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Abstract

Let H = (Hi : i < α) for some ordinal number α be an indexed family of graphs.
A family G = (Gi : i < α) of edge-disjoint subgraphs of a graph G such that for
every i < α: Gi is isomorphic to Hi, each Gi is a spanning subgraph of G, and
E(G) =

⋃
{E(Gi) : i < α} is a H-factorization of G. Let κ be an infinite cardinal.

Kőnig proved in 1936 that every κ-regular graph has a factorization into perfect
matchings. We extend this result to the most general factorizations possible. We
study indexed families T = (Ti : i < κ) of graphs without isolated vertices such
that every connected κ-regular graph has a T -factorization. We prove that if T is
a family of forests each of order at most κ, then every connected κ-regular graph G
has a T -factorization. These are the most general assumptions for such a family T
for this statement to hold.

Keywords: infinite graphs, trees, decompositions, factorizations, packings, regular
graphs, graph factors

Mathematics Subject Classifications: 05C63, 05C51, 05C70, 05C05, 03E05

1 Introduction

The study of matchings and related notions is arguably one of the most popular topics in
graph theory. This includes matchability, factorizations, packings, and decompositions.
One of the most studied problems in this area is a 1-factorization, which is a decomposition
into perfect matchings. The most natural necessary condition for the existence of a 1-
factorization of a given graph is its regularity. In the case of finite graphs, this condition
is far from being sufficient, even for very simple classes of graphs. The same applies for
infinite locally finite graphs (graphs without vertices of infinite degree). However, it turns
out that this condition is indeed sufficient in the case of non-locally-finite graphs, as was
shown by Kőnig [5] in 1936. Similarly, Andersen and Thomassen [1] proved in 1980 the
following theorem.

AGH University, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Krakow, Poland,
(stawiski@agh.edu.pl).

the electronic journal of combinatorics 33(1) (2026), #P1.23 https://doi.org/10.37236/11536

https://doi.org/10.37236/11536


Theorem 1 (Andersen, Thomassen [1]). If κ is an infinite cardinal, then a connected graph
G has a spanning κ-regular tree if and only if G is κ-regular.

In this paper, we focus on the most general decomposition properties possible for which
a necessary and a sufficient condition is the regularity of a given connected non-locally-
finite graph. This covers the mentioned problems such as matchability, factorizations,
packings, and decompositions, and generalizes the mentioned results of Kőnig, Andersen
and Thomassen.

Let H = (Hi : i < α) be an indexed family of graphs for some ordinal number α.
We say that H packs into a graph G if there exists a family (Gi : i < α) of edge-disjoint
subgraphs of G such that Gi is isomorphic to Hi for every i < α. If H packs into G
and furthermore

⋃
{E(Gi) : i < α} = E(G), then G is called a H-decomposition of G.

A factor of a graph G is a spanning subgraph of G. A H-decomposition of G such that
every element of H is a factor of G is called a H-factorization of G. If λ is a cardinal
number, then a factorization into λ-regular subgraphs is simply called a λ-factorization.

To extend Kőnig’s result we can ask for which families T of κ graphs each κ-regular
connected graph has a T -factorization. To simplify we can assume that no element of
T has an isolated vertex. Since a κ-regular graph G itself can be a tree, no graph in
T contains a cycle. Furthermore, each graph in T is a factor of G, and therefore it has
order κ. We also show that each element of T necessarily has κ components. We prove
that these are the only assumption on T that we need. The main result of this paper
is Theorem 2, which provides a general answer to the problem of factorizations for non-
locally finite regular graphs. Furthermore, it provides a complete classification of indexed
families T = (Ti : i < κ) of graphs such that each element of T has no isolated vertex and
every κ-regular connected graph has a T -factorization.

Theorem 2. Let κ be an infinite cardinal and let T = (Ti : i < κ) be an indexed family of
graphs without isolated vertices. The following statements are equivalent:

1. Every connected κ-regular graph G has a T -factorization.

2. Each element of T is a forest with κ components, each of order at most κ.

The theorem above can be strengthened if we replace the condition of no isolated
vertices with a requirement that at least κ many graphs in T have at least one edge, at
the expense of the clarity of the proof. We can replace the connectivity of G with the
assumption that G has at most κ components. The extension of the theorem above for
graphs with λ > κ many components is straightforward. However, we restrict ourselves
to connected graphs mainly for the clarity of the result.

We can apply Theorem 2 to various problems by setting a suitable family T . To
show that every family T ′ of κ forests of order at most κ packs into every κ-regular
graph it is enough to partition T ′ into κ sets of cardinality κ (possibly omitting isolated
vertices). Thus, we obtain a family T of κ forests with κ components of order at most
κ, for which we can apply Theorem 2. The same method may be applied to obtain an
arbitrary decomposition into κ non-trivial forests of size at most κ. A λ-factorization
for non-zero λ ⩽ κ may be obtained by setting T to be a family of κ forests with κ

the electronic journal of combinatorics 33(1) (2026), #P1.23 2



components, each isomorphic to the λ-regular tree. For λ = 1 we obtain the mentioned
result of Kőnig. One can easily deduce the existence of a κ-regular spanning tree from
the existence of a κ-regular spanning forest by connecting its component by transfinite
induction. Therefore, for λ = κ Theorem 2 gives a strengthening of the Theorem 1.

The problem of graph decomposition is closely related to the colouring number. The
colouring number Col(G) of a graph G is the least cardinal number µ for which there
exists an enumeration (vi : 0 < |V (G)|) of vertices of G such that each vertex vi ∈ V (G)
has less than µ neighbours of smaller indices. Erdős and Hajnal [3] proved in 1967 that if
λ is an infinite cardinal, then there exists a decomposition of a graph G into a union of λ
forests if and only if Col(G) ⩽ λ+. Note that the colouring number of the complete graph
on κ vertices is equal to κ. Therefore, if κ is an infinite cardinal, then each connected
infinite κ-regular graph has a decomposition into λ forests if and only if κ = λ or κ = λ+.
It follows that if κ is a limit cardinal, then we cannot replace T = (Ti : i < κ) with
an indexed family of smaller cardinality. However, if λ+ = κ, then for every connected
κ-regular graph G there exists an indexed family T = (Ti : i < λ) of forests with κ
components, each of order at most κ such that G has a T -factorization. It is unknown
to the author if there exists an indexed family T = (Ti : i < λ) of forests such that every
λ+-regular graph has a T -factorization.

Problem 3. Let λ be an infinite cardinal. Is there any indexed family T = (Ti : i < λ) of
forests such that every connected λ+-regular graph G has a T -factorization?

2 Factorizations and decompositions

By the order of a graph we mean the number of elements of the set of its vertices.
When considering a H-decomposition, we always implicitly assume that elements of H
are vertex-disjoint. Lowercase Greek letters always refer to ordinal numbers. We consider
each ordinal α = {β : β < α} as a well-ordered set with the standard well-ordering of
the ordinals. If α, β, γ are ordinals, then we treat the Cartesian products α × β and
α×β×γ as well-ordered sets with the lexicographic order induced by the well-ordering of
the ordinals. This means that we first make an induction on γ with β and α fixed, then
on β with α fixed, and finally on α. Each ordering in this paper is either the lexicographic
order on a product of ordinals or the standard well-ordering of ordinal. The κ-regular
tree or a tree of degree κ is the unique tree such that each of its vertices has degree κ.
For notions of graph theory and set theory which are not defined in this paper see [2, 4].

Our main goal is to prove Theorem 2. We divide its proof into three parts. The first
part is the theorem below, which shows the necessity of the conditions in Theorem 2.
Theorem 4, also applies to Problem 3.

Theorem 4. Let κ be an infinite cardinal and let T be an indexed family of at least two
graphs without isolated vertices. If the κ-regular tree G has a T -factorization, then each
element of T is a forest with κ components, each of order at most κ.

Proof. Let T be a component of some element of T . If the order of T is greater than κ,
then T cannot be a subgraph of G, because the order of G is equal to κ. Hence, each
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element of T has order at most κ, and so have its components. The κ-regular tree G does
not contain a cycle. Hence, no element of T contains a cycle. Suppose to the contrary
that there exists an element T of T which has less than κ components.

Consider T as a subgraph of G. We shall show that there exists a vertex u such that
each edge incident to u in G is an edge of T . Suppose that this is not the case. Pick an
arbitrary vertex r. Suppose that r has less than κ neighbours in T . Then each neighbour
of r in G−E(T ) lies in a different component of T , and therefore there are κ components
of T . It follows that r has κ neighbours in T . Note first that the neighbours in G of
any vertex v lie in at least two components of T . Otherwise, we could pick u equal to
v. Therefore, there exists a component of T which contains a neighbour of v but not
v. We say that each such component is friendly with respect to v. Suppose that some
neighbours u and v of r in T have the same friendly component C. Let u′ be a neighbour
of u in C, and v′ a neighbour of v in C. The only path between u′ and v′ in G contains
r but this path is not in T . Therefore, u′ and v′ lie in different components, and u and
v have distinct friendly components. Since there are κ neighbours of r in T , there are κ
friendly components of T . This gives a contradiction.

Since each edge incident to u is contained in T , then u is an isolated vertex in G−E(T ).
There exists an element of T different than T without isolated vertex, therefore there is
no T -factorization of G.

The next part of the proof of Theorem 2 is Theorem 5, which covers the case of
factorizations of a κ-regular connected graph into κ many κ-regular forests.

Theorem 5. Let κ be an infinite cardinal. A connected graph G has a factorization into
κ many κ-regular forests if and only if G is κ-regular.

Proof. Assume first that G contains a κ-regular spanning forest with at most κ compo-
nents. It follows that each vertex of G has degree at least κ. Moreover, each vertex of G
has degree at most κ because G has κ vertices. This proves the necessity of κ-regularity
of G. Therefore, it remains to prove the sufficiency of κ-regularity of G.

Let F be a spanning κ-regular tree of G which exists by Theorem 1. Let v0 be an
arbitrary vertex of G. Consider an enumeration (vi : i < κ) of vertices of G such that in
the rooted tree (F, v0) if vi is a child of vj, then i > j.

For each vertex vj, in order to ensure that in a step (m, t) ∈ κ × κ in the upcoming
induction we do not run out of children of vj, for fixed j < κ we define a partition
{Xm

j (t) : (m, t) ∈ κ × κ} of the set of children of vj into |κ × κ| many sets each of
size κ. Note that every vertex of G except v0 belongs to exactly one set of the family
{Xm

j (t) : j,m, t < κ}, because the family {Xm
j (t) : m, t < κ} forms a partition of the set

of children of vj, and each vertex of G except v0 is a child of some vertex vj. In the proof,
we construct a family {Cm

j : j,m < κ} satisfying the conditions:

(C1) Cm
j ⊂ N(vj) ∩ {vi : i > j},

(C2) Cm
j ∩ Cn

j = ∅, for m ̸= n,

(C3) |Cm
j | = κ,
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(C4) if vjvi ∈ E(G) and i > j, then there exists m < κ such that vi ∈ Cm
j .

The Condition (C1) means that Cm
j is a subset of the children of vj. It follows that

Cm
i ∩ Cm

j = ∅ for i ̸= j. Combining the Condition (C1) with the Condition (C2), we

obtain that Cm′

j′ ∩ Cm′′

j′′ = ∅ if j′ ̸= j′′ or m′ ̸= m′′.
First, we describe how to obtain a desired κ-factorization of G into κ many κ-regular

forests using the family {Cm
j : j,m < κ} satisfying the conditions above. We construct

a κ-factorization F = (Fm : m < κ) by setting E(Fm) = {vjvi : vi ∈ Cm
j , j < i < κ}.

Throughout the proof we use the index m < κ for constructing the m-th element of
factorization. If vj is a vertex in a component F of Fm, then Cm

j is the set of children of
vj in (F, v) where v denotes the vertex vi ∈ F with the least index i.

By the Condition (C3), every graph in F is a κ-regular spanning subgraph of G. Let
Fm be an element of F , and assume that there exists a cycle in Fm. The vertex of the
greatest index in this cycle has two neighbours in Fm. Hence, it belongs to Cm

j and Cm
i

for some distinct i, j < κ. This contradicts (C1). It follows that Fm is a forest for every
m < κ. By the Conditions (C2) and (C4) every edge of G appears in exactly one element
of F . Therefore, F is a factorization of graph G into κ many regular forests of degree κ.

It remains to construct the family {Cm
j : j,m < κ}. We construct sets {Am

j : j,m < κ}
and {Bm

j : j,m < κ}, and then we obtain Cm
j by setting Cm

j = Am
j ∪Bm

j for every j,m < κ.
We shall construct the sets {Am

j : j,m < κ} and {Bm
j : j,m < κ} by transfinite induction

on (m, τ, i) ∈ κ × κ × κ with respect to the lexicographic order on κ × κ × κ. During
step (m, τ, i) we either assign the vertex vi to amj (y) for some j, y < κ, we put vi in Bm

j

for some j < κ, or we proceed to the next step without doing anything. Assigning vi to
amj (y) is equivalent to defining amj (y) as vi. Without loss of generality, we can assume
that V (G) ∩ κ = ∅. Initially, we temporarily assign a different ordinal number less than
κ to each element of {amj (y) : m, j, y < κ} but still refer to amj (y) as not defined until
some vertex vi ∈ V (G) is assigned to it. This is done for technical reasons so that sets
containing amj (y) are well-defined throughout the entire proof.

Recall that the index m is related to the m-th factor. After executing steps (m, τ, i)
for every τ, i < κ the set {amj (y) : y < κ} has been defined for every j < κ, and we define
Am

j = {amj (y) : y < κ}. During steps (m, τ, i) for τ, i < κ we define the set Bm
j by putting

vertices in it. At the start of the induction no vertex lies in Bm
j for every m, j < κ.

For a fixed triple (m, τ, i) let σm
τ (i) = 0 if no amj (y) has been defined, let σm

τ (i) be the
least ordinal for which there exist j, y ⩽ σm

τ (i) such that amj (y) has not been defined, or let
σm
τ (i) = κ if every element of {amj (y) : j, y < κ} has already been defined. The parameter

above and the family Xm
j (t) shall ensure that every element in the set {amj (y) : j, y < κ}

is defined after executing steps (m, τ ′, i′) for τ ′, i′ < κ. In particular, it shall ensure that
|Am

j | ⩽ |Cm
j | = κ. The index τ in a triple (m, τ, i) is an auxiliary index which serves the

purpose of considering every vertex vi multiple times.
Throughout the induction every vertex can be assigned to more than one element of

{am′
i (y) : i,m′, y < κ} but it can be assigned to at most one of them for the fixed m′.

We consider the vertices of G one by one, in the step (m, τ, i) we assign vi to the unique
amj (y), if such exists, such that all the Conditions below are satisfied:
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(D1) the vertex vi has not been assigned to amj′ (y
′) nor put to Bm

j′ for every j′, y′ < κ,

(D2) vi is a neighbour of vj and i > j,

(D3) for every y′<y, the vertex amj (y
′) has already been defined but amj (y) has not been,

(D4) vi /∈ Am′
j for every m′ < m,

(D5) vi /∈ Bm′
j for every m′ < m,

(D6) vi /∈ Xm′′
j (t) for every (m′′, t) > (m, τ) and vi /∈ Xm

j′ (τ) for every j′ ̸= j,

(D7) j ⩽ σm
τ (i) and y ⩽ σm

τ (i),

(D8) j is the least index for which the conditions (D2)–(D7) are satisfied for some y < κ.

If vi has not been assigned to any amj (y) by the Conditions above (for the fixed m),
then we consider putting vi in Bm

j for some j < κ. If the Condition (D1) is satisfied and j
is the least index for which the Conditions (D2), (D4), (D5) and (D6) are satisfied, then
we put vi in Bm

j . Otherwise, we do nothing and proceed to the next index.
After the induction on (m, τ, i) ∈ κ×κ×κ we define Cm

j = Am
j ∪Bm

j for every j,m < κ.
Note that for every m, j < κ the sets Am

j and Bm
j are disjoint. We prove that the family

{Cm
j : j,m < κ}, obtained by the recursive construction, satisfies the Conditions (C1)–

(C4). The first two Conditions are easy to check and follow directly from the construction.
The Condition (C1) are satisfied by the the Conditions (D2) and (D1) in the construction
of the sets Am

j and Bm
j . The Condition (C2) follows from the Conditions (D4) and (D5).

We need to show that the Conditions (C3) and (C4) are satisfied.
Now, we prove that |Am

j | = κ for every m, j < κ. This is equivalent to {σm
τ (0) : τ < κ}

not being bounded by any ordinal less than κ for every m < κ. We show the following
claim.

Claim 1. For every m < κ consider σm
τ (0) as a function of τ . Then σm

τ (0) is strictly
increasing on the set {τ < κ : σm

τ (0) < κ}

Proof. Fix m < κ. For any non-zero α < κ we have sup{σm
τ (0) : τ < α} ⩽ σm

α (0).
Therefore, it is enough to prove that for every α < κ we have σm

α (0) < σm
α+1(0) or

σm
α (0) = κ. Denote s = σm

α (0). Before the execution of step (m,α, 0) the vertex amj (y) has
already been defined for every j < s and y < s. Let C = {ams (y) : y < s}∪{amj (s) : j < s}.
At least one element of C has not been defined. Fix m and α. In every step on induction
on i we consider assigning vi to amj (y) ∈ C for every j, y < κ. Notice that there are κ
many vertices vi (considered in induction on i) such that the Conditions (D1), (D2), (D4),
(D5) and (D6) are satisfied for this choice of j, y < κ. If amj (y) ∈ C has not been assigned
before step i and vi ∈ Xm

j (α), then vi satisfy the Conditions (D1)–(D7) when considered
as a candidate for amj (y

′) for some y′ ⩽ s. It follows from the second part of (D6) that
the Condition (D8) is also satisfied. Thus, vi = amj (y

′). Note that there are less than κ
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elements in C. Recall that there are κ indices i′ such that vertex vi′ ∈ V (G) satisfies the
Conditions (D1), (D2), (D4), (D5) and (D6) when it is considered at step i′. Therefore,
we assign a vertex for every element of C during the induction on i with fixed m and α.
Thus, σm

α (0) < σm
α+1(0).

It follows from the claim above that for every j,m < κ we have |Am
j | = κ. Since

Am
j ⊆ Cm

j , we obtained that the family {Cm
j : j,m < κ} satisfies (C3). It remains to

prove that the Condition (C4) holds for {Cm
j : j,m < κ}. Assume that {Cm

j : j,m < κ}
does not satisfy the Condition (C4). Let (i, j) be the least element in κ×κ such that i > j
and vjvi ∈ E but vi /∈ Cm

j for every m < κ. Notice that there exists an index m′′ < κ
such that vi /∈ Xm

j′ (τ) for every (m, τ, j′) such that m ⩾ m′′, τ < κ, and j′ < κ. From
Claim 1 and the fact that σm

τ (i) is non-decreasing we obtain that σm
t (i) is unbounded in

κ for every m and i. It follows that for every m < κ there exists an index t(m) such that
σm
t(m)(i) ⩾ max{i, j} = i. For m > m′′ and τ ⩾ t(m) we consider step (m, τ, i), and we

check which of the Conditions (D1)-(D8) would be satisfied for assigning vi to amj (y) for
some y ⩽ σm

t(m)(i).

The Conditions (D4)–(D7) and the Condition (D2) are satisfied for such a choice of y
and (i, j) because of the minimality of the pair (i, j). However, it may happen that the
Condition (D1), (D3) or (D8) fails. If the Condition (D1) fails, then it also fails for every
successive step (m, t′, i) within m. Furthermore, the Condition (D3) may be satisfied for
at most one y and by the assumption that we did not put vi to Bm

j .
When assigning vi to amj (y), the Condition (D2) is satisfied only for j < i, hence for at

most |i| < κ indices j. Therefore, the satisfaction of the Condition (D1) depends on only
these indices j′ for which j′ < i. Therefore, for all but at most |i| indices m the Condition
(D1) is satisfied at (m, t, i) for every t < κ. Take m such that m > m′′ and the condition
(D1) is satisfied at (m, t, i) for every t < κ. It means that vi is not assigned to any element
of Am

j′ or put in Bm
j′ for every j′ < κ during the induction on (m, t, i) for the fixed m and i.

Consider the assigning of vi to amj (y). By the assumption the Conditions (D4) and (D5)
are satisfied. By the choice of m the Conditions (D1) and (D6) are satisfied. Furthermore,
by the minimality of (i, j) the index j is the least index for which all the Conditions (D2),
(D4), (D5), (D6) are satisfied. Therefore, vi in step (m, t, i) is assigned to an element of
Am

j or vi is put in Bm
j , which contradicts the assumption.

The next theorem allows us to further factorize κ-regular forests from Theorem 5. For
an arbitrary graph H denote by SH(v, d) the sphere of radius d and centre v in graph H.
Similarly, denote by BH(v, d) the ball of radius d and centre v in graph H.

Theorem 6. Let κ be an infinite cardinal. If T = (Tm : m < κ) is an indexed family of
forests without isolated vertices and with κ components each of order at most κ, then
there exists a T -factorization of the κ-regular tree.

Proof. Denote the κ-regular tree by G. For m < κ let (tmi : i < κ) be an enumeration of
vertices of Tm. We shall define the set {ymi : m, i < κ} and the graph Y m for every m < κ
such that V (Y m) = {ymi : i < κ}, E(Y m) = {ymi ymj : i, j < κ, tmi t

m
j ∈ E(Tm)}, and the

following conditions shall be satisfied:
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(E1) fm : tmi 7→ ymi is an isomorphism of Tm into Y m for every m < κ,

(E2) if xy ∈ E(G), then there exists the unique triple (m, i, j) such that i < j and
xy = ymi y

m
j ,

(E3) V (Y m) = V (G) for every m < κ.

Now we show that if the Conditions (E1)–(E3) hold, then the family (Y m : m < κ)
is a T -factorization of G. The Condition (E3) means that each Y m is a factor of G. It
follows from the conditions (E1) and (E2) that (Y m : m < κ) is a T -factorization of G.

Pick any v0 ∈ V (G) as the root of G. For every m < κ we define ym0 = v0. First, for
every m < κ we partition the family of components of Tm into sets Tm

d for every d < ω
in such a way that Tm

0 is the singleton of the component containing tm0 and |Tm
d | = κ for

every non-zero d < ω. Furthermore, for a component T of Tm denote by xT the vertex
tmi with the least index i in T . For induction on d < ω, assume that we already assigned
all elements in BG(v0, d) to some elements of {ymi : i < α} for every m < κ in such a way
that the following Conditions are satisfied:

(F1) every vertex in BG(v0, d)−v0 has been assigned to exactly one vertex in {ymj : j < κ}
for every m < κ, and only vertices in BG(v0, d) have been assigned,

(F2) if ymi and ymj have been defined, then ymi y
m
j ∈ E(G) if and only if tmi t

m
j ∈ E(Tm),

(F3) if xy is an edge in G between two vertices in BG(v0, d), then there exists the unique
triple (m, i, j) such that i < j and xy = ymi y

m
j ,

(F4) ymi has been defined if and only if tmi ∈ BT (xT , d − d′) for some natural number d′

such that d′ ⩽ d, and for some T ∈ Tm
d′ .

For y ∈ SG(v0, d) we define Wd(y) as the set of the vertices t
m
i ∈ Tm such that y = ymi

for some m, i < κ. For every y ∈ SG(v0, d) we assign each child of y in G to the unique ymj
such that tmi ∈ Wd(y) is a neighbour of tmj in Tm and ymj has not been defined. Moreover,
for each m the vertex ymj has to be assigned to some child of y. Such an assignment
is possible because y has κ children and if we put d′ = d in the Condition (F4), we
obtain that there are κ vertices of the form ymj which are yet unassigned, because they
lie outside of the ball BT (xt, d), and we can assign κ of them to each child of y. Let
Xm

d+1 = {xT : T ∈ Tm
d+1}. For each tmi ∈ Xm

d+1 we assign the vertex ymi to some vertex v in
SG(v0, d+ 1) such that v has not been defined yet as a ymj for every j < κ. For a fixed m
each vertex ymi has to be assigned with a different vertex of SG(v0, d+ 1).

Now we show that before executing step d (after executing step d− 1) the Conditions
(F1)–(F4) are satisfied. Each of these conditions are trivially satisfied for d = 0. Assume
then that d > 0. It follows directly from the construction that the conditions (F1), (F2)
and (F4) are satisfied. Let ymi y

m
j be an edge between two vertices in E(G) and assume

that i < j. Furthermore, assume that ymi ∈ SG(v0, d) and ymj ∈ SG(v0, d + 1). We can
assume that because each vertex in BG(v0, d) has vertices assigned to it before executing
step d, and only vertices in SG(v0, d+1) are assigned to in step d. Notice that if ymj = ym

′

j′
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for some j′ < κ, m′ ̸= m, then tm
′

j′ = xT for some T ∈ Tm′
. Therefore, no neighbour in

Y m′
of ym

′

j′ lies in SG(v0, d− 1). It follows that the condition (F3) is satisfied.
It remains to prove that {ymi : m, i < κ} satisfies the Conditions (E1)–(E3). The

Condition (E1) is satisfied by (F2) and (F4). The Condition (E2) is satisfied by (F3). It
follows directly from the Condition (F1) that the Condition (E3) is satisfied.

The proof of Theorem 2 follows easily from Theorems 4, 5, and 6. Theorem 4 shows
the necessity of the conditions in Theorem 2. By Theorem 5 we obtain a factorization
(Y m : m < κ) of G into κ many regular forests of degree κ. Then, we partition T into an
indexed family (Um : m < κ) of sets each of cardinality κ. For every m < κ the set Um

is an indexed family of κ forests without isolated vertices and with κ components, each
of order at most κ. By Theorem 6, there exists a Um-factorization Wm of Y m for every
m < κ. It follows that {W : W ∈ Wm,m < κ} forms a T -factorization of G.

References

[1] L. D. Andersen and C. Thomassen. The cover index of infinite graphs. Aequationes
Math., 20:244–251, 1980.

[2] R. Diestel. Graph Theory. Springer-Verlag, Berlin Heidelberg, 2017.
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