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Abstract

We provide an optimal sufficient condition, relating minimum degree and band-
width, for a graph to contain a spanning subdivision of the complete bipartite
graph K. This includes the containment of Hamilton paths and cycles, and has
applications in the random geometric graph model. Our proof provides a greedy
algorithm for constructing such structures.

Mathematics Subject Classifications: 05C35, 05C45, 05C80

1 Introduction

A classical theorem of Dirac [5] asserts that every graph on n > 3 vertices with minimum
degree at least n/2 contains a Hamilton cycle. This began a long line of research into
sufficient minimum-degree conditions for (hyper/di)graphs to contain different (almost)
spanning structures; see, e.g., the surveys of Kithn and Osthus [11, 12, 13|, of Radl
and Rucinski[18], and of Zhao [20]. Moreover, the search for sufficient conditions for
Hamiltonicity has been a driving force in graph theory; we refer the reader to the surveys
of Gould [8, 9, 10].

In recent work on local resilience of random geometric graphs, Espuny Diaz, Lichev and
Wesolek [6] posed the following interesting conjecture, concerning a sufficient minimum-
degree condition for subgraphs of C¥ the k-th power of a cycle C,, on n vertices, to contain
a Hamilton cycle.!
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IHere, the k-th power G* of a graph G is obtained from G by adding an edge between any pair of vertices
which are at graph distance at most k£ from each other.
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Conjecture 1 ([6, Conjecture 1.13]). For all integers n > 3 and k € [1,n/2], every graph
G C CF with 6(G) > k + 1 is Hamiltonian.

Motivated by Conjecture 1, we investigate the analogous question when the host
graph is P*  the k-th power of a path P, on n vertices. For an n-vertex graph G, the
condition that G C P* is equivalent to G having bandwidth at most k, that is, that there
exists a labelling vy, ..., v, of V(G) such that for every edge v;v; € E(G) we have that
li — j| < k. The bandwidth of G, denoted by bw(G), is the smallest integer k& such that G
has bandwidth at most k. The problem of determining the bandwidth of graphs, rooted
in applications in computer science, has prompted a lot of research over the years (see,
e.g., the surveys of Chinn, Chvatalova, Dewdney and Gibbs [3] and Lai and Williams [14]).
Remarkably, graphs of bounded bandwidth are amenable for embedding problems in
extremal graph theory [2, 4, 1].

Through the equivalence outlined above, our goal is to understand the interplay
between minimum degree and bandwidth as sufficient conditions for subgraph containment.
However, the usual notion of minimum degree is not suitable in our context: while every
vertex of C* has degree 2k, there are vertices in P* of lower degree. Thus, we have to
adjust the notion of minimum degree accordingly.

Given a host graph H and a spanning subgraph G C H, we say that G has effective
minimum degree at least ¢ (with respect to H) if, for every v € V(H), we have that
degg(v) = min{l, degy (v)}. We let §(G) denote the maximum ¢ such that G has effective
minimum degree at least ¢ with respect to H. In our problem, the actual embedding of a
graph G with bw(G) < k into P¥ is not relevant. Thus, for the sake of conciseness, for an
n-vertex graph G, we write 0%(G) > / to indicate that there is an embedding of G into P*

such that 62" (G) = ¢. Note that, in particular, this implies that bw(G) < k.
Our first contribution is an analogue of Dirac’s theorem for graphs of bounded band-

width.

Theorem 2. Let k and n be integers with k > 2 and n > 4. Any n-vertex graph G with
68(G) = k + 2 contains a Hamilton cycle.

Note that, if n is much larger than k, then ‘most’ vertices in P* have degree 2k. In
analogy to Dirac’s theorem, Theorem 2 shows that, even after reducing the degree of
most vertices by almost half, we can still guarantee a Hamilton cycle. Observe that, for
k < n < 2k, Theorem 2 holds by Dirac’s theorem, and for n € {2k+1,...,2k+4} it holds,
e.g., by the sufficient degree-sequence condition for Hamiltonicity of Pésa [17]. Moreover,
while it is stated for n > 4, it trivially also holds when n = 3. Finally, we remark that, for
any k > 2, the condition on 6*(G) in Theorem 2 is best possible for all n > 2k + 3 (see
the construction in Example 4).

Theorem 2 is a special case of a more general result for subdivisions. A subdivision of a
graph H is obtained by replacing each edge of H by a path of some positive length, all such
paths being internally disjoint. The problem of determining sufficient minimum-degree
conditions for the containment of spanning subdivisions of different graphs has recently
been considered by Pavez-Signé [16] and Lee [15]. To state our result in the setting of
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graphs of bounded bandwidth, we need to consider rooted subdivisions. Given a graph G
and two distinct vertices u,v € V(G), we say that G contains a subdivision of Ky, rooted
at u and v if it contains such a subdivision where the maximal independent set of size 2
in Ky, is embedded into {u,v}.

Theorem 3. Let n, k and { be integers with k > ¢ > 1 and n > { + 2. Any n-vertex
graph G with 6*(G) > k + ( contains a spanning subdivision of K, rooted at its two
vertices of degree k.

Observe that the case £ = 1 corresponds to a Hamilton path and the case ¢ = 2
corresponds to Theorem 2. The next construction shows that the effective minimum degree
condition in Theorem 3 (and in Theorem 2) cannot be improved if n is sufficiently large.

Example 4. Let k > ¢ >1and n > 2k + ¢+ 1, and let vy,...,v, be n distinct vertices.
Let G be the k-th power of the path vivy...v. 1 and G be the k-th power of the path
Vk42Uk4t3 - - - Uyp. Let G be the union of G and G,. Then, G is an n-vertex graph and
v1,...,0, is a labelling of V(G) which witnesses that bw(G) < k. Since both paths
above have at least k + ¢ vertices, it follows from the construction that 6%(G) =k + ¢ — 1.
Moreover, clearly there are only two vertices of degree k, which are v; and v,,, and removing
the ¢ — 1 vertices vgya, ..., Ve disconnects v; and v,. Thus, by Menger’s theorem, G
cannot contain a subdivision of Ky, rooted at v; and v,. Note that, when ¢ € {1,2},
G cannot contain any spanning subdivision of K5, at all (while, for other values of ¢, G
could contain a spanning subdivision of K5, rooted at vertices different from vy, v,,).

Dirac’s theorem has been strengthened in several ways. For example, Pdsa [17] proved
a condition on the degree sequence of a graph forcing Hamiltonicity. In analogy to that
strengthening, we consider conditions on the degree sequence (as opposed to effective
minimum degree) in graphs of bounded bandwidth and obtain a stronger version of
Theorem 3.

Theorem 5. Let n, k and { be integers, with k > € > 1 and n > £+ 2. Let G be an
n-vertex graph with bw(G) < k, and let vy, ..., v, be a labelling of V(G) witnessing this
fact. Suppose that, for each i € [n], degs(v;) Z min{l +i—1,k+{,k+n —i}. Then, G
contains a spanning subdivision of Ks, rooted at vy and v,,.

Observe that the only difference between Theorems 3 and 5 lies in the assumption on
the degree of the first (at most) k vertices (in the labelling witnessing that bw(G) < k):
if n > k+ ¢ — 1, in Theorem 3, we require that deg(v;) = k + ¢ — 1 for ¢ € [¢] and that
deg(v;) = k+ ¢ for i € [k]\ [¢], while in Theorem 5 we only require that deg(v;) > ¢+i—1
for i € [k]. The degree-sequence condition in Theorem 5 cannot be improved for any
i € [k — {]. We refer to Figure 1 for an easier comparison between the degree conditions
forcing the existence of a Hamilton cycle in Theorems 3 and 5.

We remark that the proof of Theorem 5 (and thus of Theorems 2 and 3) is constructive
and provides an efficient greedy algorithm to construct such a spanning subgraph, provided
a labelling of G witnessing its bandwidth is known.
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1.1 Local resilience and random geometric graphs

Our concept of effective minimum degree is closely related to the problem of local resilience,
which examines the degree conditions under which a subgraph of a given graph maintains
one of its properties. This research direction, systematically initiated by Sudakov and
Vu [19], typically considers the problem where each vertex retains a proportion of its
original degree. The effective minimum degree is a variant that imposes an absolute lower
bound on the degrees of all vertices, except those with initially lower degrees. In this sense,
our result addresses the local resilience of powers of paths with respect to Hamiltonicity
and the containment of spanning subdivisions of K5 ,. For a summary of all results on local
resilience of random graphs with respect to Hamiltonicity, see the annotated bibliography
of Frieze [7].

Additionally, our results have applications on the local resilience of 1-dimensional
random geometric graphs, which are defined as follows. Given an integer n and a real
number r € [0, 1], we let G(n,r) denote a graph sampled by placing n points independently
and uniformly at random in [0, 1] and joining any pair of them by an edge if their distance
is at most 7.

A simple concentration argument (see [6, Remark 1.15]) shows that for every ¢ > 0
there exists a constant C' > 0 such that, if r > C'logn/n, then a.a.s.

P7(L1—s/3)m“ C G(n, 7“) C Pé1+5/3)m"

Then, Theorem 2 immediately implies that a.a.s. every graph H C G(n,r) with effective
minimum degree 0 (n’r)(H ) = (1 + ¢)nr contains a Hamilton cycle (and, in fact, by
Theorem 3, a spanning subdivision of Ky, for any fixed ¢). This makes some progress
towards the 1-dimensional case of a conjecture of Espuny Diaz, Lichev and Wesolek [6,
Conjecture 1.3], who conjectured that the same result holds for every H C G(n,r)
satisfying degy (v) > (1/2 + €) deggy, . (v) for every v € V(H). Note that our degree
sequence matches the conjectured one, except for the degrees of a vanishing proportion
of the vertices (roughly 2rn of them, those which happen to fall within distance r of {0}
or {1}). In fact, using Theorem 5, the number of vertices which do not satisfy the desired
condition can be reduced to roughly rn, and we allow for roughly rn vertices to have an
even lower degree than in [6, Conjecture 1.3].

1.2 Open problems

Motivated by Theorem 2, which shows that preserving slightly more than half of the degree
of most vertices of P¥ guarantees a Hamilton cycle, we wonder whether this is still the
case if we preserve slightly more than half of the degree of each vertex, and we propose
the following conjecture (which would imply the case d = 1 of [6, Conjecture 1.3]).

Conjecture 6. Let n > 4 and k > 2 be integers. Let G C P* be a graph with
deg(v) = degpr(v)/2 + 2. Then, G is Hamiltonian.

In Figure 1, we show a comparison between the various degree conditions forcing the
existence of a Hamilton cycle in Theorems 2 and 5 as well as Conjecture 6. This showcases
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Figure 1: The blue line represents the degree of each vertex in P*. The red (Theorem 2) and
cyan (Theorem 5) lines indicate a sufficient minimum degree condition for Hamiltonicity.
The dashed black line corresponds to Conjecture 6.

the fact that Theorem 2 is weaker than Conjecture 6. On the other hand, the result for
Hamiltonicity from Theorem 5 and Conjecture 6 are incomparable.

We remark that, if one could improve the degree sequence from Theorem 5 for ¢ = 2
so that the degree conditions on the last k vertices mirror those of the first (which would
be even stronger than Conjecture 6), then we would obtain Conjecture 1 with an additive
constant of 2 instead of 1 on the minimum degree condition.

In view of Theorems 2 and 3, it would be interesting to study the interplay between
bandwidth and (effective) minimum degree as sufficient conditions for other spanning
structures. In particular, we suggest to investigate the containment of clique factors or of
spanning bounded-degree trees.

2 Proof of Theorem 5

Given an oriented path, we call its first vertex its startpoint and we call its last vertex
its endpoint. We allow paths to consist of a single vertex, in which case it is both the
startpoint and the endpoint. Let vy, ..., v, be a labelling of V(G) which witnesses the fact
that bw(G) < k. Given any two distinct vertices v;,v; € V(G), we say that v; is to the
left of v; if ¢ < j, and that it is to the right of v; otherwise. Let ¢; := 1, and let 7a,..., 1%
denote the indices of the ¢ — 1 leftmost neighbours of v; (which exist since deg(v;) > /).
Consider Algorithm 1.

Algorithm 1 produces ¢ vertex-disjoint paths. We show now that they cover all the
vertices of G and that their endpoints can be joined by edges in such a way that a
subdivision of Ky, results. We begin by showing that each such path may only crash at
one of the ¢ rightmost vertices.

Claim 7. None of the paths generated by Algorithm 1 may crash at a vertexr v; with
1< n—V~¢.

ot
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Algorithm 1. Construct a Kj -subdivision.

1: For each j € [/], initialise an (oriented) path P; as the single vertex v;,.

2: while not all paths have crashed do

3: Let P :={P; : j € [{] and P; has not crashed yet}.

4: Let v be the leftmost vertex among the endpoints of the paths in P, and let P be

the path of P whose endpoint is v.
If N(v) € Ujepq V(). say that P has crashed at v.

: Otherwise, let ¢ be the leftmost vertex in N(v) \ U,;¢jq V(F;) and extend P by
adding the (directed) edge vv’ to it.

7: end while

> &

Proof. First, note that the path starting at v; = v;; does not crash there, because
degea(vy) = € > ¢ — 1, which is the number of vertices initially covered by the other paths.
Now consider any 2 < i < n — ¢ and suppose for a contradiction that one of the paths,
say P, crashes at v;. We may assume that v; is the leftmost vertex where a path crashes.
We analyse the situation at the instant when P crashes at v;. Notice that, by the algorithm,
v; is the leftmost endpoint at this time. Let U C V(G) denote the set of right-neighbours
of v;. Since bw(G) < k and deg(v;) > min{i — 1,k} + ¢, we know that |U| > (. As P
crashes at v;, the algorithm must already have covered all vertices in U with some path,
and these vertices may have been used in different ways. In particular, there is at most
one vertex u' € U such that u'v; € E(P); if it exists, call it special and observe that it
must be the last vertex visited by P before reaching v;. Moreover, since the algorithm
maintains ¢ paths, there are at most £ — 1 vertices in U which could be the endpoints of
the other paths constructed so far.

Let U" C U be the (possibly empty) set of vertices of U which are not the endpoints of
a path nor the special vertex u/. Consider each u € U’. Denote by P, the path in which u
is contained. Since u is not the endpoint of P,, the path P, must have been extended
after reaching u. Since the algorithm did not append v; after u, the vertex following u
in P, must be some u to the left of v;. In particular, since by assumption no path crashes
at a vertex to the left of v; and v; is the leftmost endpoint of a path, one of the following
must occur:

(i) at some point, P, jumps over v; again after having visited a, or
(ii) P, = P and, after having visited u, P reaches v; without ever jumping over it again.

For each u € U’ for which case (i) holds, consider the first edge of P, that jumps
over v; after having visited . This results in a collection C of vertex-disjoint edges of the
form wz, with w to the left of v; and z to the right of v;. If case (ii) never holds, then
|IC| = |U'| > |U| — . Note, moreover, that case (ii) can hold for at most one u € U’ and, if
it holds for any, then there is no special vertex. Thus, if case (ii) holds for some vertex, we
have that |C| = |U'| =1 > |U| = ({ —1) — 1= |U| — ¢. In conclusion, it is always the case
that |C| > |U| — <.
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Additionally, observe that, the first time our algorithm extends any given path to a
vertex to the right of v; (which must have happened for at least one path, since i > 1
and v; is the leftmost vertex where a path crashes), it does so with an edge e disjoint
from those in C, as the edges of C belong to paths which visit a vertex of U before
such edge. Considering these edges in addition to those of C results in a collection C’ of
IC'| = |C|+ 1> |U| — £+ 1 vertex-disjoint edges with one vertex to the left of v; and the
other to the right of v;.

Now let W denote the set of endpoints to the left of v; of the edges in C’. We must have
w ¢ N(v;) for all w € W, as otherwise the algorithm would have chosen v; to extend some
path from w at an earlier step of the algorithm, rather than jumping over it. Moreover,
since bw(G) < k, each w € W and each neighbour of v; to its left correspond to some v;
with max{i — k,1} < j < i. As deg(v;) — |U| is the number of left-neighbours of v; we
then get

min{i — 1,k} > [W]| + deg(v;) — |U| = |W| + min{i — 1,k} + £ — |U],

which implies that |[W| + ¢ < |U|. This contradicts the fact that |W| = |C'| > |U| — ¢+ 1.

It follows immediately from Claim 7 that the endpoints of the paths constructed by
Algorithm 1 are the vertices v; with n — ¢ < i < n. Now we wish to prove that these paths
contain all vertices of G. We say that a vertex v is a gap if it is not contained in any of
the paths P; produced by Algorithm 1.

Claim 8. If v; is a gap, then there is a neighbour v; of v; to its right which is also a gap.

Proof. We argue similarly as above. By Claim 7, the vertices v; with ¢ > n — ¢ are
endpoints of paths, so they cannot be gaps. Now let i € [n — /], suppose that v; is a
gap, let U denote the set of its right-neighbours, and suppose for a contradiction that
none of them is a gap. Notice that, since v; is a gap, none of the paths may have crashed
at a vertex in U. Therefore, for every u € U, when reached by a path, the algorithm
must have chosen a neighbour to the left of v; to append to the path. In turn, this
means that the union of the paths must contain a matching of size at least |U| whose
edges are of the form wz with w to the left of v; and z to its right. Let W denote the
set of endpoints of these matching edges to the left of v;, and observe that all w € W
correspond to some v; with max{i — k,0} < j < i. Moreover, each w € W must not be a
neighbour of v;, as otherwise v; would have been chosen by the algorithm when extending
some path from w. This means that the number of neighbours of v; to its left is at most
min{i — 1,k} — |W/|. But v; has at least min{i — 1,k} + ¢ — |U| neighbours to its left,
which leads to a contradiction since |W| > |U]. n

Combined, Claims 7 and 8 ensure that Algorithm 1 results in a set of ¢ pairwise
vertex-disjoint paths Py, ..., P such that, for each j € [{], the startpoint of P; is v;;, the
endpoints are v, g1, ..., 0, (in some order), and the paths together cover all the vertices
of G. (Indeed, Claim 7 gives the existence of paths with the desired endpoints and, since
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none of the last ¢ vertices is a gap and every gap must have another gap to its right by
Claim 8, there cannot be any gaps at all.) As v; is joined by an edge to all v;; with
Jj €[4\ {1} and v, is joined by an edge to all v; with n — ¢ < i < n, this immediately
yields a subdivision of K3, rooted at v; and v,. O
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