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Abstract

Given a finite poset, Greene introduced a rational function obtained by summing
certain rational functions over the linear extensions of the poset. This function has
interesting interpretations, and for certain families of posets, it simplifies surpris-
ingly. In particular, Greene evaluated this rational function for strongly planar
posets in his work on the Murnaghan–Nakayama formula.

In 2012, Develin, Macauley, and Reiner introduced toric posets, which combi-
natorially are equivalence classes of posets (or rather acyclic quivers) under the
operation of flipping maximum elements into minimum elements and vice versa.
In this work, we introduce a toric analogue of Greene’s rational function for toric
posets, and study its properties. In addition, we use toric posets to show that the
Kleiss–Kuijf relations, which appear in scattering amplitudes, are equivalent to a
specific instance of Greene’s evaluation of his rational function for strongly planar
posets. Also in this work, we give an algorithm for finding the set of toric total
extensions of a toric poset.

Mathematics Subject Classifications: 05A19

1 Introduction

Let P be a poset on [n] = {1, 2, . . . , n} and x = (x1, x2, . . . , xn) be a tuple of indetermi-
nates. A linear extension w = (w1, . . . , wn) of P is a total order w1 < w2 < · · · < wn on its
elements that extends the partial order; that is, if wi <P wj, then i <Z j. Let L(P ) denote
the set of linear extensions of P . In 1992, Curtis Greene introduced the following rational
function1 in order to give a combinatorial proof of the well-known Murnaghan–Nakayama
formula [16]:

ΨP (x) =
∑

w∈L(P )

1

(xw1 − xw2)(xw2 − xw3) · · · (xwn−1 − xwn)
. (1)
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1One should also note that it is not the famous Greene-Kleitman invariant [17] of a poset.
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Note that permuting the labels {1, 2, . . . , n} of the elements of P will only permute the
variables in the rational function ΨP (x) without significantly changing its “shape” e.g.
numerator and denominator degrees in simplest form, factorizations thereof, etc. Part of
the mathematical beauty in ΨP (x) is that for certain families of posets, ΨP (x) simplifies
surprisingly. Here are two examples.

P1 P2

1

2 3

4

5

6 7

2 1

3 4 5

6

ΨPi
(x) 0 x1−x6

(x2−x3)(x2−x4)(x1−x4)(x1−x5)(x4−x6)(x5−x6)

Table 1: Two posets and their corresponding ΨPi
(x).

The two above examples illustrate one of Greene’s main results on strongly planar posets.
A planar poset is one whose associated Hasse diagram H(P ) is a planar graph. A poset
P is strongly planar if its Hasse diagram H(P ) may be order-embedded in R×R without
edge crossings, even when an extra minimum element 0̂ and maximum element 1̂ are
added to P . An example of a poset whose Hasse diagram is a planar graph, but is not a
strongly planar poset is the following bow tie poset.

1 2

3 4

One of the characteristics of a strongly planar poset is that its Hasse diagram can
be drawn in the plane such that its edges bound regions of the plane that have disjoint
interiors from each other; we will call this set of regions ∆. Each bounded region δ ∈ ∆
has a unique minimum element min(δ) and a unique maximum element max(δ). We
say that a poset P is connected if H(P ) is a connected graph. Otherwise, the poset is
disconnected. In [16], Greene proved for a strongly planar poset that ΨP (x) vanishes if
H(P ) is disconnected, and otherwise

ΨP (x) =

∏
δ∈∆(xmin(δ) − xmax(δ))∏

i⋖P j(xi − xj)
. (2)

In Table 1, the poset P2 is a connected, strongly planar poset and in H(P2), there is
exactly one bounded region δ, with max(δ) = 6 and min(δ) = 1.

Part of Boussicault’s work in [3] showed that for all posets P , the Hasse diagram
H(P ) is disconnected if and only if ΨP (x) = 0 and he also gave a smallest denominator of
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ΨP (x). In [4], Boussicault, Féray, Lascoux, and Reiner interpreted ΨP (x) geometrically
and algebraically, extending results by Boussicault and Greene.

In 2012, Develin, Macauley, and Reiner introduced toric posets [10] (also seen in
[20]). Geometrically, a toric poset corresponds to a toric chamber in the complement of
a graphic toric hyperplane arrangement. This is similar to how a poset corresponds to
a chamber in the complement of a graphic hyperplane arrangement; see [10, 18, 26, 31]
and Section 2. Combinatorially, a toric poset is an equivalence class [Q] of acyclic quivers
that are equivalent under the relation of flipping a sink vertex to a source vertex and vice
versa.

Example 1. Let us consider the following toric poset [Q]:

1

2 3

4

1 4

32

2

41

3

32

1 4

4

32

1

3

41

2

One can check that any two representatives Q1, Q2 ∈ [Q] differ by a sequence of source
to sink (or sink to source) flips.

This flip operation has been well-studied and appears widely in different contexts
[2, 7, 11, 21, 23, 27, 29, 30]. In fact, these equivalence classes are subsets of the mutation
class of a quiver used in cluster algebras [13].

Toric posets can be thought of informally as a cyclic type of poset. Other examples of
posets that are cyclic in nature, but are distinct from toric posets, are partial cyclic orders
[22] and affine posets [14]. Partial cyclic orders will arise in the discussion in Section 5.

Just as a permutation (w1, w2, . . . , wn) of [n] may be thought of as a total order
w1 < w2 < · · · < wn or an acyclic orientation of the complete graph on [n], a toric total
order is the cyclic equivalence class [(w1, w2, . . . , wn)] under rotation (w1, w2, . . . , wn) 7→
(w2, w3, . . . , wn, w1), or the special case of a toric poset [Q] for an acyclic quiver whose un-
derlying undirected graph is complete. And just as every poset P on [n] has its associated
set L(P ) of linear extensions w, Section 3 will associate to every toric poset [Q] a collection
of toric total orders [w] called its set of toric total extensions, denoted Ltor([Q]). It will
be shown in Proposition 28 part (i) that Ltor([Q]) = {[w] : w ∈ L(Q′) for some Q′ ∈ [Q]}.

Example 2. The toric poset [Q] from Example 1 has four toric total extensions,

Ltor([Q]) = {[(1, 2, 3, 4)], [(1, 3, 2, 4)], [(1, 4, 2, 3)], [(1, 4, 3, 2)]}

with representatives depicted below:

1

2

3

4

1

3

2

4

1

4

2

3

1

4

3

2

.
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In this work, we define a toric analogue of Greene’s rational function for toric posets.
Just as Greene’s rational function is a sum of rational functions indexed by the set of
linear extensions of a poset, the toric analogue is a sum of rational functions indexed by
the set of toric total extensions.

Definition 3. Let [Q] be a toric poset. Then, we define Ψ
[Q]
tor(x) as

Ψ
[Q]
tor(x) :=

∑
[w]∈Ltor([Q])

Ψ
[w]
tor(x),

where

Ψ
[w]
tor(x) =

1

(xw1 − xw2)(xw2 − xw3) · · · (xwn−1 − xwn)(xwn − xw1)
.

Example 4. Let [Q] be the toric poset in Example 1. Since

Ltor([Q]) = {[(1, 2, 3, 4)], [(1, 3, 2, 4)], [(1, 4, 2, 3)], [(1, 4, 3, 2)]},

one has

Ψ
[Q]
tor(x) =

1

(x1 − x2)(x2 − x3)(x3 − x4)(x4 − x1)
+

1

(x1 − x3)(x3 − x2)(x2 − x4)(x4 − x1)

+
1

(x1 − x4)(x4 − x2)(x2 − x3)(x3 − x1)
+

1

(x1 − x4)(x4 − x3)(x3 − x2)(x2 − x1)

=
−2

(x1 − x2)(x1 − x3)(x2 − x4)(x3 − x4)
.

Main Results. In this paper, we use the results by Greene and Boussicault as motivation
and prove similar results for Ψ

[Q]
tor(x). The first is the following vanishing result.

Theorem 5. Let [Q] be a toric poset, and let G be the underlying undirected graph of [Q].

If G is either disconnected with at least three vertices or has a cut vertex, then Ψ
[Q]
tor(x) = 0.

In addition, Boussicault characterizes the smallest denominator of ΨP (x) as
∏

i<j(xi−
xj) where the product runs over directed edges i → j in the Hasse diagram H(P ). Section
4 will recall the toric Hasse diagram [Q]Hasse for a toric poset [Q], leading to the following

result on the denominator of Ψ
[Q]
tor(x).

Theorem 6. For [Q] a toric poset, Ψ
[Q]
tor(x) can always be expressed over the denominator

of ∏
{i,j}∈[Q]Hasse

(xi − xj)

where we take the product over all edges {i, j} in [Q]Hasse.

the electronic journal of combinatorics 33(1) (2026), #P1.28 4



We note that the denominator in Theorem 6 is not necessarily the smallest (see Remark
40). In addition, we show (see Proposition 32) that for a certain family of toric posets

[Q], the function Ψ
[Q]
tor(x) is a multiple of ΨP (x). Using this result, we are able to recover

the Kleiss–Kuijf shuffle relations [19] by evaluating Ψ
[Q]
tor(x) for a specific toric poset [Q]

from this family (see Figure 1). The Kleiss–Kuijf shuffle relations appear in the context
of scattering amplitudes in quantum field theories. These shuffle relations provide a way
to express amplitudes in terms of a basis set of amplitudes, thereby simplifying scattering
amplitude computations [19].

0̂
b1

b2

...

bk−1

1̂
bk

c1
c2

...

cj−1

cj

Figure 1: One representative of [Q] from Corollary 7.

Let b = (b1, b2, . . . , bk), c = (c1, c2, . . . , cj), and rev(b) = (bk, . . . , b2, b1). As con-
vention, let bk+1 = cj+1 = 1̂ and b0 = c0 = 0̂. The shuffle set b � c is the set of all
permutations of (b1, . . . , bk, c1, . . . , cj) such that the subsequences of the bi and ci appear
in the same order as in b and c respectively.

Corollary 7. (Kleiss-Kuijf Shuffle Relations) For Ψ
[Q]
tor(x) where [Q] is the toric poset in

Figure 1,

Ψ
[Q]
tor(x) =

(−1)k

k∏
r=0

(xbr+1 − xbr) ·
j∏

s=0

(xcs − xcs+1)

or equivalently (see [19, Eq. 20]),

∑
a∈b�c

Ψ
[(1̂,0̂,a)]
tor (x) = (−1)kΨ

[(1̂,rev(b),0̂,c)]
tor (x).

In order to compute Ψ
[Q]
tor(x) for a toric poset [Q], it is necessary to compute the set

Ltor([Q]) of toric total extensions. We will show in Theorem 31 that counting Ltor([Q])
is a #P -complete problem, so that one should not expect efficient algorithms for finding
this set. For theoretical purposes, we will often use a decomposition (see Proposition 28
part (ii)) that expresses Ltor([Q]) as a disjoint union indexed by the subset [Q]v of quivers
in [Q] having a particular chosen vertex v as a source. Unfortunately, we have no efficient
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algorithm for computing this subset [Q]v. Nevertheless, we will derive a somewhat more
efficient recursive algorithm (see Theorem 62) to compute Ltor([Q]), motivated by the
following simple and well-known recursive description of the set L(P ) of linear extensions
of a poset P .

Lemma 8. Let P be a poset, and let a, b be two incomparable elements of P . Then,

L(P ) = L(Pa→b) ⊔ L(Pb→a)

where Pa→b is obtained from P by adding the relation a < b and Pb→a is defined similarly.

Our recursion for Ltor([Q]) will rely on the following result, which may be of indepen-
dent interest.

Theorem 9. Let v be any vertex in an acyclic quiver Q, and let Q1, Q2 be any two acyclic
quivers in the subset [Q]v of the source-sink flip-equivalence class [Q], so v is a source in
both Q1 and Q2.

Then there exists a source-sink flip sequence from Q1 to Q2 such that every interme-
diate quiver in the sequence also has v as a source. In other words, the flip sequence does
not flip at v, nor at neighbors of v.

Remark 10. The rational function Ψ
[w]
tor(x) appears in scattering amplitude computations

as a Parke-Taylor factor [25], as we explain here. Recently, in [24], Parisi, Sherman-

Bennett, Tessler, and Williams utilized Ψ
[w]
tor(x) in order to prove a tiling conjecture for

the m = 2 amplituhedron. Consider a generic 2× n matrix

A =

(
a11 a12 · · · a1n
a21 a22 · · · a2n

)
∈ Gr2,n.

A Plücker coordinate Pij in the Grassmannian Gr2,n is the determinant det

(
a1i a1j
a2i a2j

)
=

a1ia2j − a1ja2i. In [24], the authors begin with the following Parke-Taylor function

PT(w) :=
1

Pw1w2Pw2w3 · · ·Pwnw1

where each Pij is a Plücker coordinate in Gr2,n. In their Remark 5.2 and proof of Propo-

sition 5.4, they show how a point in Ĝr
◦
2,n, the dense subset of Gr2,n where all Plücker

coordinates are non-vanishing, can be represented with the 2× n matrix(
1 1 · · · 1
x1 x2 · · · xn

)
.

Then, the Plücker coordinate Pij of this matrix is the linear factor xj − xi. Utilizing this
fact, they are able to rewrite PT(w) as the rational function

PT(w) =
1

(xw2 − xw1)(xw3 − xw2) · · · (xwn − xwn−1)(xw1 − xwn)
,
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which we recognize (up to ± sign) as Ψ
[w]
tor(x) in Definition 3.

Moreover, they use cyclic extensions of partial cyclic orders in order to give volume
formulas for Parke-Taylor polytopes and certain positroid polytopes. Since a toric total
extension can be seen to be the same as a total cyclic order [10], we are hopeful that our

identities proven for Ψ
[Q]
tor(x) could be useful in similar settings. We further discuss the

connection and distinction between Ψ
[Q]
tor(x) and their work in Section 5.

Outline of paper. Section 2 discusses the association between posets and chambers in
graphic hyperplane arrangements. Section 3 provides the association between toric posets
and chambers in toric graphic hyperplane arrangements. We also discuss properties of
toric posets analogous to those of ordinary posets. Section 4 proves Theorem 5, Theorem
6, and Corollary 7. In Section 5, we discuss how the identities proven in Section 4 relate
to work of Parisi, Sherman-Bennett, Tessler, and Williams in [24]. In Section 6, we prove
Theorem 9 and in Section 7, we provide a recursive algorithm for finding the set of toric
total extensions of a toric poset.

2 Posets and Graphic Hyperplane Arrangements

The definition of a toric poset relies on the well-studied association between posets and
chambers in graphic hyperplane arrangements [10, 18, 26, 31], so we first discuss this
correspondence. A poset P on [n] gives rise to an open polyhedral cone c(P ) in Rn, where

c(P ) := {x ∈ Rn : xi < xj if i <P j}.

Connected components in the complement of a graphic hyperplane arrangement are
open polyhedral cones called chambers, and each cone c(P ) appears as a chamber in the
complement of at least one graphic hyperplane arrangement. We review how to construct
a graphic hyperplane arrangement from a simple graph G, i.e. one with no loops nor
parallel edges.

Let G be a simple, undirected graph on the vertex set [n], so G ⊆
(
[n]
2

)
. Then, the

graphic hyperplane arrangement A(G) is defined to be

A(G) :=
⋃

{i,j}∈G

Hij

where Hij is the hyperplane xi = xj.
A quiver is a directed graph, and an acyclic quiver is one that contains no directed

cycles. There is a one-to-one correspondence between chambers in Rn−A(G) and acyclic
quivers that have the same underlying graph G. Given such a chamber, for every pair of
vertices i, j such that {i, j} ∈ G, we orient this edge i → j if xi < xj and orient the edge
j → i otherwise. It follows that this quiver is acyclic. Moreover, any acyclic quiver on n
vertices induces a poset structure on n elements. In particular, we set i < j in the poset
whenever there is a directed path from i to j in the quiver.
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Example 11. We show two graphs on three vertices and consider their associated graphic
hyperplane arrangements. For each arrangement, we label the chambers by the posets
induced by acyclic orientations of the corresponding graph and each picture is drawn
inside the two-dimensional hyperplane x1 + x2 + x3 = 0 in R3.

x2 = x3

x1 = x3

x1 = x2
3

1

2

1

3

2

1

2

3

2

3

1

3

2

1

2

1

31 2

3

x2 = x3

x1 = x3

x1 = x2

1 2

3
3

1

2

2 3

1

2 3

1

2

1

3

In addition, a poset P is also determined by its set of linear extensions. Each linear
extension (w1, w2, . . . , wn) corresponds to a chamber

cw := {x ∈ Rn : xw1 < xw2 < · · · < xwn}

in the complement of the complete graphic hyperplane arrangement A(Kn), also known
as the braid arrangement. From this observation, we have

c(P ) =
⋃

w∈L(P )

cw, (3)

where (·) denotes topological closure.

Example 12. Let P be the partial order on the set {1, 2, 3}, where 1 <P 2 and 1 <P 3.
Consider the Hasse diagram H(P ), which is an acyclic quiver. We draw the graphic
hyperplane arrangement for H(P ) as well as the braid arrangement/graphic hyperplane
arrangement for the complete graph on 3 vertices. Note that we draw each picture inside
the two-dimensional hyperplane x1 + x2 + x3 = 0 in R3.

1

2 3

H(P )

x1 = x2

x1 = x3

A(H(P ))

x2 = x3

x1 = x3

x1 = x2

A(K3)

◦□

We let the shaded region in R3 −A(H(P )) mark the region where x2 > x1 and x3 > x1.
In addition, we let the shaded region in R3 −A(K3) that is marked with a circle denote
the region where x3 > x2 > x1 and the shaded region marked with a square denote where
x2 > x3 > x1. Since L(P ) = {(1, 2, 3), (1, 3, 2)}, we see that Equation (3) holds.
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Equation (3) demonstrates that when one fixes the graph G, posets (chambers) are
determined by their sets of linear extensions. Posets may arise as chambers in several
graphic hyperplane arrangements as the graph G varies.

Example 13. We consider two different quivers on three elements that induce the same
poset P and we compare their graphic hyperplane arrangements. Let G be the underlying
graph of Q and let G′ be the underlying graph of Q′. Although the graphs are different,
thereby forcing the graphic hyperplane arrangements to be different, the closures of the
cones in the complement of each arrangement are the same.

1

2

3

Q

x2 = x3

x1 = x2

A(G)

1

2

3

Q′

x2 = x3

x1 = x3

x1 = x2

A(G′)

Thus, there is ambiguity when identifying P with an acyclic quiver Q. Although there
is ambiguity, there are two natural choices when identifying a poset P with such an acyclic
quiver:

1. the transitive closure P , whose directed edges i → j are the relations i < j in P .

2. the Hasse diagram H(P ), whose directed edges i → j are the covering relations i⋖j
in P .

Example 14. We look at three quivers that induce the same poset P .

1

2

3 4

5

H(P )

1

2

3 4

5

P

1

2

3 4

5

P

3 Toric Posets

In [10], Develin, Macauley, and Reiner introduce toric posets. Throughout the paper, we
may distinguish toric posets from posets, by calling posets “ordinary” posets. In order
to define toric posets, we begin with toric graphic hyperplane arrangements which are
the source of the name “toric” poset. Given an undirected graph G on n vertices, we
saw before that there is an associated graphic hyperplane arrangement A(G) inside Rn.
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We define a quotient map π : Rn → Rn/Zn. The toric graphic hyperplane arrangement
associated to G is

Ator(G) = π(A(G)).

A connected component of Rn/Zn − Ator(G) is a toric chamber. A toric poset is a set
that arises as a toric chamber in a toric graphic hyperplane arrangement for at least one
graph G.

Naturally, given x,y ∈ Rn, we know that these points lie in the same equivalence class
in Rn/Zn exactly when for each coordinate 1 ⩽ i ⩽ n, we have xi mod 1 = yi mod 1.
Therefore, we can still recover an acyclic quiver with underlying graph G for each point
[x] ∈ Rn/Zn by orienting {i, j} ∈ G as i → j if xi mod 1 < xj mod 1 and orienting
{i, j} as j → i otherwise. Here xi mod 1 and xj mod 1 denote representatives in [0, 1).

Key point: By this construction, two points in the same toric chamber do not
necessarily map to the same acyclic quiver. To account for this, the following
flip operation is defined.

Definition 15 ([10]). Consider acyclic quivers Q1, Q2 that differ by converting one source
vertex (all edges directed outward) to one sink vertex (all edges directed inward). Then,
we say that Q1, Q2 differ by a flip. This flip operation induces an equivalence relation
on the set of acyclic quivers with the same underlying graph G, and we denote this
equivalence relation as ≡.

Remark 16. This flip operation was studied by Mosesian and Pretzel in [23] and [27],
respectively. Moreover, this flip operation has appeared in other works including Chen
[7], Defant and Kravitz [9], Eriksson and Eriksson [11], Macauley and Mortveit [21], Propp
[29], and Speyer [30]. This flip operation also appears in the context of reflection functors
in quiver representations [2].

These flips are an instance of quiver mutation at a sink or a source vertex [13]. Caldero
and Keller show that for two mutation-equivalent acyclic quivers Q1, Q2, there exists
a source-sink flip sequence one can apply to Q1 that yields a quiver isomorphic after
relabeling vertices to Q2, but not necessarily equal to Q2 [6, Cor. 4] (also seen in [12]).
For the definition of mutation, see [32]. In Example 19, we show an example of this result.
These connections are our motivation to refer to directed graphs as “quivers.”

With ordinary posets, we saw that there is a bijection between chambers of A(G) and
the set of acyclic quivers with underlying graph G. For toric posets, we have the following
theorem.

Theorem 17. ([10, Thm. 1.4]) There is a bijection between the chambers of Ator(G) and
the set of acyclic quivers with underlying graph G equipped with ≡.

With ≡ defined, we can define toric posets in a combinatorial way.

Definition 18. A toric poset [Q] is an equivalence class of acyclic quivers that are equiv-
alent under the relation of flipping a sink vertex to a source vertex and vice versa.
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We recall Example 1 for an example of a toric poset. Before showing the next example,
we let µi denote the mutation of a quiver at vertex i.

Example 19. In the graph below, we show all quivers that are mutation equivalent to
the quiver 1 → 2 → 3. We draw an edge labeled µi between two quivers if they are related
by mutating at vertex i. We note that mutation is an involution. Also, mutation at a
source or a sink vertex is the same as performing a flip at that vertex. The subgraph H
highlighted in blue is the source-sink flip equivalence class of 1 → 2 → 3, i.e. the toric
poset that contains the quiver 1 → 2 → 3. We emphasize that any two acyclic quivers in
this picture can be related by a sequence of steps that involve both source-sink flips and
relabeling vertices.

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

1

23

µ3

µ1
µ2 µ3

µ2 µ3 µ1 µ2 µ1

µ1 µ2 µ3

µ2 µ3 µ1 µ3 µ1 µ2

µ1 µ2 µ3

3.1 Properties of Toric Posets

Throughout this paper, all of our quivers will be acyclic (no directed cycles). We will
still specify the acyclic assumption for clarity throughout. Also, all of our quivers will
be simple. By simple we mean that there are no parallel directed arcs; self-loops and
anti-parallel directed arcs are already prevented due to the acyclic assumption.

For ordinary posets, we saw that the definition of the Hasse diagram and transitive
closure depended on chains in the poset. A similar story will be true for toric posets,
except using toric chains. We first define a toric directed path.
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Definition 20 ([10]). Elements x1, x2, . . . , xk−1, xk ∈ V form a toric directed path if Q
contains all of the following arcs:

x1

x2

...

xk−1

xk

Let C be the set of vertices in a toric directed path. The length of the toric directed
path is |C| − 1. We note that an arc is a toric directed path of length 1 and a vertex is
a toric directed path of length 0. We note the following easy observation regarding toric
directed paths.

Proposition 21 ([10]). A quiver Q contains a toric directed path (i1, i2, . . . , im) if and
only if every quiver in its toric equivalence class contains a (unique) toric directed path
(iℓ, iℓ+1, . . . , im, i1, i2, . . . , iℓ−1) which is one of its cyclic shifts, that is, it lies in the cyclic
equivalence class [(i1, i2, . . . , im)].

Definition 22 ([10]). A toric chain is a subset V ′ ⊆ V that is totally ordered for every
poset induced by an acyclic quiver in [Q].

Just as chains are closed under subsets in a poset, toric chains are closed under subsets
in a toric poset. In [10, Prop 6.3], Develin, Macauley, and Reiner show that a subset
V ′ ⊆ V is a toric chain if and only if the elements of V ′ lie along a toric directed path.
Moreover, for Q′ ∈ [Q], every toric directed path in Q′ is contained in at least one maximal
toric directed path, and every toric chain of [Q] is contained in at least one maximal toric
chain. By maximal, we mean with respect to containment.

Definition 23. Two elements a, b of a toric poset [Q] are torically comparable if there
exists a toric chain in [Q] that a, b lie on together. If there is no toric chain that a, b lie
on together, we say that a, b are torically incomparable.

Similarly to the ordinary poset setting, a toric poset may arise as a chamber in the
complement of the corresponding toric graphic hyperplane arrangement for several graphs.
Thus, there is also ambiguity for toric posets when identifying [Q] with an acyclic quiver.
However, once again we have two natural choices which we will define below:

i. [Q], the toric transitive closure of [Q], and

ii. [Q]Hasse, the toric Hasse diagram corresponding to [Q].

Definition 24 ([10]). Let [Q] be a toric poset. To define the toric transitive closure of
[Q], we must first choose a representative Q′ ∈ [Q]. The toric transitive closure of Q′,
denoted Q′ is the quiver where one adds to the underlying graph of Q′ all edges {i, j} if
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i and j live on a toric chain and directs i → j if there exists a toric directed path from i
to j in Q′. Then, the toric transitive closure of [Q], denoted [Q] is defined as [Q] := [Q′].

In [10, Cor. 7.3], the authors show that the toric transitive closure [Q] does not depend
on the choice of representative Q′ ∈ [Q].

In contrast to the toric transitive closure, we can define the toric analogue of a Hasse
diagram as follows. Let [Q] be a toric poset and choose a representative Q′ ∈ [Q].
Let Q′

Hasse be the quiver constructed from Q′ by removing each edge i → j for which
Q′ contains a toric directed path from i to j that is both non-maximal and has length
strictly greater than one. The toric Hasse diagram of [Q], denoted [Q]Hasse, is defined as
[Q]Hasse := [Q′

Hasse].
In [10, Cor. 9.2], the authors show that the toric Hasse diagram does not depend on

the choice of representative Q′ ∈ [Q]. Below we show one representative of [Q]Hasse, [Q],
and [Q]. We label these quivers Q1, Q2, Q3, respectively.

1

2

3 4

5

Q1

1

2

3 4

5

Q2

1

2

3 4

5

Q3

We saw that Greene’s rational function ΨP (x) is defined as a sum of rational functions
indexed by the set L(P ) of linear extensions of a poset P . The toric analogue of Greene’s
rational function is defined as a sum of rational functions indexed by the set of toric total
extensions of a toric poset [Q].

A toric total order corresponds to a chamber in the complement of the toric complete
graphic arrangement Ator(KV ). A toric total order is of the form

[w] := [(w1, w2, . . . , wn)] = {(w1, w2, . . . , wn−1, wn),

(w2, w3, . . . , wn, w1),

...

(wn, w1, w2, . . . , wn−1)}

and we emphasize that a toric total order is a cyclic equivalence class.

Definition 25 ([10]). Let [Q] be a toric poset and let c be the toric chamber in the
associated toric graphic hyperplane arrangement that corresponds to [Q]. A toric total
order [w] is a toric total extension of [Q] if c[w] ⊆ c. We denote the set of toric total
extensions of [Q] as Ltor([Q]).

Due to the following lemma, the set of toric total extensions of [Q]Hasse is equal to the
set of toric total extensions of [Q]. Sometimes, it is more convenient to work in the toric
transitive closure rather than the toric Hasse diagram and vice versa; E.g. the proof of
Theorem 62 part (iii) uses the toric transitive closure.
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Lemma 26. Let [Q] be a toric poset. Then, Ltor([Q]Hasse) = Ltor([Q]) = Ltor([Q]).

Proof. Due to [10, Cor. 7.3, Cor. 9.2], it follows that [Q]Hasse and [Q] correspond to the
same toric chamber c as [Q], arising in different toric graphic hyperplane arrangements.

In Remark 16, we saw that sink-source flips are an instance of quiver mutation at a
sink or source vertex. Thus, we carry over the notation for mutation and let µk(Q) denote
the resulting quiver after flipping source (or sink) k in Q and we also let [Q]v denote the
set of quivers in [Q] where v is a source.

Proposition 27. For any vertex v in any acyclic quiver Q, there exists an acyclic quiver
Q′ in [Q] having v as a source. That is, [Q]v is never empty.

Proof. Let Q1 ∈ [Q] and let (a1, a2, . . . , an) ∈ L(Q1) where v = ai for some ai. If i = 1,
vertex v is necessarily a source. Otherwise, we may flip an, since an is a sink in Q1. In
the resulting quiver, vertex an is a source and vertex an−1 is a sink. We can keep flipping
in this way until we reach a quiver where ai is a source.

Proposition 28. For a toric poset [Q], the set of toric total extensions can be written in
terms of ordinary linear extensions in the following ways:

i. Ltor([Q]) = {[w] : w ∈ L(Q′) for some Q′ ∈ [Q]}

ii. Ltor([Q]) =
⊔

Q′∈[Q]1

{[1ŵ] : ŵ ∈ L(Q′ − {1})}

where
⊔

denotes disjoint union.

Proof. Assertion (i). We start by showing

Ltor([Q]) ⊆ {[w] : w ∈ L(Q′) for some Q′ ∈ [Q]}.

Let [α] ∈ Ltor([Q]). Then by Definition 25, we have c[α] ⊆ c[Q]. Let x = (x1, x2, . . . , xn)
be a point in c[α] and let x̃ ∈ Rn −A(G) such that π(x̃) = x. By [10, Thm. 1.4], x̃ ∈ cw′

for some w′ ∈ [α]. Since c[α] ⊆ c[Q], we similarly have x̃ ∈ cQ′ for some Q′ ∈ [Q]. Thus, we
have that x̃ ∈ cQ′ ∩ cw′ . Using Equation (3), it must be the case that cw′ ⊆ cQ′ , implying
w′ ∈ L(Q′). Now, we show

{[w] : w ∈ L(Q′) for some Q′ ∈ [Q]} ⊆ Ltor([Q]).

Consider [α] such that α ∈ L(Q′) for some Q′ ∈ [Q]. If α = (a1, a2, . . . , an), then an is a
sink in Q′, so we may flip at an. We note that (an, a1, . . . , an−1) ∈ L(µan(Q

′)). We can
keep flipping in this way until we have visited every element of [α]. Then, by Equation
(3), we have that for all w′ ∈ [α], cw′ ⊆ cQ′′ for some Q′′ ∈ [Q]. From Theorem [10, Thm.
1.4], we have π(cw′) ⊆ c[α] for all w

′ ∈ [α] and π(cQ′′) ⊆ c[Q] for all Q
′′ ∈ [Q]. Since every

point in c[α] is the projection of a point in cw′ for some w′ ∈ [α], we have that c[α] ⊆ c[Q],
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and [α] ∈ Ltor([Q]).

Assertion (ii) We now show assertion (ii) is equivalent to assertion (i). If [w] ∈
Ltor([Q]), then for all w′ ∈ [w], we have that w′ ∈ L(Q′) for some Q′ ∈ [Q]. Moreover,
there exists a unique w′ ∈ [w] such that w′

1 = 1. Thus, (i) is equivalent to⋃
Q′∈[Q]

{[w] : w ∈ L(Q′), w1 = 1},

which we can rewrite as ⋃
Q′∈[Q]

{[1ŵ] : ŵ ∈ L(Q′ − {1})}.

We show that this union is in fact disjoint. In other words, we show that if

{[1ŵ] : ŵ ∈ L(Q′ − {1})}
⋂

{[1ŵ] : ŵ ∈ L(Q′′ − {1})} ≠ ∅

for Q′, Q′′ ∈ [Q], then Q′ = Q′′. Consider [1ŵ] such that ŵ = (w2, . . . , wn) ∈ L(Q′ −
{1})

⋂
L(Q′′ − {1}). For all {i, j} ∈ G− {1}, one has

i → j in Q′ − {1} ⇐⇒ ŵ−1(i) < ŵ−1(j) ⇐⇒ i → j in Q′′ − {1}.

We also note that since quivers Q′, Q′′ have 1 as a source, any edges incident to 1 will be
directed away from 1. Thus, Q′ = Q′′. Therefore, we have shown that

Ltor([Q]) =
⊔

Q′∈[Q]1

{[1ŵ] : ŵ ∈ L(Q′ − {1})} .

Remark 29. Let [Q] be a toric poset where 1 is an isolated vertex in the underlying graph
of [Q]. Then, 1 is both a source and a sink, so when finding the set of toric total extensions
of [Q], we can still use part (ii) of Proposition 28.

Before stating the next result, we recall that a bounded poset P is one that has a
unique minimal element 0̂ and a unique maximal element 1̂.

Proposition 30. Let P be a bounded poset, and let Q be the quiver resulting from adding
the directed edge 0̂ → 1̂ to the Hasse diagram H(P ). Then one has a bijection

θ : L(P ) −→ Ltor([Q])

(0̂, w2, . . . , wn−1, 1̂) 7−→ [(0̂, w2, . . . , wn−1, 1̂)].

Proof. We first show that this map is injective. Let a = (0̂, a2, . . . , an−1, 1̂) and b =
(0̂, b2, . . . , bn−1, 1̂) be two linear extensions of P , and suppose θ(a) = θ(b). Then, we have
[(0̂, a2, . . . , an−1, 1̂)] = [(0̂, b2, . . . , bn−1, 1̂)]. Since these two cyclic equivalence classes are
equal, the representatives where 0̂ comes first are also equal.

We now show that θ is surjective. By Proposition 28 Part (ii), it suffices to show that
[Q]0̂ = {Q}. To this end, let Q′ ∈ [Q]0̂. We will argue that Q′ = Q. Since Q′, Q have the
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same underlying graph, given a directed edge x → y in Q, it suffices to show that x → y
is a directed edge in Q′. Note that the directed edge x → y lies on the toric directed path
p = 0̂ → x → y → 1̂ in Q (or possibly p is one of 0̂ = x → y → 1̂, or 0̂ → x → y = 1̂, or
0̂ = x → y = 1̂ in special cases) and hence, by Proposition 21, one of the cyclic shifts of
P appears in Q′. But since Q′ ∈ [Q]0̂, it has 0̂ as a source, so P itself appears in Q′, and
in particular x → y appears in Q′.

In 1991, Brightwell and Winkler showed that counting the number of linear extensions
of an ordinary poset is a #P -complete problem. The following result shows that count-
ing the number of toric total extensions of a toric poset is also #P -complete. Further
discussion regarding #P -completeness can be found in [1, 5, 15].

Theorem 31. Counting the toric total extensions for a toric poset [Q] is #P -complete.

Proof. This result follows from the main result of Brightwell and Winkler [5], since Propo-
sition 30 shows that counting the elements of Ltor([Q]) has counting ordinary linear ex-
tensions L(P ) as a special case. In particular, given a poset P , create a bounded poset
P̂ by adding 0̂, 1̂ to P . The poset P̂ has the same number of linear extensions as P and
then Proposition 30 produces a toric poset [Q] that has exactly that many toric total
extensions.

Although part (ii) of Proposition 28 provides a more efficient process for finding the set
of toric total extensions relative to Proposition 28 part (i), we look for more efficient ways
to compute this set. In Section 7, we provide a recursive algorithm to more efficiently
compute the set of toric total extensions of a toric poset. However, as mentioned in the
Introduction, since Theorem 31 shows counting toric total extensions is a #P -complete
problem, one should not expect a very efficient algorithm for finding Ltor([Q]).

4 Properties of Ψ
[Q]
tor(x)

In this section, we show various identities regarding Ψ
[Q]
tor(x). We start by showing how

the Kleiss-Kuijf relations are a specific instance of Greene’s theorem for strongly planar
posets (recall Equation (2)).

Proposition 32. Suppose P is a bounded poset with minimal element 0̂ and maximal
element 1̂. Let Q be the quiver resulting from adding the directed edge 0̂ → 1̂ to the
Hasse diagram H(P ). Then, for the toric poset [Q], we have

Ψ
[Q]
tor(x) =

1

x1̂ − x0̂

ΨP (x).

Proof. Using Definition 3 and the bijection θ : L(P ) → Ltor([Q]) from Proposition 30,
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one has

Ψ
[Q]
tor(x) =

∑
[u]∈Ltor([Q])

Ψ
[u]
tor(x)

=
∑

w∈L(P )

1

(x0̂ − xw2)(xw2 − xw3) · · · (xwn−2 − xwn−1)(xwn−1 − x1̂)(x1̂ − x0̂)

=
∑

w∈L(P )

Ψw(x)
1

(x1̂ − x0̂)
=

1

(x1̂ − x0̂)
ΨP (x).

Corollary 33. Let P be a bounded, strongly planar poset with minimal and maximal
elements 0̂, 1̂. Let ∆ be the set of bounded regions of P , and let Q be the quiver resulting
from adding the directed edge 0̂ → 1̂ in H(P ). Then, by Proposition 32 and Equation
(2), we have

Ψ
[Q]
tor(x) =

1

x1̂ − x0̂

∏
δ∈∆(xmin(δ) − xmax(δ))∏

i⋖P j(xi − xj)
.

Example 34. Recall the strongly planar poset P2 from Table 1,

2 1

3 4 5

6

.

We first adjoin 0̂ and 1̂ to P2 in order to get a bounded poset P ′
2. Then, we let Q be the

quiver resulting from adding the directed edge 0̂ → 1̂ to H(P ′
2).

2 1

3 4 5

6

0̂

1̂

P ′
2

2 1

3 4 5

6

0̂

1̂

Q

Considering the toric poset [Q], we have that Ψ
[Q]
tor(x) is equal to

(x2 − x1̂)(x1 − x6)(x0̂ − x4)

(x1̂ − x0̂)(x0̂ − x2)(x0̂ − x1)(x2 − x3)(x2 − x4)(x1 − x4)(x1 − x5)(x4 − x6)(x5 − x6)(x3 − x1̂)(x6 − x1̂)
.

We emphasize that when finding Ψ
[Q]
tor(x), we look at the bounded regions of P ′

2, not
of Q.

The following corollary is a special case of Corollary 33 applied to the poset P on the
right of Figure 2. Let b = (b1, b2, . . . , bk) and let c = (c1, c2, . . . , cj). As convention, let
bk+1 = cj+1 = 1̂ and b0 = c0 = 0̂.

the electronic journal of combinatorics 33(1) (2026), #P1.28 17



0̂
b1

b2

...

bk−1

1̂bk

Q

c1
c2

...

cj−1

cj

0̂
b1

b2

...

bk−1

1̂bk

P

c1
c2

...

cj−1

cj

Figure 2: On the left we have one representative of the toric poset [Q], which is the result
of applying the procedure from Corollary 33 to the poset P on the right.

Corollary 7 (Kleiss-Kuijf Shuffle Relations) For Ψ
[Q]
tor(x) where [Q] is the toric poset

shown in Figure 2,

Ψ
[Q]
tor(x) =

(−1)k

k∏
r=0

(xbr+1 − xbr) ·
j∏

s=0

(xcs − xcs+1)

, (4)

or equivalently (see [19, Eq. 20]),∑
a∈b�c

Ψ
[(1̂,0̂,a)]
tor (x) = (−1)kΨ

[(1̂,rev(b),0̂,c)]
tor (x). (5)

Proof. Corollary 33 applied to [Q] asserts

Ψ
[Q]
tor(x) =

1

x1̂ − x0̂

· x0̂ − x1̂

k∏
r=0

(xbr − xbr+1) ·
j∏

s=0

(xcs − xcs+1)

=
(−1)k

k∏
r=0

(xbr+1 − xbr) ·
j∏

s=0

(xcs − xcs+1)

. (6)

We now show Equation (5). By Proposition 30, to find Ltor([Q]), it suffices to find
all ordinary linear extensions of P , which biject with the linear extensions of the disjoint
union of chains b1 < · · · < bk and c1 < · · · < cj. Thus,

Ltor([Q]) = {[(0̂, a, 1̂)] : a ∈ b� c}
= {[(1̂, 0̂, a)] : a ∈ b� c}.

By Definition 3, we have

Ψ
[Q]
tor(x) =

∑
a∈b�c

Ψ
[(1̂,0̂,a)]
tor (x).
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Rewriting Equation (6) as (−1)kΨ
[(1̂,rev(b),0̂,c)]
tor (x), it follows that∑

a∈b�c

Ψ
[(1̂,0̂,a)]
tor (x) = (−1)kΨ

[(1̂,rev(b),0̂,c)]
tor (x).

Properties of ΨP (x) shown by Boussicault in [3] and properties by Greene in [16] serve

as motivation for the next few analogous properties of Ψ
[Q]
tor(x). Recall that in [3, Cor.

4.3.2], Boussicault shows that a poset P is disconnected if and only if ΨP (x) = 0. We

will present a sufficient condition for when Ψ
[Q]
tor(x) = 0, but first present a computational

lemma that will help in the proof of this result. It also appeared recently as [24, Prop.
7.17], with a different proof.

Lemma 35. Let a = (a1, a2 . . . , am) and b = (b1, b2, . . . , bn). Then,∑
c∈a�b

Ψ
[(1,c)]
tor (x) = 0.

Proof. Let â = (a1, a2 . . . , am−1), and b̂ = (b1, b2, . . . , bn−1). One has the following equal-
ities, justified below:∑

c∈a�b

Ψ
[(1,c)]
tor (x) =

∑
c′∈â�b

Ψ
[(1,c′,am)]
tor (x) +

∑
c′′∈a�b̂

Ψ
[(1,c′′,bn)]
tor (x)

=
∑

c′∈â�b

Ψ
[(am,1,c′)]
tor (x) +

∑
c′′∈a�b̂

Ψ
[(bn,1,c′′)]
tor (x)

= (−1)m−1Ψ
[(rev(a),1,b)]
tor (x) + (−1)mΨ

[(bn,rev(a),1,b̂)]
tor (x) = 0.

In the first equality, we partition the shuffle set into linear extensions that end in am
and those that end in bn. The second to last equality follows from applying the Kleiss-
Kuijf relations (Corollary 7) to each sum. The last equality holds because [(rev(a), 1,b)]
and [(bn, rev(a), 1, b̂)] are cyclically equivalent.

We now prove our next main result. Recall that a cut vertex is a vertex where if
removed, the number of connected components of the graph increases.

Theorem 5 Let [Q] be a toric poset, and let G be the underlying undirected graph of [Q].

If G is either disconnected with at least three vertices or has a cut vertex, then Ψ
[Q]
tor(x) = 0.

Proof. We first consider the case that G is disconnected with at least three vertices. Then,
we can partition the vertex set V of G into two disjoint nonempty sets A,B such that
there are no edges {a, b} with a ∈ A, b ∈ B. Since |V | > 2, at least one of these sets has
2 vertices. Without loss of generality, assume vertex 1 is in this set. We will call this set
A. Then, using Proposition 28 part (ii) to find Ltor([Q]), we have

Ltor([Q]) =
⊔

Q′∈[Q]1

{[1ŵ] : ŵ ∈ L(Q′ − {1})} .
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Moreover, we can note that for Q′ ∈ [Q] where 1 is a source in Q′, an ordinary linear
extension of Q′ −{1} is a shuffle of a linear extension a of elements in Q1 = Q′|A−{1} and

a linear extension b of elements in Q2 = Q′|B. Thus, to find Ψ
[Q]
tor(x) using Definition 3,

we have
Ψ

[Q]
tor(x) =

∑
Q′∈[Q]1

∑
a∈L(Q1)
b∈L(Q2)

∑
c∈a�b

Ψ
[(1,c)]
tor (x). (7)

By Lemma 35, the inner sum
∑

c∈a�bΨ
[(1,c)]
tor (x) is 0.

Now, we consider the case where G has a cut vertex. Without loss of generality, let
the cut vertex be the element 1. Since 1 is a cut vertex, if we were to remove 1, we can
once again partition the vertex set V of G into two disjoint nonempty sets A,B such that
there are no edges {a, b} with a ∈ A, b ∈ B. Thus, for Q′ ∈ [Q] where 1 is a source in Q′,
an ordinary linear extension of Q′ − {1} is a shuffle of a linear extension a of elements

in Q1 = Q′|A−{1} and a linear extension b of elements in Q2 = Q′|B. To find Ψ
[Q]
tor(x), we

again have Equation (7), so applying Lemma 35, we have that Ψ
[Q]
tor(x) = 0.

Remark 36. In Theorem 5, we need to assume the toric poset [Q] has at least three vertices
since if [Q] has exactly two vertices 1, 2 and no arcs, then

Ψ
[Q]
tor(x) =

1

(x1 − x2)(x2 − x1)
=

−1

(x1 − x2)2
̸= 0.

Remark 37. Theorem 5 gives only a sufficient condition for the vanishing of Ψ
[Q]
tor(x). We

depict below a quiver Q whose toric poset [Q] has Ψ
[Q]
tor(x) = 0, but where the vanishing

is not implied by Theorem 5.

1

2 3 4

5

For ordinary posets, Boussicault shows that linear terms in the denominator of ΨP (x)
correspond to cover relations of P .

Theorem 38. ([3, Thm. 4.4.1]) For a connected poset P , the minimal denominator of
ΨP (x) is

∏
i⋖P j(xi − xj).

For toric posets, we have the following result.

Theorem 6 For [Q] a toric poset, Ψ
[Q]
tor(x) can always be expressed over the denominator

of ∏
{i,j}∈[Q]Hasse

(xi − xj)

where we take the product over all edges {i, j} in [Q]Hasse.
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Proof. We first note that by Definition 3, the denominator of Ψ
[Q]
tor(x) can only contain

factors of the form (xi − xj). A linear factor (xi − xj) will not appear in the denominator

of Ψ
[Q]
tor(x) if the sum of all Ψ

[w]
tor(x) that have (xi−xj) in its denominator can be rewritten

without this linear factor. We show that if there is no edge between vertices i and j in the
underlying graph of [Q]Hasse, then the linear factor (xi − xj), up to sign, will not appear

in the denominator of Ψ
[Q]
tor(x).

Recall that the edge {i, j} is in [Q]Hasse if and only if i and j live on a toric directed
path of length one in [Q]Hasse. Thus, there are two cases to consider for when an edge
{i, j} is not in [Q]Hasse:

i. Vertices i, j lie on a toric directed path of length greater than 1 and there is no edge
between vertices i and j in [Q]Hasse.

ii. Vertices i, j do not lie on a toric directed path, i.e. they are torically incomparable.

Using Definition 3, we find Ltor([Q]) in order to compute Ψ
[Q]
tor(x). By Proposition 28

part (i), to find Ltor([Q]) we must first compute the set of ordinary linear extensions for
each quiver in [Q]. We first consider case (i) where vertices i, j lie on some toric directed
path of length greater than 1 in [Q] and there is no edge between vertices i and j. Then,
for a quiver Q′ ∈ [Q], there is a directed path between i and j having length greater
than 1. This quiver does not have any ordinary linear extensions where i is adjacent to j.
Thus, it will not contribute any toric total extensions where i is adjacent to j, so a linear
factor of (xi − xj) will not appear in Ψ

[Q]
tor(x).

We now consider case (ii). For a quiver Q′ ∈ [Q], there is either a directed path
between i, j with length greater than 1 or i, j are ordinary incomparable elements in Q′.
The former case is the same as case (i). Now consider the latter case. If i, j are ordinary
incomparable forQ′ ∈ [Q], for any linear extension (a1, a2, . . . , al−2, i, j, al+1, . . . , an), there
exists a linear extension (a1, a2, . . . , al−2, j, i, al+1, . . . , an). Therefore, by Proposition 28
part (i), the set Ltor([Q]) contains the toric total extensions

[(a1, a2, . . . , al−2, i, j, al+1, . . . , an)] and [(a1, a2, . . . , al−2, j, i, al+1, . . . , an)].

All toric total extensions of [Q] where i is adjacent to j pair up in this way. Thus, it
suffices to show that the expression

Ψ
[(a1,a2,··· ,al−2,i,j,al+1,...,an)]
tor (x) + Ψ

[(a1,a2,...,al−2,j,i,al+1,...,an)]
tor (x) (8)

results in a rational function that does not have a factor of xi − xj in its denominator.
After pulling out a common denominator factor of∏

r=1,2,...,n−1
r ̸=l−2,l−1,l

(xar − xar+1)

from both terms of (8), and abbreviating x := xal−2
, y := xal+1

, we check the following
identity, showing the rational function on the left can be rewritten without any denomi-
nator factor of xi − xj:
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1

(x− xi)(xi − xj)(xj − y)
+

1

(x− xj)(xj − xi)(xi − y)
=

x− y

(x− xi)(x− xj)(xi − y)(xj − y)
.

Remark 39. We note that a similar proof strategy to that of Theorem 6 appears in the
recent work of Parisi, Sherman-Bennett, Tessler, and Williams, in their proof of [24, Lem.
5.7].

Remark 40. For [Q] in Figure 1, we emphasize that the minimal denominator of Ψ
[Q]
tor(x),

as computed in Corollary 7, does not contain the linear factor (x0̂ − x1̂), even though the
edge {0̂, 1̂} does appear in [Q]Hasse.

5 Tricolored Subdivisions and Partial Cyclic Orders

The goal of this section is to discuss the relationship between our Theorem 5 for Ψ
[Q]
tor(x)

and an identity for Parke–Taylor factors PT(w) shown by Parisi, Tessler, Sherman-
Bennett, and Williams in [24, Thm. 7.11] that appears deceptively close. To show their
Parke–Taylor factor identity, the authors utilize partial cyclic orders, which are a type of
cyclic partial order that are deceptively close to toric posets. Therefore, in this section,
we also discuss the difference between toric posets and partial cyclic orders.

Recall Remark 10, which states

PT(w) =
1

(xw2 − xw1)(xw3 − xw2) · · · (xwn − xwn−1)(xw1 − xwn)
.

In order to discuss their results for PT(w), we first must discuss partial cyclic orders as
well as tricolored subdivisions.

Definition 41 ([22]). A partial cyclic order on a set V is a ternary relation C ⊆ V 3 such
that for all distinct a, b, c, d ∈ C:

1. (Cyclicity) (a, b, c) ∈ C =⇒ (c, a, b) ∈ C

2. (Asymmetry) (a, b, c) ∈ C =⇒ (c, b, a) /∈ C

3. (Transitivity) (a, b, c) ∈ C and (a, c, d) ∈ C =⇒ (a, b, d) ∈ C.

A partial cyclic order C is a total cyclic order if for all a, b, c ∈ V , either (a, b, c) ∈ C or
(a, c, b) ∈ C.

Definition 42. A total cyclic order C is a circular extension of a cyclic order C ′ if C ′ ⊆ C.
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While total cyclic orders are equivalent to toric posets [w] for total orders w (and
thus a cyclic extension of a partial cyclic order can be seen to be the same as a toric
total extension of a toric poset), in general partial cyclic orders are not the same as toric
posets. For instance, in this section, we will discuss the set of total cyclic orders Ext(C)
of a partial cyclic order C, and illustrate how this set behaves differently from Ltor([Q])
for a toric poset [Q]. We also note that Ext(C) can sometimes be empty, which never
occurs for Ltor([Q]). An example of a partial cyclic order with an empty set of total cyclic
orders is shown in [22, Ex. 5].

In [24], the authors associate partial cyclic orders to tricolored subdivisions of polygons.

Definition 43 ([24]). Let Pn be a convex n-gon with vertices labeled from 1 to n in
clockwise order. A tricolored subdivision τ is a partition of Pn into black, white, and
gray polygons such that all vertices of the polygons are vertices of Pn and two polygons
sharing an edge have different colors.

Example 44. In Figure 3, we give two examples of tricolored subdivisions.

43

2

1 6

5

3

1

5

3

1

5

43

2

1 6

5

43

2

1

4

1

5

4

1

5

Figure 3: Tricolored subdivisions

In [24], the authors associate a partial cyclic order to a tricolored subdivision as follows.

Definition 45 ([24]). Let τ be a tricolored subdivision of Pn. Consider only the black
or white polygons in the subdivision. If a polygon Pi in the subdivision is white, let
v1, v2, . . . vm be the clockwise order of its vertices; otherwise, let v1, v2, . . . vm be the coun-
terclockwise order of its vertices. Then, associate the cyclic chain [(v1, v2, . . . , vm)] to Pi.
The τ -order is the union of all of these cyclic chains, and this union is a partial cyclic
order.

Example 46. Consider the tricolored subdivision on the left in Figure 3. The three white
triangles yield the cyclic chains [(1, 2, 3)], [(1, 5, 6)], [(3, 4, 5)]. In the tricolored subdivision
on the right, the white triangle yields the cyclic chain [(1, 5, 6)] and the black triangle
yields [(1, 5, 4)].

In [24], the authors prove the following theorem on cyclic extensions which arise from
tricolored subdivisions.

Theorem 47. ([24, Thm. 7.11]) Let τ be a tricolored subdivision of Pn with at least one
gray polygon, and let Cτ be the corresponding partial cyclic order. Then,∑

[w]∈Ext(Cτ )

PT(w) = 0.
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Since cyclic extensions can be seen to be the same as toric total extensions, it is natural
to wonder how Theorem 47 relates to our Theorem 5. We compare and contrast these
theorems. In particular, we show that neither theorem implies the other, but acknowledge
some overlap. We first show that Theorem 47 does not imply Theorem 5. Revisiting
Example 46, let Cτ be the partial cyclic order that is the union of the cyclic chains
[(1, 2, 3)], [(1, 5, 6)], [(3, 4, 5)]. The set of cyclic extensions Ext(Cτ ) contains the following
cyclic extensions:

[(1, 2, 3, 4, 5, 6)] [(1, 2, 4, 5, 3, 6)] [(1, 2, 4, 5, 6, 3)] [(1, 2, 5, 3, 4, 6)] [(1, 2, 5, 3, 6, 4)]
[(1, 2, 5, 6, 3, 4)] [(1, 4, 2, 5, 3, 6)] [(1, 4, 2, 5, 6, 3)] [(1, 4, 5, 2, 3, 6)] [(1, 4, 5, 2, 6, 3)]
[(1, 4, 5, 6, 2, 3)] [(1, 5, 2, 3, 4, 6)] [(1, 5, 2, 3, 6, 4)] [(1, 5, 2, 6, 3, 4)] [(1, 5, 6, 2, 3, 4)]

Then, by Theorem 47,
∑

[w]∈Ext(Cτ )

PT(w) = 0. We now view the set of cyclic chains

{[(1, 2, 3)], [(1, 5, 6)], [(3, 4, 5)]}

as a set of toric chains (recall Definition 22) and from this set, construct a toric poset [Q].
We draw one representative of [Q] below.

1

2

3

4

5

6

Finding the set of toric total extensions of [Q] using Proposition 28 part (ii), we have

Ltor([Q]) = Ext(Cτ )\{[1, 2, 3, 4, 5, 6]}.

Thus, we have that

Ψ
[Q]
tor(x) = −PT([1, 2, 3, 4, 5, 6]) +

∑
[w]∈Ext(Cτ )

PT(w)

= −PT([1, 2, 3, 4, 5, 6])

=
1

(x1 − x2)(x2 − x3)(x3 − x4)(x4 − x5)(x1 − x6)(x5 − x6)
̸= 0.

Now, we show an example where both theorems agree. Consider the tricolored subdi-
vision on the right in Figure 3 and recall the partial cyclic order Cτ that is the union of
cyclic chains [(1, 5, 4)], [(1, 5, 6)]. By Theorem 47,

∑
[w]∈Ext(Cτ )

PT(w) = 0. Considering
the set of cyclic chains as a set of toric chains, we construct the following representative
of a toric poset:
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1

5

4 6

2 3

By Theorem 5, for this toric poset [Q], the rational function Ψ
[Q]
tor(x) is 0.

We also note that there are toric posets that one can not construct using tricolored
subdivisions. As an example, consider the following representative of a toric poset [Q].

1

2 3

4

5 6

7

This toric poset has a cut vertex, so by Theorem 5, we have that Ψ
[Q]
tor(x) is 0. Since

this toric poset does not have any toric chains with at least three elements, there is no
tricolored subdivision of P7 that we could use to acquire [Q].

6 Source-Sink Equivalence with a Fixed Source

As mentioned in the Introduction, in order to compute Ψ
[Q]
tor(x) we need to sum over the set

of toric total extensions of [Q]. In order to find the set of toric total extensions Ltor([Q])
for a toric poset [Q], we can use Proposition 28 part (ii). However, this requires one to
find all quivers Q′ ∈ [Q] that have vertex 1 as a source and there is currently no good
algorithm for finding this set of quivers. Therefore, we are motivated to find methods
that are more computationally efficient to compute Ltor([Q]).

We provide a recurrence for finding Ltor([Q]) (see Theorem 62) that is similar to the
recurrence for finding the set of ordinary linear extensions of posets seen in Lemma 8.
To prepare, in this section, we prove Theorem 9, which will be crucial in the proof of
Theorem 62.

Theorem 9 Let v be any vertex in an acyclic quiver Q, and let Q1, Q2 be any two acyclic
quivers in the subset [Q]v of the source-sink flip-equivalence class [Q], so v is a source in
both Q1 and Q2.

Then there exists a source-sink flip sequence from Q1 to Q2 such that every interme-
diate quiver in the sequence also has v as a source. In other words, the flip sequence does
not flip at v, nor at neighbors of v.

Remark 48. As mentioned, Theorem 9 is used in the proof of Theorem 62. However, our
proof of Theorem 9 actually proves a stronger statement:
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Let v be any vertex in an acyclic quiver Q, and let Q1, Q2 be any two acyclic quivers
in the subset [Q]v of the source-sink flip-equivalence class [Q], so v is a source in both Q1

and Q2.
Then there exists a source-sink flip sequence from Q1 to Q2 such that every interme-

diate quiver does not flip at v, nor at any elements torically comparable to v.

To prove Theorem 9, we first show in Lemma 50 that we can freeze a vertex in the
sense that we can find a flip sequence between any two representatives of a toric poset
which never flips at this vertex. We highlight that the sequence described in Lemma 50
may flip at neighbors of v, just not at v itself. We then relate this to quivers in [Q]v by
building a quiver which reduces all vertices torically comparable with v, including v itself,
to one vertex and then in Lemma 60, showing that the flip equivalence class of this quiver
is in bijection with [Q]v.

Lemma 49. Let Q′ ∈ [Q], and take an ordinary linear extension (a1, a2, . . . , an) of Q′.
Performing a sequence of flips at the elements a1, a2, . . . , an in that order is well-defined
as a sequence of flips, and results in the original quiver Q′.

Proof. We note that the process of flipping at vertices in this way is well-defined. Since
a1 is a minimal element of the linear extension, a1 is a source in Q′, so we can flip at a1.
The resulting quiver will have (a2, . . . , ak, a1) as a linear extension and a2 as a source, so
we can flip at a2. Proceeding in this way, after flipping at the first i− 1 vertices, we reach
a quiver where we can flip at ai. Flipping at all vertices once causes the orientation of
each edge to change twice, resulting in the same quiver we started with, Q′.

Lemma 50. Let Q′, Q′′ ∈ [Q] and let v be a vertex in the underlying graph of [Q]. One
can find a flip sequence from Q′ to Q′′ that avoids flipping at v (note we are allowed to
flip at neighbors of v).

Proof. Consider a flip sequence between Q′ and Q′′. Assume at the kth step, vertex v
is flipped. Without loss of generality, assume at step k − 1, vertex v is a source in the
quiver we will call Qk−1 and at step k, the vertex v is a sink in the quiver Qk. Consider a
linear extension of Qk−1 where v is first. Similar to Lemma 49, we can follow the linear
extension in reverse order, flipping all vertices except v. Thus, we’ve reached Qk without
flipping at v.

Definition 51. Consider a toric poset [Q] and a quiver Q1 ∈ [Q]. Let G = (V,E) be the
underlying graph of [Q], and let v ∈ V . We define a new graph Gv = (V v, Ev), which
we call the v-incomparability graph of G. For each w ∈ V that is torically incomparable
with v, we include a corresponding vertex wv ∈ V v. The vertex set V v consists of all
such wv along with another vertex v∗. Roughly speaking, vertices in V that are torically
comparable with v merge into a new vertex v∗ in Gv and vertices that are torically
incomparable with v have a copy in Gv.

Before defining the edge set, we first define the distance between two vertices a and b
in a quiver to be the length of a shortest path between them in the underlying undirected
graph. The edge set Ev of graph Gv can be described as

{{uv, wv} : v∗ ̸= uv, wv and {u,w} ∈ E}
⋃

{{v∗, wv} : w is distance 2 from v in Q1}.

the electronic journal of combinatorics 33(1) (2026), #P1.28 26



Recall that the toric transitive closure [Q] of a toric poset [Q] does not depend on the
choice of representative in [Q]. Therefore, the choice of Q1 ∈ [Q] does not affect Ev.

Example 52. We consider a representative Q1 of a toric poset [Q]. Here v := 1. From
Definition 51, vertices 1, 2, 3 merge into 1∗, since they are torically comparable with vertex
1. Since 2 merges into 1∗ and there is an edge {2, 4} in the underlying graph of [Q], we
have an edge {1∗, 41} in G1 and similarly for {1∗, 51}. Edges {51, 61} and {41, 61} are
copies of the edges in the underlying graph of [Q].

1
2

34
5

6

Q3

1∗

4151

61

G1

We now define a map:

Φ : [Q]v → {Orientations of Gv}.

For Q′ ∈ [Q]v, we define Φ(Q′) below.

i. For {uv, wv} ∈ Ev where uv, wv ̸= v∗, if edge {u,w} ∈ Q′ is directed u → w, direct
{uv, wv} as uv → wv in Φ(Q′). Otherwise, direct {uv, wv} as wv → uv.

ii. If {v∗, uv} ∈ Ev, then v is distance 2 from u in Q′. Therefore, there exists a w ∈ V
such that there is an undirected path (v, w, u) in Q′. If the edge {w, u} is directed
w → u in Q′, direct the edge {v∗, uv} as v∗ → uv in Φ(Q′). Otherwise, direct
{v∗, uv} as uv → v∗.

In Example 54, we show three different acyclic quivers with v := 1 and show their images
under Φ.

There are four issues in the definition of Φ that we will address in succession:

• The choice of w used in defining the direction uv → v∗ will be immaterial (Propo-
sition 53).

• The orientation Φ(Q′) of Gv really is acyclic (Proposition 55).

• The image of [Q]v under Φ lies within a single ≡-equivalence class of acyclic orien-
tations of Gv (Lemma 58), and

• in fact, this image is an entire ≡-equivalence class (Lemma 60).

Given uv ∈ V v such that {v∗, uv} ∈ Ev, it is possible that there are multiple w ∈ V
such that there is an undirected path (v, w, u) in Q′. We show that the choice of w used
in condition (ii) will not affect the orientation that Φ imposes on the edge {v∗, uv}.
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Proposition 53. The orientation assigned to {v∗, uv} is well defined.

Proof. Suppose that in Q′, there exist two undirected paths between v and u: (v, w1, u)
and (v, w2, u), where w1, w2 ∈ V . Since v is a source, edges {v, w1}, {v, w2} are directed
v → w1 and v → w2. Suppose for contradiction the edge {w1, u} has orientation w1 → u
and edge {w2, u} has orientation u → w2. Then, Q′ contains the following toric chain.

v
w1

u

w2

Thus, edge {v, u} exists in Q′, which contradicts that v and u are distance 2 away in
Q′.

Example 54. We give a few representatives of toric posets and show their images under
Φ.

1

2 3

4

5

Q1

1∗

41

51

Φ(Q1)
1

2

4

3

5

Q2

1∗

Φ(Q2)
1

2
34

5
6

Q3

1∗

4151

61

Φ(Q3)

Proposition 55. The map Φ does not create any directed cycles.

Proof. We show by contradiction that Φ(Q′) does not contain any directed cycles. We
consider two cases.

Case 1: Suppose that Φ(Q′) contains a directed cycle that does not contain v∗. By
definition of Φ, the quiver Q′ must have contained a directed cycle, which contradicts that
Q′ is an acyclic quiver.

Case 2: Suppose that Φ(Q′) has a directed cycle that contains v∗, namely (v∗, uv
1, u

v
2,

. . . , uv
k, v

∗). Then, by definition of Ev, in Q′ there exist vertices w, x such that the edges
{u1, w} and {uk, x} are directed as w → u1 and uk → x. In addition, edges {v, w} and
{v, x} are directed v → w and v → x, since v is a source in Q′. Then, in Q′, we have the
toric chain made up of directed paths (v, w, u1, . . . , uk, x) and (v, x), implying that each
ui is torically comparable with v. Thus, by definition of V v, no such vertices uv

i would
exist in V v. Therefore, such a cycle in Φ(Q′) cannot exist.

Our next goal is to show that the image of Φ is a source-sink flip equivalence class of
acyclic orientations of Gv. To show Φ(Q1) and Φ(Q2) are flip equivalent for Q1, Q2 ∈ [Q]v,
we first need terminology from Pretzel’s work in [27] (also seen in [28]). Let Q be a
quiver, and let G be the underlying graph of Q. A walk W in G is a sequence of vertices
v1, v2, . . . , vn such that vi is adjacent to vi−1. The inverse walk −W is obtained by
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reversing the sequence W . If v1 = vn, then the walk is called a circuit. A circuit C is
trivial if it is equal to traversing the walk W and then the reverse walk −W . For a walk
W = (v1, v2, . . . , vk) in a quiver Q, an edge {vi−1, vi} is a forward edge if it is directed
towards vi in Q and it is a backward edge otherwise. Let |C+

Q | and |C−
Q | denote the number

of forward edges and backward edges, respectively, of circuit C in quiver Q. The flow-
difference of C in Q is defined as dQ(C) := |C+

Q |− |C−
Q |. Two quivers Q,Q′ with the same

underlying graph G are said to have the same flow-difference if dQ(C) = dQ′(C) for each
circuit C of G.

Remark 56. The flow-difference of a circuit appears under other names in the literature.
For instance, in [29], Propp refers to the flow-difference of a circuit as the circulation of
the circuit and in [10], the authors use Coleman’s ν-function on a circuit [8].

Mosesian introduced the idea of pushing down maximal vertices in [23]. The operation
of pushing down maximal vertices is the same as flipping sinks to sources. In 1984, Pretzel
showed the following.

Theorem 57. ([27, Thm. 1’]) Let G be a finite simple graph. Two acyclic orientations
of G can be obtained from each other by pushing down if and only if they have the same
flow-difference.

Lemma 58. Let [Q] be a toric poset, and let Q1, Q2 ∈ [Q]v. Then, Φ(Q1) is flip equivalent
to Φ(Q2).

Proof. Using Theorem 57, it suffices to show that Φ(Q1) and Φ(Q2) have the same flow-
difference. Since the map Φ never creates any cycles, any circuits present in Φ(Q1) and
Φ(Q2) must come from circuits in Q1 and Q2 respectively. There are three types of circuits
in Q1 and Q2 to consider:

(i) Circuits that do not contain elements that are torically comparable to v.

(ii) Circuits that only contain elements that are torically comparable to v.

(iii) Circuits where a proper subset of the elements are torically comparable to v.

In case (i), cycles that do not contain v remain the same under Φ. Since the flow-
differences of Q1 and Q2 are equal in any such circuit, we immediately know that the
flow-differences of Φ(Q1) and Φ(Q2) at such circuits are equal.

Circuits from case (ii) are deleted under Φ, so they will not affect the flow-differences
of Φ(Q1) and Φ(Q2).

We now consider case (iii), the most interesting case. Without loss of generality, let
C be a circuit in the underlying graph of Q1 such that a nonempty proper subset of the
vertices on C are torically comparable to v in Q1. Such a circuit can be divided into
walks S1, T1, S2, T2, . . . , Sm, Tm which appear consecutively where all vertices along Si are
torically incomparable to v and all vertices along Ti are torically comparable to v. Under
the map Φ, all vertices on each Ti are merged into v∗, edges that are completely contained
in each Ti are deleted, and each Si becomes a circuit that contains v∗.

the electronic journal of combinatorics 33(1) (2026), #P1.28 29



We claim that in Q1 and Q2, the number of forward edges along each Si is fixed, which
implies the number of backward edges is also fixed. Consider S1 and let the first and last
vertices be w and u. By construction, w is incident to x, a vertex torically comparable
to v, and similarly u is incident to y, a vertex that is torically comparable to v. Since
v is torically comparable to both x and y, there exists a toric directed path T1 that v
and x both lie on and a toric directed path T2 that v and y both lie on. Consider walk
W1 from v to x using T1 and a walk W2 from v to y using T2. We note a circuit that is
formed by these two walks and S1: W1, S1,W2. By Theorem 57, this circuit has the same
flow-difference in Q1 and Q2. However, since Q1 and Q2 are in [Q]v, the vertex v is a
source in Q1 and Q2. Moreover, since W1 uses T1, W2 uses T2, and all vertices are totally
ordered in a toric directed path, by Proposition 21 the edges along the walks W1 and W2

must have all arrows directed away from v. Therefore, to preserve the flow-difference,
the number of forward edges in S1 must be the same in Q1 and Q2, implying that the
flow-differences of the created circuit in Φ(Q1) and Φ(Q2) are equal.

We have now addressed all possible circuits in Φ(Q1) and Φ(Q2). Invoking Theorem
57 once more shows that Φ(Q1) is flip equivalent to Φ(Q2).

Lemma 59. For vertex v∗ ̸= kv ∈ V v, the following diagram commutes

[Q] [Φ(Q′)]

[Q] [Φ(Q′)]

Φ

µk µkv

Φ

.

Proof. We show that Φ(µk(Q
′)) = µkv(Φ(Q

′)). Since kv ∈ V v, there is a corresponding
vertex k ∈ V . Suppose kv is a source in Φ(Q′). Then, from the definition of Ev, vertex k
is also a source in Q′.

Choose an arbitrary edge {k, u} in Q′. Note that u ̸= v, since v is a source. We have
two cases:

1. u is torically comparable with v and thus kv → v∗ is a directed edge in Φ(Q′) or

2. u is torically incomparable with v and thus kv → uv is a directed edge in Φ(Q′).

Based on our two cases, flipping at kv in Φ(Q′) yields either the edge v∗ → kv or uv → kv.
On the other hand, if we were to first flip at k and then apply Φ, edge k → u ∈ Q′ again
becomes v∗ → kv or uv → kv. The case where kv is a sink is similar.

We have now built up to our next key lemma that is used in the proof of Theorem 9.

Lemma 60. Let [Q] be a toric poset, and let Q′ ∈ [Q]v. The map Φ is a bijection between
[Q]v and [Φ(Q′)].

Proof. We first show Φ is injective. Suppose that Q1, Q2 ∈ [Q]v and that Φ(Q1) = Φ(Q2).
We have two types of edges in Φ(Q1).
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1. Consider {uv, wv} ∈ Ev such that uv, wv ̸= v∗. From the definition of Ev, there is a
corresponding edge {u,w} ∈ E. If edge {uv, wv} has the same orientation in Φ(Q1)
and Φ(Q2), then {u,w} has the same orientation in Q1 and Q2.

2. Consider {uv, v∗} ∈ Ev. By definition of Ev, there exists at least one y ∈ V such
that there is a path (v, y, u) ∈ Q′. Recall that by Proposition 53, the orientation
of {y, u} is the same for all such y. The orientation of {uv, v∗} comes from the
orientation of any such edge {y, u}. If {uv, v∗} is oriented the same in Φ(Q1) and
Φ(Q2), then all such edges {y, u} are oriented the same in Q1 and Q2.

The only edges in Q1 and Q2 that we have not yet accounted for are those lying on
toric chains that contain v. Since Q1 and Q2 are in [Q]v, the vertex v is a source in both
Q1 and Q2 and since toric chains are a total ordering of vertices, by Proposition 21, we
already know the orientation of all such edges (i.e. edges are directed away from v). Thus,
if Φ(Q1) = Φ(Q2), then Q1 = Q2.

Now we show that Φ is surjective. Let Qj ∈ [Φ(Q′)]. By Lemma 50, there is a flip
sequence from Φ(Q′) to Qj, avoiding v∗. We emphasize that this flip sequence never flips
v∗, although it might flip the neighbors of v∗ in Gv. By Lemma 58, if we apply this flip
sequence to Q′ and then apply Φ, we recover Qj.

Proof of Theorem 9. Let Q1, Q2 ∈ [Q]v. In Lemma 60, we showed that Φ(Q1) and Φ(Q2)
are flip equivalent. Moreover, using Lemma 50, we can find a flip sequence between these
that avoids flipping at v∗. Since Φ is a bijection, we can apply Φ−1 to each quiver in
the sequence and after doing so, we have a sequence of quivers that are related by flips
between Q1 and Q2. Since we do not flip at v∗, in the flip sequence in [Q], we never flip
at any vertex that is torically comparable to v. Therefore, the vertex v remains a source
at all intermediate quivers during the flip sequence between Q1 and Q2.

One can view Theorem 9 simply as a statement regarding sink-source mutation of
acyclic quivers. In Example 61, we show that Theorem 9 is not true if we drop the acyclic
condition.

Example 61. Consider the following toric posets [Q1] and [Q2]; we draw one represen-
tative of each below.

Q1

1 2 3 4

5

Q2

1

2 3

4 5

6

We first consider Q1 and flip at vertex 1 and then vertex 2. For Q2, we flip at vertices
1, 2, 3, in that order. In both cases, the resulting quiver has vertex 1 as a source, but
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there is no flip sequence between the resulting quiver and the starting quiver that avoids
flipping at 1 and at neighbors of 1. The author would like to thank Darij Grinberg and
Scott Neville for providing the counterexamples involving [Q1] and [Q2], respectively.

7 An Algorithm for Finding Toric Total Extensions

We recall from Lemma 8 the well-known recursive description of the set of linear extensions
L(P ) of an ordinary poset P .

Lemma 8 Let P be a poset, and let a, b be two incomparable elements of P . Then,

L(P ) = L(Pa→b) ⊔ L(Pb→a)

where Pa→b is obtained from P by adding the relation a < b and Pb→a is defined similarly.

We use this fact as motivation to provide a recursive algorithm for finding the set of
toric total extensions Ltor([Q]) of a toric poset [Q].

Let Q be a quiver with vertices a and b such that neither arc a → b nor b → a is in
Q. We define Qa→b to be the quiver Q with an added arc a → b, and Qb→a is defined
similarly. Note that an equivalent definition of a, b being torically incomparable in [Q] is
that there exists a quiver Q′ ∈ [Q] such that a, b are ordinary incomparable in Q′.

Theorem 62. Let a, b be two torically incomparable elements in the toric poset [Q].

(i) If a, b are in different connected components of the graph of [Q], then [Qa→b] = [Qb→a]
and

Ltor([Q]) = Ltor([Qa→b]) = Ltor([Qb→a]).

(ii) If a, b are in the same connected component and Q′ ∈ [Q] is a representative where
a, b are ordinary incomparable, then the sets Ltor([Q

′
a→b]) and Ltor([Q

′
b→a]) are dis-

joint subsets of Ltor([Q]), but the inclusion of the disjoint union

Ltor([Q
′
a→b]) ⊔ Ltor([Q

′
b→a]) ⊆ Ltor([Q])

may be proper.

(iii) On the other hand, assume that a, b are distance two in the graph of the toric tran-
sitive closure [Q], say both adjacent to the vertex v. Then if one chooses Q′ ∈ [Q]v,

that is, Q′ is a representative of [Q] with v a source (as in Proposition 27), the
inclusion in (ii) becomes an equality:

Ltor([Q]) = Ltor([Q
′
a→b]) ⊔ Ltor([Q

′
b→a]).

Proof. Assertion (i) We note that adding either the directed edge a → b to Q or the
directed edge b → a to Q does not create any new cycles and therefore does not change
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the flow-difference of Q. By Theorem 57, the toric poset [Qa→b] is equal to [Qb→a], so we
have that Ltor([Qa→b]) = Ltor([Qb→a]).

Assertion (ii) Suppose a, b are in the same connected component of G, the underlying
graph of [Q]. We first show that Ltor([Qa→b]) and Ltor([Qb→a]) are disjoint. The quivers
Qa→b and Qb→a will have different flow-differences. By Theorem 57, the toric posets
[Qa→b] and [Qb→a] are not equal, so they correspond to disjoint toric chambers of Ator(G).
Therefore, by Definition 25, Ltor([Qa→b]) and Ltor([Qb→a]) are disjoint.

Let c[Q] be the toric chamber in the associated toric graphic hyperplance arrangement
that corresponds to the toric poset [Q] and let c[Qa→b] be defined similarly. By [10, Prop.
3.2], we have that c[Qa→b] ⊆ c[Q] and c[Qb→a] ⊆ c[Q]. It follows that Ltor([Qa→b]) ⊆ Ltor([Q])
and Ltor([Qb→a]) ⊆ Ltor([Q]). Thus, we have shown that Ltor([Qa→b])

⊔
Ltor([Qb→a]) ⊆

Ltor([Q]). In Example 63, we demonstrate an instance where this inclusion is in fact
proper.

Assertion (iii) Let a, b be a torically incomparable pair such that both vertices are
adjacent to a common vertex v in the graph of [Q]. We first show that in any representative
Q′ ∈ [Q] where v is a source, elements a, b are ordinary incomparable in Q′. Consider for
the sake of contradiction that for such a representative a and b are ordinary comparable,
i.e. up to relabeling, there is a directed path from a to b.

By assumption, vertices a, b are connected to v in the graph of [Q], so a is torically
comparable to v and b is torically comparable to v. Therefore, a and v both lie on a toric
directed path and b and v live on a different toric directed path. Note that these toric
directed paths cannot be the same, since by assumption a and b are torically incomparable.
The most general case for these toric directed paths is shown here

v

x1

x2

. . .

. .
.. . .

a

xk

y1

y2

z1 · · · zj
. .
.

b

yl

where the dashed edges from v to a and from v to b are two of the edges that appear in
[Q], but are possibly not in [Q]Hasse. We also note that in the picture, some of the z’s
could coincide with the y’s. The elements v, x1, x2, . . . , a, z1, . . . , zj, b, . . . , yl form a toric
directed path and by [10, Prop 6.3] we have that a and b lie on a toric chain together.
This contradicts the fact that a and b are torically incomparable elements.

Using Proposition 28 part (ii), we have

Ltor([Q]) =
⊔

Q′∈[Q]v

{
[vŵ] : ŵ ∈ L(Q′ − {v})

}
.

We have shown above that for any representative of [Q] where v is a source, a and b must
be ordinary incomparable elements. Therefore, we can employ Lemma 8 to each such
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representative:

Ltor([Q]) =

⊔
Q′∈[Q]v

{
[vŵ] : ŵ ∈ L(Q′

a→b − {v})
} ⊔ {

[vŵ] : ŵ ∈ L(Q′
b→a − {v})

}
=

⊔
Q′∈[Q]v

{
[vŵ] : ŵ ∈ L(Q′

a→b − {v})
}

⊔
⊔

Q′∈[Q]v

{
[vŵ] : ŵ ∈ L(Q′

b→a − {v})
}
.

We next claim that⊔
Q′∈[Q]v

{
[vŵ] : ŵ ∈ L(Q′

a→b − {v})
}
=

⊔
Q′∈[Qa→b]v

{
[vŵ] : ŵ ∈ L(Q′ − {v})

}
=

⊔
Q′∈[Qa→b]v

{
[vŵ] : ŵ ∈ L(Q′ − {v})

}
and similarly, swapping the roles of a and b. By Theorem 9, there exists a flip sequence
for any two quivers Q′, Q′′ ∈ [Q]v such that each intermediate quiver is also in [Q]v. We
emphasize that vertex v is never flipped. Moreover, since vertices a and b lie on a toric
directed path with v, both a and b also cannot be flipped. Therefore, every flip in this
flip sequence commutes with the operation of adding the directed edge a → b (or b → a).
We can use this special flip sequence between Q′ and Q′′ to give a flip sequence between
Q′

a→b and Q′′
b→a, and thus we have our first equality. The second equality follows from

Lemma 26, so we can index our union as desired. We have that

Ltor([Q]) =
⊔

Q′∈[Qa→b]v

{
[vŵ] : ŵ ∈ L(Q′ − {v})

} ⊔ ⊔
Q′∈[Qb→a]v

{
[vŵ] : ŵ ∈ L(Q′ − {v})

}
= Ltor([Qa→b])

⊔
Ltor([Qb→a]).

Considering Theorem 62 part (ii), we now show an example where the inclusion of the
disjoint union Ltor([Qa→b])

⊔
Ltor([Qb→a]) ⊆ Ltor([Q]) is proper.

Example 63. We consider the toric posets [Q], [Q4→5], [Q5→4], [Q0] as well as their corre-
sponding sets of toric total extensions. For each toric poset, we draw one representative
below.
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Q
1

2 3 4

5

Q4→5

1

2 3 4

5

Q5→4

1

2 3

4
5

Q0

1

4

5

2 3

Ltor([Q4→5]) = {[(1, 2, 3, 4, 5)], [(1, 2, 4, 3, 5)], [(1, 3, 2, 4, 5)], [(1, 3, 4, 2, 5)], [(1, 4, 2, 3, 5)],
[(1, 4, 3, 2, 5)], [(1, 5, 2, 3, 4)], [(1, 5, 2, 4, 3)], [(1, 5, 3, 2, 4)], [(1, 5, 3, 4, 2)],

[(1, 5, 4, 2, 3)], [(1, 5, 4, 3, 2)]}
Ltor([Q5→4]) = {[(1, 2, 3, 5, 4)], [(1, 3, 2, 5, 4)]}

Ltor([Q0]) = {[(1, 4, 5, 2, 3)], [(1, 4, 5, 3, 2)]}

For the set of toric total extensions of [Q], we have

Ltor([Q]) = Ltor([Q4→5])
⊔
Ltor([Q5→4])

⊔
Ltor([Q0]).

Using Theorem 62, we can recursively compute Ltor([Q]) in terms of Ltor([Qi]) for
various toric posets [Qi] each having more edges in their toric Hasse diagram than [Q]
has. Each of the latter toric posets has fewer toric total extensions, so they are easier to
understand. We will show that when this iterative process ends, our resulting toric posets
are exactly the toric total orders [w]; that is, Ltor([w]) = {[w]}. Note that the transitive
closure of a toric chain is a complete graph.

Corollary 64. For a toric poset [Q], iterative application of Theorem 62 gives us a finite
algorithm for finding the set Ltor([Q]), where the resulting toric posets correspond to toric
total orders [w]. In other words, for every toric poset that is not a toric total order [w],
either Theorem 62 part (i) or part (iii) applies.

Proof. Note that if the underlying graph of [Q] is not a complete graph, then it is discon-
nected or there exists a pair of elements with distance exactly 2 in the graph of [Q]. If
[Q] is disconnected, then we can apply Theorem 62 part (i). Otherwise, there exists two
vertices with distance exactly 2, so we can apply Theorem 62 part (iii). This process is
finite, since there are a finite number of edges we can add to the graph before we have a
complete graph.

Example 65. In this example, we recalculate Ltor([Q]) from Example 2 (the toric poset is
from Example 1), and we illustrate Theorem 62 with the following tree. The relationship
between nodes and children of nodes in the tree is as follows: if node [Q] has children [Qi],
then Ltor([Q]) =

⊔
[Qi]

Ltor([Qi]). For each of our toric posets, we draw one representative.

We note that in this example [Q] = [Q]Hasse.
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Q
1

2 3

4

Q2→3

1

2 3

4

Q3→2

1

2 3

4

(Q3→2)1→4

1

2

3

4

(Q2→3)4→1

1

4

3

2
(Q3→2)1→4

4

1

2

3
(Q3→2)4→1

1

4

2

3

Reading the toric total orders from left to right, we have

[(1, 4, 2, 3)], [(1, 2, 3, 4)], [(1, 4, 3, 2)], [(1, 3, 2, 4)],

the set Ltor([Q]) found in Example 2.
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