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Abstract

Graph density profiles are fundamental objects in extremal combinatorics. Very
few profiles are fully known, and all are two-dimensional. We show that even in
high dimensions ratios of graph densities and numbers often form the power-sum
profile (the limit of the image of the power-sum map) studied recently by Acevedo,
Blekherman, Debus and Riener. Our choice of graphs is motivated by recent work
by Blekherman, Raymond and Wei on undecidability of polynomial inequalities in
graph densities. While the ratios do not determine the complete density profile,
they contain high-dimensional information. For instance, to reconstruct the density
profile of 4k-cycles from our results, one needs to solve only one-parameter extremal
problems, for any number of 4k-cycles.

Mathematics Subject Classifications: 05C35, 05C65, 14P99

1 Introduction

The number of homomorphisms from a graph H to a graph G, denoted by hom(H;G),
is the number of maps from V (H) to V (G) that yield a graph homomorphism, i.e., that
map every edge of H to an edge of G. The homomorphism density from a graph H to
a graph G, denoted as t(H;G) := hom(H;G)

|V (G)||V (H)| , is the probability that a random map from

V (H) to V (G) yields a graph homomorphism. Many important problems and results in
extremal graph theory can be framed as certifying the validity of polynomial inequali-
ties in homomorphism numbers or densities which are valid on all graphs. For exam-
ple, the Goodman bound [Goo59] (which implies Mantel’s theorem [Man07]) states that
hom(K1;G) hom(K3;G) ⩾ 2 hom(K2;G)2 − hom(K2;G) hom(K1;G)2, and Sidorenko’s
conjecture [Sid93] can be stated as t(H;G) ⩾ t(K2;G)|E(H)| for any bipartite graph H.

Understanding all s-tuples that can occur as either homomorphism numbers or den-
sities for a fixed collection of graphs U = {H1, . . . , Hs} is an extremely complicated
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problem. It is essentially equivalent to understanding all polynomial inequalities in ho-
momorphism densities or numbers of the graphs Hi which are valid on all target graphs
G. It is known that the problem of checking whether a polynomial expression in either
numbers or densities is nonnegative on all graphs is undecidable [IR95, HN11].

We call the set of all s-tuples the number (resp. density) (graph) profile of the collection
U . To the best of our knowledge, full descriptions of all s-tuples are only known for pairs
of graphs, and even then in a very limited number of cases; no higher-dimensional profiles
are known. For instance an important result of Razborov [Raz08] completely describes
the density profile of U = {K2, K3}. This was extended by Nikiforov to U = {K2, K4} in
[Nik11], and generalized by Reiher to U = {K2, Kn} in [Rei16].

In this paper, instead of computing number or density profiles, we compute some
higher-dimensional profiles of ratios of densities and numbers. We show that these ratio
profiles are direct products of the power-sum profile which was studied in [ABDR23] under
the name limit Vandermonde cell.

Definition 1. For i ∈ N and x ∈ Rn, we let pi(x) =
∑n

j=1 x
i
j be the i-th power sum

polynomial. Let Πn,ℓ := {(p2(x), p3(x), . . . , pℓ(x)) | x ∈ Rn
⩾0 and p1(x) = 1}. Let Πℓ :=

cl
(⋃

n∈N Πn,ℓ

)
. We call Πℓ the power-sum profile.

Now we describe in detail the ratio profiles that we characterize. Let Nc,q denote the
cycle of length c where every edge is replaced by a clique of size q. In particular, Nc,2 is
simply the cycle of length c, denoted as Cc. It was shown in [BRW22] that testing the
validity of polynomial inequalities in densities of graphs N4i,q is undecidable. The proof
made use of some geometric properties of the profiles of ratios of densities, which we now
explore fully.

In Section 3, we compute the density ratio profile N4ℓ,⩽r recording the closure of the
points(

t(N8,2;G)

(t(N4,2;G))2
,
t(N12,2;G)

(t(N4,2;G))3
, . . . ,

t(N4ℓ,2;G)

(t(N4,2;G))ℓ
, . . . ,

t(N8,r;G)

(t(N4,r;G))2
,
t(N12,r;G)

(t(N4,r;G))3
, . . . ,

t(N4ℓ,r;G)

(t(N4,r;G))ℓ

)
for graphs G such that t(N4,q;G) ̸= 0 for 2 ⩽ q ⩽ r. We show that this profile is equal to
Πr−1

ℓ , the direct product of r − 1 copies of the power-sum profile Πℓ.
Thus we also recover the density ratio profile

C4ℓ := cl

({(
t(C8;G)

(t(C4;G))2
,
t(C12;G)

(t(C4;G))3
, . . . ,

t(C4ℓ;G)

(t(C4;G))ℓ

)
| G is a graph s.t. t(C4;G) ̸= 0

})
which is equal to Πℓ. This allows us to understand the (usual) density profile

C∗
4ℓ := cl ({(t(C4, G), t(C8;G), . . . , t(C4ℓ;G)) | G is a graph})

up to one dimension because we divided out by t(C4;G). To obtain the actual profile C∗
4ℓ,

we need to compute the fiber (preimage) over any point a = (a2, . . . , aℓ) ∈ Πℓ which can
be done by finding

wa := max
G

{t(C4;G) | t(C4i;G) = ai ∀2 ⩽ i ⩽ ℓ},
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i.e., the maximal C4-density that achieves the given point a. Then the fiber over a
consists of all points (t, a2t

2, a3t
3, . . . , aℓt

ℓ) with 0 ⩽ t ⩽ wa. Indeed, by our definition of
wa, t = wa is realizable (as a limit) by some sequence of graphs Gn increasing in size.
Taking the disjoint union of Gn with some disconnected vertices, we can realize all points
with smaller density t. We expect that computing wa is a difficult problem in general. We
do not recover the full density profile of C4i cycles; however, this allows us to explicitly
describe a codimension 1 “projection” of the profile.

The same ideas carry on exactly to the density ratio profile N4ℓ,q defined as

cl

({(
t(N8,q;G)

(t(N4,q;G))2
,
t(N12,q;G)

(t(N4,q;G))3
, . . . ,

t(N4ℓ,q;G)

(t(N4,q;G))ℓ

)
| G is a graph s.t. t(N4,q;G) ̸= 0

})
for some fixed q ⩾ 2. For the most general density ratio profile N4ℓ,⩽r, since we divide by
r − 1 separate quantities, we recover the (usual) density profile N ∗

4ℓ,⩽r which is equal to

cl ({(t(N4,2;G), t(N8,2;G), . . . , (N4ℓ,2;G), . . . t(N4,r;G), t(N8,r;G), . . . , (N4ℓ,r;G)) | G is a graph})

up to r−1 dimensions; see Remark 15 for details. Note that we are losing a fixed number
of dimensions even though the dimension of the profile can get arbitrarily large.

In Section 4, we also compute the profile recording the closure of the points(
hom(S

(k)
2k ;G)

(hom(S
(k)
k ;G))2

,
hom(S

(k)
3k ;G)

(hom(S
(k)
k ;G))3

, . . . ,
hom(S

(k)
ℓk ;G)

(hom(S
(k)
k ;G))ℓ

)

for k-uniform hypergraphs G such that hom(S
(k)
k ;G) ̸= 0 and where S

(k)
b is the k-uniform

hyperstar with b branches that intersect in a single vertex and nowhere else. Note that
when k = 2, S

(k)
b is the usual b-star graph, i.e., K1,b. Here, because we have a number ratio

profile, the usual number profile cannot almost be recovered as discussed in the density
ratio profile case above. However, interestingly, we again obtain that this profile is equal
to Πℓ, the power-sum profile.

The connection of density profiles of cycles to the power-sum profile comes from con-
sidering adjacency matrices. It is well-known that hom(Ck, G) = traceAk

G = λk
1+ · · ·+λk

n,
where AG is the adjacency matrix of G and λ1, . . . , λn are its eigenvalues. A similar con-
nection works for graphs Nc,q for q > 2 where, instead of AG, we use a modified adjacency
matrix. Finally, for stars, we have hom(Sk, G) = dk1 + · · ·+ dkn where Sk is the star graph
with k leaves, and di are the degrees of vertices of G. A similar formula holds for hyper-
stars and uniform hypergraphs; see Section 4 for details. It is interesting to note that,
while eigenvalues of adjacency matrices and degree sequences of graphs and hypergraphs
are special, once we consider graphs of all sizes, we pick up the entirety of the power-sum
profile.

2 The power-sum profile

In the next two sections, we will prove that the ratio density profiles for cycles and stars
and their generalizations are direct products of the power-sum profile. The power-sum
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Figure 1: The power-sum profile Π4.

profile has intricate and complicated geometry, which is key to proving undecidability re-
sults. In this section, we recall some geometric results from [ABDR23]. They demonstrate
the interesting geometry of graphs profiles after applying the ratio map.

First recall Definition 1 from the introduction. Further, the cyclic polytope C(n, ℓ)
for n > ℓ ⩾ 2 is the convex hull of n points on the real ℓ-dimensional moment curve
(t, t2, . . . , tℓ). In [ABDR23], the authors showed that Πn,ℓ has the combinatorial structure
of a cyclic polytope, and that Πℓ has the combinatorial structure of an infinite cyclic
polytope. More precisely, they proved the following results.

Theorem 2 (Theorem 2.4 in [ABDR23]). For integers n ⩾ ℓ, the boundary of Πn,ℓ is
the set of points (p2(x), p3(x), . . . , pℓ(x)) such that x ∈ Rn

⩾0 and p1(x) = 1 that are of the
following two types:

1. (0, . . . , 0︸ ︷︷ ︸
r0

, x1︸︷︷︸
r1

, x2, . . . , x2︸ ︷︷ ︸
r2

, . . . , xℓ−1, . . . , xℓ−1︸ ︷︷ ︸
rℓ−1

) with r2k−1 = 1 and r0 ⩾ 0, r2k ⩾ 1 for

all k,

2. (x1, . . . , x1︸ ︷︷ ︸
r1

, x2︸︷︷︸
r2

, . . . , xℓ−1, . . . , xℓ−1︸ ︷︷ ︸
rℓ−1

) with r2k = 1 and r2k−1 ⩾ 1 for all k,

and 0 ⩽ x1 ⩽ x2 ⩽ . . . ⩽ xℓ−1.

Theorem 3 (Theorem 3.1 in [ABDR23]). The set Πn,ℓ has the combinatorial structure of
the cyclic polytope C(n, ℓ− 1), i.e., there is a homeomorphism bd C(n, ℓ− 1) → bd Πn,ℓ

that is a diffeomorphism when restricted to the relative interior of any face of bd C(n, ℓ−
1).
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An explicit homeomorphism is given in Section 3 of [ABDR23], whereas Section 4
of that paper goes into greater details about Πℓ. Loosely speaking, they show that the
boundary of Πℓ is a gluing of countably infinitely many patches and each patch is a curved
(ℓ− 2)-simplex. Gale’s eveness theorem [Gal63] still holds in this infinite setting, and so
the ℓ− 1 vertices of any patch are the union of pairs of consecutive points on the moment
curve with any subset of the first point on the moment curve and an accumulation point.
Figure 1 shows Π4.

3 Ratio profile for cycles and necklaces

We build up to our most general profile for ratios of necklaces by first presenting the
profile for ratios of cycles to help explain the intuition in the more general setting.

3.1 Ratio profile for cycles

Let Ci be the cycle with i vertices and let Chom
4ℓ be defined as

cl

({(
hom(C8;G)

(hom(C4;G))2
,
hom(C12;G)

(hom(C4;G))3
, . . . ,

hom(C4ℓ;G)

(hom(C4;G))ℓ

)
| G is a graph with hom(C4;G) ̸= 0

})
.

We show that this profile is a power-sum profile.

Theorem 4. We have that Chom
4ℓ = Πℓ.

Proof. We first show that Chom
4ℓ ⊆ Πℓ. Let AG be the adjacency matrix of a graph G on

n vertices. Recall that the entry (u, v) of Aj
G is the number of walks of length j between

the vertices u and v of G, and in particular, the entry (v, v) of Aj
G is the number of walks

of length j starting and ending at some vertex v. This means that hom(Cj;G) = tr(Aj
G)

which in turn is equal to
∑n

i=1 λ
j
i where λ1, . . . , λn are the eigenvalues of AG. Therefore,

we have that

Chom
4ℓ = cl

({ ∑
i λ

8
i

(
∑

i λ
4
i )

2
,

∑
i λ

12
i

(
∑

i λ
4
i )

3
, . . . ,

∑
i λ

4ℓ
i

(
∑

i λ
4
i )

ℓ
| G is a graph with eigenvalues λi’s s.t.

∑
i

λ4
i ̸= 0

})
.

Fix a graphG on n vertices and where λi’s are the eigenvalues of AG. Letting xi =
λ4
i∑n

k=1(λ
4
k)

for 1 ⩽ i ⩽ n and xi = 0 for i > n, we have pj(x) =
hom(C4j ;G)

hom(C4;G)j
. Note that p1(x) = 1 and

xi ⩾ 0 for all i ∈ [n], so

Chom
4ℓ =

{
(p2(x), p3(x), . . . , pℓ(x)) | xi =

λ4
i∑n

k=1(λ
4
k)
∀i ∈ [n] for some graph G

}
⊆ Πℓ.

We now show that Chom
4ℓ ⊇ Πℓ. Consider an arbitrary point (p2(y), p3(y), . . . , pℓ(y)) ∈

Πℓ where
y := (y1, y2, . . . , yn, 0, 0, . . .)
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for some n ∈ N such that p1(y) = 1 and where yi ⩾ 0 for every i. We show that
(p2(y), p3(y), . . . , pℓ(y)) is in Chom

4ℓ .
For i ∈ [n], let Gi be the graph K 4

√
yiN+1. Thus 4

√
yiN appears once among the

eigenvalues of AGi
and the remaining 4

√
yiN eigenvalues are −1. Let G be the disjoint

union of the Gi’s for i ∈ [n]. We thus have that

hom(C4j;G)

hom(C4;G)j
=

∑n
i=1

(
( 4
√
y
i
N)4j + 4

√
yiN(−1)4j

)(∑n
i=1

(
( 4
√
y
i
N)4 + 4

√
yiN(−1)4

))j
=

∑n
i=1(y

j
iN

4j + 4
√
yiN)(∑n

i=1(yiN
4 + 4

√
yiN)

)j .
So as N → ∞, we have that

hom(C4j;G)

hom(C4;G)j
→

∑n
i=1 y

j
i

(
∑n

i=1 yi)
j =

pj(y)

(p1(y))j
= pj(y),

and so (p2(y), p3(y), . . . , pℓ(y)) ∈ Chom
4ℓ .

Corollary 5. Recall that

C4ℓ = cl

({(
t(C8;G)

(t(C4;G))2
,
t(C12;G)

(t(C4;G))3
, . . . ,

t(C4ℓ;G)

(t(C4;G))ℓ

)
| G is a graph s.t. t(C4;G) ̸= 0

})
.

We have that C4ℓ = Πℓ.

Proof. First observe that

t(C4j;G)

t(C4;G)j
=

hom(C4j ;G)

|V (G)|4j

hom(C4;G)j

(|V (G)|4)j
=

hom(C4j;G)

hom(C4;G)j
,

and so the ratio profile of densities C4ℓ is equal to the ratio profile of numbers Chom
4ℓ . The

result then follows from Theorem 4.

As explained in the introduction, this means that we can recover the usual density
profile

C∗
4ℓ := cl ({(t(C4, G), t(C8;G), . . . , t(C4ℓ;G)) | G is a graph})

up to one dimension.

3.2 Ratio profile for necklaces

We now generalize the previous profile to necklaces.
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Definition 6. Given some graph G and some integer q ⩾ 3, the q-ification of G is the
graph obtained as follows: for every edge of G, add q − 2 vertices that are all pairwise
adjacent and that are all adjacent to the two vertices of the selected edge. In other words,
each edge of G gets replaced by a clique of size q. More formally, the q-ification of G is the
graph with vertex set V = {v | v ∈ V (G)} ∪ {({u, v}, i) | {u, v} ∈ E(G) and i ∈ [q − 2]}
and edge set E = {{u, v} | {u, v} ∈ E(G)} ∪ {{v, ({u, v}, i) | {u, v} ∈ E(G) and i ∈
[q − 2]} ∪ {{({u, v}, i), ({u, v}, j)} | {u, v} ∈ E(G) and i, j ∈ [q − 2] where i ̸= j}.

Necklaces are defined as the q-ification of cycles.

Definition 7. Let Nc,q be the q-ification of the cycle of length c. We call Nc,q the q-
necklace of length c. For example, Figure 2 shows a 4-necklace of length 5.

Figure 2: The 4-necklace of length 5, N5,4.

In the proof of Theorem 4, we used the adjacency matrix of G to count hom(Cc;G).
We now look at an analogue of the adjacency matrix for cliques so that we can count
hom(Nc,q;G).

Definition 8. Let G be a graph on n vertices and let MG,q be an n × n matrix where
the entry (u, v) records the number of cliques of size q in G containing edge {u, v}. Note
that MG,2 = AG.

From [BRW22], we can relate the number of homomorphisms in a necklace to the
power sum of the eigenvalues in MG,q. Indeed, just as entry (u, v) of Aj

G counts the
number of walks of length j in G starting at vertex u and ending at vertex v, entry (u, v)
of M j

G,q counts the number of q-ifications of such walks. In particular, this means that

entry (v, v) of M j
G,q counts the number of q-ifications of closed walks of length j starting

and ending at v.

Lemma 9 (Lemma 2.5 in [BRW22]). For any graph G, we have that hom(Nj,q;G) =
∑

i λ
j
i

where the λi’s are the eigenvalues of MG,q.

We generalize Chom
4ℓ to N hom

4ℓ,q which we define as the closure of{(
hom(N8,q;G)

(hom(N4,q;G))2
,
hom(N12,q;G)

(hom(N4,q;G))3
, . . . ,

hom(N4ℓ,q;G)

(hom(N4,q;G))ℓ

)
| G is a graph with hom(N4,q;G) ̸= 0

}
.

Note that N hom
4ℓ,2 = Chom

4ℓ . Using more or less the same proof as for Theorem 4 but with
our q-generalization of the adjacency matrix, we show that this profile is a power-sum
profile.
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Theorem 10. Fix q ⩾ 2. We have that N hom
4ℓ,q = Πℓ.

Proof. We first show that N hom
4ℓ,q ⊆ Πℓ. From Lemma 9, since hom(N4j,q;G) =

∑
i λ

4j
i

where the λi’s are the eigenvalues of MG,q, we have

N hom
4ℓ,q = cl

({ ∑
i λ

8
i

(
∑

i λ
4
i )

2
,

∑
i λ

12
i

(
∑

i λ
4
i )

3
, . . . ,

∑
i λ

4ℓ
i

(
∑

i λ
4
i )

ℓ
| G is a graph s.t.

∑
i

λ4
i ̸= 0

})
.

Fix a graph G on n vertices and where λi’s are the eigenvalues of MG,q. Letting xi =
λ4
i∑n

k=1(λ
4
k)

for 1 ⩽ i ⩽ n and xi = 0 for i > n, we have pj(x) =
hom(N4j,q ;G)

hom(N4,q ;G)j
. Note that

p1(x) = 1 and xi ⩾ 0 for all i, so

N hom
4ℓ,q =

{
(p2(x), p3(x), . . . , pℓ(x)) | xi =

λ4
i∑n

k=1(λ
4
k)
∀i ∈ [n] for some graph G

}
⊆ Πℓ.

We now show that N hom
4ℓ,q ⊇ Πℓ. Consider an arbitrary point (p2(y), p3(y), . . . , pℓ(y)) ∈

Πℓ where
y := (y1, y2, . . . , yn, 0, 0, . . .)

for some n ∈ N such that p1(y) = 1 and where yi ⩾ 0 for every i. We show that
(p2(y), p3(y), . . . , pℓ(y)) is in N hom

4ℓ,q for every q ⩾ 3. We have already settled the case
q = 2 in Theorem 4.

For i ∈ [n], let Gi be the graph KziN+1 for some large N where zi = y
1

4(q−1)

i . Assuming
that ziN + 1 ⩾ q, then each edge of Gi is contained in exactly

(
ziN−1
q−2

)
cliques of size q

within KziN+1. So MGi,q has the form
(
ziN−1
q−2

)
(P −I) where P is the all-ones matrix and I

is the identity matrix, both of size ((ziN +1)× (ziN +1)). Thus ziN
(
ziN−1
q−2

)
appears once

among the eigenvalues of MGi,q and the remaining ziN eigenvalues are −
(
ziN−1
q−2

)
. Let G

be the disjoint union of the Gi’s for i ∈ [n]. We then have

hom(N4j,q;G)

hom(N4;G)j
=

∑n
i=1

((
ziN

(
ziN−1
q−2

))4j
+ ziN

(
−
(
ziN−1
q−2

))4j)
(∑n

i=1

((
ziN

(
ziN−1
q−2

))4
+ ziN

(
−
(
ziN−1
q−2

))4))j

=

∑n
i=1(z

4j
i N4j + ziN)

(
ziN−1
q−2

)4j(∑n
i=1(z

4
iN

4 + ziN)
(
ziN−1
q−2

)4)j
=

∑n
i=1(z

4j
i N4j + ziN)

(
zq−2
i Nq−2

(q−2)!
+O(N q−3)

)4j
(∑n

i=1(z
4
iN

4 + ziN)
(

zq−2
i Nq−2

(q−2)!
+O(N q−3)

)4)j .
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Note that the largest degree term in N in each summand of the numerator is

z4ji N4j z
(q−2)4j
i

((q − 2)!)4j
N4j(q−2) =

z
(q−1)4j
i N4j(q−1)

((q − 2)!)4j
=

yjiN
4j(q−1)

((q − 2)!)4j
.

Similarly, the largest degree term in each summand of the denominator (before taking the
jth power) is

z4iN
4 z

(q−2)4
i

((q − 2)!)4
N4(q−2) =

z
(q−1)4
i N4(q−1)

((q − 2)!)4
=

yiN
4(q−1)

((q − 2)!)4
.

So as N → ∞, we have that

hom(N4j,q;G)

hom(N4;G)j
→

∑n
i=1

yj
iN

4j(q−1)

((q−2)!)4j(∑n
i=1

yiN4(q−1)

((q−2)!)4

)j =

N4j(q−1)

((q−2)!)4j

∑n
i=1 y

j
i(

N4(q−1)

((q−2)!)4

)j
(
∑n

i=1 yi)
j
=

∑n
i=1 y

j
i

(
∑n

i=1 yi)
j
=

pj(y)

(p1(y))j
= pj(y),

and so (p2(y), p3(y), . . . , pℓ(y)) ∈ N hom
4ℓ,q .

We now finally generalize N hom
4ℓ,q to a larger family of ratios going over different q’s.

Let N hom
4ℓ,⩽r be the closure of the points of the form(

hom(N8,2;G)

(hom(N4,2;G))2
,
hom(N12,2;G)

(hom(N4,2;G))3
, . . . ,

hom(N4ℓ,2;G)

(hom(N4,2;G)
, . . . ,

hom(N8,r;G)

(hom(N4,r;G))2
,
hom(N12,r;G)

(hom(N4,r;G))3
, . . . ,

hom(N4ℓ,r;G)

(hom(N4,r;G))ℓ

)

where G is a graph such that hom(N4,q;G) ̸= 0 for any 2 ⩽ q ⩽ r.
The argument will proceed as before, however, we need a more complicated construc-

tion that we now introduce.

Definition 11. Let A(k, 2) be a triangle-free graph with n vertices that is d-regular and
where the second largest eigenvalue (in absolute value) of the adjacency matrix of A(k, 2)
is λ, where n = Θ(23k), d = Θ(22k), and λ = Θ(2k). Here the constants in Θ are absolute
constants. For an integer q ⩾ 3, let A(k, q) be the q-ification of A(k, 2).

The graphs A(k, 2) are known as (n, d, λ)-graphs in the literature, and were first con-
structed by Alon in [Alo94]. Since A(k, 2) has nd

2
= Θ(25k−1) edges and since the q-ification

A(k, q) introduces q − 2 vertices for every edge of A(k, 2), A(k, q) has n + (q − 2)dn
2

=
Θ(23k + (q − 2)25k−1) vertices. The original vertices coming from A(k, 2) have degree
d(q − 1), and the new vertices have degree q − 1. Further, the original vertices are each
contained in d q-cliques, whereas the new vertices are contained in exactly one q-clique.

From Corollary 2.19 and Lemma 2.20 of [BRW22], the following statement can be
made about the spectrum of MA(k,q),p
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Lemma 12. Fix q ⩾ p ⩾ 2. The top eigenvalue of MA(k,q),p is Θ(22k), at most O(23k)
eigenvalues are O(2k), and the rest are O(1).

We now informally explain the strategy of the proof of Theorem 13. A key point
is the fact that hom(N4j,p;A(k, q)) is 0 if q < p since N4j,p contains bigger cliques than
A(k, q). This allows us to independently realize different points in Πℓ as points in N hom

4ℓ,p

for different 2 ⩽ p ⩽ q. Start with the p = q, and realize the desired point in Πℓ with
disjoint copies of A(ki, q)’s for different ki’s. Now go to p = q − 1. Again we realize the
desired point in Πℓ with disjoint copies of A(ki, q)’s for different ki’s, but we choose ki’s
that ensure the ratio obtained for p = q. And so on for smaller values of p.

Theorem 13. We have that N hom
4ℓ,⩽r = Πr−1

ℓ .

Proof. By Theorem 10, we have that N hom
4ℓ,⩽r ⊆ Πr−1

ℓ .

To prove that N hom
4ℓ,⩽r ⊇ Πr−1

ℓ , we show that every point in Πr−1
ℓ can be realized as(

hom(N8,2;G)

(hom(N4,2;G))2
,
hom(N12,2;G)

(hom(N4,2;G))3
, . . . ,

hom(N4ℓ,2;G)

(hom(N4,2;G)
, . . . ,

hom(N8,r;G)

(hom(N4,r;G))2
,
hom(N12,r;G)

(hom(N4,r;G))3
, . . . ,

hom(N4ℓ,r;G)

(hom(N4,r;G))ℓ

)

for some sequence of graphs G.
Consider an arbitrary point in Πr−1

ℓ , say(
p2(y

(2)), p3(y
(2)), . . . , pℓ(y

(2)), p2(y
(3)), p3(y

(3)), . . . , pℓ(y
(3)) . . . , p2(y

(r)), p3(y
(r)), . . . , pℓ(y

(r))
)

where y(q) = (y
(q)
1 , y

(q)
2 , . . . , y

(q)
nq , 0, 0, . . .) for some nq ∈ N such that p1(y

(q)) = 1 and

y
(q)
i ⩾ 0 for all 0 ⩽ i ⩽ nq and 2 ⩽ q ⩽ r. Thus, pj(y

(q)) =
∑nq

i=1 y
(q)
i

j
for 2 ⩽ q ⩽ r and

2 ⩽ j ⩽ ℓ.
For 2 ⩽ q ⩽ r and 1 ⩽ i ⩽ nq, let G

(q)
i be the graph A(k

(q)
i , q) where k

(q)
i =

1
8
log2(y

(q)
i N r−q) for some large positive N . Fix 2 ⩽ q ⩽ r and 2 ⩽ p ⩽ r, and let µi,q,p,t

be the tth largest eigenvalue of M
A(k

(q)
i ,q),p

. Observe that from Lemma 9 and Lemma 12,

hom(N4j,p;A(k
(q)
i , q)) is equal to∑

t

µ4j
i,q,p,t = Θ(22k

(q)
i )4j +O(23k

(q)
i ) ·O(2k

(q)
i )4j +O(25k

(q)
i −1) ·O(1)4j = (1+ o(1))Θ(22k

(q)
i )4j

for any j ⩾ 1. Let G be the disjoint union of the G
(q)
i for i ∈ [nq] and 2 ⩽ q ⩽ r. We then

have that
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hom(N4j,p;G)

hom(N4,p;G)j
=

∑r
q=2

∑nq

i=1 hom(N4j,p;A(k
(q)
i , q))(∑r

q=2

∑nq

i=1 hom(N4,p;A(k
(q)
i , q))

)j
=

∑r
q=p

∑nq

i=1 hom(N4j,p;A(k
(q)
i , q))(∑r

q=p

∑nq

i=1 hom(N4,p;A(k
(q)
i , q))

)j
=

∑r
q=p

∑nq

i=1(1 + o(1))Θ(22k
(q)
i )4j(∑r

q=p

∑nq

i=1(1 + o(1))Θ(22k
(q)
i )

4)j
=

∑r
q=p

∑nq

i=1(1 + o(1))(y
(q)
i N r−q)j(∑r

q=p

∑nq

i=1(1 + o(1))(y
(q)
i N r−q)

)j

where the second line follows from the fact that hom(N4j,p;A(k
(q)
i , q)) = 0 if q < p, where

the third line follows from the observation above, and where the fourth line follows follows
from the definition of k

(q)
i .

The degree of the numerator and denominator is both j(r− p). So as N → ∞, we get
that

hom(N4j,p;G)

hom(N4,p;G)j
→

∑np

i=1 y
(p)
i

j(∑np

i=1 y
(p)
i

)j =
pj(y

(p))

(p1(y(p)))j
= pj(y

(p))

as desired, and so(
p2(y

(2)), p3(y
(2)), . . . , pℓ(y

(2)), p2(y
(3)), p3(y

(3)), . . . , pℓ(y
(3)) . . . , p2(y

(r)), p3(y
(r)), . . . , pℓ(y

(r))
)

is in N hom
4ℓ,⩽r.

Corollary 14. Recall that N4ℓ,⩽r is the closure of the points of the form(
t(N8,2;G)

(t(N4,2;G))2
,
t(N12,2;G)

(t(N4,2;G))3
, . . . ,

t(N4ℓ,2;G)

(t(N4,2;G)
, . . . ,

t(N8,r;G)

(t(N4,r;G))2
,
t(N12,r;G)

(t(N4,r;G))3
, . . . ,

t(N4ℓ,r;G)

(t(N4,r;G))ℓ

)
where G is a graph such that t(N4,q;G) ̸= 0 for any 2 ⩽ q ⩽ r. Then N4ℓ,⩽r is equal to
Πr−1

ℓ .

Proof. We have that

t(N4j,q;G)

t(N4,q;G)j
=

hom(N4j,q ;G)

|V (G)|4j(q−2)

hom(N4,q ;G)j

(|V (G)|4(q−2))j

=
hom(N4j,q;G)

hom(N4,q;G)j
.

So the density ratio profile N4ℓ,⩽r is equal to the number ratio profile N hom
4ℓ,⩽r, and the

result holds by Theorem 13.
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Remark 15. As mentioned in the introduction, since C4ℓ, N4ℓ,q and N4ℓ,⩽r are all density
ratio profiles, they contain high-dimensional information about the corresponding density
profiles. We now discuss what it would take to recover the density profile from the
ratio profile in the most general case N4ℓ,⩽r (the cases C4ℓ and N4ℓ,q are discussed in the
introduction). Recall that we let N ∗

4ℓ,⩽r be defined as

cl ({(t(N4,2;G), t(N8,2;G), . . . , (N4ℓ,2;G), . . . t(N4,r;G), t(N8,r;G), . . . , (N4ℓ,r;G)) | G is a graph}) ,

i.e., the usual density profile for all (4i, q)-necklaces for 1 ⩽ i ⩽ ℓ and 2 ⩽ q ⩽ r. To obtain
N ∗

4ℓ,⩽r from N4ℓ,⩽r, we need to compute the fiber over any point (a2, . . . , ar) ∈ Πr−1
ℓ .

Observe that for any point b = (b4,2, b8,2, . . . , b4ℓ,2, . . . , b4,r, b8,r, . . . , b4ℓ,r) ∈ N ∗
4ℓ,⩽r, we

know that for any 0 ⩽ t ⩽ 1, the point b′ where b′4i,q = b4i,qt
4i(q−1) for 1 ⩽ i ⩽ ℓ and

2 ⩽ q ⩽ r is also in N ∗
4ℓ,⩽r. Indeed, if Gn is the sequence of graphs that realizes b, then

b′ can be realized with Gn with some added isolated vertices. Moreover, note that b and

b′ project down to the same (a2, . . . , ar) ∈ Πr−1
ℓ since

b4i,q
bi4,q

=
b4i,qt

4i(q−1)

(b4,qt4(q−1))i
=

b′4i,q
(b′4,q)

i for every

2 ⩽ i ⩽ ℓ, 2 ⩽ q ⩽ r (if t > 0).
So one can partition the points of N ∗

4ℓ,⩽r so that b and b′ are in the same part if there

exists t > 0 such that b′4i,q = b4i,qt
4i(q−1) for 1 ⩽ i ⩽ ℓ and 2 ⩽ q ⩽ r. Then all points in

one part will project down to the same point in Πr−1
ℓ .

We thus recover N ∗
4ℓ,⩽r up to r − 1 dimensions, even though the dimension of the

profile itself can be arbitrarily large. We emphasize that from [BRW22], we know that
determining the validity of a polynomial inequality in the densities of the N4i,q’s is an
undecidable problem, and thus that one cannot hope to find a computationally short
description of the density profile for N4i,q’s in general.

4 Ratio profile for hyperstars

Let S
(k)
b be the k-uniform hyperstar with b branches all of which intersect in one common

vertex, called center, and nowhere else. For example, S
(2)
b = K1,b, i.e., the usual b-star

graph. Let Sℓ,k be the closure of the points of the form(
hom(S

(k)
2k ;G)

(hom(S
(k)
k ;G))2

,
hom(S

(k)
3k ;G)

(hom(S
(k)
k ;G))3

, . . . ,
hom(S

(k)
ℓk ;G)

(hom(S
(k)
k ;G))ℓ

)

for all k-uniform hypergraphs G such that hom(S
(k)
k ;G) ̸= 0.

Theorem 16. We have that Sℓ,k = Πℓ.

Proof. We first show that Sℓ,k ⊆ Πℓ. For any v ∈ V (G), let d(v) be the number of
k-hyperedges in G that contain vertex v. Note that

hom(S
(k)
b ;G) =

∑
v∈V (G)

(
(k − 1)!d(v)

)b
.
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Therefore, we have that Sℓ,k is the closure of the points ∑
v∈V (G)

(
(k − 1)!d(v)

)2k(∑
v∈V (G)

(
(k − 1)!d(v)

)k)2 ,
∑

v∈V (G)

(
(k − 1)!d(v)

)3k(∑
v∈V (G)

(
(k − 1)!d(v)

)k)3 , . . . ,
∑

v∈V (G)

(
(k − 1)!d(v)

)ℓk(∑
v∈V (G)

(
(k − 1)!d(v)

)k)ℓ


for all k-uniform hypergraphs G such that
∑

v∈V (G)((k − 1)!d(v))k ̸= 0.

Fix a graph G on n vertices, say V (G) := {v1, . . . , vn}. Letting

xi =

(
(k − 1)!d(vi)

)k∑n
a=1

((
(k − 1)!d(va)

)k)
for 1 ⩽ i ⩽ n and xi = 0 for i > n, we have

pj(x) =
n∑

i=1

 (
(k − 1)!d(vi)

)k∑n
a=1

((
(k − 1)!d(va)

)k)
j

=
hom(S

(k)
jk ;G)

hom(S
(k)
k ;G)j

.

Note that p1(x) = 1 and xi ⩾ 0 for all i, so

Sℓ,k =

(p2(x), p3(x), . . . , pℓ(x)) | xi =

(
(k − 1)!d(vi)

)k∑n
a=1

((
(k − 1)!d(va)

)k)∀i ∈ [n]

 ⊆ Πℓ.

We now show that Sℓ,k ⊇ Πℓ. Consider an arbitrary point (p2(y), p3(y), . . . , pℓ(y)) ∈
Πℓ where

y := (y1, y2, . . . , yn, 0, 0, . . .)

for some n ∈ N such that p1(y) = 1 and where yi ⩾ 0 for every i. We show that
(p2(y), p3(y), . . . , pℓ(y)) is in Sℓ,k.

For i ∈ [n], let Gi be the graph S
(k)
bi

where bi =
(yi)

1
k N

(k−1)!
for some large N . Observe

that S
(k)
bi

has one vertex with degree bi and bi(k− 1) vertices with degree 1. Let G be the
disjoint union of the Gi’s for i ∈ [n]. Then we have

hom(S
(k)
kj ;G)

hom(S
(k)
k ;G)j

=

∑n
i=1

((
(k − 1)! (yi)

1
k N

(k−1)!

)jk

+ (yi)
1
k N

(k−1)!
· (k − 1) ·

(
(k − 1)! · 1

)jk)
(∑n

i=1

((
(k − 1)! (yi)

1
k N

(k−1)!

)k

+ (yi)
1
k N

(k−1)!
· (k − 1) ·

(
(k − 1)! · 1

)k))j

which, as N → ∞, goes to ∑n
i=1 y

j
i

(
∑n

i=1 yi)
j =

pj(y)

p1(y)j
= pj(y),

and so (p2(y), p3(y), . . . , pℓ(y)) is in Sℓ,k.
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