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Abstract

A question at the intersection of Barnette’s Hamiltonicity and Neumann-Lara’s di-
coloring conjecture is: Can every Fulerian oriented planar graph be vertez-partitioned
into two acyclic sets? A CAl-partition of an undirected/oriented graph is a partition
into a tree/connected acyclic subgraph and an independent set. Consider any plane
Eulerian oriented triangulation together with its unique tripartition, i.e. partition
into three independent sets. If two of these three sets induce a subgraph G that has
a CAl-partition, then the above question has a positive answer. We show that if
G is subcubic, then it has a CAl-partition, i.e. oriented planar bipartite subcubic
2-vertex-connected graphs admit CAl-partitions. We also show that series-parallel
2-vertex-connected graphs admit CAl-partitions. Finally, we present a Eulerian
oriented triangulation such that no two sets of its tripartition induce a graph with a
CAl-partition. This generalizes a result of Alt, Payne, Schmidt, and Wood to the
oriented setting.

Mathematics Subject Classifications: O5C10,05C20,05C69

“A problem worthy of attack, proves its worth by fighting back!” (Piet Hein)

1 Introduction

A famous and widely open conjecture of Barnette says:

Conjecture 1 (Barnette’s Hamiltonicity Conjecture, 1969 [3]). Every 3-connected cubic
planar bipartite graph is Hamiltonian.
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Bipartiteness is important here, because if it is dropped, then the statement corresponds
to Tait’s Conjecture [33], disproved by Tutte [36]. On the other hand, planarity is also
essential, as shown by Horton [18] who disproved a corresponding conjecture of Tutte [37].

Many partial and related results are available [1,2,5,7,10-15,19,25]. In particular,
Conjecture 1 holds on graphs on up to 90 vertices [6, 17].

It is well-known and easy to see that the planar dual of a 3-connected cubic planar
bipartite graph is Fulerian, i.e., it is connected and all its vertices have even degree.
Moreover, the dual will be a planar triangulation, i.e., all its faces are triangles. A subset
of the vertices of an undirected graph is called acyclic if it induces a forest. Finally,
one can observe that after dualization one obtains the following equivalent statement of
Conjecture 1.

Conjecture 2 (Dual Barnette). Every Eulerian planar triangulation can be vertex-
partitioned into two acyclic sets.

The statement does not hold for general planar triangulations, because then it corre-
sponds to Tait’s Conjecture [33]. Indeed, there is a rich literature about decompositions of
planar graphs into graphs close to forests, see e.g. [20,22, 31, 34].

We are now switching to oriented graphs, i.e., directed graphs without cycles of length 1
or 2. A subset of the vertices of a directed graph is called acyclic if it induces a subdigraph
without directed cycles. Another relaxation of Tait’s Conjecture is due to Neumann-Lara.

Conjecture 3 (Neumann-Lara Dicoloring Conjecture, 1985 [29]). Every oriented planar
triangulation can be vertex-partitioned into two acyclic sets.

Conjecture 3 is settled in the absence of directed triangles [24] and for oriented graphs
on at most 26 vertices [23] but remains widely open. Note that in the primal setting, i.e. in
the language of Hamiltonicity of 3-connected graphs, also Conjecture 3 has a formulation
and can be seen as a special case of a conjecture of Hochstéttler [16] which has been
disproved in [23], where a detailed overview of the interplay of these conjectures have been
given'. Together with results of Steiner [32, Corollary 5.40] it follows that the largest open
common special case of these conjectures is equivalent to:

Conjecture 4 (Eulerian Neumann-Lara). Every Eulerian oriented planar graph can be
vertex-partitioned into two acyclic sets.

Here, a connected oriented graph is Eulerian if for each of its vertices its out-degree
and in-degree are equal. Note that when forgetting the orientations of a Eulerian oriented
graph, one obtains a Eulerian undirected graph, but not vice versa (not every orientation
is Eulerian). The main definition for the present paper is

Definition 5 (CAl-partition). A partition AUZ = V of the vertices of an (oriented)
graph G = (V| E) is a CAl-partition if A induces a connected acyclic sub(di)graph and Z
is independent.

1See also http://www.cs.toronto.edu/~ahertel/WebPageFiles/Papers/StrengtheningBarnette’
sConjecturel0.pdf
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The connection of CAl-partitions to the above conjectures and simultaneously our
central interest in their study is the following observation. For this, recall that every
Eulerian planar triangulation has a unique tripartition, i.e., a vertex-partitioning into three
independent sets (see [35] for a new proof and a history of this result).

Observation 6. Let G be a Fulerian (oriented) planar triangulation with tripartition
Iy, I, I3. If there exists 1 < i < 3 such that G — I; has a CAl-partition, then G can be
vertex-partitioned into two acyclic sets Ay, As. Moreover, A; is connected and A, is a
forest containing I; for some 1 <7 < 3.

Observation 6 suggests a way of attacking the notoriously hard Conjecture 2 and Con-
jecture 4. But what kind of graphs can appear and hence would need to be given a
CAl-partition?

Observation 7. An (oriented) graph H is induced by two parts of the tripartition of a
FEulerian (oriented) planar triangulation if and only if H is a 2-vertez-connected bipartite
planar (oriented) graph.

Related work

To our knowledge CAl-partitions have been studied only for undirected graphs.

In [1] the authors call a subtree of a Eulerian plane triangulation G permeating if it
intersects every face and study the case where the tree avoids one class of the tripartition
of G. More generally, let us call an acyclic connected subgraph A of a plane (oriented) G
permeating if A intersects every face of G. The following observation makes the connection
with CAl-partitions:

Observation 8. Let G be an undirected Fulerian triangulation with tripartition I, I3, I5.
If AUT is a CAl-partition of G — I;, then A is a permeating acyclic connected subgraph
of G and every permeating acyclic connected subgraph of GG that avoids I; arises like this.

The negative result [1, Theorem 4] says that for every integer k there is a properly
3-coloured undirected Eulerian planar triangulation G such that every permeating tree
of G contains at least k vertices from each colour class. In particular, there are Eulerian
triangulations G' with tripartition Iy, I, Is such that no G — I; admits a CAl-partition.
With Observation 7 and Observation 8 the positive result [1, Corollary 2] reads: 2-vertex
connected bipartite planar undirected graphs in which every cycle contains a vertex of
degree 2 have a CAl-partition.

CAl-partitions have also been studied in non-planar graphs. Payan and Sakarovitch [30]
show that cubic, 2-connected, cyclically 4-edge connected graphs have a CAl-partition if
their order is not divisible by 4, but also give examples of order divisible by 4 without
CAl-partition. The case of cubic, 2-connected, cyclically 4-edge connected graphs without
CAl-partition remains active, see [27,28]. In [8] it is shown NP-hard to decide if a graph
(of diameter at most 3) has a CAl-partition.
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Our results

Our first and main positive result can be translated via Observation 7 and Observation 6
into further evidence for Conjecture 4.

Theorem 9. Fvery planar bipartite 2-vertex-connected subcubic oriented graph has a
CAl-partition.

Our second positive result can be seen as a general contribution to CAl-partitions
in undirected graphs and when restricted to bipartite graphs it yields further positive
evidence for Conjecture 2 via Observation 7 and Observation 6.

Theorem 10. FEvery 2-vertex-connected simple series-parallel graph has a CAl-partition.

We (almost) show the tightness of our positive results by showing that none of the
conditions except possibly planarity in Theorem 9 can be dropped, see Lemma 32. See
also Question 35.

Finally, in Section 6, we show that the strategy suggested by Observation 6 is doomed
to fail for resolving Conjecture 4 and thus its generalization Conjecture 2.

Theorem 11. There exists a Eulerian oriented planar triangulation G such that for any
I of its tripartition, the induced subgraph H = G — I admits no CAl-partition.

As a consequence of Theorem 11 we obtain an oriented strengthening of [1, Theorem
4]

Corollary 12. For every integer k there is a properly 3-coloured Fulerian oriented planar
triangulation G such that every permeating acyclic connected subgraph A of G contains at
least k wvertices from each colour class.

Definitions and notation

Let G = (V, E) be a (directed) graph. We define the degree d¢(u), the in-degree d(u),
and out-degree df;(u). We will drop the subscript ¢ when the graph is clear from the
context. A k-vertex (resp. k™ -vertex, kT-vertex) is a vertex of degree k (resp. at most k,
at least k). Let G be a planar graph. The degree of a face f in G is the number of edges
of the face. The set of faces of G is denoted by F(G). A k-face is an induced cycle C.

For every set S C V, we denote by G — S the graph G where we removed the vertices
of S along with their incident edges.

A bridge is an edge whose removal disconnects the graph. A graph with no bridge is
2-edge-connected.

A cut-verter is a vertex whose removal disconnects the graph. A graph with no
cut-vertex is 2-vertex-connected.

Note that a subcubic graph is 2-vertex-connected if and only if it is 2-edge-connected.

A set of vertices is separating if its removal disconnects the graph.

A cut-set is a set of vertices that is separating.
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Two vertices in GG are said to be at facial distance d on a face f if they are on the
same face f and their distance is d in the induced subgraph G[f].

When a graph G is planar, we associate it with one of its plane drawings for simplicity.
A triangulation is a maximal planar graph, i.e. a planar graph for adding an edge results
into a non-planar graph, or equivalently a planar graph for which every face (also the
outerface) is a triangle.

2 Proofs of Observations

Proof of Observation 6. Take a CAl-partition of G — I;. Clearly A is a connected acyclic
sub(di)graph of G. Now suppose for a contradiction that Z U I; induces a (not necessarily
directed) cycle C' in G.

Consider a planar embedding of GG. Since A is connected and disjoint from C, we may
assume without loss of generality that all vertices in A are outside of C' in the embedding.
Let v € C. By assumption, the vertex v and all of its neighbors in C' or inside of C' belong
to V(G) — A =7 U I,;. Note that any two consecutive neighbors of v are adjacent in G,
since (G is a triangulation. Since C'is a cycle, the vertex v has at least two neighbors in C'
or inside of C, hence G[Z U I;] contains a triangle, a contradiction.

Thus, A1 = A and Ay, = Z U [; partition GG into a connected acyclic set and a forest
containing I;. O

Proof of Observation 7. We use the following well-known fact: a planar graph is 2-vertex-
connected if and only if all its faces are simple cycles, see e.g. [26, Chapter 2|. Let G
be a Eulerian (oriented) planar triangulation and tripartition Iy, I, I3 and H = G — I;
for some 1 < i < 3. Clearly, H is a bipartite planar (oriented) graph. To see that it is
2-vertex-connected, observe that every face of H consists of the neighbors of a vertex of
I; in their cyclic ordering. No vertex can appear twice in such a face by simplicity of G,
hence all faces are simple cycles and H is 2-vertex-connected by the above result.
Conversely, if H is a planar bipartite 2-vertex-connected graph (let us for a moment
forget about orientations), then by adding a vertex v, for each face f of H and edges
between vy and the vertices of f, we obtain a planar triangulation G, which is simple
because all faces are cycles. Moreover, each added vy will have even degree since H is
bipartite. For any vertex v € H its degree equals the number of faces incident to v since
H is 2-vertex-connected, so the degree of v in G is even. Thus, G is a Eulerian planar
and the added vertices form one of the independent sets in the tripartition of GG. Finally,
orient the new edges from v; towards an old vertex v if v is a source on f and towards vy
if v is a sink on f. Since on each face the number of sinks and sources is equal, without
the still unoriented edges every vertex has now indegree equal to outdegree. It is easy to
see that the still unoriented edges form a subgraph all of whose vertices have even degree,
hence we can give it a Eulerian orientation to satisfy the statement of the observation. [

Proof of Observation 8. If AUZ be a CAl-partition of G — I;, then by Observation 6
T U I; is a forest in G and in particular it cannot contain any face of G. Hence, A is a
permeating acyclic connected subgraph of G that avoids I;.

ot
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Conversely, if A is a permeating acyclic connected subgraph of G that avoids I;. Let
B = G — A be the remaining vertices of G. If B — I, had an edge e, then since G
is a Eulerian triangulation and Iy, I, I3 its tripartion, the triangles containing e would
have its third vertex in I; C B. Hence, B would contain a face. Thus, Z = B — I; is
independent. O

3 Proof of Theorem 9

We will prove Theorem 9 using a discharging argument. Suppose by contradiction that
there exists a counter-example G of Theorem 9 that minimizes the number of edges and
vertices.

We call a 2-vertex bad if it is incident to a 6-face, and good otherwise. In order to
prove the result, we will use the following proposition. Its proof will be given later.

Proposition 13. The graph G must have the following structural properties.
(1) Two 2-vertices are at facial distance at least 4 (Lemma 20).
(i1) There are no 4-faces (Lemma 22).
(111) If an 8-face contains two 2-vertices, then none of them is bad (Lemma 29).
(iv) A 2-vertex cannot be incident to two 6-faces (Lemma 28).

Proof of Theorem 9. By Euler’s formula, we have

> @dw)-6)+ > (d(f)—6)=-12<0. (1)

veV(Q) fer(a)

We assign the charges p(v) = 2d(v) — 6 to each vertex v € V(G) and u(f) =d(f) —6
to each face f € F(G). Now, we apply the following discharging rule.
Discharging rule:
RO Each 8*-face gives 2 to its bad 2-vertices and 1 to its good 2-vertices.

If Proposition 13 holds, then after applying RO, we will prove that the remaining charge

p* on each face and each vertex is nonnegative, reaching a contradiction with Equation (1).
Faces: Recall that G is bipartite. So d(f) is even and d(f) > 6 for every f € F(G)

by Proposition 13(ii).

e Let f be a 6-face. Its charge is unchanged so p*(f) = u(f) = d(f) — 6 = 0.

e Let f be an 8-face. By Proposition 13(i), f is incident to at most two 2-vertices. By
Proposition 13(iii), if f is incident to exactly two 2-vertices, then none of them is bad.
Therefore, pu*(f) > 8 —6 —max{2-1,1-2} =0.

e Let f be a 107-face. By Proposition 13(i), f is incident to at most LMJ 2-vertices.

4
Therefore, p*(f) =d(f) — 6 —2 L@J > 0.

Vertices: Let v € V(G), v is a 2*-vertex since G is 2-vertex-connected.
e Let v be a 2-vertex. Recall that p(v) = 2d(v) — 6 = —2. Since v cannot be incident
with two 6-faces by Proposition 13(iv), one of the following two cases occur.
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— If v is incident to a 6-face and an 8"-face, then it is a bad 2-vertex and it receives 2
from the 8*-face.
— If v is incident to two 8*-faces, then it is a good 2-vertex and it receives 1 from each
incident 8-face.
Therefore, p*(v) = —2+1-2=-24+2-1=0.
e Let v be a 3-vertex. Its charge is unchanged so p*(v) = p(v) =2d(v) —6=2-3 -6 =
0. O

Structural properties of G

To prove Proposition 13, we will study the structural properties of GG in greater detail. For
conciseness, we will call the class of oriented planar bipartite 2-vertex-connected subcubic
graphs F and when we talk about decompositions, we implicitly imply that it must be a
partition into a connected acyclic set and an independent set.

Proof sketch. Every proof in this section will be by contradiction with the following
scheme.

e We build one (or two) graph(s) H in F from G such that |E(H)| + |V (H)| < |E(G)| +
V(G)].
e We use the minimality of G to obtain a CAl-partition of H.
e We modify this CAl-partition of H to obtain a partition (A4,Z) of G that we claim is a
CAl-partition, thus obtaining a contradiction.
e The proofs that this new partition (A,Z) of G is a CAl-partition will consist in
— verifying that vertices in Z form an independent set;
— verifying that new connections between vertices in A in G will not create a directed
cycle;
— if some connections between vertices in A in H are not present in G or if there were
two disconnected graph H; and H,, then we verify that A is connected.
To avoid repetitions in this section, we will only argue that H € F for restrictions that
are not straightforward from the definition of H, which most of the time will be 2-vertex-
connectivity. Moreover, to help the reader see how the modification of G to obtain H
preserves the bipartition, the vertices of one part will be labeled a; for some indices 7, and
the vertices in the other part with b; for the other indices j. We also often use the two
following easy observations.

Observation 14. Let v € A. If v has exactly one neighbor in A, then A — {v} is a
connected acyclic set.

Observation 15. Let v ¢ A. If v has exactly one neighbor in A, then AU {v} is a
connected acyclic set.

We use edge (resp. path, cycle) instead of arc (resp. directed path, directed cycle),
whenever the orientation can be omitted in the proof. We define an A-path between u and
v as a path between u and v, where every vertex on this path is in A, u, v included. We
define an A-cycle similarly.
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Proofs will also come with figures to illustrate the extension of the CAl-partition of H
to G. Vertices and edges removed from G to obtain H will be in red. Vertices and edges
added in H will be in blue. Next to the vertices, we add labels A and Z in blue according
to the CAl-partition in H and in red for the extension to the CAl-partition in G. The
presence of (directed) A-paths highlighted by the proof will be in the figures as (directed)
squiggly lines between vertices in A.

Lemma 16. There are no adjacent 2-vertices in G.

Proof. Suppose by contradiction that we have a path agbasbs where d(by) = d(as) = 2
in G. If ap and b3 are not adjacent, then let H = G — {by, as} + agbz when C_L;b_i is an
arc of G, otherwise let H = G — {by, a2} + bg—ag. If ap and b3 are adjacent, then let
H = G —{by,as}. The resulting graph remains subcubic and bipartite. We check that H is
2-vertex-connected. Indeed, when ay and b3 are not adjacent, replacing the path agbasbs
by the edge agbs preserves the connectivity. In the case where ay and b3 are adjacent in G,
if removing {b;, as} creates a bridge in H, then this bridge along with b;as must be an
edge-cut in G. We deduce that this edge cut must be {bjas, agbs}. This implies that ag or
b3 is a cut-vertex in G, or that G is a cycle, a contradiction since G is 2-vertex-connected
and cycles have a decomposition.

Now, let (A,Z) be a CAl-partition of H. Since ay and bs are adjacent in H, at most
one of them can be in Z.

Case 1: ap and bs are not adjacent in GG. See Figure la.
We claim that (A", Z") = (AU {ag, b1},Z) is a CAl-partition of G. Indeed, it is the case if
either ag or b3 is in Z. If they are both in A, then the connectivity of A is preserved in G.
Moreover, if there exists a directed A’-cycle in G, then it must also exist in H thanks to
the added arc between ag and bs.

Case 2: aq and b3 are adjacent in GG. See Figure 1b.
If either ag € Z or by € Z, then (AU {by,as},Z) is a CAl-partition of G. If they are both

in A, then (AU {b1},Z U {az}) is a CAl-partition of G. O
Gl R0 &6 G- 00 @ -0
A A I A A A A A A A T A A I

(a) Case 1. (b) Case 2.

Figure 1: Lemma 16.

Since G is bipartite, containing a 4-cycle as a subgraph is the same as containing it as
an induced subgraph, so there is no ambiguity in the statements that will follow.

Lemma 17. There are no 2-vertices on a 4-cycle in G.

Proof. Suppose by contradiction that there exists a cycle C' = agbyasbs where d(ag) = 2.
By Lemma 16, d(b;) = d(b3) = 3. Let H = G — {ag}. See Figure 2. Observe that H is
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2-vertex-connected. Indeed, if H is not 2-vertex-connected, then there is a cut-vertex v in
H such that {v,ap} is a cut-set in G. Since removing ay could only separate b; and b3, v
must be ay. However, this implies that b; or b3 is a cut-vertex in G, a contradiction.

Let (A,Z) be a CAl-partition of H. See Figure 2. If b; and b3 are in A, then
(A, ZU{ag}) is a CAl-partition of G. If only one of b; and b3 is in A, then (AU {ag},Z) is
a CAl-partition of G. Finally, suppose b; € Z and b3 € Z. Since (A,Z) is a CAl-partition
of H, then as must be in A and also must have a third neighbor in A. Note that both b,
and b3 have degree three by Lemma 16, and thus each has a third neighbor in A, which is
connected to the rest of A. Therefore, ((A — {az}) U{b1, b3}, (Z — {b1,b3}) U{ap,as}) is a
CAl-partition of G. n

7z A 7z

@ A A @ z IT—A @ IT—A
O, OO, OO
(a2) (a2) (@)

A
()

Figure 2: Lemma 17.

Lemma 18. Two 2-vertices are at distance at least 3 in G.

Proof. Suppose by contradiction that the underlying undirected graph of G has a path
aopbyazbsay where d(by) = d(bs) = 2 in G. By Lemma 16, we know that d(ay) = 3
so let by, ¢ {by,bs} be its third neighbor. By Lemma 17 we know that ay # a4. Let
H = G — {b3} + bjay. By adding the edge bjay, we ensure the 2-connectivity of H,
otherwise bjay is a bridge in H and thus ayb}, is a bridge in G. Let (A,Z) be a CAI-
partition of H. We have to distinguish several cases:
Case 1: Suppose that as and a4 are in A. See Figure 3a.
If there is an A-path between ay and ay in G — {b3}, then (A,ZU{b3}) is a CAl-partition
of G. Otherwise, (AU {bs},7) is a CAl-partition of G.
Case 2: Suppose that as € A and a4 € Z. See Figure 3b.
In this case, (AU {bs3},Z) is a CAl-partition of G.
Case 3: Suppose that a; € Z and a4 € A. See Figure 3c.
Since as € Z, we must have b; and b} in A.
e If there is an A-path between a4 and by in G — {bs}, then (AU{bs},Z) is a CAl-partition
of G.
e Otherwise, if there is an A-path between 0}, and b; (which must go through ag) in
G — {bg}, then ((A - {b1}> U {CLQ, bg}, (I - {(IQ}) U {b1}> is a CAI-p&I‘titiOl’l of G.
e If both of the previous conditions do not hold, then there must be an A-path between b,
and a4 in G — {b3} since A is connected in H. In this case, (AU {as}, (Z —{az2}) U{bs})
is a CAl-partition of G.
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Case 4: Suppose that a; € Z and a4 € Z. See Figure 3d.
Since as € Z, we must have b; and b}, in A. Moreover, there must be an A-path between

by and b, since A is connected in H. Therefore, ((A — {b1}) U{az, b3}, (Z — {az}) U{b1})

is a CAl-partition of G. O
A z A A A A A A
(a) Case 1. (b) Case 2.
A IA
A

(d) Case 4.
Figure 3: Lemma 18.

To prove that G contains no 4-faces (Proposition 13(ii)), we need to prove Lemmas 19
to 21 first.

Lemma 19. There are no three distinct 4-cycles in G, each sharing at least one edge with
each other.

Proof. Suppose that such a configuration exists by contradiction. Due to Lemma 17 and
the fact that G is planar, bipartite, subcubic, and 2-vertex-connected, the only possible
drawing of such a configuration is presented in Figure 4 along with the name of the vertices.
Note that not every b, is necessarily distinct from each other. The three 4-cycles cannot
be all directed so let C' be the set of vertices of a non-directed 4-cycle. If every b, is the
same vertex, then G is an orientation of the cube. We can put all of the vertices of C'
in A, along with two non-adjacent vertices among the remaining ones, and the last two
vertices in Z, to get a CAl-partition of G. Therefore we may assume that not every b/ is
the same vertex.

Let H be G where we identify ag, aq, bs, as, by, as, bg into one vertex a*. If this causes
two arcs to be merged into one, we orient it in the opposite direction to the one of the
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other arc incident to a*. Observe that if H has a bridge, then it must be one that is
incident to a*, and both arcs incident to a* if a* has degree 2. But then, one of those
arcs would also be a bridge in G, a contradiction. Therefore, H € F. Let (A,Z) be a
CAl-partition of H. In what follows, we give a CAl-partition of GG in every possible case
up to the symmetry of the configuration.

Observe that b, by, and b cannot all be in Z, otherwise a* would be an isolated vertex
in A. Therefore, we have the following cases.

Case 1: a* € Z. See Figure 4a.
We must have {b],0;,0.} C A. By the pigeonhole principle and w.l.0.g. we assume the

existence of arcs a;b] and agby. In that case, (AU {ay,bs, a3, bs,bs}, (Z — {a*}) U{ao,as})
is a CAl-partition of G.

Case 2: a* € A. See Figure 4b.
Let b € {bg, b4, b6} - C.

Suppose first that every b} is distinct. We claim that (A',Z") = ((A — {a*}) U
{ag, a1, bs, ag, by, as, bg} —{b},ZU{b}) is a CAl-partition of G. The only possible problem
with this decomposition is a directed A’-cycle. However, any such cycle in G that contains
two of the bls will be a directed A-cycle in H that goes through a*. Moreover, the only
other possible directed A’-cycle is the 4-cycle that does not contain b. This is impossible
since it is C' which is not directed.

Now suppose not every b is distinct, say b] = b} without loss of generality. Then we
can put another vertex b of {ba, by, b} in I’ without disconnecting A’. We choose b so that
b and b are not both adjacent to as. Now (A" T') = (A—{a*})U{ap, a1, ba, as, by, as, b} —
{b, IS},I U {b, B}) is a CAl-partition of G. The only additional potential directed A’-cycle
that could appear compared to the previous paragraph is a directed cycle containing
b, = by and not b,. But any such cycle contains either b or b, which is in Z'. O

(b) Case 2 where C' = {ag, b2, a3, bs}
and b = bg.
Figure 4: Lemma 19.

Using Lemma 19, we can prove Lemma 20.

Lemma 20. There are not two 4-cycles sharing an edge in G.
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Proof. Suppose that such a configuration exists by contradiction. Note that since G is
2-connected and planar, there cannot be two 4-cycles that share two edges. We give a
drawing of such a configuration in Figure 5 along with the name of the vertices. Let H be
obtained from G by identifying aq, b, a3 into a vertex a* and by, as, bg into one vertex b*,
where the direction of the arc between a* and b* will be chosen later depending on the
orientations in GG. By contracting these vertices, we do not create digons due to Lemma 19.
Moreover, if we create a bridge, then it is exactly a*b* since otherwise, the same bridge
would exist in GG, a contradiction. Therefore, we distinguish two cases.

Case 1: a*b* is a bridge. See Figure 5a.

In this case, each component H; of H — a*b* is in F for i € {1,2} since a bridge in H;

would also exist in G. Let (A;,Z;) be a CAl-partition of H; for i € {1,2}. Now, we have

the following cases up to symmetry.

e Suppose that a* € A; and b* € Ay. In this case, (A, Z) = ((A; —{a*}) U (A — {b*}) U
{a1,be,a3,b4,b6},Z1 UZy U{as}) is a CAl-partition of G since A is connected and any
potential directed A-cycle would have existed in H; or Hs by going through either a*
or b*.

e Suppose that a* € A; and b* € Z,. By pigeonhole principle and w.l.o.g., there must
be at most one edge uv € {aibg, baas, azbs} that is not directed from H; towards
H,. Say that v is in Hy. Observe that a),a; € A since b* € Z,. In this case,
((Al - {CL*}> UAQ U {al, bg, as, b4, as, bﬁ} - {’U},Il U (IQ - {b*}) U {U}) is a CAI—partition
of GG since A is connected.

e Suppose that a* € Z; and b* € Z,. Observe that there exists an A;-path between b}
and b5 and an Ap-path between a) and ag since a* € 7y, b* € I, and A; and A, are
connected. In this case, (A; U Ay U {aq, by, by, a5}, (Zy — {a*}) U (Zy — {b*}) U{as, bs})
is a CAl-partition of G.

Case 2: a*b* is not a bridge. See Figure 5b.

In this case, H € F. Let (A,Z) be a CAl-partition of H.

e Suppose that a* € A and b* € Z. Observe that a}, a; € A and therefore ((A — {a*}) U
{a1,be,a3,as5},(Z — {b*}) U{bs, bs}) is a CAl-partition of G. The same idea holds by
symmetry when ¢* € Z and b* € A. N

e Suppose that a* G__fl}and b* € A. We can assume w.l.o.g. that aibg is an arc in G.

— Suppose that azb, is an arc in G. In this case, we choose a*b* in H. Therefore,
(A7) = ((A—{a*b"}) U{as, be,as,by, b6}, T U {as}) is a CAl-partition of G since
any potential directed A’-cycle would have been a directed A-cycle in H by going
through a* or b*. R

— Suppose that bsaz is an arc in G. W.l.o.g. we assume that asb, is also an arc in G.
In this case, we choose b*a* in H. If there are no A-paths between ag and 0}, b5, or
ay in G — {ay, by, as, by, as, bs}, then ((A — {a*,b*}) U {aq,ba, as, by, bs}, T U{as}) is
a CAl-partition of G. Otherwise, ((A — {a*,b*}) U {ai, b, a3, by, a5}, T U {bs}) is a
CAl-partition of G. O

Lemma 20 is useful to prove that if there exists a 4-cycle in GG, then it cannot be
separating.
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(b) Case 2.
Figure 5: Lemma 20.
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Lemma 21. There are no separating 4-cycles in G.

Proof. Suppose by contradiction that G contains a separating 4-cycle C' = agbjasbs.
Observe that G — {ag, by, as, b3} has exactly two connected components since G is subcubic
and 2-vertex-connected. Let S; and S; be the set of vertices of those two connected
components. Let by, a}, by, a5 be the neighbors of ay, bl, a9, by respectively. See Figure 6.
Since G is 2-vertex-connected, exactly two of {b),a},b,, a5} are in the same component.
Thus, w.l.o.g. we have the two cases below. By Lemma 20, there are no edges between
by and a}, between b, and af, between b and a}, and between a} and b;. Therefore, the
graphs that will be defined below are well-defined.
Case 1: b, d} € Sl and b, a, € Sy. See Figure 6a.
W.l.o.g. we assume a0b1 1s an arc in G.

e Suppose that we have agbg in G. Let H =G — {ag, by, a2,b3} + 17073 + lm. Observe
that H € F since C is separating in G. Let (A,Z) be a CAl-partition of H. Since

{6;‘737 ﬁ} is an edge-cut in H and since (A,Z) is a CAl-partition of H, there can be

at most one vertex from {bf, a}, by, a5} in Z. Therefore, we distinguish two cases.

— Suppose w.l.o.g. that b, € Z. In this case, (AU{ao, b1, az}, TU{bs}) is a CAl-partition
of G.

— Suppose that {bo, ay, by, a4} € A. Since A is connected, there must be an A-path
between b, and a} or between aj and b). Since neither (AU {b1, as,b3},Z U {ap})
nor (AU {ao, bi,b3},Z U {as}) are decompositions of G and C' is a separating cycle
of (G, there must be a directed A-path }_7; from a} to b, in Sy and a directed A-path

P1 from a to b in S;. However, this is impossible because Pllﬁ%Pgl)—cﬂi is then a
directed A—cycle in H.

e Suppose that we have 53—61,—; in G. Let Hy = G[S1] + I;{)—CZ and Hy = G[Sy] + Z@Z be
the two connected components of G — {ao, b, as, b3} + {bjay, a3by}. Observe that H;
and Hy are in F. Let (A;,Z;) be a CAl-partition of H;, for i € {1,2}. We claim that
(A, Z) = (A1 U Ay U{ag, by, as,b3},Z; UZ,) is a CAl-partition of G. Indeed, C' is not
a directed cycle, A is connected, and any potential directed A-cycle in G, would lead
to a directed A;j-cycle (resp. As-cycle) in Hy (resp. Hs) passing through the arc @
(resp. c@)

Case 2: b, b, € Sy and a), a} € Sy. See Figure 6b.
Let H = G — {ag, by, as, b3} + alby + bhay. Observe that H € F since C is separating in

G. Let (A,Z) be a CAl-partition of H. Since {a3bo, b al} isacut in H and (A4,7) is a
CAl-partition of H, there can be at most one vertex from {b, a, b, a4} in Z. Therefore,
we distinguish two cases.

e Suppose w.l.o.g. that by € Z. In this case, (AU {ao, b1, a2},ZU{b3}) is a CAl-partition
of G.

e Suppose that {b], a}, b}, a5} C A. Since A is connected, suppose w.l.o.g. that there exists
an A-path between b, and b). Since (AU {by,as,b3},ZU{ap}) and (AU {ag,b1,b3},ZU
{as}) are not decompositions of G and C' is a separating cycle of GG, there must by a
directed cycle in (AN Sy) U {by,as,b3} and (AN Sy) U{by,a,bs}. Hence by is either a
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source or a sink in the cycle C. Therefore, (AU {ag, b1, a2},ZU{bs}) is a CAl-partition

No directed No directed Impossible.
A-path from af A-path from a}
toby,in G—-C. tob;in G—-C.
(a) Case 1.

No directed cycle in No directed cycle in Example with b; being a
(AOSQ) U{bl, as, bg}(AﬂSQ) U{CL(), bl, bg} sink in C.

(b) Case 2.
Figure 6: Lemma 21.

Finally, we prove a stronger result than Proposition 13(ii).
Lemma 22. There are no 4-cycles in G.

Proof. Suppose by contradiction that G contains a 4-cycle C' = agbjasbs, which by
Lemma 21 must be a 4-face. Let b, a}, b}, a5 be the neighbors of ag, by, as, bs respectively.
By Lemma 20, there are no edges between b and aj, between b}, and a}, between b and a/,
and between aj and ). Therefore, the graphs that will be defined below are well-defined.
We begin by showing a useful claim.

Claim 23. The underlying undirected graph G — C + byaly, + aibly, or G — C' + bja} + abby
is 2-vertex-connected. By symmetry, we can assume that G — C + bjay + abl, is 2-vertex-
connected.
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Proof. By contradiction, G would contain two edge-cuts of size 3, say {agbs, bias, wiws}
and {bsag, agby, uguy }, where ug, uy, wo, wy are some vertices of G (see Figure 7). W.lLo.g.
suppose that {agbs, byas, wiws} separates G into two components with vertex sets S; 2
{ag, by, wy,ug,u1}, So 2O {ag,bs,wy} and that {bias, agbs, upu;} separates G into two
components with vertex sets T O {ag, b3, up}, To D {b1, as, wy, ws,us}. In this case, by is
a cut vertex in G (aj € Ty NSy — {b3}), which contradicts the 2-connectivity of G. [

Figure 7: A 4-cycle whose removal creates two bridges must contain a cut-vertex (bs).

Now, we proceed to the proof of Lemma 22.

Case 1: Suppose that G contains the following arcs a3bs, bsas, ang, b, ao, aobl, blal

and that G — C' is 2-vertex-connected. Let H =G — C + @172 + m. See Figure 8.

By assumption, we have H € F. Let (A,Z) be a CAl-partition of H. Observe that
{66, a}, by, as} N A| > 2 since Z is an independent set in H. Thus, we have the following
two cases.

o Suppose {bg, a’, by, a5} N Al < 3. W.lo.g. we can assume that b) € Z and therefore

a) € A. We claim that (A',Z") = (AU {ag, az,b3},Z U {b1}) is a CAI partition of G.

—
Indeed, A’ is connected and any possibly directed A’-cycle in G would contain bzas,

but then H would contain a directed .A-cycle containing a4b;.
e Suppose |{bg, a}, by, as} N Al = 4. Since A is connected, by symmetry, in G — C' there
exists an A-path from b, to b, or af. Let (A", Z") = (AU{by, a2, b3}, ZU{ao}). If (A", 7)

is a CAl-partition of G, then we are done. Otherwise, GG necessarily contains a directed

A- cycle which consists of the arcs a3bs, bsas, asby, bla{ together with a directed A-path

from a; to a3. In this case (AU {ag,br, a2}, T U {b3}) is a CAl-partition of G.

Case 2: Suppose that G contains the following arcs a3bs, bsas, a2b2, boao, aob1, bla1
and there exists a bridge in G — C. Together with Claim 23, we conclude that there exists
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T A A A
No directed A-path from a}
to ay in G —C.

Figure 8: Case 1 of Lemma 22.

an edge e in G such that {agbs, bias, e} is a 3-edge-cut of G. Let H; and Hs be the two
connected subgraphs of G — C' — e with H; containing a; and b} and Ho contai@g by and

as. Let H] be obtained by reversing every arc of Hy and H = H| + Hy + e + ajby + chz.

See Figure 9.

Observe that H € F is smaller than G, so we have a CAl-partition of H. Observe that

{66, a}, by, as} N A| > 2 since Z is an independent set in H. Thus, we have the following

two cases.

e Suppose [{by,a}, by, a5} N Al < 3. W.lo.g. we can assume that b, € Z and therefore
ay € A. Then (AU {ag, b1, a2}, Z U{bs}) is a CAl-partition of G.

e Suppose |{bf,a}, by, a5} N A| = 4. We claim that there cannot be simultaneously a
directed A-path from b} to a in Hy and a directed A-path from a} to b)) in Hy. Otherwise,
there would be a directed A-cycle in H consisting of the following: a directed A-path

from b} to aj, Z@%, a directed A-path from b to a} (because Hj has all arcs reversed

with respect to Hy). Therefore, we have the two following cases.

— There is a directed A-path from b, to a} in Hy and no directed A-paths from a}
to by in Hy. If (A, Z") = (AU {ao,b1,b3},Z U {as}) is a CAl-partition of G, then
we are done. Otherwise, there must be a directed A’-cycle going through aj, bs,
ap, by, a}, and the edge e oriented from H; towards H,. However, in this case,
(AU {ag, b1, a2},ZU{bs}) is a CAl-partition of G.

The same arguments give a CAl-partition of G when there is a directed A-path from
a} to by in H; and no directed A-paths from b, to a} in Ho.

— There are neither directed A-paths from b, to aj in H,, nor from af to bj in H;. If
(AU {ag, b1, as,b3},7) is a CAl-partition of G, then we are done. Otherwise, if e is
oriented from H; towards Hs, then there must be a directed A-cycle going through
aj, bs, b1, a}, and e. In this case, (AU {ag, by, as},Z U {b3}) is a CAl-partition of G.
The case when e is oriented from Hs towards H; is symmetric.

Case 3: Suppose that we are not in Case 1, nor in Case 2. Suppose w.l.o.g. that G

contains agby. We define H depending on the orientation of a4b; in G:
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Impossible. No directed A-path from «a)
to b6 n Hl.

No directed A-path from a} No directed A-path from a}
No directed A-path from a} to b in Hy, from b5 to aj in to by in Hy or from b, to af
to by in H;. H,, or from a} to a} going in H,.
through e.
Figure 9: Case 2 of Lemma 22.
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s
[ ] agb3 H G {ao,bl,GQ,bg}—Fﬁ% Q
L] lgﬁz H=G- {ao,bl,ag,b3}+a, 2 b
See Figure 10.

Observation 24. Any directed cycle C' in G containing edges byag, aobs, bsaly (resp. a’by,
bias, asbly) creates a directed cycle C'—{byao, agbs, bsal } +byal (resp. C'—{a\ by, biag, asbl}+
aibl) in H.

By Claim 23, H is 2 vertex-connected and is in F. Let (A,Z) be a CAl-partition of H.
Observe that |[{by,a}, b, a5} N A| > 2 since 7 is an independent set in H. Thus, we have
the following two cases.

e Suppose [{b),a}, by, as} N Al < 3. W.lo.g. we can assume that b € Z and therefore

ay € A. Then (AU {ag, b1, as},ZU{bs}) is a CAl-partition of G.

e Suppose [{by,a},b,, a5} N Al = 4. Now we distinguish the following cases.
— There exists an A-path between a and bf, and an A-path between a and b}, in G —C.
If A is connected in G — C, then (AU {ag,as},Z U {b,b3}) is a CAl-partition of G.
Therefore, there is no A-path between a§ and b or a}, as well as between b, and bj,
or ay. Since (A',Z) = (AU {ao, az,b3},Z U {b1}) is not a CAl-partition of G, there
must be a directed A’-cycle containing a’bs, bsas, azbg, and a directed A-path from
by to az. Similarly, since (A", ") = (AU{ao, b1, b3}, TU{as}) is not a CAl-partition
of GG, there must be an A”-cycle containing a’lbi, biag, aob{), and a directed A-path
from b}, to a} (if the arcs were reversed then we would be in Case 1 or Case 2).

However, the directed .A-path from b to af, @ , the directed A-path from b} to as,

and &5170 form a directed A-cycle in H, a contradiction.

— There exists either an A-path between a} and b or an A-path between af and
by in G — C. By symmetry, we assume that it is the latter. Since (A',7') =
(AU {ag,by,a2},ZU{bs}) is not a CAl-partition of GG, there must be a directed A’-
cycle in G. This A’-cycle cannot contain @} and b since there is no A-path between
them in G — C. This cycle cannot contain af, by, as, and b, by Observation 24.
Therefore, this A’-cycle contains an A-path between 0}, and bj,. Using the same
arguments, G contains an A-path between @} and a}. Hence, we go back to the case
where A is connected in G — C and (A U {ag, az},Z U {by,bs}) is a CAl-partition of
G.

— There is no A-path between a} and b}, and no A-path between aj and b, in G — C.
Since A must be connected in H, we can suppose w.l.o.g. that there exists an A-path
between @} and aj. Since (A',Z") = (AU{ag, b1, as},ZU{bs}) is not a CAl-partition
of G. There must be a directed A'-cycle in G. This A’-cycle cannot contain a) and b,
since there is no A-path between them in G —C'. This cycle cannot contain af, b1, as,

and b}, by Observation 24. Therefore, this A’-cycle contains byag, agb:, bias, ang, and
a directed A-path from b} to b, (in particular, the orientations of agby, byay are forced).
Using the same arguments, since (A U {ao, as, b3}, Z U {b1}) is not a CAl-partition
of G, we have that G contains agbs and bsas. Hence, (AU {ag, b1,b3},Z U {az}) is a
CAl-partition of G. n

THE ELECTRONIC JOURNAL OF COMBINATORICS 33(1) (2026), #P1.27 19



A is connected No directed No directed Impossible.
inG-C. A-path from b; A-path from b
toa, in G—-C. toa)inG—-C.

No A-path between b and No A-path between b and
No A-path between b, and  af, or between b, and aj, a}, or between b, and a} in
ay and no directed A-path and no directed .A-path from G-C.
from b, to b in G — C. by to by in G — C. .
Figure 10: Case 3 of Lemma 22 with a}bs.

Lemma 25. Let u and v be 2-vertices of G, then G — {u,v} is 2-connected.

Proof. Let H =G — {u,v}.

First, we show that H is connected. Suppose by contradiction that H is disconnected.
We will build H" € F from H such that |V (H')| + |E(H')| < |V(G)| + |E(G)| and extend
a CAl-partition of H' to GG, thus obtaining a _c)ontradiction. Let t and w be neighbors
of w in G. Suppose that u is incident to arcs tu and ut. In such case, we add tw to H,
otherwise, we add wt to H. We do the same between neighbors of v and obtain H’. Since
G € F, H' remains 2-connected, subcubic, oriented, and planar. Moreover, since G is
2-connected, there are exactly two connected components H; and Hs in H and {u, v} forms
a cut-set of G. Let (A, B) be the bipartition of G, let (A, By) = (ANV(Hy), BNV (H,))
and (Ag, By) = (ANV(H,), BNV(Hy)) be the bipartitions of H; and H, respectively.
Observe that (A; U By, By U Ay) is a bipartition of H'. Therefore, H' € F. In addition,
\V(H)|+|E(H")| = |V(G)|+ |E(G)| — 4. By minimality of G, there exists a CAl-partition
(A,Z) of H'. We claim that (A',7') = (AU {u,v},T) is a CAl-partition of G. Indeed, if
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it is not a CAl-partition of G, then it must contain a directed A’-cycle going through u or
v. However, by construction of H’, if such a directed cycle exists then it must exist in A,
which contradicts the fact that A is an acyclic set.

Now, we show that H is 2-connected. Suppose by contradiction that H is not 2-
connected. Since H is connected, it must contain a bridge :@ Similarly to the previous
case, we will build H' € F from H — 7 such that |V (H')| + |E(H")| < |[V(G)| + | E(G)|
and extend a CAl-partition of H to G. We add arcs between neighbors of « and v in
the same fashion as when we proved that H is connected. Moreover, we add a vertex z
with arcs 72 and ﬁ/ to obtain H'. Moreover, there are exactly two connected components
H, and H, in H — Zj) and {u,v,z} forms a cut-set of G. Let (A, B) be the bipartition
of G, let (Al, B1> = (A N V(Hl), BN V(Hl)) and (AQ, BQ) = (A N V(HQ), BN V(HQ)) be
the bipartitions of H; and Hj respectively. Suppose w.l.o.g. that x € A;. Observe that
(A1 U By, By U Ay U {z}) is a bipartition of H'. Since G € F, all other properties of G
also remains in H' so H' € F. In addition, |V(H')|+ |[E(H")| = |V(G)| + |E(G)| — 2. By
minimality of G, there exists a CAl-partition (A,Z) of H'.

Suppose that z € A. We claim that (A", Z") = ((A—{z}) U{u,v},7) is a CAl-partition of
G. Similarly to the proof of H being connected, there is no directed A’-cycle. Moreover,
losing z does not disconnect G[A’] since z and y would have been in A, thus in A’, and
they are connected by 9@ in G.

Suppose that z € Z. As a consequence, x,y € A. Since (A", 7") = ((A — {z}) U {u,v},7)
cannot be a CAl-partition of G, there must be a directed A’-cycle going through ﬁ/ Since
{u,v,z} forms a cut-set of GG, such a cycle must go through u and/or v. If such a cycle
goes through u, then we put u in 7’ instead. We do the same for v. We claim that the
resulting partition (A”,Z") is a CAl-partition of G. Indeed, there are no A”-directed cycle
by construction of A”. Moreover, G[.A”] must be connected because whenever we put u in
7", the neighbors of u are in A” and they are connected by the path remaining from a
directed cycle going through @ and u in A’. The same holds for v. This concludes the
proof. O

Lemma 26. G cannot have two 2-vertices at facial distance 3 or less.

Proof. Suppose by contradiction that it is not true, and so by Lemma 16 and Lemma 18
there exists a path agbiasbszasbs lying on some k-face of GG such that vertices b; and ay are
of degree 2 and vertices ayg, as, b, bs have degree 3. Moreover, by Lemma 25, G — {b1, a4}
is 2-connected and thus G — {by,a4} is in F. Let H = G — {b1, a4} to which we add the
arc cgb_g if these two vertices are not adjacent in G. Take a CAl-partition (A,Z) of H.

If {ag,as} C Z, then all the neighbors of ag and ay are in A. Now since A is connected
in H, we get that (AU {by, as,as} — {bs},Z U {bs} — {az}) is a CAl-partition of G. If
ag € Z and as € A, then depending whether adding a4 to A creates a cycle or not, either
(AU{bi,a4},Z) or (AU{b1},ZU{as}) is a CAl-partition of G. Therefore, we conclude
that a¢ € A.

Suppose bs € Z. Observe that among as and b3, at least one must be in A. Moreover,
since A is connected in H and bs € Z, there is an A-path in H (and in G) from ag to
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every vertex in A, in particular to either ay or b3. Thus we build a CAl-partition (A’,Z")
of G as follows:
o If b3 € Z, then A' = A — {ay} U{by,b3,a4} and ' =T — {b3} U {as}. Note that since
the last neighbor of b3 is in A, A’ remains connected.
o If b3 € A, then A" = AU {a4}. Now, if ay € Z add by to A" and otherwise add by to Z'.
We conclude that b € A. Again, observe that among as and b3, at least one must be in
A. And since {ag, b5} C A, w.lo.g, we can assume that a; € A. We build a CAl-partition
(A", T") of G as follows:
e If there is an A-path between ag and b5 in G — {by, a4}, then :
—Ifbs e Athen A= Aand 7' =Z U {by,a4}.
— If by € Z, then A’ = AU{ay} and 7' = Ii{>51}
e If all the A-paths from ag to b5 in H contain agbs, then since A must be connected in H,
either there is an A-path in G from ag to as or from bs to ao, but not both. Therefore:
— Suppose b3 € A. Then there is an A-path in G from ag to b3 or from bs to bz, but
not both. For the former we fix A" = AU{a4} and Z" = ZU {b, }, while for the latter
fix A= AU{b} and Z' =T U {a4}
— Suppose b3 € T.

* If there is an A-path in G from as to bs, then there is no A-path in G from ag to
ay. Thus we can fix A" = AU {by,a4} and 7' = 7.

% So there is no A-path in G from as to b5, and therefore there is an A-path in G
from ag to ay (since A is connected in H). Let a} be the third neighbor of by other
than ay and a4 and note that a} € A. If there is an A-path in G from ay to aj
then there is one from ag to aj. Hence we can fix A" = A — {ay} U{by, b3, a4} and
Z' =7 — {bs} U{az}. If there is no A-path in G from as to a} then there is one
from aj to bs, because A must be connected in H. Hence we can fix A" = AU{bs}
and I/ =7 {b3} U {bl, 6L4}.

L]

Lemma 27. Let bjasbsasbsa) be a 6-face in G, all of whose vertices have degree 3 except
from a. Then a CAl-partition (A,Z) of H = G — {a}}, assuming H € F, satisfies
{as,b3,a4} C A and {by,b5} C Z.

Proof. See Figure 11. We take H = G — {a}} and since H € F, we can consider a CAI-
partition (A,Z) of H. Observe that if {b1,b5} C A, then (A,ZU{d}}) is a CAl-partition of
G. Also, if |{b1,b5}NA| = 1, then (AU{d}},Z) is a CAl-partition of G. Hence {b1,b5} C Z
and therefore {ag, as, a4, ag} C A. We claim that b3 € A. Indeed, if b3 € Z then necessarily
{bIQ, bﬁl} C A. Therefore ((A - {CLQ, CL4}) U {bl, bg, b5}, (I - {bl, b3, b5}) U {CLQ, Ay, (1/1}) is a
CAl-partition of G. n
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Figure 11: A 2-vertex incident to a 6-face.

Lemma 28. A 2-vertex cannot be incident to two 6-faces in G.

Proof. Let bjasbsasbsa) and byasybyalbsa) be the two 6-faces in G, with deg(a)}) = 2 and
the other vertices having degree 3 by Lemma 26. Then, by Lemma 27, a CAl-partition
(A,Z) of H= G — {a} satisfies {ag, b3, aq, a}, by, a}y} C A and {b1,bs} C Z. We define b},
aj, and b} as in Figure 11. If we put by in A, A is not acyclic anymore. Consider the
first edge e among ab}, bsal, asbly (in this order) for which a cycle in AU {b;} exists using
that edge. Let x = e N {aqg, b3, as}. By the choice of e and thus =, AU {b} — = will be
acyclic. If z = ayq or AU {b} — z is not connected (and thus b}, a, are not in the same
connected component of AU {b;} — z as b;), adding b5 to A does not create a cycle. That
is, (AU {by,bs} — x,ZU{z,al} — {b1,b5}) is a CAl-partition of G. If AU {b} — x is
connected and x # ay, then (AU {by,a}} —z,Z Uz —b;) is a CAl-partition of G. O

Lemma 29. If an 8-face contains two 2-vertices, then none of them is bad.

Proof. Assume not. Let agbyasbsasbsagh; be an 8-face containing two 2-vertices, without
loss of generality as and ag (using Lemma 26) and assume that ay is bad, i.e. is also
incident to a 6-face byabealbsas. See Figure 12, for an illustration.

By Lemma 27, a CAl-partition (A,Z) of H = G — {az} (which belongs to F) satisfies
{ag, ay, be,al, a4} C Aand {by,bs} C Z.If there is an A-path between ay and a4, containing
no vertex from {af, be, a4}, we are done analogously as in the proof of Lemma 28.

By the previous and the definition of (A, Z), there is exactly one of {bs, ag, b7} belonging
to Z.

If b5 € Z (the case by € T is analogous), we can consider (A, Z') = (AU {as, b3, b5} —
{as}, T —{b3,b5} U{as}). Here A’ is connected and Z' is an independent. If A" contains a
cycle, we can put ag in Z’, i.e. either (A, Z') or (A’ — ag,Z' U ag) is a CAl-partition of G.

Finally, we can assume that ag € Z and bs, by € A, and recall that every A-path from ag
to a4 uses at least two vertices out of {a/, be, a4}. By planarity, this implies that there is an
A-path from a4 to a} avoiding be, or from ag to a} avoiding by (possibly both). By symmetry,
we can assume the first. Now choose (A, Z') = (AU {bs, a2} —{a4},Z — {bs} U{a}}). Now
(A", Z") or (A" Uag,I' — ag) is a CAl-partition of G. O
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Figure 12: Configuration of Lemma 29

4 Proof of Theorem 10

It is well-known that series-parallel graphs contain no subdivisions of a Ky, see e.g. [4].
Given an undirected graph G = (V, E'), a partition of its edges into a sequence of ears

ED = (FEy, ..., Ey) is an open ear decomposition (starting in Fy) if:

0. Ej is a cycle,

1. FE; is a path with endpoints x;,y;, for 1 <7 </,

2. the internal vertices of E; do not appear in F; with ¢ < j, but the endpoints z;, y;
appear in some Fy and F,,, for 0 < k,m < j < /.

Further, ED is nested if

3. the endpoints z;,y; of I; are interior vertices of exactly one ear E;, for 0 <@ < j < 4.
We call the (x;,y;)-subpath of E; the nest interval of E; on E;,

4. it F; and Ej both have their endpoints on £, then their nest intervals on F; are
contained in each other or are internally disjoint.

Additionally, ED is short if

5. each Ej is induced and the nest interval of F; on E; is not longer than the path E;.
A classic result of Whitney [38] shows that a 2-vertex-connected graph on at least

3 vertices has an open ear-decomposition. This has been adapted by Eppstein [9] who

showed that a 2-vertex-connected graph is series-parallel if and only if it admits a nested

open ear decomposition. We will show the following nice little lemma:

Lemma 30. If G is a 2-vertex-connected series-parallel then it has a short nested open
ear decomposition.

Proof. Since G is 2-vertex-connected it has a cycle, take a shortest one and use it as
FEy. Given a partial short nested open ear decomposition ED’ = (Ey, ..., E;) covering a
subgraph H C G, pick any two vertices x,y of H such that they are connected with a path
only using edges from G — E(H) and take a shortest such path E;,;. To see that such
x,y exist is as usual: If there is a vertex z € G — V(H) and since G is 2-vertex connected
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Figure 13: The three ways an ear £} can violate properties 3. or 4. and the resulting
K, -minors in grey.

there must be two paths from z to H that only intersect in z. Their two endpoints are
x,y. Otherwise any edge E;.; = {z,y} of G — E(H) will do. This yields an open ear
decomposition.

Suppose that FEj is the first ear that does not satisfying 3. or 4. Hence every prior
ear has a unique predecessor. If Ej, violates 3., then it has endpoints as interior vertices
x, € E; and y, € E; for @ # j. Note that every vertex is an interior point of some ear, so
the endpoints of Ej, must be interior of at least one ear. Let Ej;5; be the first common
predecessor ear of E; and E;, in both cases E;r; € {E;, E;} and E;n; ¢ {E;, E;} it is easy
to construct a K, -minor, see the left two cases in Figure 13.

If B, violates 4., then there are Fj;, F; such that the nest intervals of £j and E; on
E; properly overlap. Also in this case it is easy to find a K -minor, see the right case in
Figure 13.

Let us now prove 5. First, note that by the choice of F} as shortest path (or cycle), it
clearly is induced. Suppose now that the nest interval I of Fj on its unique predecessor ear
E; is longer than Ej. But then at the time of constructing E; the shorter path (E; —I)UE;
would have been available, contradicting the minimality in the choice of L. O]

Khuller [21] proposed the definition of tree ear decomposition, which are those open
ear decompositions additionally satisfying 3. We will call a tree ear decomposition short if
it furthermore satisfies 5. Clearly, short open nested ear decompositions are short tree ear
decompositions. Hence, together with Lemma 30 the following yields Theorem 10.

Lemma 31. If G is simple and has a short tree ear decomposition, then it has a CAI-
partition.
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Proof. To prove the theorem go along a short tree ear decomposition ED of G and construct
a CAl-partition with the property that Z has at most one vertex on each ear. This is
easy for Fy by putting an arbitrary vertex of it into Z. Note that by 5. every FE; has
some interior vertex, because otherwise its nest interval must also have been an edge,
contradicting simplicity. When FE; is added, then by property 3. at most one of its
endpoints is in Z. If it is exactly one, then just add the vertices of E; to A. Otherwise
choose an internal vertex of E; neighboring an endpoint of F; and add it to Z. Clearly, in
both cases we maintain that Z is independent and has at most one vertex on every ear.
Moreover, in both cases we add one induced subpath of E; which is induced by 5. to A. If
there was an edge induced from a vertex of E; to some previous vertex in A, then this
must be a later ear, contradicting that the ears in a short tree ear decomposition are not
edges. O

We do not know if there are any interesting graphs apart from the series-parallel ones,
that admit short tree ear decompositions. One source is to take a graph with a tree ear
decomposition, e.g., any Hamiltonian graph, and subdivide edges sufficiently often so
property 5. is satisfied.

5 Tightness of Theorems 9 and 10

We discuss the tightness of the results obtained above.
Lemma 32. Fach of the graphs of Figure 1/ has no CAl-partition.

Proof. We provide the proof for each figure separately.

(a) To show that the graph of Figure 14a has no CAl-partition we show some properties of
the left (resp. right) part of the figure induced by vertices {0,...,7} (resp. {0/,...,7'}).
More precisely, we show that for any CAl-partition of the left part, vertices {1,2} ¢ A.
Indeed, suppose that there is a CAl-partition such that {1,2} C A. Since 0,3,2,1 is
a directed cycle, either 0 € Zor 3 € Z. If 0 € Z, then 3 € A and since 1,4,3,2 is a
directed cycle, we conclude that 4 € Z. But then vertex 6 has both neighbors in Z and
at the same time 6 € A which contradicts the connectivity of A. If 3 € Z, then 4 € A
and since 1,4, 5,2 is a directed cycle, we conclude that 5 € Z. But then vertex 7 has
both neighbors in Z and at the same time 7 € A which contradicts the connectivity of
A.

Therefore, for any CAl-partition of the left (resp. right) part, either vertex 1 or 2 (resp.
1" or 2') must be in Z. Hence we obtain a contradiction because A is not connected.

(b) Let (A,Z) be a CAl-partition of the hypercube. If |Z| < 2, then A cannot be acyclic.
But if |Z| > 3, then since Z is independent, there would be an isolated vertex in A
contradicting the connectivity of A. Thus no CAl-partition of the hypercube exists.

(c),(d) The proofs for Figures 14c and 14d are straightforward.

(e) Observe that for every directed triangle of Figure 14e, exactly one vertex must be in
7. Since the graph is symmetric, it is easy to observe that for any choice of these four
vertices in Z, the other vertices form a disconnected graph. O
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Theorem 10 is best possible in the sense that removing any of the restrictions on
the graph class provides a counter-example. For instance, the graph of Figure 14b is
2-vertex-connected but of treewidth 3, hence just above 2-vertex-connected series-parallel,
which coincides with 2-vertex-connected and treewidth 2. The graph of Figure 14d has
treewidth 2 but is not 2-vertex-connected.

As of Theorem 9, we provide a counterexample whenever one of the following restrictions
is removed : maximum degree 3 (Figure 14a), oriented (Figures 14b and 14c), 2-vertex-
connected (Figure 14d), bipartite (Figure 14e).

6 Proofs of Theorem 11 and Corollary 12

Note that with the specific properties of a partition resulting from Observation 6 the
following show that this strategy will not resolve Conjecture 4 or Conjecture 2, i.e., it
yields Theorem 11.

Theorem 33. There exists a Eulerian oriented planar triangulation G with tripartition
I, I, I3, such that every partition of G into two acyclic sets Ay, Ay has I; € A; for all
i€{1,2,3} and j € {1,2}.

In order to build the graph of Theorem 33, we first provide two useful gadgets.

Lemma 34. Let G1(0,1,2,3) and Go(1,2,13) be the oriented triangulations of Figures 15a
and 150. We have the following properties :

(1) Vi € {4,.... 12}, d, (i) = d (0). 45, i) = g, ().

(2) dg,(0) =3, dg, (0) = 2.

(3) dip (1) = 3. dgy (1) = 2.

(4) d& (2) =2, dg, (2) = 3.

(5) dg,(3) =3, dg, (3) = 4.

(6) dg,(1) =4, dg, (1) =2.

(7) dF,(2) = 3, dgu(2) = 3.

(8) df,(13) =1, dg, (13) = 3.

(9) For every partition of G1(0,1,2,3) into two acyclic sets A; and As, if {1,2} C Ay,

then {8,9,10,11,12} ¢ A,.
(10) For every partition of Ga(1,2,13) into two acyclic sets Ay and As, if {1,2} C Ay,
then {8,9,10,11,12,13} ¢ As.

Proof. The first eight items can be easily checked on Figures 15a and 15b.

To prove item 9, we proceed by contradiction. Consider a vertex-partition of G1(0, 1,2, 3)
into two acyclic sets A; and A, such that {1,2} C A; and {8,9,10,11,12} C A,. We
have the two following cases:

e Suppose 0 € A,. Since 0,11, 4,12 induce a directed cycle, we know that 4 € A;. But
then since 1,4,5,2 induce a directed cycle, we know that 5 € A,. Therefore, since
3,8,5,9 induce a directed cycle, we know that 3 € A;. This is a contradiction because
A contains the directed cycle 1,4, 3, 2.
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Figure 14: Graphs with no CAl-partition.
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e Suppose 0 € A;. Since 0, 3,2, 1 induce a directed cycle, we know that 3 € A,. Similarly
to the previous paragraph we conclude that {4,5} C A;. This is a contradiction because
A; contains the directed cycle 1,4, 5, 2.

The proof of item 10 follows the same arguments.

Consider a vertex-partition of G5(1,2,13) into two acyclic sets A; and A, such that

{1,2} € Ay and {8,9,10,11,12,13} C As. We have the two following cases:

e Suppose 0 € A,. Since 0, 3, 13 induce a directed cycle, we know that 3 € A;. Considering
{1,2,3,4} implies that 4 € A,, leading to 0,12,4, 11 inducing a directed cycle and thus
As not being acyclic, contradiction.

e Suppose 0 € A;. Since 0, 3,2, 1 induce a directed cycle, we know that 3 € A,. Similarly
to the previous paragraph we conclude that {4,5} C A;. This is a contradiction because
A contains the directed cycle 1,4, 5, 2. O

Proof of Theorem 33. We build G by gluing the gadgets of Figures 15a and 15b on a
Eulerian orientation of the octahedron. See Figure 15c. More precisely we have the
following gadgets in G:

g Gl(UG,Ug,m,U?), Gl(U107U4aU5aU11)a Gl(U14,U5,U3,Ul5)7 G1(08,U0,017U9)>
Gl(U127U17U2:Ul3)7 GI(U167'U2aU07vl7)a

. G2(U37U07U6)7 GQ(UO,M,US), G2(U47U177)10)7 G2(U17U57012), G2<U57U2;U14>7 Gz(Uz,U3,U16)-
Observe that G is a triangulation. We show that G is Eulerian, that is d*(v) = d~(v)

for every vertex v. By item 1 of Lemma 34, we have d*(v) = d~(v) for every internal

vertex v (which is not on the outerface of the gadgets). We show that d*(v;) = d~(v;) for

every i € {0,...,17}:

e For i€ {6,8,10,12,14,16}, by items 2 and 8 of Lemma 34, we have d*(v;) = da((}) +
d52(13) =3+1=4=2+3-1=dg; (0) +dg,(13) - 1.

e Fori e {7,9,11,13,15,17}, by item 5 of Lemma 34, we have d*(v;) = df, (3) +1 =
3+1=4=dg(3)

e For i € {0,1,2,3,4,5}, by items 3, 4, 6, and 7 of Lemma 34, we have d*(v;) =
dé, () +df,(1) —1+d5 (2)+d5 (2)=3+4—-1434+2=11=24+2+1+3+3=
dg, (1) +dg, (1) + 1+ dg, (2) + dg, (2).

Let I3, I, I3 be the tripartition of G. It remains to prove that for every partition of

G into two acyclic sets, none of these sets contains I; for every j € {1,2,3}. W.lo.g. let

{Uo, Vs, Vg, V10, V15, UlG} C ]1, let {Ul, v3, U7, Vg, V13, U14} C I, let {’UQ, V4, Vg, V11, V12, ’U17} C

I3. Let Ay, Ay be a vertex-partition of GG into two acyclic sets. By contradiction and

by symmetry, we can assume that Iy C A;. Observe that the five internal vertices of

G1(vg, 3,04, v7) corresponding to {8,9,10, 11,12} in Figure 15a must all be in I;. Hence

by item 9 of Lemma 34 applied to G1(vg, v3,v4,v7), we conclude that {vs,v,} ¢ Az and

thus {v3,v4} N Ay # 0. Thus, we distinguish the two cases:

e Suppose vz € A;. Since vs € A; and v3,vs,v4 induce a directed triangle, we have
vy € Ay. Since vy, v3, v5, v1 induce a directed cycle, we know that vertex v; € Ay. This
is a contradiction with item 10 of Lemma 34 applied to Ga(v4, v1, v10). Indeed, since
the five vertices internal vertices of Ga(vy, vy, v10) corresponding to {8,9,10,11,12,13}
in Figure 15b all belong to I;, by hypothesis we know that they all belong to A;. On
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the other hand, since {vy,v4} C Ajs, by item 10 of Lemma 34 we know that at least one
of these five vertices must be in A,.

e Suppose vy € A;. The proof is very similar to the previous case, due to the symmetry
of G. Since vs € A; and vs,vs5,v4 induce a directed triangle, we have v3 € Ay. Since
Vg, Vg, Us, ¥4 induce a directed cycle, vertex vy € A,. This is a contradiction with item
10 of Lemma 34 applied to Ga(vq, v3,v16), because vig € I; but when {vy, v3} C A we
know that I ¢ A;. O

Proof of Corollary 12. Take 2k — 1 copies G, ... Gar_1 copies of the graph G from Theo-
rem 33 and identify the inner triangle vs, v4, v3 of G; with the outer triangle vy, vy, v9 of
Giqq for 1 <@ < 2k —2. The resulting graph H is a Eulerian oriented planar triangulation.
Let Iy, I, I3 be its tripartition and suppose that A is a connected acyclic permeating
subgraph such that | AN I;| < k. By the pigeonhole principle there is an 1 <@ < 2k — 1
such that G; N I; N A = (. Since A is connected then for any two vertices u,v € AN G;
there is a (u,v)-path P. If P leaves GG;, then P traverses one of the gluing triangles
towards GG;41 on two adjacent vertices of the triangles and can be shortened so it remains
in GG;. Hence, AN G; is connected. But by Observation 8 A and Z = G; — [ — A are
a CAl-partition of G; — I;, which by Theorem 33 implies that A N G; is disconnected.
Contradiction. O

As a final remark of this section, we note that the underlying undirected graph of
the construction obtained in Figure 15¢ is not a counterexample to Conjecture 2 (and
thus is not a counterexample to Conjectures 4 and 3). To see this, let G, Gy be the
underlying undirected graphs of G1(0,1,2,3), G5(1,2,13) respectively. An easy case
analysis shows that every partition into two forests A; and A, of vertices {0, 1,2, 3} of Gy,
can be extended to a partition into two forests A} D A; and A}, D A, of Gy, such that in
the subgraph induced by A; in G; — {(0,1),(1,2),(2,3),(3,0)}, vertices of A; (resp. As)
are not connected. A similar property can be shown for vertices {1,2, 13} of G5. With this
in hand, it is enough to give a valid partition into two forests of the undirected subgraph
of Figure 15¢ induced by vertices {vy, ..., vi17} and extend this partition to each of the
light and dark faces.

7 Conclusion

Concerning Theorem 9, each of the graphs of Figure 14 has one less restriction and no
CAl-partition as shown in Lemma 32. There is only one missing case that we leave as an
open question:

Question 35. Does every oriented bipartite or triangle-free 2-vertex-connected subcubic
graph admit a CAl-partition?

Furthermore, we believe that Theorem 10 can be generalized in the following way:
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10 A

(a) G1(0,1,2,3) - For every partition
into two acyclic sets A; and A, if (b) G2(1,2,13) - For every partition into two
{1,2} C Ay, then {8,9,10,11,12} ¢ acyclic sets A; and Ay, if {1,2} C Aj, then
As. {8,9,10,11,12,13} ¢ As.

(c) A Eulerian oriented triangulation where the light (resp. dark) gray face is isomorphic to G4
(resp. Ga.)

Figure 15: The construction of the counterexample in Theorem 33.
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Conjecture 36. The vertices of a graph G of treewidth at most k£, and connectivity
at least k can be partitioned into an induced graph 7 of treewidth at most £ — 1 and
connectivity at least £ — 1 and an independent set Z.

Considering treewidth 0 graphs as independent sets, the case k = 1 just says that
trees are bipartite. Theorem 10 corresponds to k = 2 since 2-vertex-connected simple
series-parallel graphs are the 2-vertex-connected graphs of treewidth 2. Further, the
conjecture holds for k-trees: just construct G,Z,7T along an elimination-ordering. Start
with Kyy1,{v}, Kxi1 — v, for any v € Ky 1. If a new vertex u gets added and is adjacent
to no element of Z, then add u to Z and add u to 7 otherwise.
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