairwise disjoint bases,
then it is cyclically orderable. This result answers a conjecture of Kajitani, Ueno,
and Miyano in a special case, and also strengthens Gabow’s conjecture for this class
of matroids. Our proof is algorithmic, hence it provides a procedure for determin-
ing a cyclic ordering in question using a polynomial number of independence oracle
calls.

Mathematics Subject Classifications: 05B35

1 Introduction

Throughout the paper, we denote a matroid by M = (S,B), where S is a finite ground set
and B is the family of bases, satisfying the so-called basis axioms: (B1) ∅ ∈ B, and (B2) for
any B1, B2 ∈ B and e ∈ B1−B2, there exists f ∈ B2−B1 such that B1− e+ f ∈ B. The
latter property, called the basis exchange axiom, is one of the most fundamental tools in
matroid theory. Nevertheless, it only provides a local characterization of the relationship
between bases, which presents a significant stumbling block to further progress.

A rank-r matroid M = (S,B) with |S| = n is cyclically orderable if there exists an
ordering S = {s1, . . . , sn} such that {si, si+1, . . . , si+r−1} ∈ B for all i ∈ [n], where indices
are understood in a cyclic order. While studying the structure of symmetric exchanges in
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matroids, Gabow [12] formulated a beautiful conjecture, stating that every matroid whose
ground set decomposes into two disjoint bases is cyclically orderable. This question was
also raised independently by Wiedemann [20] and by Cordovil and Moreira [6]. The
conjecture makes a stronger claim: for a fixed partition, the cyclic ordering can be chosen
such that the elements of the two bases in the partition form contiguous intervals.

Conjecture 1 (Gabow). Let M = (S,B) be a matroid and S = B1 ∪ B2 be a partition
of the ground set into two disjoint bases. Then, M has a cyclic ordering in which the
elements of B1 and B2 form intervals.

It is not difficult to see that the statement holds for strongly base orderable matroids.
The conjecture was settled for graphic matroids [14, 6, 20], sparse paving matroids [5],
matroids of rank at most 4 [16] and 5 [15], split matroids [4], and regular matroids [2].
However, the existence of a cyclic ordering remains open in general, even without the
constraint of the bases forming intervals.

In [14], Kajitani, Ueno, and Miyano proposed a conjecture that would provide a full
characterization of cyclically orderable matroids. A matroid M = (S,B) with rank func-
tion rM is called uniformly dense if |S| · rM(X) > rM(S) · |X| holds for all X ⊆ S. It is
not difficult to see that a cyclically orderable matroid is necessarily uniformly dense as
well, and the conjecture states that this condition is also sufficient.

Conjecture 2 (Kajitani, Ueno, and Miyano). A matroid is cyclically orderable if and
only if it is uniformly dense.

Despite the fact that the conjecture would provide entirely new insights into the
structure of matroids, very little progress has been made so far. Van den Heuvel and
Thomassé [18] showed that the conjecture is true if |S| and r(S) are coprimes, and Bonin’s
result [5] for sparse paving matroids remains true also in this more general setting.

It is worth taking a moment to consider the interpretation of the uniformly dense
property. By the matroid union theorem of Edmonds and Fulkerson [7], the ground set
of a matroid M = (S,B) can be covered by k bases if and only if k · rM(X) > |X| holds
for all X ⊆ S. Using this, a matroid is uniformly dense if and only if its ground set can
be covered by d|S|/rM(S)e bases. In other words, the ground set can be decomposed in
‘almost’ disjoint bases, where almost means that the total overlapping between distinct
bases is bounded by rM(S)− 1. In particular, any matroid whose ground set decomposes
into pairwise disjoint bases is uniformly dense. This observation motivates the following
strengthening of Gabow’s conjecture.

Conjecture 3. Let M = (S,B) be a matroid and S = B1 ∪ · · · ∪ Bk be a partition of
the ground set into k pairwise disjoint bases. Then, M has a cyclic ordering in which the
elements of Bi form an interval for each i ∈ [k].

To the best of our knowledge, Conjecture 3 has not been previously considered and
remains open even for very restricted classes of matroids, such as strongly base orderable
matroids. Our main contribution is proving the conjecture for the class of split matroids.
Split matroids were first introduced by Joswig and Schröter [13] while studying matroid
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polytopes from a geometric point of view. Since then, this class of matroids has gained
importance in many contexts, primarily due to the work of Ferroni and Schröter [8, 9, 10,
11].

Theorem 4. Conjecture 3 is true for split matroids.

It is worth emphasizing that our proof is algorithmic, hence it provides a procedure
for determining a cyclic ordering in question using a polynomial number of independence
oracle calls.

Remark 5. In fact, we prove a slightly stronger statement: in the cyclic ordering obtained,
the bases B1, . . . , Bk form intervals that follow each other in this order.

The rest of the paper is organized as follows. Basic definitions and notation are
introduced in Section 2. We prove Conjecture 3 for split matroids in Section 3. Finally,
in Section 4, we give a list of related open questions and conjectures that are subject of
future research.

2 Preliminaries

General notation. We denote the set of nonnegative integers by Z+. For k ∈ Z+, we
use [k] = {1, . . . , k}. Given a ground set S, the difference of X, Y ⊆ S is denoted by
X − Y . If Y consists of a single element y, then X − {y} and X ∪ {y} are abbreviated
as X − y and X + y, respectively. The symmetric difference of X and Y is denoted by
X4Y := (X − Y ) ∪ (Y −X).

Split matroids. For basic definitions on matroids, we refer the reader to [17]. Let S
be a ground set of size at least r, H = {H1, . . . , Hq} be a (possibly empty) collection of
subsets of S, and r, r1, . . . , rq be nonnegative integers satisfying

|Hi ∩Hj| 6 ri + rj − r for distinct i, j ∈ [q], (H1)

|S −Hi|+ ri > r for all i ∈ [q]. (H2)

Then the corresponding elementary split matroid M = (S,B) is given by B = {X ⊆
S | |X| = r, |X ∩ Hi| 6 ri for all i ∈ [q]}; see [1] for details. It is easy to see that the
underlying hypergraph can be chosen in such a way that

ri 6 r − 1 for all i ∈ [q], (H3)

|Hi| > ri + 1 for all i ∈ [q]. (H4)

The representation is called non-redundant if all of (H1)–(H4) hold. A set F ⊆ S is called
Hi-tight if |F ∩ Hi| = ri. Finally, a split matroid is the direct sum of a single elemen-
tary split matroid and some (maybe zero) uniform matroids. The connection between
elementary and connected split matroids is given by the following result [1].

Lemma 6 (Bérczi, Király, Schwarcz, Yamaguchi and Yokoi). The classes of connected
split matroids and connected elementary split matroids coincide.
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A nice feature of split matroids is that they generalize paving and sparse paving
matroids: paving matroids correspond to the special case when ri = r − 1 for all i ∈ [q],
while we get back the class of sparse paving matroids if, in addition, |Hi| = r holds for
all i ∈ [q]. However, unlike the class of paving matroids, split matroids are closed not
only under truncation and taking minors but also under duality [13]. The following result
appeared in [1].

Lemma 7 (Bérczi, Király, Schwarcz, Yamaguchi and Yokoi). Let M be a rank-r elemen-
tary split matroid with a non-redundant representation H = {H1, . . . , Hq} and r, r1, . . . , rq.
Let F be a set of size r.

(a) If F is Hi-tight for some index i ∈ [q] then F is a basis of M .

(b) If F is both Hi-tight and Hj-tight for distinct i, j ∈ [q] then Hi∩Hj ⊆ F ⊆ Hi∪Hj.

By Lemma 7(a), any set of size r that is tight with respect to one of the hyperedges
is a basis. We will use this observation throughout without explicitly citing the lemma,
to avoid repeatedly referring to part (a).

3 Proof of Theorem 4

Proof of Theorem 4. Throughout the proof, we use the following notational convention:
given an ordered sequence X1, . . . , Xk of sets or elements x1, . . . , xk, indices are meant
cyclically, meaning that Xk+1 = X1, x

k+1 = x1, X0 = Xk and x0 = xk. In addition, we
interpret the set {xi, . . . , xj} to be empty when i > j.

The theorem clearly holds if k = 1, while the case when k = 2 was proved in [4].
Therefore, we assume that k > 3. Let M = (S,B) be a split matroid and S = B1∪· · ·∪Bk

be a partition of its ground set into k pairwise disjoint bases. First we show that it suffices
to consider connected split matroids. To see this, let M1 = (S1,B1), . . . ,Mt = (St,Bt) be
the connected components of M , where |Sj| = nj and the rank of Mj is rj for j ∈ [t]. For
all i ∈ [k] and j ∈ [t], let Bj

i := Bi ∩ Sj. Then, Sj = Bj
1 ∪ · · · ∪ Bj

k is a decomposition of
Sj into pairwise disjoint bases of Mj. Let Sj = {sj1, . . . , sjnj

} be a cyclic ordering of Mj

in which the elements of Bj
i form the interval Iji := {sj(i−1)·rj+1, . . . , s

j
i·rj} for each i ∈ [k].

Then,
S = {I11 , I21 , . . . , I t1, I12 , I22 , . . . , I t2, . . . , I1k , I2k , . . . , I tk}

is a cyclic ordering of M in which Bi forms an interval for each i ∈ [k]. Since Conjecture 3
clearly holds for uniform matroids, the combination of the above observation and Lemma 6
allows us to assume that M is a rank-r elementary split matroid, defined by a non-
redundant representation H.

The high-level idea of the algorithm is as follows. We build up the orderings of the ele-
ments of the bases simultaneously in phases. At the beginning of the j-th phase, the first
(j−1) elements in each of the bases are ordered and the goal is to find the j-th element for
all of them. We denote the first (j− 1) elements that we have already ordered in the i-th
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basis by (bi1, . . . , b
i
j−1). The elements that are not yet ordered will be referred to as remain-

ing elements in Bi and their set is denoted by Ci, that is, Ci = Bi−{bi1, . . . , bij−1}. The goal

is to choose bij in such a way that (Ci − bij) ∪ (bi+1
1 , . . . , bi+1

j ) forms a basis for all i ∈ [k];

we call such a choice (b1j , . . . , b
k
j ) valid. Note that the condition is satisfied in the beginning

as it simply requires Ci = Bi to be a basis for each i ∈ [k]. If valid choices exist up to the
r-th phase, then we get a cyclic ordering of the matroid with the desired properties simply
by putting the ordered bases after each other. However, if the next elements cannot be
chosen while satisfying the above constraints, we will slightly modify the order of the first
(j − 1) elements to allow further steps.

Now we turn to the detailed description of the proof. For ease of discussion, we present
it as an indirect proof; however, it implicitly implies an algorithm as described above. Let
j ∈ [r + 1] be maximal with respect to the property that, for all i ∈ [k], there exist
bi1, . . . , b

i
j−1 ∈ Bi such that

(bi`, . . . , b
i
j−1) ∪ Ci ∪ (bi+1

1 , . . . , bi+1
`−1) forms a basis for all i ∈ [k], ` ∈ [j], (?)

where Ci = Bi − {bi1, . . . , bij−1}. If j = r + 1 then we are done. Therefore, suppose that
j 6 r. In particular, this means that there is no valid choice of j-th elements in the bases.
Let Ri := Ci∪{bi+1

1 , . . . , bi+1
j−1} for all i ∈ [k]. Then, Ri is a basis by applying (?) for ` = j.

Claim 8. For all i ∈ [k], there exist distinct elements pi, qi ∈ Ci and a hyperedge Hi with
value ri satisfying the following:

(a) pk ∈ Hk −H1 and pi ∈ Hi ∩Hi+1 for all i ∈ [k − 1],

(b) qk /∈ Hk and qi /∈ Hi ∪Hi+1 for all i ∈ [k − 1],

(c) Ri−1 is Hi-tight for all i ∈ [k].

Proof. Let p1 ∈ C1 be an arbitrary element. By the basis exchange property for R1 and
B2, there exists an element p2 ∈ C2 such that R1− p1 + p2 forms a basis. By the repeated
application of this argument we get pi ∈ Ci such that Ri − pi + pi+1 forms a basis for all
i ∈ [k − 1].

If Rk − pk + p1 forms a basis, then (p1, . . . , pk) is a valid choice, contradicting the
maximality of j. Therefore, there exists a hyperedge H1 with value r1 such that |H1 ∩
(Rk − pk + p1)| > r1. Since Rk is a basis, we conclude that Rk is H1-tight, pk /∈ H1,
p1 ∈ H1 and |H1 ∩ (Rk − pk + p1)| = r1 + 1. By the basis exchange property, there exists
an element q1 ∈ C1 − p1 such that Rk − pk + q1 forms a basis, implying q1 /∈ H1. As the
choice (q1, p2, . . . , pk) cannot be valid, there exists a hyperedge H2 with value r2 such that
|H2 ∩ (R1 − q1 + p2)| > r2. Since R1 and R1 − p1 + p2 are both bases, we conclude that
|H2 ∩ (R1 − q1 + p2)| = r2 + 1, R1 is H2-tight, p1 ∈ H2, p2 ∈ H2, and q1 /∈ H2.

From this point, we proceed for each 2 6 i 6 k in increasing order. Assume that we
already know that there exists a hyperedge Hi and an element qi−1 ∈ Ci−1 − pi−1 such
that Ri−1 is Hi-tight, pi−1 ∈ Hi, pi ∈ Hi, qi−1 /∈ Hi−1 and qi−1 /∈ Hi – this holds for i = 2
by the above. By the basis exchange property, there exists an element qi ∈ Ci − pi such
that Ri−1 − qi−1 + qi forms a basis, implying qi /∈ Hi. Assume further that i 6 k − 1.
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As the choice (q1, . . . , qi, pi+1, . . . , pk) cannot be valid, there exists a hyperedge Hi+1 with
value ri+1 such that |Hi+1 ∩ (Ri− qi + pi+1)| > ri+1. Since Ri and Ri− pi + pi+1 are both
bases, we conclude that |Hi+1 ∩ (Ri − qi + pi+1)| = ri + 1, Ri is Hi+1-tight, pi ∈ Hi+1,
pi+1 ∈ Hi+1, and qi /∈ Hi+1.

Therefore, we get elements p1, . . . , pk, q1, . . . , qk and hyperedges H1, . . . , Hk with values
r1, . . . , rk satisfying conditions (a)–(c) of the claim.

It is worth noting that the hyperedges H1, . . . , Hk provided by the claim are not
necessarily distinct. We give an analogous claim where the roles of p1, . . . , pk and q1, . . . , qk
are interchanged. The proof follows the same reasoning as in Claim 8; however, we include
it here for completeness.

Claim 9. For all i ∈ [k], there exist a hyperedge H ′i with value r′i satisfying the following:

(a) pk ∈ H ′1 −H ′k and pi /∈ H ′i ∪H ′i+1 for all i ∈ [k − 1],

(b) qk ∈ (H1 ∩H ′k)−H ′1 and qi ∈ H ′i ∩H ′i+1 for all i ∈ [k − 1],

(c) Ri−1 is H ′i-tight for all i ∈ [k],

(d) Hi ∩H ′i ⊆ Ri−1 ⊆ Hi ∪H ′i for all i ∈ [k].

Proof. By Claim 8, Ri − qi + qi+1 is Hi+1-tight and hence a basis for i ∈ [k − 1]. If
Rk− qk + q1 forms a basis, then (q1, . . . , qk) is a valid choice, contradicting the maximality
of j. Therefore, there exists a hyperedge H ′1 with value r′1 such that qk /∈ H ′1, q1 ∈ H ′1
and Rk is H ′1-tight. Since q1 ∈ H ′1 but q1 /∈ H1, the hyperedges H1 and H ′1 are distinct.
Since Rk is both H1- and H ′1-tight, Lemma 7(b) implies that H1 ∩H ′1 ⊆ Rk ⊆ H1 ∪H ′1,
thus qk ∈ H1, pk ∈ H ′1 and p1 /∈ H ′1.

By Claim 8, Rk is H1-tight, p1 ∈ H1 and qk ∈ H1, thus Rk − qk + p1 is also H1-tight
and so a basis. Moreover, Ri−pi+pi+1 and Ri−qi+qi+1 are Hi+1-tight for i ∈ [k−1]. Fix
any index i ∈ [k − 1]. As the choice (p1, . . . , pi, qi+1, . . . , qk) cannot be valid, there exists
a hyperedge H ′i+1 with value r′i+1 such that pi /∈ H ′i+1, qi+1 ∈ H ′i+1, and Ri is H ′i+1-tight.
Since qi+1 ∈ H ′i+1 but qi+1 /∈ Hi+1, the hyperedges Hi+1 and H ′i+1 are distinct. As Ri

is both Hi+1- and H ′i+1-tight, Lemma 7(b) gives Hi+1 ∩ H ′i+1 ⊆ Ri ⊆ Hi+1 ∪ H ′i+1. In
particular, qi ∈ H ′i+1 and pi+1 /∈ H ′i+1.

Thus we get hyperedges H ′1, . . . , H
′
k with values r′1, . . . , r

′
k satisfying conditions (a)–(d)

of the claim.

Again, let us note that the hyperedges H ′1, . . . , H
′
k provided by the claim are not

necessarily distinct.

Claim 10. For all i ∈ [k − 1] and x ∈ Ci, either x ∈ (Hi ∩ Hi+1) − (H ′i ∪ H ′i+1) or
x ∈ (H ′i ∩ H ′i+1) − (Hi ∪ Hi+1). For x ∈ Ck, either x ∈ (Hk ∩ H ′1) − (H ′k ∪ H1) or
x ∈ (H ′k ∩H1)− (Hk ∪H ′1).

Proof. Although the proofs are similar, we treat the cases i ∈ [k−1] and i = k separately,
as the reasoning differs slightly.

Case 1. i ∈ [k − 1].
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Consider any element x ∈ Ci for some i ∈ [k − 1]. By Claim 9, we know that
x ∈ Hi+1 ∪H ′i+1. We distinguish two cases based on which set x belongs to.

Case 1.1. x ∈ Hi+1.
If x /∈ Hi, then (q1, . . . , qi−1, x, pi+1, . . . , pk) is a valid choice for the set of j-th elements,

contradicting the maximality of j. This is because, by Claim 8, R` is H`+1-tight for all
` ∈ [k], so if i > 2 then Ri−1−qi−1+x and Ri−x+pi+1 are Hi- and Hi+1-tight, respectively,
while if i = 1 then Rk − pk + x and R1 − x + p2 are H1- and H2-tight, respectively, since
pk /∈ H1, again by Claim 8. Thus we have x ∈ Hi.

By Claim 9, Hi ∩ H ′i ⊆ Ri−1. As x /∈ Ri−1, we have x /∈ H ′i. If x ∈ H ′i+1, then
(p1, . . . pi−1, x, qi+1, . . . , qk) is a valid choice for the set of j-th elements, contradicting the
maximality of j. This is because, by Claim 9, R` is H ′`+1-tight for all ` ∈ [k], so if i > 2
then Ri−1− pi−1 + x and Ri− x+ qi+1 are H ′i- and H ′i+1-tight, respectively, while if i = 1
then Rk − qk + x and R1− x+ q2 are H ′1- and H ′2-tight, respectively, since qk /∈ H ′1, again
by Claim 9. Thus we have x /∈ H ′i+1.

Case 1.2. x ∈ H ′i+1.
If x /∈ H ′i, then (p1, . . . , pi−1, x, qi+1, . . . , qk) is a valid choice for the set of j-th elements,

contradicting the maximality of j. This is because, by Claim 9, R` is H ′`+1-tight for all
` ∈ [k], so if i > 2 then Ri−1−pi−1+x and Ri−x+qi+1 are H ′i- and H ′i+1-tight, respectively,
while if i = 1 then Rk − qk + x and R1 − x + q2 are H ′1- and H ′2-tight, respectively, since
qk /∈ H ′1,again by Claim 9. Thus we have x ∈ H ′i.

By Claim 9, Hi ∩ H ′i ⊆ Ri−1. As x /∈ Ri−1, we have x /∈ Hi. If x ∈ Hi+1, then
(q1, . . . , qi−1, x, pi+1, . . . , pk) is a valid choice for the set of j-th elements, contradicting the
maximality of j. This is because, by Claim 8, R` is H`+1-tight for all ` ∈ [k], so if i > 2
then Ri−1− qi−1 + x and Ri− x+ pi+1 are Hi- and Hi+1-tight, respectively, while if i = 1
then Rk− pk + x and R1− x+ p2 are H1- and H2-tight, respectively, since pk /∈ H1, again
by Claim 8. Thus we have x /∈ Hi+1.

At a high level, the statement for x ∈ Ck follows by replacing H1 with H ′1 and H ′1 with
H1 in the above argument, while using the appropriate notion of tightness throughout.

Case 2. i = k.
Consider any element x ∈ Ck. By Claim 9, we know that x ∈ H ′1∪H1. We distinguish

two cases based on which set x belongs to.

Case 2.1. x ∈ H ′1.
If x /∈ Hk, then (q1, . . . , qk−1, x) is a valid choice for the set of j-th elements, contra-

dicting the maximality of j. This is because, by Claims 8 and 9, Rk−1 and Rk are Hk-
and H ′1-tight, respectively, so Rk−1 − qk−1 + x and Rk − x + q1 are Hk- and H ′1-tight,
respectively. Thus we have x ∈ Hk.

By Claim 9, Hk ∩ H ′k ⊆ Rk−1. As x /∈ Rk−1, we have x /∈ H ′k. If x ∈ H1, then
(p1, . . . pk−1, x) is a valid choice for the set of j-th elements, contradicting the maximality of
j. This is because, by Claims 9 and 8, Rk−1 and Rk are H ′k- and H1-tight, so Rk−1−pk−1+x
and Rk − x + p1 are H ′k- and H1-tight, respectively. Thus we have x /∈ H1.

Case 2.2. x ∈ H1.
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If x /∈ H ′k, then (p1, . . . , pk−1, x) is a valid choice for the set of j-th elements, contra-
dicting the maximality of j. This is because, by Claims 9 and 8, Rk−1 and Rk are H ′k-
and H1-tight, respectively, so Rk−1 − pk−1 + x and Rk − x + p1 are H ′k- and H1-tight,
respectively. Thus we have x ∈ H ′k.

By Claim 9, Hk ∩ H ′k ⊆ Rk−1. As x /∈ Rk−1, we have x /∈ Hk. If x ∈ H ′1, then
(q1, . . . , qk−1, x) is a valid choice for the set of j-th elements, contradicting the maximality
of j. This is because, by Claims 8 and 9, Rk−1 and Rk are Hk- and H ′1-tight for all ` ∈ [k],
so Rk−1 − qk−1 + x and Rk − x + q1 are Hk- and H ′1-tight, respectively. Thus we have
x /∈ H ′1.

For all i ∈ [k − 1], we define Ĉi := {x ∈ Ci | x ∈ (Hi ∩ Hi+1) − (H ′i ∪ H ′i+1)} and

Ĉ ′i := {x ∈ Ci | x ∈ (H ′i ∩ H ′i+1) − (Hi ∪ Hi+1)}. We further set Ĉk := {x ∈ Ck | x ∈
(Hk ∩H ′1)− (H ′k ∪H1)} and Ĉ ′k := {x ∈ Ck | x ∈ (H ′k ∩H1)− (Hk ∪H ′1)}. By Claim 10,

Ci = Ĉi ∪ Ĉ ′i and Ĉi ∩ Ĉ ′i = ∅ holds for each i ∈ [k].

Claim 11. There exists an s ∈ Z+ such that |Ĉi| = |Ĉ ′i| = s for each i ∈ [k].

Proof. As B2 is a basis, we have |B2 ∩ H2| 6 r2. Since |R1 ∩ H2| = r2, we get |Ĉ2| =

|C2 ∩ H2| 6 |C1 ∩ H2| = |Ĉ1|. A repeated application of the same argument leads to

|Ĉ1| > |Ĉ2| > . . . > |Ĉk|. Similarly, as B1 is a basis, we have |B1 ∩ H ′1| 6 r′1. Since

|Rk ∩H ′1| = r′1, we get |Ĉ ′1| = |C1 ∩H ′1| 6 |Ck ∩H ′1| = |Ĉk|. A repeated application of the

same argument leads to |Ĉk| > |Ĉ ′1| > |Ĉ ′2| . . . > |Ĉ ′k|. Finally, as B1 is a basis, we have

|B1 ∩H1| 6 r1. Since |Rk ∩H1| = r1, we get |Ĉ1| = |C1 ∩H1| 6 |Ck ∩H1| = |Ĉ ′k|.
Concluding the above, we get |Ĉ1| > |Ĉ2| > . . . > |Ĉk| > |Ĉ ′1| > |Ĉ ′2| > . . . > |Ĉ ′k| >

|Ĉ1|, finishing the proof of the claim.

Claim 12. For each i ∈ [k], Bi is both Hi- and H ′i-tight.

Proof. Recall that Ri−1 is Hi-tight by Claim 8. Therefore, by Claim 11, we have

|Bi ∩Hi| = |(Bi ∩Ri−1) ∩Hi|+ |(Bi −Ri−1) ∩Hi|
= |(Bi ∩Ri−1) ∩Hi|+ |Ĉi|
= |(Bi ∩Ri−1) ∩Hi|+ |Ĉi−1|
= |Ri−1 ∩Hi|
= ri.

Similarly, recall that Ri−1 is H ′i-tight by Claim 9. Therefore, by Claim 11, we have

|Bi ∩H ′i| = |(Bi ∩Ri−1) ∩H ′i|+ |(Bi −Ri−1) ∩H ′i|
= |(Bi ∩Ri−1) ∩H ′i|+ |Ĉ ′i|
= |(Bi ∩Ri−1) ∩H ′i|+ |Ĉ ′i−1|
= |Ri−1 ∩H ′i|
= r′i.
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This concludes the proof of the claim.

By Claim 8 we know that pk ∈ Hk and pk /∈ H1 therefore H1 6= Hk. This means
that there must exist consecutive indices p and p + 1, where 1 6 p 6 k − 1, such that
Hp 6= Hp+1. By definition, we know that |Hp∩Hp+1| > |Ĉp| = s. Assume first that p > 2.

Since Rp−1 is Hp-tight by Claim 8 and Ĉ ′p−1 ∩Hp = ∅, we get |Rp−1| = r > rp + s. Since

Rp is Hp+1-tight by Claim 8 and Ĉ ′p∩Hp+1 = ∅, we get |Rp| = r > rp+1 +s. Consider now

the case p = 1. Since Rk is H1-tight by Claim 8 and Ĉk∩H1 = ∅, we get |Rk| = r > r1+s.

Since R1 is H2-tight by Claim 8 and Ĉ ′1 ∩H2 = ∅, we get |R1| = r > r2 + s.
These observations give

s 6 |Hp ∩Hp+1| 6 rp + rp+1 − r 6 (r − s) + (r − s)− r = r − 2s,

thus s 6 r/3. As r = |Bi| = j − 1 + |Ci| = j − 1 + |Ĉi|+ |Ĉ ′i| = j − 1 + 2s 6 j − 1 + 2r/3,
we get j− 1 > r/3. In particular, this means that at least one element is already ordered
in each of B1, . . . , Bk.

Now we turn our attention to the elements that have been already ordered. Consider
the elements bit for all i ∈ [k], t ∈ [j − 1]. Our goal is to show that the set of hyperedges
containing these elements also have a specific structure.

Claim 13. We have the following.

(a) For all t ∈ [j − 1], bit ∈ (Hi4H ′i) ∩ (Hi+14H ′i+1) for all i ∈ [k].

(b) For all t ∈ [j − 1], either {bit, bi+1
t } ⊆ Hi+1 or {bit, bi+1

t } ⊆ H ′i+1.

(c) For all t ∈ [j − 1], the set {bit, . . . , bij−1} ∪ Ci ∪ {bi+1
1 , . . . , bi+1

t−1} is both Hi+1- and
H ′i+1-tight.

Proof. Most of the proof is verifying (a) for all t ∈ [j − 1] in a decreasing order; once this
is established, (b) and (c) follow easily. Assume that the statement holds for all indices in
[j − 1] strictly greater than t. When t = j − 1, this assumption is vacuous since no such
indices exist. We first prove that (a) holds for t. Consider an i ∈ [k]. As bit ∈ Bi and Bi

is Hi- and H ′i-tight by Claim 12, we get that bit ∈ Hi ∪H ′i by Lemma 7(b).
We first prove that bit ∈ (Hi4H ′i). Suppose indirectly that bit ∈ Hi ∩H ′i. As bit /∈ Ri,

it is contained in at most one of Hi+1 and H ′i+1 by Claim 9 – we consider those scenarios
separately.

Case 1. bit /∈ Hi+1.
We distinguish two cases based on the value of i.

Case 1.1. i ∈ [k − 1].
Swap bit with qi in the ordering of Bi. We claim that (?) remains true. This is because

qi /∈ Hi+1 by Claim 8 and {bim, . . . , bij−1}∪Ci∪{bi+1
1 , . . . , bi+1

m−1} is Hi+1-tight for all m > t

by assumption, thus we get that {bim, . . . , bij−1} ∪ Ci ∪ {bi+1
1 , . . . , bi+1

m−1} − qi + bit remains

Hi+1-tight for all m > t. Similarly, qi ∈ H ′i by Claim 9 and {bi−1m , . . . , bi−1j−1} ∪ Ci−1 ∪
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{bi1, . . . , bim−1} is H ′i-tight for all m > t by assumption, thus we get that {bi−1m , . . . , bi−1j−1}∪
Ci−1 ∪ {bi1, . . . , bim−1} − bit + qi remains H ′i-tight for all m > t.

After the modification, (q1, . . . , qi−1, pi, . . . , pk) becomes a valid choice for the j-th
phase. To see this, assume first that i > 2. Then, by Claim 8, we have qi−1 /∈ Hi, pi ∈ Hi

and qi /∈ Hi, so Ri−1 − qi−1 − bit + pi + qi remains Hi-tight. If i = 1 then, by Claim 8,
we have pk /∈ H1, p1 ∈ H1 and q1 /∈ H1, so Rk − pk − b1t + p1 + q1 is H1-tight. Also by
Claim 8, we have pi+1 ∈ Hi+1, pi ∈ Hi+1 and qi /∈ Hi+1, so Ri− pi− qi + bit + pi+1 remains
H2-tight. This contradicts the maximal choice of j.

Case 1.2. i = k.
Recall that we are in the case when bkt /∈ H1. Swap bkt with pk in the ordering of Bk. We

claim that (?) remains true. This is because pk /∈ H1 by Claim 8 and {bkm, . . . , bkj−1}∪Ck∪
{b11, . . . , b1m−1} is H1-tight for all m > t by assumption, thus we get that {bkm, . . . , bkj−1} ∪
Ck∪{b11, . . . , b1m−1}−pk +bkt remains H1-tight for all m > t. Similarly, pk ∈ Hk by Claim 8
and {bk−1m , . . . , bk−1j−1}∪Ck−1∪{bk1, . . . , bkm−1} is Hk-tight for all m > t by assumption, thus

we get that {bk−1m , . . . , bk−1j−1} ∪ Ck−1 ∪ {bk1, . . . , bkm−1} − bkt + pk remains Hk-tight for all
m > t.

After the modification, (p1, . . . , pk−1, qk) becomes a valid choice for the j-th phase. This
is because, by Claim 9, we have pk−1 /∈ H ′k, pk /∈ H ′k and qk ∈ H ′k, so Rk−1−pk−1−bkt +pk+qk
remains H ′k-tight. By Claims 8 and 9, we have p1 ∈ H1, pk /∈ H1 and qk ∈ H1, so
Rk − pk − qk + bkt + p1 remains H1-tight. This contradicts the maximal choice of j.

Case 2. bit /∈ H ′i+1.
We distinguish two cases based on the value of i

Case 2.1. i ∈ [k − 1].
Swap bit with pi in the ordering of Bi. We claim that (?) remains true. This is because

pi /∈ H ′i+1 by Claim 9 and {bim, . . . , bij−1}∪Ci∪{bi+1
1 , . . . , bi+1

m−1} is H ′i+1-tight for all m > t

by assumption, thus we get that {bim, . . . , bij−1} ∪ Ci ∪ {bi+1
1 , . . . , bi+1

m−1} − pi + bit remains

H ′i+1-tight for all m > t. Similarly, pi ∈ Hi by Claim 8 and {bi−1m , . . . , bi−1j−1} ∪ Ci−1 ∪
{bi1, . . . , bim−1} is Hi-tight for all m > t by assumption, thus we get that {bi−1m , . . . , bi−1j−1}∪
Ci−1 ∪ {bi1, . . . , bim−1} − bit + pi remains Hi-tight for all m > t.

After the modification, (p1, . . . , pi−1, qi, . . . , qk) becomes a valid choice for the j-th
phase. To see this, assume first that i > 2. Then, by Claim 9, we have pi−1 /∈ H ′i, pi /∈ H ′i
and qi ∈ H ′i, so Ri−1 − pi−1 − bit + pi + qi remains H ′i-tight. If i = 1 then, by Claim 9, we
have qk /∈ H ′1, p1 /∈ H ′1 and q1 ∈ H ′1, so Rk − qk − b1t + p1 + q1 remains H ′1-tight. Also by
Claim 9, we have qi+1 ∈ H ′i+1, pi /∈ H ′i+1 and qi ∈ H ′i+1, so Ri− pi− qi + bit + qi+1 remains
H ′i+1-tight. This contradicts the maximal choice of j.

Case 2.2. i = k.
Recall that we are in the case when bkt /∈ H ′1. Swap bkt with qk in the ordering of Bk. We

claim that (?) remains true. This is because qk /∈ H ′1 by Claim 9 and {bkm, . . . , bkj−1}∪Ck∪
{b11, . . . , b1m−1} is H ′1-tight for all m > t by assumption, thus we get that {bkm, . . . , bkj−1} ∪
Ck∪{b11, . . . , b1m−1}−qk +bkt remains H ′1-tight for all m > t. Similarly, qk ∈ H ′k by Claim 9
and {bk−1m , . . . , bk−1j−1}∪Ck−1∪{bk1, . . . , bkm−1} is H ′k-tight for all m > t by assumption, thus
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we get that {bk−1m , . . . , bk−1j−1} ∪ Ck−1 ∪ {bk1, . . . , bkm−1} − bkt + qk remains H ′k-tight for all
m > t.

After the modification, (q1, . . . , qk−1, pk) becomes a valid choice for the j-th phase.
This is because, by Claim 8, we have qk−1 /∈ Hk, pk ∈ Hk and qk /∈ Hk, so Rk−1 − qk−1 −
bkt + pk + qk remains Hk-tight. Also by Claim 9, we have q1 ∈ H ′1, pk ∈ H ′1 and qk /∈ H ′1,
so Rk − pk − qk + bkt + q1 remains H ′1-tight. This contradicts the maximal choice of j.

Summarizing the above, we get bit ∈ (Hi4H ′i). We now prove that bit ∈ (Hi+14H ′i+1).
We know that bit /∈ (Hi+1 ∩H ′i+1), so it suffices to show that bit ∈ (Hi+1 ∪H ′i+1). Suppose
indirectly that bit /∈ (Hi+1 ∪ H ′i+1). We consider two cases based on whether bit ∈ Hi −
(H ′i ∪Hi+1 ∪H ′i+1) or bit ∈ H ′i − (Hi ∪Hi+1 ∪H ′i+1).

Case 1. bit ∈ Hi − (H ′i ∪Hi+1 ∪H ′i+1).
We distinguish two cases based on the value of i.

Case 1.1. i ∈ [k − 1].
Swap bit with pi in the ordering of Bi. We claim that (?) remains true. This is because

pi /∈ H ′i+1 by Claim 9 and {bim, . . . , bij−1}∪Ci∪{bi+1
1 , . . . , bi+1

m−1} is H ′i+1-tight for all m > t

by assumption, thus we get that {bim, . . . , bij−1} ∪ Ci ∪ {bi+1
1 , . . . , bi+1

m−1} − pi + bit remains

H ′i+1-tight for all m > t. Similarly, pi ∈ Hi by Claim 8 and {bi−1m , . . . , bi−1j−1} ∪ Ci−1 ∪
{bi1, . . . , bim−1} is Hi-tight for all m > t by assumption, thus we get that {bi−1m , . . . , bi−1j−1}∪
Ci−1 ∪ {bi1, . . . , bim−1} − bit + pi remains Hi-tight for all m > t.

After the modification, (q1, . . . , qi, pi+1, . . . , pk) becomes a valid choice for the j-th
phase. To see this, assume first that i > 2. Then, by Claim 9, we have qi−1 ∈ H ′i, pi /∈ H ′i
and qi ∈ H ′i, so Ri−1 − qi−1 − bit + pi + qi remains H ′i-tight. If i = 1 then, by Claim 9, we
have pk ∈ H ′1, p1 /∈ H ′1 and q1 ∈ H ′1, so Rk − pk − b1t + p1 + q1 remains H ′1-tight. Also by
Claim 8, we have pi+1 ∈ Hi+1, pi ∈ Hi+1 and qi /∈ Hi+1, so Ri− pi− qi + bit + pi+1 remains
Hi+1-tight. This contradicts the maximal choice of j.

Case 1.2. i = k.
Recall that we are in the case when bkt ∈ Hk − (H ′k ∪ H1 ∪ H ′1). Swap bkt with pk in

the ordering of Bk. We claim that (?) remains true. This is because pk /∈ H1 by Claim 8
and {bkm, . . . , bkj−1} ∪Ck ∪ {b11, . . . , b1m−1} is H1-tight for all m > t by assumption, thus we
get that {bkm, . . . , bkj−1} ∪ Ck ∪ {b11, . . . , b1m−1} − pk + bkt remains H1-tight for all m > t.

Similarly, pk ∈ Hk by Claim 8 and {bk−1m , . . . , bk−1j−1}∪Ck−1 ∪{bk1, . . . , bkm−1} is Hk-tight for

all m > t by assumption, thus we get that {bk−1m , . . . , bk−1j−1}∪Ck−1∪{bk1, . . . , bkm−1}−bkt +pk
remains Hk-tight for all m > t.

After the modification, (q1, . . . , qk) becomes a valid choice for the j-th phase. This is
because, by Claim 8, we have qk−1 /∈ Hk, pk ∈ Hk and qk /∈ Hk, so Rk−1−qk−1−bkt +pk+qk
remains Hk-tight. Also by Claim 9, q1 ∈ H ′1, qk /∈ H ′1 and pk ∈ H ′1, so Rk−pk−qk +bkt +q1
remains H ′1-tight. This contradicts the maximal choice of j.

Case 2. bit ∈ H ′i − (Hi ∪Hi+1 ∪H ′i+1).
We distinguish two cases based on the value of i.

Case 2.1. i ∈ [k − 1].
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Swap bit with qi in the ordering of Bi. We claim that (?) remains true. This is because
qi /∈ Hi+1 by Claim 8 and {bim, . . . , bij−1}∪Ci∪{bi+1

1 , . . . , bi+1
m−1} is Hi+1-tight for all m > t

by assumption, thus we get that {bim, . . . , bij−1} ∪ Ci ∪ {bi+1
1 , . . . , bi+1

m−1} − qi + bit remains

Hi+1-tight for all m > t. Similarly, qi ∈ H ′i by Claim 9 and {bi−1m , . . . , bi−1j−1} ∪ Ci−1 ∪
{bi1, . . . , bim−1} is H ′i-tight for all m > t by assumption, thus we get that {bi−1m , . . . , bi−1j−1}∪
Ci−1 ∪ {bi1, . . . , bim−1} − bit + qi remains H ′i-tight for all m > t.

After the modification, (p1, . . . , pi, qi+1, . . . , qk) becomes a valid choice for the j-th
phase. To see this, assume first that i > 2. Then, by Claim 8, we have pi−1 ∈ Hi, pi ∈ Hi

and qi /∈ Hi, so Ri−1 − pi−1 − bit + pi + qi remains Hi-tight. If i = 1 then, by Claim 8
and 9, we have qk ∈ H1, p1 ∈ H1 and q1 /∈ H1, so Rk − qk − b1t + p1 + q1 remains H1-tight.
Also by Claim 9, we have qi+1 ∈ H ′i+1, pi /∈ H ′i+1 and qi ∈ H ′i+1, so Ri− pi− qi + bit + qi+1

remains H ′i+1-tight. This contradicts the maximal choice of j.

Case 2.2. i = k.
Recall that we are in the case when bkt ∈ H ′k − (Hk ∪ H1 ∪ H ′1). Swap bkt with qk in

the ordering of Bk. We claim that (?) remains true. This is because qk /∈ H ′1 by Claim 9
and {bkm, . . . , bkj−1} ∪Ck ∪ {b11, . . . , b1m−1} is H ′1-tight for all m > t by assumption, thus we
get that {bkm, . . . , bkj−1} ∪ Ck ∪ {b11, . . . , b1m−1} − qk + bkt remains H ′1-tight for all m > t.

Similarly, qk ∈ H ′k by Claim 9 and {bk−1m , . . . , bk−1j−1}∪Ck−1 ∪{bk1, . . . , bkm−1} is H ′k-tight for

all m > t by assumption, thus we get that {bk−1m , . . . , bk−1j−1}∪Ck−1∪{bk1, . . . , bkm−1}−bkt +qk
remains H ′k-tight for all m > t.

After the modification, (p1, . . . , pk) becomes a valid choice for the j-th phase. This is
because, by Claim 9, we have pk−1 /∈ H ′k, pk /∈ H ′k and qk ∈ H ′k, so Rk−1−pk−1−bkt +pk+qk
remains H ′k-tight. By Claims 8 and 9, p1 ∈ H1, qk ∈ H1 and pk /∈ H1, so Rk−pk−qk+bkt +p1
remains H1-tight. This contradicts the maximal choice of j.

This finishes the proof of (a), that is, bit ∈ (Hi4H ′i) ∩ (Hi+14H ′i+1). To prove the
remaining two properties, observe that {bit+1, . . . , b

i
j−1} ∪ Ci ∪ {bi+1

1 , . . . , bi+1
t } − bi+1

t + bit
is a basis by (?). Note that {bit+1, . . . , b

i
j−1} ∪ Ci ∪ {bi+1

1 , . . . , bi+1
t } is both Hi+1- and

H ′i+1-tight, while bit, b
i+1
t ∈ (Hi+14H ′i+1). Hence {bit, bi+1

t } ⊆ Hi+1 or {bit, bi+1
t } ⊆ H ′i+1,

for otherwise the basis would intersect Hi+1 or H ′i+1 in too many elements. This implies

|({bit+1, . . . , b
i
j−1} ∪ Ci ∪ {bi+1

1 , . . . , bi+1
t }) ∩Hi+1|

= |({bit+1, . . . , b
i
j−1} ∪ Ci ∪ {bi+1

1 , . . . , bi+1
t } − bi+1

t + bit) ∩Hi+1|

and

|({bit+1, . . . , b
i
j−1} ∪ Ci ∪ {bi+1

1 , . . . , bi+1
t }) ∩H ′i+1|

= |({bit+1, . . . , b
i
j−1} ∪ Ci ∪ {bi+1

1 , . . . , bi+1
t } − bi+1

t + bit) ∩H ′i+1|,

which means that properties (b) and (c) hold as well.

Claims 12 and 13 imply that Bi is tight with respect to Hi, H ′i, Hi+1 and H ′i+1.
We know that Hm 6= Hm+1 for some m < k. Then, Bm ⊆ Hm ∪ Hm+1 which implies
qm ∈ Bm ⊆ Hm ∪Hm+1. However, by Claim 8, qm /∈ Hm ∪Hm+1, a contradiction. This
concludes the proof of the theorem.

the electronic journal of combinatorics 33(1) (2026), #P1.20 12



4 Further remarks and open problems

4.1 Comments on Conjecture 2

The most important result toward verifying Conjecture 2 is due to Van den Heuvel and
Thomassé [18].

Theorem 14 (Van den Heuvel and Thomassé). Let M = (S,B) be a loopless matroid
with rank function r : 2S → Z+ and |S| = n, and let g denote the greatest common divisor
of r(S) and n. Then, there exists a partition S = G1 ∪ · · · ∪Gn/g into sets of size g such

that
⋃r(S)/g−1

t=0 Gi+t is a basis for all i ∈ [n/g] if and only if r(S) · |X| 6 n ·r(X) for X ⊆ S.

In particular, Theorem 14 settles Conjecture 2 in the affirmative if r(S) and n are
coprimes. Therefore, to prove Conjecture 2, it would be enough to verify that, when M
is uniformly dense, the elements inside each Gi admit an ordering that together induces
a cyclic ordering of M . Unfortunately, such an approach cannot work as shown by the
following example.

Example 15. Let S = {a1, . . . , a10} and consider the sparse paving matroid defined by
the following hyperedges: {a1, a2, a3, a10}, {a1, a2, a4, a9}, {a1, a3, a4, a5}, {a2, a3, a4, a6},
{a3, a5, a6, a7}, {a4, a5, a6, a8}, {a5, a7, a8, a9}, {a6, a7, a8, a10},{a1, a7, a9, a10}, {a2, a8, a9,
a10}, with the value of r being 4; see Section 2 for the definition. If Gi = {a2i−1, a2i} for
all i ∈ [5], then it is not difficult to check that Gi ∪Gi+1 is a basis for all i ∈ [10].

However, we claim that the pairs in the sets Gi cannot be ordered in such a way
that we get a cyclic ordering of the matroid M . To see this, observe that each Gi is
contained in two of the hyperedges, which excludes two of the four possible orderings of
the neighboring groups Gi−1 and Gi+1. Due to the exclusion of these ordering possibilities,
it is not difficult to verify that no suitable ordering exists.

4.2 Exchange distance of basis sequences

Note that Gabow’s conjecture can be interpreted as follows: for any two disjoint bases
B1 and B2 of a matroid M of rank r, there is a sequence of r symmetric exchanges that
transforms the pair (B1, B2) into (B2, B1). The closely related problem of transforming a
sequence (B1, . . . , Bk) of bases into another (B′1, . . . , B

′
k) was proposed by White [19]. Let

(B1, . . . , Bk) be a sequence of k bases of a matroid M , and assume that there exist e ∈ Bi,
f ∈ Bj for some 1 6 i < j 6 k such that both Bi− e+ f and Bj − f + e are bases. Then
we say that the sequence (B1, . . . , Bi−1, Bi−e+f,Bi+1, . . . , Bj−1, Bj−f +e, Bj+1, . . . , Bk)
is obtained from the original one by a symmetric exchange. Accordingly, two sequences
of bases are called equivalent if one can be obtained from the other by a composition of
symmetric exchanges. White studied the following question: what is the characterization
of two sequences of bases being equivalent?

There is an easy necessary condition. Two sequences (B1, . . . , Bk) and (B′1, . . . , B
′
k)

are called compatible if the union of the Bis as a multiset coincides with the union of
the B′is as a multiset. Compatibility is obviously a necessary condition for two sequences
being equivalent, and White conjectured that it is also sufficient.
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Conjecture 16 (White). Two sequences of k bases are equivalent if and only if they are
compatible.

In this context, Gabow’s conjecture would verify White’s conjecture for two pairs of
bases of the form (B1, B2) and (B2, B1). Note that, however, the conjecture says nothing
on the minimum number of exchanges needed to transform one of the pairs into the
other. As a common generalization of Gabow’s conjecture and the special case of White’s
conjecture when k = 2, Hamidoune [6] proposed an optimization variant.

Conjecture 17 (Hamidoune). Let (B1, B2) and (B′1, B
′
2) be compatible basis pairs of a

rank-r matroid M = (S,B). Then, (B1, B2) can be transformed into (B′1, B
′
2) by using at

most r symmetric exchanges.

In [3], Bérczi, Mátravölgyi and Schwarcz formulated a weighted extension of Hami-
doune’s conjecture. Let M = (S,B) be a matroid and w : S → R+ be a weight function
on the elements of the ground set S. Given a pair (B1, B2) of bases, we define the weight
of a symmetric exchange B1 − e + f and B2 − f + e to be w(e)/2 + w(f)/2, that is, the
average of the weights of the exchanged elements.

Conjecture 18 (Bérczi, Mátravölgyi, Schwarcz). Let (B1, B2) and (B′1, B
′
2) be com-

patible basis pairs of a matroid M = (S,B), and let w : S → R+. Then, (B1, B2)
can be transformed into (B′1, B

′
2) by using symmetric exchanges of total weight at most

w(B1)/2 + w(B2)/2 = w(B′1)/2 + w(B′2)/2.

By setting the weights to be identically 1, we get back Hamidoune’s conjecture. The
question naturally arises: can we formulate extensions of Conjectures 17 and 18 for basis
sequences of length greater than two?

Let (B1, . . . , Bk) be a sequence of k bases of a matroid M , and assume that there
exists distinct indices {i1, . . . , iq} ⊆ [k] and ej ∈ Bij such that Bij − ej + ej+1 is a basis
for each j ∈ [q]. Then, we say that the sequence (B′1, . . . , B

′
k) where B′` = Bij − ej + ej+1

if ` = ij for some j ∈ [q] and B′` = B` otherwise, is obtained by a cyclic exchange. As a
generalization of Conjecture 17, we propose the following.

Conjecture 19. Let (B1, . . . , Bk) and (B′1, . . . , B
′
k) be compatible sequences of k bases

of a rank-r matroid. Then, (B1, . . . , Bk) can be transformed into (B′1, . . . , B
′
k) by using

at most r cyclic exchanges.

Given a weight function w : S → R+ on the elements of the ground set, let us define the
weight of a cyclic exchange that moves elements ej ∈ Bij for j ∈ [q] to be 1

k

∑q
j=1 w(ej).

As a generalization of Conjecture 18, the weighted counterpart is as follows.

Conjecture 20. Let (B1, . . . , Bk) and (B′1, . . . , B
′
k) be compatible sequences of k bases

of a matroid M = (S,B), and let w : S → R+. Then, (B1, . . . , Bk) can be transformed
into (B′1, . . . , B

′
k) by using cyclic exchanges of total weight at most 1

k

∑k
i=1w(Bi) =

1
k

∑k
i=1w(B′i).

Note that in both cases, the bounds are tight in the sense that r cyclic exchanges are
definitely needed to transform the sequence (B1, . . . , Bk−1, Bk) into (B2, . . . , Bk, B1).
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supported by the Ministry for Culture and Innovation from the source of the National
Research, Development and Innovation Fund – grant numbers EKÖP-24 and EKÖP-25.
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[9] L. Ferroni and B. Schröter. The Merino–Welsh conjecture for split matroids. Annals
of combinatorics, 27(3):737–748, 2023.

[10] L. Ferroni and B. Schröter. Tutte polynomials of matroids as universal valuative
invariants. arXiv preprint arXiv:2403.17696, 2024.
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