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Abstract

Let H = (H;: i < ) for some ordinal number « be an indexed family of graphs.
A family G = (G;: i < «a) of edge-disjoint subgraphs of a graph G such that for
every i < a: (; is isomorphic to H;, each G; is a spanning subgraph of G, and
E(G) = U{E(G;): i < a} is a H-factorization of G. Let x be an infinite cardinal.
Kénig proved in 1936 that every x-regular graph has a factorization into perfect
matchings. We extend this result to the most general factorizations possible. We
study indexed families 7 = (7;: i < k) of graphs without isolated vertices such
that every connected k-regular graph has a T-factorization. We prove that if T is
a family of forests each of order at most x, then every connected k-regular graph G
has a T-factorization. These are the most general assumptions for such a family 7
for this statement to hold.

Keywords: infinite graphs, trees, decompositions, factorizations, packings, regular
graphs, graph factors

Mathematics Subject Classifications: 05C63, 05C51, 05C70, 05C05, 03E05

1 Introduction

The study of matchings and related notions is arguably one of the most popular topics in
graph theory. This includes matchability, factorizations, packings, and decompositions.
One of the most studied problems in this area is a 1-factorization, which is a decomposition
into perfect matchings. The most natural necessary condition for the existence of a 1-
factorization of a given graph is its regularity. In the case of finite graphs, this condition
is far from being sufficient, even for very simple classes of graphs. The same applies for
infinite locally finite graphs (graphs without vertices of infinite degree). However, it turns
out that this condition is indeed sufficient in the case of non-locally-finite graphs, as was
shown by Kénig [5] in 1936. Similarly, Andersen and Thomassen [1] proved in 1980 the
following theorem.
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Theorem 1 (Andersen, Thomassen [1]). If x is an infinite cardinal, then a connected graph
G has a spanning k-regular tree if and only if G is k-regular.

In this paper, we focus on the most general decomposition properties possible for which
a necessary and a sufficient condition is the regularity of a given connected non-locally-
finite graph. This covers the mentioned problems such as matchability, factorizations,
packings, and decompositions, and generalizes the mentioned results of Konig, Andersen
and Thomassen.

Let H = (H;: i < «a) be an indexed family of graphs for some ordinal number a.
We say that H packs into a graph G if there exists a family (G;: ¢ < «) of edge-disjoint
subgraphs of G such that G; is isomorphic to H; for every ¢ < a. If H packs into G
and furthermore |J{E(G;): i < a} = E(G), then G is called a H-decomposition of G.
A factor of a graph G is a spanning subgraph of G. A H-decomposition of G such that
every element of H is a factor of G is called a H-factorization of G. If X is a cardinal
number, then a factorization into A-regular subgraphs is simply called a A-factorization.

To extend Konig’s result we can ask for which families 7 of xk graphs each k-regular
connected graph has a T-factorization. To simplify we can assume that no element of
7T has an isolated vertex. Since a k-regular graph G itself can be a tree, no graph in
T contains a cycle. Furthermore, each graph in 7T is a factor of G, and therefore it has
order k. We also show that each element of 7 necessarily has x components. We prove
that these are the only assumption on 7 that we need. The main result of this paper
is Theorem 2, which provides a general answer to the problem of factorizations for non-
locally finite regular graphs. Furthermore, it provides a complete classification of indexed
families 7 = (7;: i < k) of graphs such that each element of 7 has no isolated vertex and
every k-regular connected graph has a T-factorization.

Theorem 2. Let k be an infinite cardinal and let 7 = (7;: i < k) be an indexed family of
graphs without isolated vertices. The following statements are equivalent:

1. Every connected k-regular graph G has a T -factorization.
2. Each element of T is a forest with £ components, each of order at most k.

The theorem above can be strengthened if we replace the condition of no isolated
vertices with a requirement that at least x many graphs in 7 have at least one edge, at
the expense of the clarity of the proof. We can replace the connectivity of G with the
assumption that GG has at most x components. The extension of the theorem above for
graphs with A > x many components is straightforward. However, we restrict ourselves
to connected graphs mainly for the clarity of the result.

We can apply Theorem 2 to various problems by setting a suitable family 7. To
show that every family 7' of x forests of order at most k packs into every k-regular
graph it is enough to partition 7’ into k sets of cardinality x (possibly omitting isolated
vertices). Thus, we obtain a family 7 of k forests with x components of order at most
k, for which we can apply Theorem 2. The same method may be applied to obtain an
arbitrary decomposition into s non-trivial forests of size at most x. A A-factorization
for non-zero A\ < k may be obtained by setting 7 to be a family of x forests with &
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components, each isomorphic to the A-regular tree. For A = 1 we obtain the mentioned
result of Konig. One can easily deduce the existence of a k-regular spanning tree from
the existence of a k-regular spanning forest by connecting its component by transfinite
induction. Therefore, for A = k Theorem 2 gives a strengthening of the Theorem 1.

The problem of graph decomposition is closely related to the colouring number. The
colouring number Col(G) of a graph G is the least cardinal number p for which there
exists an enumeration (v;: 0 < |V(G)]) of vertices of G such that each vertex v; € V(G)
has less than p neighbours of smaller indices. Erdés and Hajnal [3] proved in 1967 that if
A is an infinite cardinal, then there exists a decomposition of a graph G into a union of A
forests if and only if Col(G) < A*. Note that the colouring number of the complete graph
on k vertices is equal to x. Therefore, if x is an infinite cardinal, then each connected
infinite k-regular graph has a decomposition into A forests if and only if K = X or k = AT.
It follows that if x is a limit cardinal, then we cannot replace 7 = (7;: i < k) with
an indexed family of smaller cardinality. However, if AT = k, then for every connected
r-regular graph G there exists an indexed family 7 = (7;: i < \) of forests with &
components, each of order at most x such that G has a T-factorization. It is unknown
to the author if there exists an indexed family 7 = (T;: i < \) of forests such that every
At-regular graph has a T-factorization.

Problem 3. Let A be an infinite cardinal. Is there any indexed family 7 = (7;: i < \) of
forests such that every connected A\*-regular graph G has a T-factorization?

2 Factorizations and decompositions

By the order of a graph we mean the number of elements of the set of its vertices.
When considering a H-decomposition, we always implicitly assume that elements of H
are vertex-disjoint. Lowercase Greek letters always refer to ordinal numbers. We consider
each ordinal @ = {f: B < a} as a well-ordered set with the standard well-ordering of
the ordinals. If a, §, = are ordinals, then we treat the Cartesian products a x 5 and
a X 8 x v as well-ordered sets with the lexicographic order induced by the well-ordering of
the ordinals. This means that we first make an induction on v with £ and « fixed, then
on  with « fixed, and finally on «. Each ordering in this paper is either the lexicographic
order on a product of ordinals or the standard well-ordering of ordinal. The x-regular
tree or a tree of degree x is the unique tree such that each of its vertices has degree k.
For notions of graph theory and set theory which are not defined in this paper see [2, 4].

Our main goal is to prove Theorem 2. We divide its proof into three parts. The first
part is the theorem below, which shows the necessity of the conditions in Theorem 2.
Theorem 4, also applies to Problem 3.

Theorem 4. Let k be an infinite cardinal and let 7 be an indexed family of at least two
graphs without isolated vertices. If the k-regular tree G has a T-factorization, then each
element of 7 is a forest with x components, each of order at most k.

Proof. Let T be a component of some element of 7. If the order of T is greater than k,
then T cannot be a subgraph of G, because the order of G is equal to x. Hence, each
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element of 7 has order at most x, and so have its components. The k-regular tree G does
not contain a cycle. Hence, no element of 7 contains a cycle. Suppose to the contrary
that there exists an element 7" of 7 which has less than x components.

Consider T as a subgraph of G. We shall show that there exists a vertex u such that
each edge incident to u in G is an edge of T'. Suppose that this is not the case. Pick an
arbitrary vertex r. Suppose that r has less than s neighbours in 7". Then each neighbour
of rin G — E(T) lies in a different component of 7', and therefore there are x components
of T. It follows that r has k neighbours in T. Note first that the neighbours in G of
any vertex v lie in at least two components of T. Otherwise, we could pick u equal to
v. Therefore, there exists a component of 7" which contains a neighbour of v but not
v. We say that each such component is friendly with respect to v. Suppose that some
neighbours u and v of r in T have the same friendly component C'. Let u’ be a neighbour
of uin C, and v’ a neighbour of v in C'. The only path between «' and v’ in G contains
r but this path is not in 7. Therefore, ' and ¢’ lie in different components, and u and
v have distinct friendly components. Since there are x neighbours of 7 in T, there are k
friendly components of T'. This gives a contradiction.

Since each edge incident to u is contained in 7', then u is an isolated vertex in G—E(T).
There exists an element of 7 different than 7" without isolated vertex, therefore there is
no 7T -factorization of G. O

The next part of the proof of Theorem 2 is Theorem 5, which covers the case of
factorizations of a k-regular connected graph into x many x-regular forests.

Theorem 5. Let k be an infinite cardinal. A connected graph G has a factorization into
x many k-regular forests if and only if G is k-regular.

Proof. Assume first that G contains a k-regular spanning forest with at most x compo-
nents. It follows that each vertex of G has degree at least k. Moreover, each vertex of G
has degree at most k because G has k vertices. This proves the necessity of k-regularity
of G. Therefore, it remains to prove the sufficiency of k-regularity of G.

Let F be a spanning x-regular tree of G which exists by Theorem 1. Let vy be an
arbitrary vertex of G. Consider an enumeration (v;: i < k) of vertices of G such that in
the rooted tree (F,vp) if v; is a child of v;, then i > j.

For each vertex v;, in order to ensure that in a step (m,t) € k x x in the upcoming
induction we do not run out of children of v;, for fixed j < x we define a partition
{X7"(t) : (m,t) € k x Kk} of the set of children of v; into |k X k| many sets each of
size k. Note that every vertex of G except vy belongs to exactly one set of the family
{X7*(t): j,m,t < K}, because the family {X7"(t): m,t < x} forms a partition of the set
of children of v;, and each vertex of GG except vy is a child of some vertex v;. In the proof,
we construct a family {Cf": j,m < k} satisfying the conditions:

(C2) C'nC} =0, for m #n,
(C3) [C"] = &,
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(C4) if vju; € E(G) and i > j, then there exists m <  such that v; € CJ".

The Condition (C1) means that CJ" is a subset of the children of v;. It follows that
CrnCy = 0 for i # j. Combining the Condition (C1) with the Condition (C2), we
obtain that C]’.C" N C’;C}” =0if 5/ # 3" or m' #m”.

First, we describe how to obtain a desired x-factorization of G into x many k-regular
forests using the family {C7": j,m < r} satisfying the conditions above. We construct
a k-factorization F = (F™: m < k) by setting E(F™) = {vjv;: v; € O, j < i < K},
Throughout the proof we use the index m < k for constructing the m-th element of
factorization. If v; is a vertex in a component F' of F'™, then C7" is the set of children of
vj in (F,v) where v denotes the vertex v; € F' with the least index 1.

By the Condition (C3), every graph in F is a s-regular spanning subgraph of G. Let
F™ be an element of F, and assume that there exists a cycle in F™. The vertex of the
greatest index in this cycle has two neighbours in F™. Hence, it belongs to C7"* and C}"
for some distinct 4, j < k. This contradicts (C1). It follows that F™ is a forest for every
m < k. By the Conditions (C2) and (C4) every edge of G appears in exactly one element
of F. Therefore, F is a factorization of graph G into x many regular forests of degree .

It remains to construct the family {C7": j,m < k}. We construct sets {A}": j,m < s}
and {B}": j,m < x}, and then we obtain C7* by setting C7* = AT'UB]" for every j,m < .
We shall construct the sets {A7T': j,m < x} and {B]": j,m < s} by transfinite induction
on (m,T,i) € k X kK X k with respect to the lexicographic order on x x k X k. During
step (m, 7,i) we either assign the vertex v; to aj'(y) for some j,y < x, we put v; in B}"
for some j < K, or we proceed to the next step without doing anything. Assigning v; to
aj*(y) is equivalent to defining a7*(y) as v;. Without loss of generality, we can assume
that V(G) Nk = (). Initially, we temporarily assign a different ordinal number less than
K to each element of {a}'(y): m,j,y < x} but still refer to aJ'(y) as not defined until
some vertex v; € V(G) is assigned to it. This is done for technical reasons so that sets
containing a}”(y) are well-defined throughout the entire proof.

Recall that the index m is related to the m-th factor. After executing steps (m,7,1)
for every 7,4 < k the set {a}'(y): y < x} has been defined for every j < x, and we define
AT = {a}'(y): y < x}. During steps (m, 7,4) for 7,4 < x we define the set B}* by putting
vertices in it. At the start of the induction no vertex lies in B}" for every m, j < k.

For a fixed triple (m, 7,4) let 07"(i) = 0 if no a}*(y) has been defined, let o7*(i) be the
least ordinal for which there exist j, y < 07"(i) such that @' (y) has not been defined, or let
ol'(i) = k if every element of {a}*(y): j,y < x} has already been defined. The parameter
above and the family X7"(¢) shall ensure that every element in the set {a}'(y): j,y < }
is defined after executing steps (m,7’,4’) for 7,4 < k. In particular, it shall ensure that
|AT'| < |C]"| = k. The index 7 in a triple (m, 7,4) is an auxiliary index which serves the
purpose of considering every vertex v; multiple times.

Throughout the induction every vertex can be assigned to more than one element of
{a (y): i,m/,y < K} but it can be assigned to at most one of them for the fixed m/.
We consider the vertices of G one by one, in the step (m, 7,7) we assign v; to the unique

a7 (y), if such exists, such that all the Conditions below are satisfied:

ot
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D1) the vertex v; has not been assigned to aj}(y’) nor put to Bj! for every j',y" < &,
D2) v; is a neighbour of v; and @ > j,
D3) for every y' <y, the vertex a}'(y/) has already been defined but a'(y) has not been,
D4) v; ¢ A™ for every m' < m,
)
)
)
)

D5) v; ¢ B for every m’ < m,

-,

6) v (t) for every (m”,t) > (m,7) and v; ¢ X7'(7) for every j' # j,

¢ X
D7 9<ar<>andy o (i),

(
(
(
(
(
(
(
(

D8) j is the least index for which the conditions (D2)—(D7) are satisfied for some y < k.

If v; has not been assigned to any a}'(y) by the Conditions above (for the fixed m),
then we consider putting v; in BJ* for some j < x. If the Condition (D1) is satisfied and j
is the least index for which the Conditions (D2), (D4), (D5) and (D6) are satisfied, then
we put v; in Bf". Otherwise, we do nothing and proceed to the next index.

After the induction on (m, 7,1) € kX k X k we define ¢ = ATUB]" for every j,m < k.
Note that for every m, j < r the sets A7 and B]" are disjoint. We prove that the family
{C7*: j,m < K}, obtained by the recursive construction, satisfies the Conditions (C1)-
(C4). The first two Conditions are easy to check and follow directly from the construction.
The Condition (C1) are satisfied by the the Conditions (D2) and (D1) in the construction
of the sets A7* and B}". The Condition (C2) follows from the Conditions (D4) and (D5).
We need to show that the Conditions (C3) and (C4) are satisfied.

Now, we prove that |A'| = & for every m,j < x. This is equivalent to {o7*(0): 7 < x}
not being bounded by any ordinal less than x for every m < k. We show the following
claim.

Claim 1. For every m < k consider ¢/*(0) as a function of 7. Then o¢7*(0) is strictly
increasing on the set {7 < k: ¢7"(0) < K}

Proof. Fix m < k. For any non-zero o < r we have sup{c”(0): 7 < a} < o7*(0).
Therefore, it is enough to prove that for every o < & we have o'(0) < o0,,(0) or
o' (0) = k. Denote s = o7(0). Before the execution of step (m, a, 0) the vertex a7"(y) has
already been defined for every j < s and y < s. Let C' = {al'(y): y < s}U{a}'(s): j < s}.
At least one element of C' has not been defined. Fix m and «. In every step on induction
on i we consider assigning v; to a7'(y) € C for every j,y < k. Notice that there are
many vertices v; (considered in induction on ) such that the Conditions (D1), (D2), (D4),
(D5) and (D6) are satisfied for this choice of j,y < . If a}’(y) € C has not been assigned
before step i and v; € XJ"(a), then v; satisfy the Conditions (D1)-(D7) when considered
as a candidate for a7'(y’) for some y' < s. It follows from the second part of (D6) that
the Condition (D8) is also satisfied. Thus, v; = a7*(y’). Note that there are less than x
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elements in C. Recall that there are x indices ¢’ such that vertex vy € V(G) satisfies the
Conditions (D1), (D2), (D4), (D5) and (D6) when it is considered at step ’. Therefore,
we assign a vertex for every element of C' during the induction on ¢ with fixed m and .
Thus, o' (0) < o2, (0). O

It follows from the claim above that for every j,m < s we have [AT'| = k. Since
A7 C CF', we obtained that the family {C7": j,m < k} satisfies (C3). It remains to
prove that the Condition (C4) holds for {C}": j,m < x}. Assume that {CJ": j,m < k}
does not satisfy the Condition (C4). Let (7, j) be the least element in x x k such that i > j
and v;v; € E but v; ¢ C7 for every m < k. Notice that there exists an index m” < &
such that v; ¢ X3*(7) for every (m,7,j’) such that m > m”, 7 <k, and j' < k. From
Claim 1 and the fact that ¢*(4) is non-decreasing we obtain that ¢;"(¢) is unbounded in
k for every m and i. It follows that for every m < k there exists an index ¢(m) such that
ity (1) = max{i, j} = . For m > m" and 7 > {(m) we consider step (m,7,i), and we
check which of the Conditions (D1)-(D8) would be satisfied for assigning v; to af*(y) for
some y < Jf(*m)(i).

The Conditions (D4)—(D7) and the Condition (D2) are satisfied for such a choice of y
and (7, 7) because of the minimality of the pair (¢, 7). However, it may happen that the
Condition (D1), (D3) or (D8) fails. If the Condition (D1) fails, then it also fails for every
successive step (m,t',4) within m. Furthermore, the Condition (D3) may be satisfied for
at most one y and by the assumption that we did not put v; to BJ".

When assigning v; to a'(y), the Condition (D2) is satisfied only for j < i, hence for at
most |i| < k indices j. Therefore, the satisfaction of the Condition (D1) depends on only
these indices j’ for which j’ < i. Therefore, for all but at most |i| indices m the Condition
(D1) is satisfied at (m,t,4) for every t < . Take m such that m > m” and the condition
(D1) is satisfied at (m,t,1) for every ¢ < k. It means that v; is not assigned to any element
of A or put in BJ} for every j' < x during the induction on (m,t, 1) for the fixed m and i.
Consider the assigning of v; to aj*(y). By the assumption the Conditions (D4) and (D5)
are satisfied. By the choice of m the Conditions (D1) and (D6) are satisfied. Furthermore,
by the minimality of (4, 7) the index j is the least index for which all the Conditions (D2),
(D4), (D5), (D6) are satisfied. Therefore, v; in step (m,t,1) is assigned to an element of
A7 or v; is put in BY", which contradicts the assumption. O

The next theorem allows us to further factorize x-regular forests from Theorem 5. For
an arbitrary graph H denote by Sy (v, d) the sphere of radius d and centre v in graph H.
Similarly, denote by By (v,d) the ball of radius d and centre v in graph H.

Theorem 6. Let k be an infinite cardinal. If 7 = (7™: m < k) is an indexed family of
forests without isolated vertices and with x components each of order at most x, then
there exists a T -factorization of the k-regular tree.

Proof. Denote the k-regular tree by G. For m < k let (¢/": i < k) be an enumeration of
vertices of 7. We shall define the set {y": m,i < k} and the graph Y for every m < x
such that V(Y™) = {y*: i < s}, E(Y™) = {y["y]*: i,j < K, "] € E(T™)}, and the
following conditions shall be satisfied:
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(E1) f™: " — y is an isomorphism of 7™ into Y™ for every m < &,

(E2) if zy € E(G), then there exists the unique triple (m,i,j) such that ¢ < j and
Ty = y;"y;",

(E3) V(Y™) =V(G) for every m < k.

Now we show that if the Conditions (E1)—(E3) hold, then the family (Y™: m < k)
is a T-factorization of G. The Condition (E3) means that each Y™ is a factor of G. It
follows from the conditions (E1) and (E2) that (Y™: m < k) is a T-factorization of G.

Pick any vy € V(G) as the root of G. For every m < k we define yJ' = v,. First, for
every m < k we partition the family of components of 7™ into sets T" for every d < w
in such a way that 73" is the singleton of the component containing t{' and |TJ"| = k for
every non-zero d < w. Furthermore, for a component T" of T™ denote by x7 the vertex
" with the least index ¢ in 7". For induction on d < w, assume that we already assigned
all elements in Bg(vg, d) to some elements of {y!": i < a} for every m < k in such a way
that the following Conditions are satisfied:

(F1) every vertex in Bg(vo, d) —vo has been assigned to exactly one vertex in {y7": j < k}
for every m < k, and only vertices in Bg(vg, d) have been assigned,

(F2) if y* and y}* have been defined, then y"yf* € E(G) if and only if ¢t € E(T™),

(F3) if 2y is an edge in G between two vertices in Bg(vg, d), then there exists the unique
triple (m,4,j) such that i < j and ry = y;"y}",

(F4) y™ has been defined if and only if t{* € Br(xp,d — d') for some natural number d’
such that d’ < d, and for some T" € T.

For y € Si(vo, d) we define Wy(y) as the set of the vertices t[* € T™ such that y = y"
for some m, i < k. For every y € Sg(vo, d) we assign each child of y in G to the unique yj*
such that #]* € Wy(y) is a neighbour of #§* in 7™ and y}* has not been defined. Moreover,
for each m the vertex y;" has to be assigned to some child of y. Such an assignment
is possible because y has x children and if we put d = d in the Condition (F4), we
obtain that there are x vertices of the form y;" which are yet unassigned, because they
lie outside of the ball Br(xs,d), and we can assign x of them to each child of y. Let
X7, =A{or: T €T}, }. Foreach t* € X[, we assign the vertex y;" to some vertex v in
Sc(vo,d+ 1) such that v has not been defined yet as a yj* for every j < x. For a fixed m
each vertex y™ has to be assigned with a different vertex of Sg(vg,d + 1).

Now we show that before executing step d (after executing step d — 1) the Conditions
(F1)-(F4) are satisfied. Each of these conditions are trivially satisfied for d = 0. Assume
then that d > 0. It follows directly from the construction that the conditions (F1), (F2)
and (F4) are satisfied. Let y"y!* be an edge between two vertices in F(G) and assume
that i < j. Furthermore, assume that y* € Sg(vo,d) and yj* € Sg(vo,d + 1). We can
assume that because each vertex in Bg(vg, d) has vertices assigned to it before executing
step d, and only vertices in Sg(vo, d+ 1) are assigned to in step d. Notice that if 7" = y;.?'
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for some j' < k, m’ # m, then t??l = xp for some T € T™ . Therefore, no neighbour in
Y™ of y;’," lies in Sg(vg,d — 1). It follows that the condition (F3) is satisfied.

It remains to prove that {y/": m,i < k} satisfies the Conditions (E1)-(E3). The
Condition (E1) is satisfied by (F2) and (F4). The Condition (E2) is satisfied by (F3). It
follows directly from the Condition (F1) that the Condition (E3) is satisfied. O

The proof of Theorem 2 follows easily from Theorems 4, 5, and 6. Theorem 4 shows
the necessity of the conditions in Theorem 2. By Theorem 5 we obtain a factorization
(Y™: m < k) of G into k many regular forests of degree . Then, we partition 7 into an
indexed family (U™: m < k) of sets each of cardinality k. For every m < k the set U™
is an indexed family of k forests without isolated vertices and with x components, each
of order at most x. By Theorem 6, there exists a U™-factorization W™ of Y™ for every
m < k. It follows that {W: W € W™, m < k} forms a T-factorization of G.
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