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Abstract

Let G be a connected graph and let I(G) denote its edge ideal. We classify
when I(G)", for n > 1, admits a minimal Lyubeznik resolution. We also give
a characterization for when I(G)™ is bridge-friendly, which, in turn, implies that
I(G)™ has a minimal Barile-Macchia cellular resolution.

Mathematics Subject Classifications: 13D02, 13F55, 05C65, 05C75, 05E40

1 Introduction

It has been a central problem in the study of minimal free resolutions to understand
when a monomial ideal admits cellular resolutions and how to construct these resolutions
(cf. [1, 2,3, 4,5, 8,10, 11, 12, 17, 20, 24]). Despite much effort, only a few explicit
constructions of simplicial complexes that support the free resolution of a monomial ideal
in general are known. The resolutions resulting from these explicit constructions are
the Taylor resolution, Lyubeznik resolution, and, in special cases, the Scarf complex (see
[4, 17, 21]). From discrete Morse theory, cellular resolutions for monomial ideals were
constructed in [2, 3, 8, 11, 12]; particularly, a subclass considered in [2, 8, 9] is called the
Barile-Macchia resolution.

Broadly speaking, discrete Morse theory allows one to “trim down” the Taylor reso-
lution of a monomial ideal in search for the minimal one. This process becomes harder
when the number of generators gets large, as the number of “trim down” options increases.
Thus, a systematic algorithm is desirable. The Lyubeznik algorithm [17] requires a total
order on the generators as its sole input. Batzies and Welker [3], in addition to proving
that Lyubeznik resolutions can be derived from discrete Morse theory, noticed that in-
stead of applying the Lyubeznik algorithm to 25"/, for a monomial ideal I, one can do
so to {o € 2¢mU): lem(o) = p} for each monomial p, using a total order (>=,) on the
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set of minimal generators Gens(/) of I. This process gives rise to the so-called general-
ized Lyubeznik resolution. Chau and Kara [8] constructed the Barile-Macchia algorithm,
which also requires only one total order on 26°() as input, and has a Barile-Macchia
resolution as output. Moreover, with a similar process to that described by Batzies and
Welker and a given system of total orders on Gens(I), one can create a generalized Barile-
Macchia resolution. Table 1 gives a better perspective on how (generalized) Lyubeznik
and Barile-Macchia resolutions are created.

Input .
Algorithm One total order Multiple total orders
: Lyubeznik generalized
Lyubeznik [17] resolution Lyubeznik resolution
. . Barile-Macchia generalized
Barile-Macchia. [2] resolution Barile-Macchia resolution

Table 1: Lyubeznik and Barile-Macchia algorithms - Input and Output

Out of these resolutions coming from discrete Morse theory, Lyubeznik resolutions
are the only ones that are always simplicial. This is one of the reasons why Lyubeznik
resolutions are often non-minimal. On the other hand, Barile-Macchia resolutions have
been proven to be minimal in many cases (see, e.g., [2, 6, 8, 9]). The Lyubeznik and
Barile-Macchia algorithms, therefore, are vastly different, even though both require only
a single total order. Moreover, [8, Theorem 5.14] showed that under mild assumptions,
Barile-Macchia resolutions are closer to minimal than their Lyubeznik counterparts. Not
much is known about their generalized versions, as generalized Lyubeznik resolutions have
only been used in the work of Batzies and Welker [3], and thus have only been shown
to be minimal for generic or shellable ideals. In a different article [7], we showed that
generic or shellable ideals also have minimal generalized Barile-Macchia resolutions. In
other words, the existing literature suggests that the Barile-Macchia algorithm produces
resolutions closer to minimal than the Lyubeznik algorithm. On the other hand, clas-
sifying monomial ideals whose Lyubeznik or Barile-Macchia resolutions are minimal, or
whose Scarf complexes are resolutions, seems out of reach at this time.

In a recent work [14] of Faridi, Ha, Hibi, and Morey, graphs whose edge ideals and
their powers admit Scarf resolutions are identified. More precisely, let G = (V, E) be
a simple undirected graph (i.e., G contains neither loops nor multiple edges) over the
vertex set V' = {z1,...,x.}. We will always consider connected simple graphs with at
least one edge. Let k be a field and, by identifying the vertices of G with variables, let
S =k[z1,..., 2] =k[V] be a polynomial ring. The edge ideal of G is defined to be

It was proved in [14, Theorem 8.3] that the Scarf complex of I(G)™, for a connected graph
G, is a resolution (which is necessarily minimal) if and only if either

(S1) n =1 and G is a gap-free tree; or
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(S2) n > 1 and G is either an isolated vertex, an edge, or a path on three vertices.

We say that a monomial ideal is Lyubeznik (resp. Barile-Macchia) if it admits a min-
imal Lyubeznik (resp. Barile-Macchia) resolution, i.e., there exists a total order on the
minimal generating set such that the output of the corresponding algorithm is a minimal
resolution. We remark that there are monomial ideals that are Barile-Macchia but not
Lyubeznik. In fact, as shall be seen from our results below, I(Ps), the edge ideal of a
5-path, is one such example. On the other hand, whether Lyubeznik monomial ideals are
Barile-Macchia is still open. Our work in this paper addresses the following problem:

Problem 1. Characterize graphs whose edge ideals and their powers are Lyubeznik
and /or Barile-Macchia.

Our results give a complete classification of graphs whose edge ideals and their powers
have minimal Lyubeznik resolutions. Our method is based on the observation that hav-
ing a minimal Lyubeznik resolution descends to HHZ-subideals (see Section 2.5 for the
definition of HHZ-subideals) with respect to any given monomial m, i.e., ideals generated
by subcollections of the generators which divide the given monomial m (see Section 2.5
and Lemma 18). HHZ-subideals were introduced in [16], and appeared briefly prior in [4].
As a consequence, if H is an induced subgraph of G and I(H)™ does not have a minimal
Lyubeznik resolution, then neither does I(G)"™. This allows us to reduce the problem to
finding “forbidden structures”.

The problem is considerably more difficult with Barile-Macchia resolutions. Even
though having a minimal Barile-Macchia resolution also descends to HHZ-subideals (see
Lemma 18), we have not been able to find “forbidden strictures” for this property. It
is too computationally expensive to verify this property even for all graphs with nine
vertices or fewer.

Remark 2. One known example of a graph whose edge ideal does not have a minimal
Barile-Macchia resolution is the 9-cycle [8, Remark 4.24]. The smallest example (in terms
of both number of vertices and number of edges) was found using an exhaustive search

on SageMath and is drawn here.

Chau and Kara [8] introduced the notion of bridge-friendly monomial ideals (see Def-
inition 10), which implies that the given monomial ideal has a minimal Barile-Macchia
resolution, and this resolution can be nicely described. We will classify chordal graphs
whose edge ideals are bridge-friendly and, thus, admit minimal cellular resolutions.

Let us now describe our main results in more details. For nonnegative integers a, b, ¢,
let L(a,b,c) denote the graph consisting of exactly ¢ triangles sharing one edge {x,y}
such that a and b distinct leaves are attached to the vertices z and y, respectively (see
Definition 26). Next, associated to a tree T" and a Zso-valued function w on the edges of
T, we let BF(T,w) be the graph obtained by attaching w(e) triangles to each edge e in
T (see Definition 41). For the edge ideal I(G) itself, we establish in Theorems 31 and 45
the following results.
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(31) I(G) is Lyubeznik if and only if G = L(a, b, ¢) for some nonnegative integers a, b, c;
and

(45) if G is a chordal graph, then I(G) is bridge-friendly if and only if G = BF(T,w),
for some tree T" and function w: E(T) — Z.

To prove Theorem 31, we establish that:

(L1) (forbidden structures) if G is a 5-path Ps, 4-cycle Cy, 5-cycle Cs, 4-complete graph
K, kite graph ¥-, gem graph &, tadpole graph D, butterfly graph X, or net graph
> then I(G) is not Lyubeznik (Proposition 25);

(L2) (graph-theoretic classification) G' does not contain an induced subgraph of the forms
listed in (L1) if and only if G = L(a, b, c) for a,b,c € Z=o (Proposition 28); and

(L3) (Lyubeznik graphs) if G = L(a,b,c), for a,b,c € Zo, then I(G) is Lyubeznik
(Proposition 30).

The proof of Theorem 45 follows in similar steps; particularly, we show that:

(BF1) (forbidden structures) if G is a 4-complete graph K, X, gem graph AA, kite graph
- or net graph >, then I(G) is not bridge-friendly (Proposition 40);

(BF2) (graph-theoretic classification) a chordal graph G is does not contain an induced
subgraph of the forms listed in (BF1) if and only if G = BF(T,w) for a tree T and
a function w: E(T) — Z=o (Proposition 43); and

(BF3) (bridge-friendly graphs) if G = BF(T, w) for some tree T and a function w: E(T) —
Zg, then G is chordal (Proposition 42) and I(G) is bridge-friendly (Proposition 44).

The study of higher powers I(G)™, with n > 2, proceeds in a similar fashion, though
considerably simpler. We prove in Theorems 37 and 52 that:

(37) I(G)™ has a minimal Lyubeznik resolution if and only if G is an edge, or n = 2 and
G is a path on three vertices; and

(52) I(G)™ is bridge-friendly if and only if G is an edge, or G is a path on three vertices,
or n = 2,3 and G is the triangle Cj.

Theorems 37 and 52 are proven in a manner similar to that of Theorems 31 and 45,
although simpler. In particular, we show that:

(Lp) (forbidden structures) if G is K 3, a 4-path Py, a triangle Cj, or a 4-cycle Cy, then

I(G)? is not Lyubeznik; and for the last three graphs in the list, neither is I(G)"
for all n > 2 (see Proposition 36); and
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(BFp) (forbidden structures) if G is a 4-star Kj3, a 4-path graph Pj, a 4-cycle graph
Cy, paw graph > diamond graph &, or a 4-complete graph K4 X then I(G)? and
I(G)? are not bridge-friendly; and for the first three graphs in the list, 7(G)" is not
bridge-friendly for all n > 2 (see Proposition 48).

The article is structured as follows. Section 2 provides the background on Lyubeznik
and Barile-Macchia resolutions. Section 3 is devoted to the characterization of graphs
whose edge ideals and their powers admit minimal Lyubeznik resolutions. Section 4 fo-
cuses on the bridge-friendly property. We remark that throughout the article, we will often
use computer computation to verify whether a given explicit monomial ideal is bridge-
friendly or admits a minimal Lyubeznik resolution. To that end, we provide examples
and code for these two tasks in the Appendix.

2 Preliminaries

In this section, we collect basic terminology and notations about graphs and edge ideals
of graphs. We also give auxiliary results on Lyubeznik and Barile-Macchia resolutions,
bridge-friendly property, and HHZ-subideals.

2.1 Graphs and edge ideals of graphs

Throughout the paper, G = (V, E) denotes a connected simple graph with vertex set V'
and edge set E, where |E| > 1. Let k be a field and let S = k[V] be the polynomial ring
whose variables are identified with the vertices of GG. The edge ideal of G is defined as

A graph H is an induced subgraph of G if V(H) C V(G) and the edges of H are
precisely the edges of G that connect two vertices in H. A tree is a (connected) graph
with no cycles. A chord in a cycle is an edge that connects two non-adjacent vertices in
the cycle. The graph G is called chordal if every cycle of length > 4 has a chord.

For a vertex x € V, its set of neighbors is {y € V' | {z,y} € E}. The distance between
two vertices = and y of G, denoted by distg(x,y), is defined as the smallest value n such
that there exists a path of length n connecting z and y in G. In particular, the neighbors
of a vertex are exactly those of distance one from the given vertex.

We shall denote by Kj,_1, P,, C,, and K, the complete bipartite graph of size
(1,n — 1), the path with n vertices, the cycle on n vertices, and the complete graph on n
vertices, respectively. We sometimes refer to those graphs as the n-star, n-path, n-cycle,
and n-complete graphs. Note that the n-path P, is said to have length n — 1.

We call the following small graphs by particular names that their shapes represent:

net (>, kite (), diamond (B), paw (), gem (&), butterfly (X), and tadpole ().

ot
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Figure 1: Net Figure 2: Kite Figure 3: Diamond
Figure 4: Paw Figure 5: Gem Figure 6: Butterfly

P~

Figure 7: Tadpole

2.2 Taylor resolutions

Let I C S be a homogeneous ideal. A free resolution of S/I is a complex of free S-modules
of the form )
]—":0—>Fp—’$Fp_1—>---—>F131+F0—>O

where Ho(F) = S/I and H;(F) = 0 if i # 0. Moreover, F is N"-graded if 0; is N'-
homogeneous for all i, and minimal if 0;(F;) C (x1,...,z,)F;_; for all 4.

For a monomial ideal  C S, let Gens(I) denote its unique set of minimal monomial
generators. We consider the full |Gens([/)|-simplex whose vertices are labelled by the
monomial generators of I. It is well-known (cf. [21]) that the chain complex of this
simplex gives a free resolution of S/I, which is referred to as the Taylor resolution. Set
|Gens(I)| = ¢. Then the Taylor resolution of S/I is of the form

0 50 55 o550 5 56 0.
We remark that for each integer 7, one can identify a basis of .S () with the collection of
subsets of Gens([) with exactly ¢ elements. We refer interested readers to [19] for a great
introduction to simplicial resolutions.

2.3 Lyubeznik and Barile-Macchia resolutions

The Lyubeznik and Barile-Macchia resolutions, introduced in [17, 2, 3, 8], are subcom-
plexes of the Taylor resolution. While the Taylor resolution accounts for all subsets of
Gens([), the Lyubeznik and Barile-Macchia resolutions are constructed based on the
Lyubeznik-critical and Barile-Macchia-critical subsets of Gens(I); these are the subsets
of Gens([) that survive in the Lyubeznik and Barile-Macchia resolutions. The terms
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Lyubeznik-critical and Barile-Macchia-critical depend on the choice of a given total order
(>) on Gens(I). In particular, the Lyubeznik critical and Barile-Macchia critical subsets
with respect to (>=) are characterized in Propositions 3 and 7 below.

Given a set of monomials ¢, a monomial m, and a total order (=) on o U {m}, set

Oem = {m' € o: m' = m}.

Proposition 3 ([3, Theorem 3.2]). Let o be a subset of Gens(I) and (=) a total order
on Gens(I). Then, o is Lyubeznik-critical (with respect to (>=)) if and only if

{m € Gens(I): m | lem(cy,,)} = 0.

Example 4. Consider the ideal I = (zw, xy, yz, zw) C k[z,y, z, w] with the total order
wr = TY > Yz > ZW.

(a) Let 0y = {zw, zy,yz}. Since zw | lem(oy) and yz > zw, the set oy is not Lyubeznik-
critical.

(b) Let 09 = {zw, zy, zw}. It is routine to verify that oy is Lyubeznik-critical. Indeed,
set my; = zw, my = xy, and mg = yz. Then by brute force, one can see that there
exists no m € Gens(/) such that either

m | lem(mq, my) and my = m

or
m | lem(my, mg, m3) and mg > m.

Definition 5. Let I be a monomial ideal and (>) a total order on Gens(/).

1. Given o C Gens(I) and m € Gens([) such that lem(o U {m}) = lem(o \ {m}), we
say that m is a bridge (respectively, gap) of o if m € o (respectively, m ¢ o).

2. If m = m/ where m,m’ € Gens(I), we say that m dominates m'.
3. The smallest bridge function is defined to be
sb : 29ens() _ Gens(I) LI {0}

where 29°75(D) denotes the power set of Gens(I), and sh(o) is the smallest bridge of
o (with respect to (>)) if o has a bridge and () otherwise.

4. A monomial m € Gens([) is called a true gap of o C Gens([I) if

(a) it is a gap of o, and

(b) the set o U {m} has no new bridges dominated by m. In other words, if m’ is
a bridge of o U {m} and m = m/, then m’ is a bridge of o.
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Equivalently, m is not a true gap of o either if m is not a gap of o or if there exists
m’ < m such that m’ is a bridge of o U {m} but not one of . In the latter case, we
call m’ a non-true-gap witness of m in o.

5. A subset o C Gens([) is called potentially-type-2 if it has a bridge not dominating
any of its true gaps, and type-1 if it has a true gap not dominating any of its
bridges. Moreover, o is called type-2 if it is potentially-type-2 and whenever there
exists another potentially-type-2 ¢’ such that

o'\ {sb(0")} = o\ {sb(0)},
we have sb(o’) > sb(o).
We provide an explicit example of these concepts.

Example 6. Consider the ideal I = (zw,zy,yz, zw) with the total order wx = xy >
Yz = zZw.

(a) Let o0y = {zw,zy,yz}. It is clear that zw is the only true gap and xy is the only
bridge of o1, and by definition, oy is type-1.

(b) Let 09 = {zw, xy, zw}. It is clear that yz is the only gap and zw is the only bridge
of o5. However, yz is not a true gap of o5, and by definition, o5 is potentially-type-2.
Moreover, oy is not type-2 since for o, = {xy, yz, zw} (which one can check to be
potentially-type-2), we have

05 \ {sb(03)} = 02\ {sb(02)},
and sb(oy) = zy > yz = sb(0}).

(c) Let o3 = {zw,zy,yz,zw}. All the elements of o3 are its bridges. Hence o3 is
potentially-type-2, and by definition, it is easy to see that it is indeed type-2.

We recall that Definition 5 (5) is an equivalent characterization of type-1, type-2, and
potentially-type-2 sets, by [8, Theorem 2.24]. Originally, type-1 and type-2 subsets were
defined to be the sources and targets, respectively, of the corresponding Morse matching.
The following result then follows.

Proposition 7 ([8, Theorem 2.24]). Let o be a subset of Gens(I). Then, o is Barile-
Macchia-critical if and only if it is neither type-1 nor type-2.

The following theorem describes Lyubeznik and Barile-Macchia resolutions with re-
spect to a given total order () on Gens([).

Theorem 8 ([3, Proposition 2.2 and Theorem 3.2]). Let I be a monomial ideal with a
fized total order (=) on Gens(I). Let F be the Lyubeznik (respectively, Barile-Macchia)
resolution of S/1 with respect to (>=). Then, for any integer i, a basis of F; can be identified
with the collection of Lyubeznik-critical (respectively, Barile-Macchia-critical) subsets of
Gens([) with exactly i elements.
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Example 9. Consider our running example in Examples 4 and 6 of [ = (zw, zy, yz, zw)
in the polynomial ring k[w, x,y, z] with the total ordering xw > xy > yz > zw. The
corresponding Lyubeznik resolution of S/I is

S{zw, zy}
@ S{zw}
S{zw, zw} ®
S{zw, zy, zw} ) S{zy}
® — S{zy,zw} - @& — SO
S{ay,yz, 2w} ® S{yz}
S{zy,zz} -
® S{zw}
S{zy, zw}

and the corresponding Barile-Macchia resolution of S/I is

S{zw,zy}  S{zw}
S @
S{zw, zw}  S{xy}
S{zy,yz, zw} — ® - @& =S50
S{wy,xzy S{yz}
S @
S{zy,zw}  S{zw}

where the subsets of Gens(I) here represents the respective *-critical ones.

2.4 Bridge-friendly monomial ideals

The terminology “bridge-friendly monomial ideals” was introduced in [8] to ease the
process of identifying Barile-Macchia-critical subsets of the generators. The motivation
for this concept is partly that potentially-type-2 subsets are easier to check than type-2
subsets.

Definition 10. A monomial ideal I is called bridge-friendly (with respect to (>)) if all
potentially-type-2 subsets of Gens([) are type-2. Equivalently, I is bridge-friendly if and
only if Barile-Macchia-critical subsets of Gens(I) are precisely the ones that have neither
bridges nor true gaps (see [8, Corollary 2.28]).

The following is known to experts (cf. [13, Lemma 2.1]): a set o € 26°%() is a face of
the Scarf complex of I if and only if o has neither bridges nor gaps. This characterization is
similar to the definition of Barile-Machia-critical sets of a bridge-friendly ideal. No direct
relation is known between bridge-friendly ideals and those that admit the minimal Scarf
resolution. One can verify that [(C3) is bridge-friendly using the code in Appendix A,
but its Scarf complex is not a resolution ([14, Theorem 8.3]). As far as we know, it is
unknown if the reverse implication holds, which we leave here as a question.

THE ELECTRONIC JOURNAL OF COMBINATORICS 33(1) (2026), #P1.25 9



Question 11. Is it true that if a monomial ideal I admits the minimal Scarf resolution,
then it is bridge-friendly?

As will be seen later, Theorem 45—together with [14, Theorem 8.3]—implies that the
answer to the above question is “yes” if I is a power of an edge ideal.

It turns out that generic monomial ideals (in the sense of [4]), and thus most monomial
ideals, are bridge-friendly (see [8, Theorem 5.4]), and the Barile-Macchia resolutions of
bridge-friendly ideals are minimal (see [8, Theorem 2.29]). We shall identify the failure of
being bridge-friendly.

For the remainder of the section, let o denote a non-empty subset of Gens([).

Proposition 12 ([8, Proposition 2.21]). A monomial m is a gap of o such that sb(c U
{m}) = m if and only if m is a true gap of o that does not dominate any bridge of o.

Lemma 13. A monomial ideal I is not bridge-friendly with respect to (>=) if and only if
there exist a type-1 set 7 C Gens(I) and monomials my > my in Gens(I) such that:

1. The monomials my and my are true gaps of T that do not dominate any bridges (of
7). In particular, my,ms & T.

2. The sets TU{my} and 7 U {ms} are potentially-type-2.

In this case, ms can be chosen to be the smallest true gap of T. Moreover, under these
conditions, there ezists a monomial ms < mso such that mg is a bridge of T U {my, my}.
In particular, mg € 7.

Proof. The ideal I is not bridge-friendly if and only if there exists a set o € Gens([) that
is potentially-type-2, but not type-2. By definition, this is equivalent to saying that there
exists a different potentially-type-2 set o/ C Gens(I) such that

o'\ {sb(c")} = o\ {sb(0)},

and sb(o) > sb(o’). Set m; = sb(g), ma = sb(¢’), and 7 = o \ {m1} = o'\ {ma}.
Then, using Proposition 12, one can see that this condition is equivalent to (1) and (2),
as claimed.

We remark that ms is a true gap of 7 by definition. We can choose ms to be the smallest
true gap of 7 since then my = sb(r U {msy}) and 7 U {my} is potentially-type-2 by [8,
Remark 2.26]. Thus, the previous part can still proceed in this setting. Moreover, since o
is potentially-type-2, my is not a true gap of o by definition, and so TU{mq, ms} = cU{my}
has a bridge ms < ms, as claimed. O]

The equivalent condition to non-bridge-friendliness, in fact, says a lot more about the
three monomials m; > my > mg. We will first introduce some new terminology.

Definition 14. Let I be a monomial ideal, = a variable, o C Gens(!), and m,m’ € o.
We say that two monomials m, m’ share a factor ™ unique within o if n > 1 and we have
the following;:
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i) 2" divides m and m’, and "' does not divide either.
(i)
(i) =™ m” for any m” € o \ {m,m'}.

This concept appears many times when we work with gaps that are not true gaps, as
shown in the next result.

Proposition 15. If a monomial m € Gens(I) is a gap, but not a true gap of o, then m
and any of its non-true-gap witnesses m’ share a factor unique within o U {m}.

Proof. Since m’ is not a bridge of o, there exists a factor 2™ such that =™ | m/, 2" { m/,
and " t m” for each m” € o \ {m’}. Moreover, since m' is a bridge of o U {m}, we have

2" | m' | lem(o U {m}),
and thus ™ | m. On the other hand, we have " { m since lem(oc U {m}) = lem(s). O

Remark 16. In the proof of Lemma 13, we showed that ms is a gap of 7 U {m;} and set
ms to be a non-true-gap witness of my in 7U {m4}. By Proposition 15, my and mg share
a factor unique within 7U{m;}. It can be checked that mj is also a non-true-gap witness
of my in 7 U {my}. Therefore, m; and mg share a factor unique within 7 U {my}.

We immediately obtain a condition to determine true gaps:
Corollary 17. If a monomial m is a gap of o such that

m |lem({m' € o: m' = m or m and m’ do not share a factor unique within o}),
then m is a true gap of o.

Proof. Suppose that m is not a true gap of . We will derive a contradiction. Indeed,
there exists a non-true-gap witness my < m of m in o. By Proposition 15, my and m
share a unique factor ™ within ¢ U {m}. In particular, we have 2™ {lem(o \ {mo}), and

mo & {m' € o: m' > m or m and m’ do not share a factor unique within o}.
Therefore, 2™ divides m, and does not divide

lem({m’ € o: m' > m or m and m’ do not share a factor unique within o}),
a contradiction, as desired. O

2.5 Restriction lemmas and HHZ-subideals

There is a one-to-one correspondence between N and the set of monomials in S. Thus, at
times we will abuse notations and use monomials (in S) and vectors (in N") interchange-
ably.

Fix a monomial ideal I C S and a monomial m € S. Let IS™ be the monomial ideal
generated by elements of Gens(I) that divide m. It is clear that IS™ is always a subideal
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of I. This notation was introduced in [16], although the idea briefly appeared prior in [4].
We will call IS™ a Herzog-Hibi-Zheng-subideal (with respect to m) of I, or HHZ-subideal
for short.

Let F: 0 - F, - F,.y » -+ = F; — Fy — 0 be a (minimal) N"-graded free
resolutions of S/I, with F; = €., R(—g;;). Let F<™ be the subcomplex of F, whose
t-th module is @qijgm R(—g;;). Here, for monomials a and b, we write a < b to mean
a|b.

By [16, Lemma 4.4], F<™ is a (minimal) N"-graded free resolution of S/IS™. This
result is referred to as the Restriction Lemma. We will also state analogs of the Restric-
tion Lemma for Lyubeznik, Barile-Macchia resolutions, and the bridge-friendly property.
These come from the observation that, for a fixed a monomial m, faces ¢ in the simplex
over the vertices Gens(/), whose least common multiple of the vertices divides m, are
exactly the faces of the simplex over the vertices Gens(/S™).

Lemma 18. (Restriction Lemma for Barile-Macchia/Lyubeznik resolutions) Let I be a
monomial ideal and let m be a monomial in S. If F is a (minimal) Barile-Macchia
(respectively, Lyubeznik) resolution of S/I, then FS™ is a (minimal) Barile-Macchia (re-
spectively, Lyubeznik) resolution of S/IS™.

Proof. We will prove the result when F is a Barile-Macchia resolution of S/I, remarking
that the proof for when it is a Lyubeznik resolution follows from similar arguments. Let

(>) be a total order on Gens(I). As we have Gens(/S™) C Gens([), the order (>) also
defines a total order on Gens(/S™), which we denote (>,,). We have the following claim.

Claim 19. Given o € 26US™) " [f m. is a bridge of o for some m; € Gens(I), then
m; € Gens(IS™). In particular, we have sb, (o) = sb., (o).

Proof. Indeed, if m; is a bridge of o, then

m; | lem(o) | m

where the second divisibility comes from the assumption that o € 9Gens(IS™) - Gince

m; € Gens(I) and m; | m, it follows from definition that m; € Gens(IS™), as desired. [
Recall that by definition, whether a given set o € 9Gens(I<™)

type-2, or type-1 (as a set in 2695U<™)) depends on the set

{r € 2605 Jem(7) = lem(o)}

is potentially-type-2,

and what sb, (1) is, for each such 7. By Claim 19, we have
{r € 265 Jem(7) = lem(o)} = {7 € 26D lem(7) = lem(o)}

and sb, (1) = sb,_(7), for each such 7. Therefore, a given set o € 26eU~™) i potentially-
type-2, type-2, or type-1 as a set in 26ens( ™) if and only if it is of the same type as a
set in 26e7() and its least common multiple divides m. Therefore, the Barile-Macchia
resolution of S/IS™ (w.r.t. (>=,,)) is exactly the Barile-Macchia resolution of S/I (w.r.t.
(>)), restricted to only faces of least common multiples that divide m. The result now
follows. O
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The following result follows from similar arguments coupled with Claim 19. We thus
state it without proof.

Lemma 20. (Restriction Lemma for bridge-friendly ideals) Let I be a monomial ideal
and let m be a monomial in S. If I is bridge-friendly with respect to a total order (>),
then so is IS™ with respect to the total order induced from ().

As an application of Lemmas 18 and 20, we arrive at the following corollary.

Corollary 21. Let G be a graph and let H be an induced subgraph of G. For any integer
n, if I(G)" is Lyubeznik, Barile-Macchia, or bridge-friendly, then so is I(H)".

Proof. 1t suffices to show that [(H)™ is an HHZ-subideal of I(G)", as the results would
then follow from Lemmas 18 and 20. Let m be the product of all the vertices in H. Then
we claim that

I(H)" = (@)

Consider m’ € Gens(I(G)™) where m’ | m™. Then m' = (x11291) -+ (x1,22,) | M" =
(erH x)n Thus all the vertices x11, xa1, .. ., Ty, T2, are all in V(H). Therefore m’ €
I(H)", and thus m’ € Gens(/(H)") as all minimal generators of I(H)" are of degree
2n. Now consider a generator m” € Gens(/(H)"). Then m” € I(G)" and therefore
m” € Gens(I(G)") as all minimal generators of I(G)" are of degree 2n. Moreover we can
write m” = (a,2%,) - - - (2),,25,,) for some 2|, 5,, ..., 2, x5, € V(H) where 2, # 2, for
any i € [n]. Thus m” | ([T,cp )" = m". To conclude, we have

n

Gens(I(H)™) = Gens((I(G)™")S™"),
as claimed. The result now follows. O

The following result is obvious from the definition, which allows us to discuss the
property of being Lyubeznik, Barile-Macchia, and bridge-friendly for a monomial ideal
and m/ interchangeably, where m is any monomial.

Proposition 22. Let I be a monomial ideal and let m be a monomial. Then I is
Lyubeznik, Barile-Macchia, or bridge-friendly, if and only if so is m1.

Proof. We will prove the result when [ is Barile-Macchia, remarking that the proof in

the other cases follows from similar arguments. Let m; > --- > m, be a total order
on Gens(I) = {my,...,my} such that I is Barile-Macchia with respect to (>=). Then
Gens(ml) = {mmy,...,mm,}. Let mm; > --- > mm, be a total order on Gens(mI).

For a o € 26°U) "let mo denote the set {mm’: m’ € o}. We have the following claim.

Claim 23. Given o € 26U and m/ € Gens(I). Then m' is a bridge of o if and only if
mm’ is a bridge of mo. In particular, we have sbs (mo) = msb, (o).
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Proof. Indeed, we have

m' is a bridge of 0 & m' € o and m' | lem(o \ {m})
< mm' € mo and mm' | lem(mo \ {mm'})

& mm' is a bridge of mo,
as desired. ]

Recall that by definition, the set of potentially-type-2, type-2, or type-1 subsets of
2Gens(J) for a monomial J, depends entirely on the value of the smallest bridge function.
Claim 23 implies that there is a bijection between the divisibility relations in Gens([) and
Gens(ml). Therefore, a given set o € 26»() is potentially-type-2, type-2, or type-1 if
and only if mo is of the same type as a set in 26e(mD)  Therefore, the Barile-Macchia
resolution of S/I (w.r.t. (>)) is exactly the Barile-Macchia resolution of S/mlI (w.r.t.
(>)). The result now follows. O

The following result serves as an example of HHZ-subideals, which we will use in later
parts of the article.

Proposition 24. Let G be the P;, Cs, or Cy graph. Then for each positive integer n,
there exists a generator f € Gens(I(G)) such that the ideal f1(G)"™ is an HHZ-subideal of
[(G)n—l—l_

Proof. Fix an integer n. We will prove the statement in each case.

1. G =Py ie, I :=I1(G) = (x129, 273, T3T4).
Set J == (1129, Tox3), m = xh(x1w374)" !, and f = w3x4. We have

[n+1 — Jn+1 + f[n
In fact, in this case, it is clear that
Gens(I"*1) = Gens(J"™) U Gens(fI™).

It is straightforward that all elements of Gens(I"™') that divide m come from
Gens(fI™). Therefore, the ideal fI™ is the HHZ-subideal of I"! with respect to m,
as desired.

2. Similar arguments apply to the case where G = Cj, i.e., [(G) = (x129, X223, T123).

3. G=Cy,ie, I :=I(G) = (x129, x2x3, T3Ty4, T1T4).
Set J = (2179, T2x3, T314), m = (Tox3)"(z124)" ™, and f = z124. We have

In+1 — Jn+1 +f1n

We claim that the HHZ-subideal of I™"! with respect to m is exactly fI". Indeed,
consider any element g in Gens(I"™!). If g belongs to fI", then it clearly divides
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m. On the other hand, if it does not, i.e., g is not divisible by f = zyx4, then g
must be of the form

n+l—a n+l—a

(x19)% (2o23) or (xexs)®(z3zy)

for some integer a. In either case, g does not divide m. Thus the claim holds, and
therefore fI™ is an HHZ-subideal of 1™ O

We remark that Proposition 24 does not necessarily hold for monomial ideals or edge
ideals in general. Consider I = (zz1,zx2,xx3). One can check that for any monomial
m, the ideal (I*)S™ does not have the same total Betti numbers as fI? for any generator
f € Gens(I) (we note that it suffices to consider only the monomials m that divide
lem(Gens(7?))). This implies that fI? # (I*)S™ for any monomial m and any generator
f € Gens(I). In other words, fI? is not an HHZ-subideal of I?. As a consequence,
fI(K;3)? is not an HHZ-subideal of I(K;3)? for any generator f € Gens(I(K,3)).

3 Powers of edge ideals with minimal Lyubeznik resolutions

In this section, we classify all graphs G and integers n such that I(G)" is Lyubeznik.

3.1 Lyubeznik edge ideals

We will begin with the case n = 1, which is considerably more difficult, and follow with
the case n > 2. We shall first identify the forbidden structures for Lyubeznik graphs.

Proposition 25. Let G be one of the following graphs:

1. The 5-path graph Ps. 6. The gem graph O,

2. The 4-cycle graph Cy. 7. The tadpole graph .
3. The 5-cycle graph Cs. 8. The butterfly graph W.
4. The complete graph K, K. 9. The net graph > .

5. The kite graph -
Then I(G) is not Lyubeznik.

Proof. Verified using the code in Appendix A m

Proposition 25, coupled with Corollary 21, shows that any graph whose edge ideal is
Lyubeznik cannot contain the graphs listed in Proposition 25 as induced subgraphs. The
following construction plays a key role in the classification of Lyubeznik graphs.

Definition 26. Let a, b, ¢ be nonnegative integers. We define L(a,b,c) to be the graph
whose vertex and edge sets are:

V(L(a,b,¢)) = {z,y} U{ati, U{y; o U{adien,
E(L(a,b,c)) = {ay} U{zabi, Uy tio U{zaetio U{yadio
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n

x Yy

Roughly speaking, L(a,b, c) consists of exactly ¢ triangles zyz, for k = 1,..., ¢, that
share a common edge {x,y}, together with a leaves {x;}{ , attached to z, and b leaves
{yj}g.:l attached to y. In particular, L(a,b,c) has a + b+ ¢ + 2 vertices.

Example 27.
0. By convention, L(0,0,0) is the graph consisting of exactly one edge.

1. The graph L(0,0, ¢) is exactly ¢ triangles sharing one edge. In particular, L(0,0,1)
is the triangle C3, and L(0,0,2) is a diamond K.

2. The graph L(a,0,0) is the star graph Kj 1.

3. The graph L(a,b,0) is a gap-free tree. In fact, {L(a,b,0) | a,b € Z>} are exactly
the connected graphs that admit minimal Scarf resolutions [14, Theorem 8.3].

The forbidden structures in Proposition 25 can now be characterized using graphs of
the form L(a, b, c).

Proposition 28. A connected graph is isomorphic to L(a,b,c) for some integers a,b,c
if and only if it does not contain, as an induced subgraph, any of the graphs listed in
Proposition 25.

Proof. 1t is clear that for any a, b, and ¢, the graph L(a, b, ¢) does not contain any of the
graphs listed in Proposition 25 as an induced subgraph. Hence, we will only show the
other direction. Let G be a connected graph that does not contain any of the forbidden
graphs. We remark that since G does not contain Ps, Cy, or (5, it does not contain P,
for any n > 5 or C), for any n > 4. In particular, G is chordal. Moreover, since G does
not contain the Ky graph, it does not contain the K,, graph for any n > 4.

Suppose G contains a cycle with a unique chord as an induced subgraph. By Proposi-
tion 25 (2), that cycle must be a diamond. So we can assume that G contains the diamond
graph B formed by w, x,y, z with a chord wy. We will show that G is exactly L(a,b,c)
for some integers a, b, c. Indeed, consider any vertex u of G that does not belong to this
diamond. Tt suffices to show that N(u), the set of neighbors of u among w, x,y, z, is {w},
{y} or {w,y}. Suppose otherwise. Then by symmetry we can assume that x € N(u). We
will derive a contradiction after considering all possibilities.
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e N(u)={z}: Then G contains the kite graph ¢, a contradiction.

e N(u) = {z,w} or N(u) = {z,y}: Then G contains the gem graph &A formed by
w,x,y, Z,u, a contradiction.

e N(u)={xz,z}: Then G contains the Cy graph formed by w, x, u, z, a contradiction.

o N(u)={z,w,y} or N(u) ={z,w,y,z}: Then G contains the K, graph formed by
w, x,y,u, a contradiction.

o N(u)={z,w,z} (or N(u) = {x,y, 2z}, resp): Then G contains the Cy graph formed
by x,y, z,u (or w,z,y,u, resp), a contradiction.

We shall consider the case that G does not contain a cycle with a unique chord. If G is
a tree, it is straightforward from Proposition 25 (1) that G is L(a,b,0) for some integers
a,b. If G is not a tree, then by Proposition 25 (2), it contains a triangle, whose vertices
we shall denote by x,y,z. By [23, Theorem 2.2], either G is a complete graph, or one
vertex of the maximal complete induced subgraph that contains this triangle is a 1-cutset
of G. Since G cannot contain any K, graph for any n > 4, the triangle formed by x, vy, 2
must be the maximal complete induced subgraph of GG that contains itself. Thus, we may
assume that z is a 1-cutset of G. By definition, this means that the graph G\ {z} has
at least two connected components. Let V' denote the set of vertices in the connected
component that contains x and y, and W the set of the remaining vertices.

Since G does not contain the tadpole graph P, no vertex w € W satisfies distg(w, ) >
2. In other words, all vertices in W are connected to z in G. On the other hand, since GG
does not contain the butterfly graph, no two vertices in W are connected. Therefore, the
subgraph induced by z,y, z and vertices in W is:

Now, we consider vertices in V. Since G does not contain any n-path graph P, where
n > 5, no vertex v € V satisfies distg(v, z) > 2 or distg(x,y) > 2. In other words, all
vertices in V' are connected to either x or y in G. Since G does not contain the kite graph
<d-, no vertex in V is connected to both  and y in G. Suppose there exist two vertices
',y € X such that 2’ is connected to x, not y, and ¢ is connected to y, not z. If 2’
and ¢y’ form an edge, then GG contains a C; graph formed by 2/, 4/, z,y, a contradiction.
Otherwise, G contains the net graph > formed by z, y, z, 2, ¢/, 2/ where 2’ is a fixed vertex
in W, another contradiction. Thus, all vertices in V' are either connected to x and not vy,

or vice versa. Thus G = L(a,b,1) where a = |V| —2 and b = |W|. O

Before proceeding to show that the edge ideals of L(a,b, ¢) graphs are Lyubeznik, we
make the following observation.
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Remark 29. Let F be a Lyubeznik resolution of S/I, where I C S is a monomial ideal.
Recall that F is a simplicial resolution (see [19, Section 6]). Then, by Theorem 8, for any
integer 7, a basis of F; can be identified with the collection of Lyubeznik-critical subsets
of Gens(I) with exactly i elements. Moreover, the differentials are as follows:

lem(o)

(o) = Z *l lem(7) B

TCo,|7|=[o]-1

where ¢ is a Lyubeznik-critical subset. We refer to [19, Construction 4.1] for the fact
that the coefficients are either 0 or +1. From this description, it is easy to see that a
Lyubeznik resolution is minimal if and only if each Lyubeznik-critical subset does not
have any bridge. We shall make use of this observation often in this section.

Proposition 30. If G = L(a,b,c), for some nonnegative integers a,b, and c, then the
edge ideal 1(G) is Lyubeznik.

Proof. It G = L(0,b,0) = Kjp41, then it is clear that I(G) is Taylor, and thus any
Lyubeznik resolution of I(G) is minimal. For the rest of the proof, we assume that
G = L(a,b,c) where a > 1 or ¢ > 1. Consider the following total order on Gens(I(G)):

YYp = = = YY1 = TLg = =+ =TT = YR = -+ = Y& ™= TZe =+ = T2 = TY.

We will show that the Lyubeznik resolution of I(G) induced from this total order is mini-
mal. By definition, it suffices to show that any Lyubeznik-critical subset o of Gens(I(G))
has no bridge.

To this end, let o be Lyubeznik-critical; we have

zyflem (e N{e € E(G): e = xy}).

In particular, if an edge incident to x is in o, then ¢ does not contain any edge incident to
y, and vice versa. Suppose that ¢ contains a leaf edge which, without loss of generality,
we can assume to be zx;. Then o is a subset of

{zy} Uz b, U{ez o,

and thus has no bridge. On the other hand, suppose that ¢ contains no leaf edges. If
o = {xy}, then it clearly has no bridge. Otherwise, without loss of generality, we can
assume that o contains xz;. By the same observation, ¢ is then a subset of

{zy} U{zartizy,
and thus has no bridge. This concludes the proof. O]

Combining the preceding three propositions, we obtain the first main result of the
paper.

Theorem 31. The edge ideal I(G) is Lyubeznik if and only if G is L(a,b,c) for some
nonnegative integers a, b, c.
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Remark 32. Theorem 31 can be naturally extended to work over not-necessarily-connected
graphs. This is because the resolution of the edge ideal of an arbitrary graph can be
obtained by tensoring the corresponding resolutions of its connected components, and the
next lemma shows how the property of being Lyubeznik behaves with this operation.

Lemma 33. Let I and J be monomial ideals of R = K[z1,...,2.] and S =Kk[y1,...,ys,
respectively. Then I+ J, the ideal of R®y S generated by Gens(I) U Gens(J), is Lyubeznik
if and only if so are I and J.

Proof. We first note that by construction, the ideal I of R is Lyubeznik if and only if so
is I(R ®x S). Thus, we will replace I and J by their respective extensions in R ®j S.
Assume that I + J is Lyubeznik. Then since

] — (] + J)gnmEGens(I) m and J — (I _l_ J)gnmEGens(J) m,

the ideals I and J are Lyubeznik too by Lemma 18.

Conversely, assume that I (resp, J) is Lyubeznik with respect to a total order (>)
on Gens(/) (resp, (>;) on Gens(J)). Consider the total order (=) on Gens(I 4 J) such
that for m, m’ € Gens(I + J), we have m = m/ if and only if one of the following holds:

e m € Gens(I) and m' € Gens(J);
e m,m' € Gens(I) and m =5 m/;
e m,m' € Gens(J) and m >, m’.
We have the following claim.
Claim 34. For any subset o of Gens(I + J), we have
{m € Gens(I + J): m |lem(oy,)} = {m’ € Gens(I): m’ | lem((o N Gens(I))s ) }U
{m” € Gens(J): m" | lem((o N Gens(J))sw ,m~)}

Proof. Since monomials Gens(/) and Gens(.J) are in different variables, a monomial m in
Gens([]) divides lem(o.,,) if and only m divides lem(o,, N Gens(/)), and an analog holds
for a monomial in Gens(J) as well. Moreover, remark that if m € Gens(I), we have

Oem NGens(!) = (0 NGens(!))w m,
and again, an analog holds for a monomial in Gens(.J) as well. The result then follows. [

Consider a Lyubeznik-critical subset o of Gens(/ + J) (with respect to (>)). By
definition, Claim 34 implies that o N Gens(I) and 0 N Gens(J) are Lyubeznik-critical with
respect to (=) and (> ), respectively. Since I and J are Lyubeznik (with respect to their
respective order), o N Gens(/) and o N Gens(J) have no bridge. Since the monomials in
Gens(I) and Gens(J) are in different variables, this implies that

o= (o NGens(I)) U (o N Gens(J))
has no bridge as well. Therefore, I + J is Lyubeznik, as desired. O
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We summarize the above discussion in the following theorem.

Theorem 35. Let G be a graph with Gy, ...,G; as its connected components. Then the
edge ideal I(G) is Lyubeznik if and only if for each i € [t], the graph G; is L(a;, b;, c;) for
some nonnegative integers a;, b;, ;.

3.2 Higher powers of edge ideals which are Lyubeznik

For the remainder of this section, we will investigate Lyubeznik resolutions of higher
powers of edge ideals of graphs.

Proposition 36. Let G be K3, Py, C3, or Cy. Then, the ideal I1(G)? is not Lyubeznik.
Moreover, if G is among the last three graphs of the given list, then I(G)™ is not Lyubeznik
for any n > 2.

Proof. For the first three graphs in the list, I(G)? is generated by 6 monomials, so there
are 6! possibilities for a total order on the minimal generating set. The first assertion for
these graphs can be verified using the code in Appendix A. For (4, one can verify using
the code in Appendix A that the ideal

2.2 2.2 2 2 2
(xix3, 55, T{TaTy, T1T3X3, ToX3T4, T1ToT3Ty),

an HHZ-subideal of (2129, T273, T34, T174)* With respect to (z12573)%x4, does not admit
a minimal Lyubeznik resolution. Thus, the first assertion for Cy follows from Lemma 18.

The second statement is a direct consequence of the first assertion, Proposition 24,
and Lemma 18. O

We are now ready to state the next main result of this section.

Theorem 37. Let G be a graph and let n > 2 be a positive integer. Then the ideal I(G)"
18 Lyubeznik if and only if one of the following holds:

1. G is an edge; or
2. n=2 and G is the path P3 on three vertices.

Proof. If G is an edge, then I(G)" is principal and hence, is Lyubeznik. If n = 2 and
G = P3, then we can assume that I(G)™ = (a®b?,b?c?, ab?c). One can verify with the code
in Appendix A that this ideal is Lyubeznik. The “if” implication then follows.

We now prove the “only if” direction. Assume that G is a graph such that I(G)" is
Lyubeznik. By Proposition 36, G does not contain C3,Cy, Py as an induced subgraph.
Since any C, or Py, where k > 5, contains P, as an induced subgraph, G does not contain
these graphs, either. In other words, G' must be a star graph K j for some integer k.

If n = 2, then G does not contain K; 3 as an induced subgraph by Proposition 36.
Thus k£ < 2, and G is either an edge or a path of length 2.

Consider the case that n > 2. We will show that I(/2)" is not Lyubeznik. This
would imply that GG does not contain K 5 as an induced subgraph and, hence, the desired
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statement would follow. To this end, we will exhibit that any Lyubeznik resolution
of S/I(K;2)" has length at least 3 and, thus, is not minimal, due to the Auslander-
Buchsbaum-Serre theorem.

Since the Lyubeznik resolutions of /(K 3) and its powers are the same as those of
the ideal generated by two variables, it suffices to consider the ideal (z,y). Fix any total
order () on Gens((z,y)") and let m; < mg < mg be the three smallest monomials with
respect to (>). We can set write

my = %" and my = 2",
for some integers a and b. By symmetry, we can assume that a > b.
It suffices to construct a Lyubeznik-critical subset o of Gens((x,y)™) of cardinality 3.
Consider the sets
Om = {myi,ma,m} and 7, := {my, m3, m'},

where m,m’ € Gens((z,y)"), m = mq, and m’ > ms3. Note that m’ always exists since
n > 2. By definition, o, is Lyubeznik-critical if and only if m; { lem(mg, m), and 7, is
Lyubeznik-critical if and only if m; { lem(mg, m') and mgy 1 lem(mg, m').

The proof is completed by showing that there always exists m or m’ so that either o,
or T, is critical. Indeed, if @ > 1, then o,, is Lyubeznik-critical for m = 2% 1y"~%*1. On
the other hand, if @ = 1, i.e., m; = xy™ !, then it follows that mo = y™. In this case, 7,
is Lyubeznik-critical for any m/'. O

4 Powers of edge ideals that are bridge-friendly

In this section, we will study graphs G and integers n such that I(G)™ is bridge-friendly.

4.1 Bridge-friendly graphs and forbidden structures

As in the previous section, we begin with the case when n = 1. As we saw in Lemma
13 and Remark 16, if I is not bridge-friendly, then we have three monomials my, ms, mg
such that m; and my (resp. my and mg) share a unique factor. In the case of edge ideals,
a generator has exactly two factors to share. Thus, we have the following result.

Proposition 38. An edge ideal 1(G) is not bridge-friendly (with respect to (>)) if and
only if there exist a type-1 set T C E(G) and monomials my = mo = ms in E(G) satisfying
the conditions in Lemma 13. Moreover, if ms = yz, then in 7 U {my, ma}, my and ms
are the only edges containing y, and mo and ms are the only edges containing z, or vice
versa.

Proof. The proof is straightforward from Lemma 13 and Remark 16. [

Proposition 38 roughly says that it is quite restrictive for an edge ideal to not be bridge-
friendly. It is known in [8, Theorem 3.11] that edge ideals of trees are bridge-friendly.
The next result addresses edge ideals of cycles.
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Proposition 39. The edge ideal of an n-cycle is bridge-friendly if and only if n € {3,5,6}.

Proof. The statement can be verified for n < 6 using the code in Appendix A. Suppose
that n > 7, and set
I(Cn) - (ZL’1I2, LoT3, ...y Tp—1Tnp, xnxl)'

Consider any total order (=) on Gens(I(C,)). Without loss of generality, assume x;xo

is the smallest monomial with respect to (>). Set 7 = {x129, X324, Ty 12,}, My =
ToTz, My = T,T1, and mz = x1x9. One can verify that these elements satisfy the condition
in Lemma 13. Thus, I(C,,) is not bridge-friendly. O

Proposition 39 suggests that, in examining bridge-friendly edge ideals, one should in-
vestigate graphs whose induced cycles are only C3, Cs or Cs. Unfortunately, understanding
the class of such graphs poses a challenging problem. Our approach is to focus on special
classes of graphs for which the cycle structures are better understood. Particularly, we
shall consider chordal graphs, i.e., graphs whose only induced cycles are triangles.

The following result gives a few additional “forbidden structures” for being bridge-
friendly. We remark here that the property of being bridge-friendly is purely combinatorial
without any reference to the base field, so this can be verified by any computer algebra
system.

Proposition 40. Let G be one of the following graphs:
1. The complete graph K, X. 3. The kite graph -

2. The gem graph AA. 4. The net graph ».
Then I(G) is not bridge-friendly.

Proof. Verified using the code in Appendix A. m

4.2 Bridge-friendly chordal graphs

Propositions 39 and 40, coupled with Corollary 21, state that graphs that contain any for-
bidden structures are not bridge-friendly. The following definition is crucial in classifying
chordal graphs that avoid the forbidden structures described in Proposition 40.

Definition 41. Let T' = (V(T), E(T)) be a tree graph and let w: E(T) — Zs( be a
function. Let BF(T, w) denote the graph with vertex set

V(T) U |_| {Ue,la Ve,25 - - - ave,w(e)}

ecE(T)

and edge set
EMU || et U {zve 5.

yz=e€E(T)
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Roughly speaking, BF(T', w) is obtained from T by, for each edge e € E(T), attaching
w(e) new triangles along the edge e. We use the notation BF as we shall show that these
characterize bridge-friendliness amongst chordal graphs. We first characterize them using
their combinatorial structure. Going forth, whenever we write BF(T, w), it is understood
that T is a tree and w is a function as above.

Proposition 42. Let G be a graph. Then, G is isomorphic to some BF(T,w) if and only
if G is chordal and any induced 3-cycle of G has a vertex of degree 2.

Proof. Assume that G = BF (T, w) for some tree T and function w: E(T) — Zso. It is
clear that any of its induced 3-cycle has a vertex of degree 2. It can also be seen that any
induced cycle of G is a 3-cycle attached to an edge of T'. Thus, G is chordal.

We now proceed with the other implication. Let G be a chordal graph such that any
of its induced 3-cycle has a vertex of degree 2. For each induced 3-cycle C' of G, we fix
once and for all a vertex x¢ € C of degree 2. Consider the function

{induced 3-cycles of G} — V(G) x E(G)
C— (x07yCZC)7

where yczo the edge of C' opposite z¢. Set

V =V(G)\ {z¢: C is an induced 3-cycle of G},
E = E(G)\ {zcyc, zczc: C is an induced 3-cycle of G}.

Let T be the induced subgraph of G with the vertex set V. Since each vertex of GG that
is not in 7' is of degree 2, deleting them means deleting the two edges containing it. In
other words, E(T) = E.

We claim that for each induced 3-cycle C' of G, the edge yoz¢ is an edge of T'. Indeed,
suppose otherwise that yo = z¢ is a vertex of degree 2 of a different induced 3-cycle C”.
Then, C’ must contain the only two edges containing yc, namely zcyc and yczo, and
thus ¢’ = C, a contradiction. Therefore, the claim holds, and hence T is connected.

Since any 3-cycle in G becomes an edge in 7', the latter has no cycle. Thus, 7" is a
tree. We can define the following edge-weight function

w:E=FE(T)— Zs
e — |{C: C is an induced 3-cycle of G such that yoze = e}|.

Since the vertices that we delete from G to obtain 7' are all of degree 2, T' is obtained
from G by deleting all of these vertices and all pairs of edges containing each of them.
This is a bijective process, i.e., we can obtain G from T, provided that we know how many
vertices are needed to add for each edge of T', which is recorded in the function w. Thus,
G = BF(T,w), as desired. O

We are now ready to classify chordal graphs that avoid forbidden structures described
in Proposition 40.
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Proposition 43. A chordal graph is of the form BF(T,w) if and only if it does not
contain any of 4-complete graph B, gem graph &\, kite graph =, or net graph > as an
induced subgraph.

Proof. 1t is clear that the graph BF (7, w) does not contain any of the forbidden graphs
as an induced subgraph. We will only show the other implication.

Let G be a chordal graph that does not contain any of the listed forbidden induced
subgraphs. If GG is a tree or (3, then we are done. By Proposition 42, it suffices to show
that any induced triangle C5 in G has a vertex of degree 2. Suppose otherwise that G
contains a ('3, with vertices x,y, and z, such that these vertices are of degrees at least 3.
Equivalently, x,y, and z are each connected to at least a vertex other than the remaining
two vertices. We consider the following possibilities on the additional neighbors of x,y
and z.

e The vertices x,y and z have a common neighbor outside of the triangle xyz. In this
case, G contains a 4-complete graph X, a contradiction.

e The vertices x,y and z have no common neighbor outside of xyz, but two of the
vertices do. Without loss of generality, assume that for some vertex w € V(G),
wz,wy € E(G), but wz ¢ E(G). Since z is of degree at least 3, there exists a
neighbor 2’ of z other than x and y. Clearly, 2z’ cannot be connected to both z and
y. Assume that 2’z € E(G).

If 2w € E(G), then G contains an induced 4-cycle on the vertices z'zzw, and so
G is not chordal. If 2’w ¢ E(G) and 2’y € E(G), then G contains an induced gem
graph 8. If 'z, 2'y, 2w ¢ E(G), then G contains an induced kite graph ¥~. The
last two cases both lead to a contradiction.

e No two vertices among {z,y, 2z} have a common neighbor outside of the triangle
xyz. Since the degrees of these vertices are at least 3, we may assume that there
are additional edges xx’, vy, 22/, with distinct vertices z’,y’, 2’. If there is an edge
between ',y and 2/, say 2y’ € E(G), then G contains an induced C; over the
vertices zyy'x’, and so G is not chordal. If there is no edge between 2/, and 2/,
then G contains an induced net graph >, a contradiction. O

Before continuing to prove that BF (7T, w) is bridge-friendly, we shall define a particular
total order (=) on E(T'). For a fixed vertex z( in T', we shall view T" as a rooted tree with
root xy. Fach vertex v € V(T') determines a unique path from v to xy. For i € N, let

Vi ={v e V(T) | distr(v,z¢) =i}

be the set of vertices in 7" whose distance to xq is i. Obviously, V(T') = UiEZ>0 Vi. Let
¢; = |Vi|, for i € Zso. We shall consider a specific labeling for the vertices in T' given by
writing

Vi={w; |1<j<a}
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(with the convention that zo; = zy.) With respect to this particular labeling of the
vertices in 7', define the following total order () on E(T):

i <1 or
i,jTit1k 7~ Lirj i1k 10 =1 and ) < j7 or
i=1,7=74 and k < K.

Proposition 44. If G = BF(T,w) for a tree T' and a function w: E(T) — Zsq, then the
edge ideal I(QG) is bridge-friendly.

Proof. As before, fix a vertex xy of T and view T as a tree rooted at zy. Let V;, the
labeling w; ;’s for the vertices of T', and the total order () be defined as above.

We shall first extend the total order (=) to F(G). By induction, it suffices to extend
the total order (=) to F(H), where H is obtained by attaching [ triangles along an edge
e € E(T). Suppose that e = {x;j, z;41} and the [ new vertices in H are vey,..., Ve
Let ¢’ > e be the edge immediately before e in the total order (=) of E(T). The total
order on F(H) is now given by setting:

/
€ > Ty Vel m "+ 7 TijVel ™ Tit1,kVel ™ **° > LTip1 Vel > €.

We will show that I(G) is bridge-friendly with respect to (>). Suppose otherwise that
I(@G) is not bridge-friendly. By Proposition 38, there exists a collection of edges 7 C E(G)
and edges my > my > mg in E(G) such that if we set m3 = yz, then no other edge in 7 is
incident to y or z, and mq, ms are gaps of 7. We shall arrive at a contradiction. Consider
the following possibilities:

e mg is an edge of T', i.e., m3 = x; jT;41; for some integers 4, j, and k. The only edges
that are incident to ;1 %, and are larger than msg, are of the form ;41 yvs,,, for
some 1 < 1 < w(mg). So, either my or my must be of this form. Since they are both
gaps of 7, and there are exactly two edges that are incident to v,,,;, we must have
Tj jUms, € T, a contradiction.

e m3 = x; jv.; for some edge e = x; ;x;11, € E(T) and integer [. Then, the only edge
that is incident to v, other than msg itself, is x;11 Ve, which is smaller than ms.
Thus, such m; and msy do not exist, a contradiction.

® M3 = Tit1 Ve, for some edge e = x; ;741 € E(T) and integer {. Then, the only
edge that is incident to v.;, other than myg itself, is x; jv.;, and the only edges that
are incident to x;41 %, and are bigger than mg itself, must be of the form x;;1 yve
for some integer I’. We can thus assume that m; = ;;v.; and mg = X1 kVer.
Since my is a gap of 7, it follows that x; ;. € 7. Observe that z; ju.r and ms are
both in 7 and bigger than e, and

e = T;;Tiy1x | lem(x; jver, ms3).

Hence, by Corollary 17, e is a true gap of 7. This contradicts the fact that msy can
be chosen to be the smallest true gap of 7. O]
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Combining Propositions 40, 43, and 44, we obtain our next main result.

Theorem 45. Let G be a chordal graph. The edge ideal I(G) is bridge-friendly if and
only if G is isomorphic to BF(T,w) for some tree T and function w : E(T) — Zx.

We end the discussion of bridge-friendly edge ideals with an example of a graph G
that does not contain any of the forbidden graphs in Proposition 40, and yet I(G) is
bridge-friendly.

Example 46. Let G be the join of two 6-cycles at three consecutive edges. Note that G
is not chordal.

One can verify using the code in Appendix A that I(G) is bridge-friendly with respect
to the total order

VY = UL = T2 = TW = Yz = wz = St = SU = Su.

Remark 47. As with Lyubeznik ideals, it is worth noting that Theorem 45 can be extended
to work over disconnected graphs; see Theorem 35 and the discussion preceding it.
4.3 Higher powers of edge ideals

For the remainder of this section, we focus on higher powers of edge ideals of graphs.
Similar to what happened to the Lyubeznik resolutions, edge ideals whose some higher
power is bridge-friendly form a much smaller class.

Proposition 48. Let GG be one of the following graphs:

1. The 4-star graph K 3. 4. The paw graph >
2. The 4-path graph Pj. 5. The diamond graph Q.
3. The 4-cycle graph C,. 6. The complete graph K, ®.

Then, the ideals I1(G)? and 1(G)* are not bridge-friendly. Moreover, if G is among the
first three graphs, then 1(G)" is not bridge-friendly for any n > 2.
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Proof. (1) If G is a 4-star graph K; 3, then we can assume that I(G) = x(z1, 22, 23). By
Proposition 22, we can instead work on the ideal J = (z1,x2,r3) and derive the same
conclusions.

One can verify that J? and J? are not bridge-friendly, using the code in Appendix A.
Note that for J3, there are only 7! total orders that need checking, since the positions of
x3, 25, and x3 do not matter. Consider n > 4. Compute the HHZ-subideal of (J”)@?I%‘”%,

we get:

n n—1 n—1 n—2_72 n—2 n—2_72 n—3,.2 n—3 2 n—4,_2_ 2
(], o} mg, ) ws, )y, x) Cwoxs, xfTxy, ol Cxsws, x Cxexs, Xy X5x3).

By factoring out necessary powers of x1, using Proposition 22, we can instead consider

the ideal
2

(z], Tiwy, T3, T35, T1TLT3, TIT3, T1T5T3, T1T2T3, ToXF).
One can verify using the code in Appendix A that this last ideal is not bridge-friendly,
and thus neither is J" nor I(G)", by Lemma 20.
(2) If G is the 4-path graph Pj, then one can check that I(G)? is not bridge-friendly by
exhausting the 6! possible total orders, using the code in Appendix A. Hence I(G)" is not
bridge-friendly for any n > 2, by Proposition 24 and Lemma 20.
(3) If G is the 4-cycle graph Cy, i.e., I(G) = (x1x2, Tox3, T34, T124), then we can compute
the following HHZ-subideal of I(G)?:

N<(z1x0w3)22s _ (.22 2.2 2 2 2
(I(G) ) (m12273)°7a — (%%a Loy, T1T2Ty, T1XTyT3, T2X3T4, $1$2$39€4)-

Once again, this ideal can be verified using the code in Appendix A to be not bridge-
friendly, by checking all 6! total orders. Therefore, I(G)" is not bridge-friendly, for all
n > 2, by Proposition 24 and Lemma 20.

(4) If G is the paw graph M- i.e., I(Q) = (z122, o3, T173, T324), then we can compute
the following HHZ-subideal of I(G)?:

2 2.2

w0 _ (2.2 2 2 2 2
= (xjx3, X505, T{TaT3, T1ToX5, T1XT3T4, Tol3Tq, T1ToT3T4).

(1@ et

One can verify using the code in Appendix A that this ideal is not bridge-friendly. Thus
I(G)? is not bridge-friendly by Lemma 20. Moreover, one can check that

(L(G)?)Ser2e™S = [ (G

which is the same as I(G)?. Thus I(G)? is not bridge-friendly.
(5) If G is the diamond graph Y, i.e., I(G) = (w119, To23, T3T4, T1T4, To4), then we can
compute the following HHZ-subideals:

2\ <(zoza)2@123 _ (2,2 2 2 2 2 .2 2
(1(G)?) (@224) = (2525, T1XT5X3, T1T5Ty, T1ToLy, T1X3Ty, ToL3Ly, TaLgLy, T1ToT3T ),

(I(G)3)<(x2x4) T1T3 _ $2I4(I(G)2><($2x4)2$1m3.

3

One can verify using the code in Appendix A that (1(G)?)S#224)* 173 ig 1ot bridge-friendly.
Thus, both I(G)? and I(G)? are not bridge-friendly by Lemma 20.
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(6) We consider the complete graph K, on the four vertices xy, x5, x3, £4. One can check
that

([(K4>2)<(zzx4)2x1w3 _ ([(H)2)<(“2x4)2$1$3
([(K4)3)<(zzx4)3x1w3 _ SCQ$4([(K4)2)<(12$4)2$1$3

)

where H is the diamond graph B in part (5). It is then known that (I(H)?)S(2e4)’ 0173 jg
not bridge-friendly and, thus, neither are I(K;)? and I(K,)? by Lemma 20. O

The result and technique for when G = (3 is a bit different, so we will treat it
separately.

Proposition 49. The monomial ideal I(C3)™ is bridge-friendly if and only if n < 3.

Proof. Set 1(C3) = (x122, T3, T123). One can check that I(C3)? and I(C3)? are bridge-
friendly with respect to the total orders

2,2 2 2,2 2 2,2 2

and

3.3 3,.3 3,.3 2, .3 3,.2 2,.3 3. .2 3.2 222
TIT3 > TyX3 = TITy 7= T{ToT3 7~ T1ToT3 = T{TT3 >~ T1T2X3 >~ T|T5T3 >~ TITHT3

2.3
~ T1T5T3,

respectively. In fact, we have the following claims:

Claim 50. If (=) is a total order with respect to which 1(Cs)? is bridge-friendly, then

min Gens(I(G)?) € {23x9w3, 117573, T17973}.
.

Claim 51. If (=) is a total order with respect to which 1(Cs)? is bridge-friendly, then

min Gens(1(C3)?) = aiz3zs.
—
The first claim can be verified using the code in Appendix A by checking all 6! total
orders. For the second claim, suppose that (>=) is a total order with respect to which
I(Cs)? is bridge-friendly. By the arguments in the proof of Proposition 24, we have

3

bt 96216'3[(03)27

3

b3 = $1$3[(03)2,

3

:rg = .%'1.1'2[(03)2.

(1(Cay?y =)
(1(Cay?y =
(1(Cay?y

Combining this observation and Claim 50, if min, Gens(I(C3)?) divides (z5x3)32?, then

we must have
min Gens(I(Cs)?) € {32323, v 2322, vio30d).
-
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By symmetry, we have similar statements when permuting 1, 2, and 3. By checking all 10
possibilities for min, Gens(7(C3)?), the only possibility is min, Gens(I(C3)?) = x?z3z3,
as claimed.

Back to the proof of Proposition 49. By Proposition 24 and Lemma 20, it suffices to
show that (C3)* is not bridge-friendly. Suppose otherwise that there exists a total order
(<) with respect to which I(C3)* is bridge-friendly. By similar arguments as above, we
have

(I(Cy)ySE2ma)'at — g I(Cy)?,

4,3

(1(Ca)") Sl = i3 1(Cy)°,

4

(I(Cy)HyS@r2)'a8 — gy 00y [(C5)°,
By Claim 50, if min. Gens(7(C3)?*) divides (zox3)*z?, then we must have

min Gens(I(C3)*) = zizizs.
=<
By symmetry, we have similar statements when permuting 1,2, and 3. By checking all
generators of I(C3)?, we conclude that no such element exists, a contradiction. This
concludes the proof. O

We are now ready to state the last result of this section.

Theorem 52. Let G be a graph and let n > 2 be a positive integer. Then, the ideal I(G)"
1s bridge-friendly if and only if one of the following holds:

1. G is Py or P3; or
2. n=2,3 and G is the triangle Cs.

Proof. The “if” implication follows from [8, Corollary 5.5] and Proposition 49. We now
show the “only if” direction.

Assume that I(G)" is bridge-friendly. If n > 4, then by Propositions 48 and 49, G
does not contain, as an induced subgraph, any C}%, where k > 3, or Py, where k > 4. In
other words, G must be a star graph K j for some integer k. By Proposition 48 (1), G
does not contain K 3 as an induced subgraph. Thus £ < 2, as desired.

Now, suppose that n is equal to 2 or 3. By Proposition 48 (2) and (3), G is chordal.
If G is a tree, then by Proposition 48 (1) and (2), G must be K, or K2, as desired.

It remains to consider the case when G contains, as an induced subgraph, a C3 graph
formed by z,y, z. If G = Cj3, then we are done by Proposition 49. Suppose that G # Cj,
i.e., there exists a vertex w # z,y,z in G. Let N(w) denote the set of neighbors of w
among x,y, and z. We have the following cases:

e |N(w)| = 1: Without loss of generality, assume that N(w) = {z}. In this case, the
induced subgraph of G formed by x,, z,w is a paw graph M.
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e |N(w)| = 2: Without loss of generality, assume that N(w) = {z,y}. The induced
subgraph of G formed by z,y, z,w is a diamond graph K.

e |[N(w)| =3, ie., N(w)={z,y,z}: The induced subgraph of G formed by z,y, z, w
is a complete graph K, X.

We arrive at a contradiction to Proposition 48 (4), (5), and (6) in all these cases. This
concludes the proof. O

We end the paper with a few questions that we would like to see answered.

Question 53. For which connected graph G is the ideal I(G) bridge-friendly, Barile-
Macchia and/or generalized Barile-Macchia (cf. [7, 8])?

Question 54. For which hypergraph H is the edge ideal I(H) Scarf, Lyubeznik, Barile-
Macchia, and bridge-friendly?

A Checking Lyubeznik or bridge-friendly monomial ideals

In this appendix, we provide the SageMath [22] code for checking whether a given mono-
mial ideal is Lyubeznik or bridge-friendly. We remark that this invokes functions from
Macaulay2 [15], and thus can only run on systems with both computer algebra sys-
tems installed. The following functions compute the edge ideal I(G) in the polynomial
ring Z/2Z[V (G)], given a graph G, and the total Betti numbers of a given ideal.

from itertools import combinations, permutations
def edgeIdeal(G):
V, E = G.vertices(), G.edges(labels=False)
list_of_vars = ",".join([f"x_{v}" for v in V])
R macaulay2(f"ZZ/2[{list_of_varsl}]")
X {v:R.gens () [i] for i, v in zip(range(len(V)), V)}
return macaulay2.ideal ([x[v] * x[w] for v, w in E])
def bettiNumbers (gens):

I = macaulay2.ideal(gens)
B = I.res().betti()
B = dict(B)

total = {}
for key in B:
i = key[0].sage()
if 1 not in total:
totall[i] = 0
total[i] += Blkey]
return [total[i] for i in range(len(total))]

We discuss the method behind checking whether a monomial ideal [ is Lyubeznik with
respect to a given total order (). It is known that Lyubeznik resolutions are constructed
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independently of the base field. This can be seen from the original construction by
Lyubeznik [17], or the fact that these are resolutions coming from discrete Morse theory
[3]. Moreover, the entries in the differentials are either 0, or +m for some monomial m
(Remark 29). Therefore, it suffices to assume that the base field is Z/27Z. Thus, all the
Macaulay?2 verifications are done over the base field Z/2Z. Lyubeznik-critical subsets
of Gens(/) can be found in finite time just by definition. The following code allows
us to check if a monomial ideal I is Lyubeznik with respect to (), by comparing the
number of Lyubeznik-critical sets (with a fixed cardinality) to the corresponding Betti
number of . If we attain equality for every Betti number, then the Lyubeznik resolution
under consideration is minimal. In other words, the coefficients in the differentials of
this Lyubeznik resolution are now either 0 or +m for some monomial m # 1. Thus, the
Lyubeznik resolution in this case is minimal regardless of k. We remark that whether I's
Betti numbers change when the base field is no longer Z/27Z is irrelevant in our analysis.

def isOrderLyubeznikMinimal (gens, betti):
powerset = []
N = len(gens)
for size in range(l, N + 1):
powerset += list(combinations(gens, size))

tocheck = {frozenset(subset): True for subset in powerset}
ranks = {}
mingen = set(gens)

for sigma in powerset:
if not tocheck[frozenset(sigma)]: continue
critical = True
for i in range(N):
m = gens[i]
lcm = LCM([mu for mu in gens[i+1:] if mu in sigmal)
if lcm % == 0:
critical = False
break
if critical:
k = len(sigma)

bettil[k] -= 1
if bettil[k] < 0: return False
else:

sig = set(sigma)

complement = mingen.difference(sig)

for subset in subsets(complement):
superset = frozenset(sig.union(subset))
tocheck [superset] = False

return True

To check whether there exists a total order (=) on Gens(/) with respect to which [ is
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Lyubeznik, we exhaust all of |Gens(I)|! possible options of (>).

def isLyubeznikMinimal (I):
gens = list(I.mingens().entries().flatten())
betti = bettiNumbers (gens)
betti = betti + [0] * (len(gens) - len(betti) + 1)
P = permutations (gens)
return any(isOrderLyubeznikMinimal (pi, betti) for pi in P)

Bridge-friendliness, on the other hand, is purely a combinatorial property that can
be verified directly regardless of the base field k. We first provide the code that helps
determine the smallest bridge of a given set of monomials.

def isbridge(sigma, m):
removed = list(sigma)
removed.remove (m)

1 = LCM(removed)

if 1 == LCM([1, m]):
return tuple(removed)

return False

def smallestbridge(sigma):
for m in sigma:

test = isbridge(sigma, m)
if test: return m, test
return False, ()

Similar to verifying Lyubeznik-ness, below is the code to verify whether a monomial
ideal I is bridge-friendly with respect to a given total order, and to verify whether I is
bridge-friendly with respect to some order.

def isOrderBridgeFriendly(perm):
N = len(perm)
marked = {}
for size in range(N, 2, -1):
bigSets = combinations(perm, size)
for sigma in bigSets:
if sigma in marked:
del marked[sigma]
continue
m, complement = smallestbridge(sigma)
if not m: continue
if complement in marked: return False
marked [complement] = sigma
return True
def isBridgeFriendly(I):
gens = list(I.mingens().entries().flatten())
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P

= permutations (gens)

return any(isOrderBridgeFriendly(perm) for perm in P)

Finally, we give a quick tutorial. Below is some code that checks whether I(C3) and
I(C3)?* are bridge-friendly or Lyubeznik.

¢ =
I

graphs.CycleGraph (3)
edgeldeal (G)

print (isBridgeFriendly (I))
print (isBridgeFriendly (I~2))
print (isLyubeznikMinimal (I))
print (isLyubeznikMinimal (I°2))
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