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Abstract

We describe a relationship between the Lie algebra sl4(C) and the hypercube
graphs. Consider the C-algebra P of polynomials in four commuting variables. We
turn P into an sly(C)-module on which each element of sl4(C) acts as a derivation.
Then P becomes a direct sum of irreducible sly(C)-modules P =} vy Py, where
Py is the Nth homogeneous component of P. For N € N we construct some
additional sl4(C)-modules Fix(G) and 7. For these modules the underlying vector
space is described as follows. Let X denote the vertex set of the hypercube H (N, 2),
and let V' denote the C-vector space with basis X. For the automorphism group
G of H(N,2), the action of G on X turns V into a G-module. The vector space
V& =V ®V ®V becomes a G-module such that g(u®v®@w) = g(u) ® g(v) ® g(w)
for ¢ € G and u,v,w € V. The subspace Fix(G) of V®3 consists of the vectors
in V®3 that are fixed by every element in G. Pick » € X. The corresponding
subconstituent algebra T' of H(N,2) is the subalgebra of End(V') generated by the
adjacency map A of H(N,2) and the dual adjacency map A* of H (N, 2) with respect
to s¢. In our main results, we turn Fix(G) and 7T into sl4(C)-modules, and display
5[4(C)-module isomorphisms Py — Fix(G) — T. We describe the sl4(C)-modules
Py, Fix(G), T from multiple points of view.

Mathematics Subject Classifications: 05E30, 17B10

Keywords. Cartan subalgebra; derivation; subconstituent algebra; Wedderburn decom-
position.

1 Introduction

The subconstituent algebra of a distance-regular graph was introduced in [51-53]. This
algebra is finite-dimensional, semisimple, and noncommutative in general. Its basic prop-
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erties are described in [1,10,56]. The subconstituent algebra has been used to study
tridiagonal pairs [1,26,27,30,55], spin models [9,16,17,43,44], codes [22,48,50], projective
geometries [21,36-38,49], quantum groups [3,13,28,29, 58], DAHA of rank one [33-35],
and some areas of mathematical physics [4-6,11]. Further applications can be found in
the survey [19].

For someone seeking an introduction to the subconstituent algebra, the hypercube graphs
offer an attractive and accessible example. For these graphs the subconstituent algebra
is described in [23]. Tt is apparent from [23] that for the hypercube graphs, the subcon-
stituent algebra is closely related to the Lie algebra sly(C).

In the present paper, we will investigate the hypercube graphs using an approach that is
different from the one in [23]. We will use the S3-symmetric approach that was suggested
in [57]. This approach potentially provides more information and is more aesthetically
pleasing, because it removes the need to fix a base vertex. As it turns out, in the S3-
symmetric approach the Lie algebra sly(C) plays the key role. Consequently, we will
begin our investigation with a detailed study of sly(C). For the rest of this section, we
summarize our results.

Our main topic is the Lie algebra sl,(C), although the Lie algebra sly(C) will play a
supporting role. Recall that sl;(C) has a basis

01 00 1 0
e=(o0)  #=(1o)  #=( )
and Lie bracket

[H,E)] = 2E, [H, F| = —2F, [E,F]=H.

We now consider sl,(C). We show that sl,(C) has a generating set with six generators

01 00
1000 .

Al - 000 1 ) Al - dlag(17 1a _1a _1)a
0010
0010
000 1 .

A2 - 1 0 0 0 ) A2 - dla‘g<17 _17 17 _1)7
01 00
0001
0010 .

Az = 010 0l A; = diag(1,—-1,-1,1).
1.0 00

Using these generators, we give a presentation of sly(C) by generators and relations.
We show that A;, Ay, A3 form a basis for a Cartan subalgebra H of sly(C). We show
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that A7, A5, A3 form a basis for a Cartan subalgebra H* of sl4(C). Let i,7, k denote a
permutation of {1,2,3}. We show that A;, A7 commute. We show that A;, A} generate
a Lie subalgebra of sl4(C) isomorphic to sl;(C). We show that A;, Ay, A7, A generate a
Lie subalgebra of sl4(C) isomorphic to sly(C) & sly(C). We call this Lie subalgebra the
ith Lie subalgebra of sl,(C) isomorphic to sly(C) @ sly(C). We display an automorphism
7 of sl4(C) that swaps A; <> A}, Ay <> A, As <> Aj.

Next, we bring in a polynomial algebra P. Let z,y, 2, w denote mutually commuting
indeterminates, and consider the polynomial algebra P = C|x,y, z, w]. We turn P into
an sly(C)-module on which each element of sly(C) acts as a derivation. We display two
bases for P. The first basis is

"y 2w r,s, t,u € N. (1.1)
Define
« TFTYy+tzt+w s THy—z—w
r =———F ", Z/ = T 5
2 2
. T—yYyt+z—w s, T—Yy—z+4+w
=, wn = -
2 2
The second basis is
¥y e r,s,t,u € N. (1.2)

We show how the sl,(C)-generators act on the bases (1.1) and (1.2). As we will see, the ba-
sis (1.1) diagonalizes H* and the basis (1.2) diagonalizes H. We display an automorphism
o of the algebra P that sends

x> xt, y <y, 24 2", w 4> w*.

We show that for ¢ € sl,(C) the equation 7(p) = oo ™! holds on P.

Next, we consider the homogeneous components of P. For N € N let Py denote the
subspace of P consisting of the homogeneous polynomials that have total degree N. One
basis for Py consists of the polynomials in (1.1) that have total degree N. Another basis
for Py consists of the polynomials in (1.2) that have total degree N. By construction,
the sum P = ) Py is direct. We show that each summand Py is an irreducible
sl4(C)-submodule of P. We show that on the sly(C)-module Py, each H-weight space
has dimension one and each H*-weight space has dimension one. By construction, each
514 (C)-generator is diagonalizable on Py. We show that the eigenvalues are { N —2n}Y_ .
and for 0 < n < N the (N — 2n)-eigenspace has dimension (n + 1)(N —n + 1).

Next, we display a Hermitian form (, ) on P with respect to which the basis (1.1) is
orthogonal and the basis (1.2) is orthogonal. For each basis we compute the square norm
of the basis vectors. For f, g € P we show that (o f,0g) = (f, g) and

(Aif,g9) = (f, Aig), (Ai f,g9) = (f, 4ig) ie{1,2,3}.
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We describe the inner product between each basis vector in (1.1) and each basis vector in
(1.2). We express these inner products in two ways; using a generating function and as
hypergeometric sums. We display some orthogonality relations and recurrence relations
that involve the hypergeometric sums. For N € N we display a polynomial PV in six
variables with the following property: for r,s,t,u € N such that r +s+t+u =N,

PY(s,t,u; A1, Ay, Ag)z™ = 2"y 2w

PY(s,t,u; AL, Ay, AR = oy 2w,
Using this, we show that Py has a basis
As AL AN s,t,u €N, s+t+u< N
and a basis
AP AT AT N s,t,u €N, s+t+u<N.

Next, for ¢ € {1,2,3} we introduce a “lowering map” L; € End(P) and a “raising map”
R; € End(P). We define

Ll :Dny_DzDun LZZDIDZ_DwDya LSZDwa_DyDza

where D,, D, D, D,, are the partial derivatives with respect to z, y, z, w respectively. Let
i € {1,2,3}. We show that L;(Py) = Py_s for N € N, where P_; =0 and P_ = 0. By
construction L, Ly, Ly mutually commute. We define

Rl = MxMy - MzMwa RQ = MxMz - MwMya R3 = MxMw - MyMza

where M,, M,, M., M,, denote multiplication by z,y, z, w respectively. Let i € {1,2,3}.
By construction, R;(Py) C Py for N € N. Also by construction, Ry, Ry, R3 are injective
and mutually commute. Let i € {1,2,3}. We give the action of L;, R; on the basis (1.1)
and the basis (1.2). We show that

We show that each of L;, R; commutes with . We show that each of L;, R; commutes
with each of Aj, Ay, A3, Ay where j, k are the elements in {1,2,3}\{i}. We show that for
N € N the following sum is orthogonal and direct:

pN = Ri(PN72> + KGT(LJ N PN—
Expanding on this, we obtain an orthogonal direct sum

IN/2)
Pv=> R (Ker(Li) N PJHZ) (1.3)
=0
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and an orthogonal direct sum

P =33 R(Ker(L) N Py). (1.4)

NeN ¢eN

Next, we investigate the summands in (1.4). For each summand in (1.4) we display an
orthogonal basis. We show that for N,¢ € N the corresponding summand in (1.4) is an
irreducible submodule for the ith Lie subalgebra of sl,(C) isomorphic to sly(C) @ sly(C).
This irreducible submodule has dimension (N + 1), It is isomorphic to Vy ® Vy, where
Vi denotes the irreducible sly(C)-module with dimension N + 1.

Next, for N € N we consider the sum

ZRf(Ker(Li) N PN>. (1.5)

leN

As we investigate (1.5), it is convenient to define Q2 € End(P) as follows. For N € N the
subspace Py is an eigenspace for ) with eigenvalue N. For ¢ € {1,2,3} we show that

Consequently, P becomes an sly(C)-module on which E, F, H act as follows:

element ¢ ‘ E F H
action of ¢ on P ‘ L, Ry —Q-—21

We show that the subspace (1.5) is an sly(C)-submodule of P. We express (1.5) as an
orthogonal direct sum of irreducible sly(C)-modules. The irreducible sly(C)-modules in
the sum are mutually isomorphic; they are all highest-weight with highest weight — N —2.

Next, we introduce some maps C1,Cy, C3 € End(P). Let i, 7, k denote a permutation of
{1,2,3}. We show that

@+20? o o 44T AAP - (A4 - AR4))
2 1+ - T 8
AAR AR — (ATA — AA))?
g .

Call this common value C;. We interpret C; using the concept of a Casimir operator.
We compute the action of C; on the basis (1.1) and the basis (1.2). We show that C;
commutes with each of €2, L;, R;, A, Ay, A3, A}, 0. We show that

We show that (1.5) is an eigenspace for the action of C; on P; the eigenvalue is N(N+2)/2.

ot
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Let i € {1,2,3} and N € N. From our previous discussion we draw the following conclu-
sions about (1.3). For 0 < ¢ < [ N/2] the {-summand in (1.3) is an irreducible submodule
for the ith Lie subalgebra of sly(C) isomorphic to sly(C) @ sly(C). This f-summand has
dimension (N — 2¢ + 1)? and is isomorphic to Vy_9 ® Vy_9p. This f-summand is an
eigenspace for the action of C; on Py, with eigenvalue (N — 2¢)(N — 2( + 2)/2.

We will return to the decomposition (1.3) later in this section.

Next, we bring in the hypercube graphs. For the rest of this section, fix N € N. We
consider the N-cube H(N,2). Let X denote the vertex set of H(N,2) and let V' denote
the vector space with basis X. For € X the set I'(x) consists of the vertices in X that
are adjacent to x. The adjacency map A € End(V') satisfies

A:B:ZS, r e X.

£el(x)
The vector space V¥ =V ® VV ® V has a basis
X ={ry® v,y € X}.

Let G denote the automorphism group of H(N,2). The action of G on X turns V
into a G-module. The vector space V&3 becomes a G-module such that for ¢ € G and
w,v,w €V,

gu®v @ w) = g(u) ® g(v) ® g(w).
Define the subspace
Fix(G) = {v € V®¥|g(v) = v Vg € G}.

We turn Fix(G) into an sl;(C)-module as follows. Define A, A® A®) € End(V®?) such
that for z @ y ® z € X®3,

AVzeye2) =Ar®yQ® 2,
APy =122 Ay 2,
AP(rRy®2) =10y Az
For notational convenience, define 8 = N — 2i for 0 < i < N. For z,y € X let 0(z,y)
denote the path-length distance between xz,y. Define A*1) A*2) A*®) ¢ End(V®?) such
that for r @y ® 2 € X3,
AV@ERy©2) =20y 20,
AP yez) =20y 20,
APy =10y 20)

z,y)"
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We show that Fix(G) is invariant under A® and A*® for ¢ € {1,2,3}. We show that
Fix(G) is an sly(C)-module on which

A= AD, Ar =A@ i €{1,2,3}.

We endow V® with a Hermitian form (, ) with respect to which the basis X®3 is or-
thonormal. We display an sl;(C)-module isomorphism i : Py — Fix(G) such that

(f.g) = (Y g% f,g € Py.

Our treatment of H(N,2) follows the S3-symmetric approach discussed in [57]; see Note
3.7 below.

Next, we consider the subconstituent algebras of H(N,2). Recall the adjacency map
A € End(V) for H(N,?2). For the rest of this section, fix s € X. The corresponding dual
adjacency map A* = A*(») € End(V) satisfies

A =0y, T, z e X.

By construction, the map A* is diagonalizable with eigenvalues {07} ,. The subcon-
stituent algebra T = T'(5¢) is the subalgebra of End(V') generated by A, A*; see [23, Defi-

nition 2.1]. By [23, Corollary 14.15] we have dim 7 = (*;?).

We mention some bases for the vector space T. As we will see, the adjacency map A is
diagonalizable with eigenvalues §; = N —2i (0 < ¢ < N). For 0 < < N let E; € End(V)
denote the primitive idempotent of A associated with ;. For x € X and 0 < i < N,
define the set I';(z) = {y € X|0(x,y) = i}. For 0 < i < N define A; € End(V) such that

Az = Zf, r e X.

§eTy(z)

For 0 < i < N define E} = Ef(5) € End(V) such that

£ .
Elx=1{"" O, ) K z € X.
0, if d(z, ») # 1,

By construction, Ef is the primitive idempotent of A* for the eigenvalue 6. For 0 <i < N
define Af = Af() € End(V) such that

Arx = 2N (B3, x)m, r e X.

For notational convenience, let the set P}, consist of the 3-tuples of integers (h, i, j) such
that

h,i,j <N, h +i+ j is even, h+i+j<2N,

i+ 7, i <j+h, j < h+i

NN

0
h
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As we will see in Lemma 18.3, the vector space T has a basis
E;ALE; (h,i,7) € P}
and a basis
EALE; (h,i,7) € PY.
Define AW, A® A®) ¢ End(T) such that for (h,i,5) € P,
AW (EALE)) = 0,EALE;,
AP (E;ALE)) = 6,EAGE;,
AP (E;ALE)) = 0,E,ALE;.
Define A*M, A*?) A*3) ¢ End(T) such that for (h,i,j) € P,
AW (E;AGEY) = 0;E;ALES,
A" (E;ALES) = 0EALES,
A (E;ALED) = 0;E;ALES.
We show that 7" is an sl;(C)-module on which
Ay =AY, Ar = A0 i€ {1,2,3}.

For z,y € X define amap e,, € End(V') that sends y — = and all other vertices to 0. Note
that {e;y}zyex form a basis for End(V). We endow End(V') with a Hermitian form (, )
with respect to which the basis {e, ,}. yex is orthonormal. We display an sly(C)-module
isomorphism 9 : Py — T such that

(f,9) = (W0(f),9(9)) f,9 € Py.
We show that for r,s,t,u € N such that r + s+t 4+ u = N, the map ¢ sends

r, st u

151!
rlsttiul
'yt w" “ALE],

(N!)1/2Ej h
ar %5 st rlsltlul

Ty Tzw '—)WZ;EJ,

where
h=1t+u, i =u-+s, j=s+t.

We return our attention to the decomposition of Py given in (1.3). Referring to that de-
composition, let us take ¢ = 1. We show that the isomorphism ¢ : Py — T maps the given
decomposition of Py to the Wedderburn decomposition of T' from [23, Theorems 14.10,
14.14].

The main results of this paper are Theorems 17.28, 17.34, 18.16, 18.18, 18.20, 18.21, 18.22,
18.30.

THE ELECTRONIC JOURNAL OF COMBINATORICS 33(1) (2026), #P1.29 8



2 Preliminaries

We now begin our formal argument. The following concepts and notation will be used
throughout the paper. Recall the natural numbers N = {0,1,2,...}. Let C denote
the field of complex numbers. Every vector space, algebra, and tensor product that we
discuss, is understood to be over C. Every algebra without the Lie prefix that we discuss, is
understood to be associative and have a multiplicative identity. A subalgebra has the same
multiplicative identity as the parent algebra. For a nonzero vector space V', the algebra
End (V') consists of the C-linear maps from V to V. Let I denote the multiplicative identity
in End(V). An element B € End(V) is called diagonalizable whenever V is spanned by
the eigenspaces of B. Assume that B is diagonalizable, and let {V;}¥ ; denote an ordering
of the eigenspaces of B. The sum V = Zi]io Vi is direct. For 0 < ¢ < N let 6; denote the
eigenvalue of B for V;. For 0 < i < N define E; € End(V') such that (E; — I)V; = 0 and
EV; =0if j #1 (0 <j < N). We call E; the primitive idempotent of B associated with
V; (or 6;). We have (i) BiE; = 6, ;B (0 <14,j < N); (il) I = S0, Ey; (iii) B =0, 0:F;;
(iv) BE; =60;E; = E,B(0<i< N); (v) V,=E;V (0 <i< N). Moreover

B—0;1

Ei:
0, — 0,

0<JSN
J#i

(0 <i < N). (2.1)

The maps {E;}Y, form a basis for the subalgebra of End(V') generated by B. For a € C
let @ denote the complex-conjugate of . For a positive real number «, let a'/? denote
the positive square root of a. Let B denote an algebra. By an automorphism of B we
mean an algebra isomorphism B — B. Let the algebra B°PP consist of the vector space
B and the following multiplication. For a,b € B the product ab (in BP) is equal to ba
(in B). By an antiautomorphism of B we mean an algebra isomorphism B — BPP. We

will be discussing Lie algebras. Background information about Lie algebras can be found
in [8,25].

3 The Lie algebras sl(C) and sl4(C)

For an integer n > 1, the algebra Mat,,(C) consists of the n x n matrices with all entries
in C. The Lie algebra gl,(C) consists of the vector space Mat,(C) and Lie bracket

[0, @] = b — ¢ ¥, ¢ € Mat,(C).

The Lie algebra s[,,(C) is a Lie subalgebra of gl,,(C), consisting of the matrices in gl,(C)
that have trace 0. In this paper we will mainly consider sl,(C), although sly(C) will play
a supporting role.

Example 3.1. The Lie algebra sly(C) has a basis

) B (O B (O
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and Lie bracket
[H,E] =2F, [H,F] = —2F, [E,F| = H.
We describe a presentation of sly(C) by generators and relations.
Definition 3.2. Define a Lie algebra L by generators A, A* and relations
[A,[A, A*]] = 4A~, (A", [A*, A]] = 4A.
Lemma 3.3. There exists a Lie algebra isomorphism § : L — sly(C) that sends
A— E+F, A" — H.
Proof. We have

[E+ F,[E + F,H]| = [E + F,2F — 2E] = 4[E, F] = 4H,
[H,[H,E + F]| = [H,2E — 2F] = 4(E + F).
Thus the matrices F + F, H satisfy the relations in Definition 3.2. Consequently, there

exists a Lie algebra homomorphism f : L — sl5(C) that sends A — E + F and A* — H.
Since F, F, H form a basis for sly(C), there exists a C-linear map sl(C) — L that sends

24 — [A, A*] [A, A%] + 24

E— F— H— A
4 ’ 4 ’
One checks that this map is the inverse of 5. The map f is a bijection, and hence a Lie
algebra isomorphism. O

For the rest of this paper, we identify L and sly(C) via the isomorphism f in Lemma 3.3.

Lemma 3.4. The following is a basis for the vector space sly(C):

A A, A, A7),

Proof. The matrices A, A* generate sly(C). O]

Next, we describe sl,(C). We will give a basis for sl,(C), and a presentation of sly(C) by
generators and relations. For 1 < 4,j < 4 let E;; € Mat,(C) have (i, j)-entry 1 and all
other entries 0. The following is a basis for sl,(C):

E;; (1<d,j <4, i#j), Ei; — Eiv1in (1 <i<3). (3.1)

Serre gave a presentation of sly(C) by generators and relations, see [25, p. 99]. We will
use a different presentation, that is better suited to our purpose.

Definition 3.5. We define a Lie algebra L by generators
A, AF ie€{1,2,3}

)

and the following relations.
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(i) For distinct 7,7 € {1,2,3},

(ii) For i € {1,2,3},

(iii) For distinct 4,j € {1,2,3},

[Ai, [Ai, A]] = 443, (A7, [AS, A] = 44,

(iv) For mutually distinct h,i,j € {1,2,3},

[Ans [A7, Ajl] = A, [As AJlL = [A;, [A7, Anl] = [A7, [As, A3

Lemma 3.6. There exists a Lie algebra isomorphism § : L — sly(C) that sends

01 00
10 00 . .

Al — 000 11 Al — diag(1,1,—1,-1),
0010
0010
0001 . .

Ay > L1000l Al — diag(1,—-1,1,-1),
01 00
0 001
0010 N .

Az — 010 0l A; — diag(1,—1,—1,1).
1.0 00

Proof. Consider the six matrices from the lemma statement. One checks that these six
matrices satisfy the relations in Definition 3.5. Consequently, there exists a Lie algebra
homomorphism § : L. — sl4(C) that sends each L-generator to the corresponding matrix.
In (3.1) we gave a basis for sl4(C). There exists a C-linear map sl,(C) — L that acts on
this basis as follows. The map sends

4A1 + 2[A5, Ay] + 2[A5, Ay + [A3, [A5, Ay

Bz 16 ’
Ear s 44, — 2[A3, Ay] — 2[11457 A + [43, [A5, Al]]’
iy 44, + 2[A3, Ai] — 2[1145141] — [45, [A;,Aﬂ])
Eis 44, — 2[A3, Ay] + 2[1145,, Al — [A3, [A5, Ad]]
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and

44, + 2[A3, A + 2[AT, Ap] + [A3, [A], Ao]

E173 —

16 ’
Ey1 44, — 2[A5, As] — Q[fg, Ao + [A5, [AT»AQH’
i s 44, 4 2[A}, As] — 2[114(;{, Ay — AL AT, Az]]’
By 4A5 — 2[A§, Aol + 2[Af, Ay] — [Ag';, (A%, Ao
’ 16
and
1,4 > 16 )
Fuy s 4A3 — 2[A7, As] — Q[fga As] + [A7, [AS»ASH’
Fy 1 4A3 + 2[A}, As] — 2[1146;, Az] — [A], [A3, ASH’
E32 — 4A3 B 2["4‘; AS] + 2["4‘;7 A3] - [A; [A§7A3]]
’ 16
and
El,l — E2,2 — A2 ;— A3;
Ar — A
Ey9 — Es3 ! 5 2,
E3’3 — E474 — A2 g A3.

One checks that the above map sl4(C) — L is the inverse of §. The map  is a bijection,
and hence a Lie algebra isomorphism. ]

Note 3.7. (See [57, Definition 4.1].) The universal enveloping algebra U(L) is a homo-
morphic image of the S3-symmetric tridiagonal algebra T(2,0,0,4,4).
For the rest of this paper, we identify the Lie algebras L. and sl;(C) via the isomorphism

# from Lemma 3.6.

Lemma 3.8. The following is a basis for the vector space sl;(C):
Alu A27 A37 AT? A;’ A;’
[Alﬁ A;]a [A% A;], [A?n AT]’ [Aiv A2]7 [A;: A3]a [A;, A1]7
[A7, [A3, As]], [A3, [A5, Ad]], [A3, [A], Ag]].
Proof. There are 15 matrices in the list, and the dimension of sl4(C) is 15. By linear

algebra, it suffices to show that the listed matrices span sly(C). It is clear from the proof
of Lemma 3.6, that the listed matrices span sly(C). O
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A As

Figure 1: Nonadjacent matrices commute. Adjacent matrices generate a Lie subalgebra
isomorphic to sly(C).

Lemma 3.9. For distinct 1,5 € {1,2,3} there exists a Lie algebra homomorphism
sl (C) — sl,(C) that sends

A A;, A* Aj.
This homomorphism is injective.

Proof. To see that the homomorphism exists, compare the relations in Definition 3.2 and
Definition 3.5(iii). The homomorphism is injective by Lemmas 3.4, 3.8. O

Corollary 3.10. For distinct i,j € {1,2,3} the matrices A;, A3 generale a Lie subalgebra
of s1,(C) that is isomorphic to sly(C).

Proof. By Lemma 3.9. O]

Our presentation of sl,(C) is described by the diagram in Figure 1.
Lemma 3.11. For distinct j,k € {1,2,3} there exists a Lie algebra homomorphism
sly(C) @ sly(C) — sl,(C) that sends
(A,0) — A, (A*,0) — Aj, (0, A) — Ay, (0, A) — AZ.
This homomorphism is injective.

Proof. The homomorphism exists by Lemma 3.9 and since each of A;, A; commutes with
each of A%, Ay. The homomorphism is injective because the matrices

A]v Ak‘a A;a A}Za [Ajv AZ]a [A;7 Ak‘]
are linearly independent by Lemma 3.8. O]
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Corollary 3.12. For distinct j, k € {1,2,3} the matrices Aj, Ay, A}, A} generate a Lie
subalgebra of sly(C) that is isomorphic to sly(C) @ sly(C).

Proof. By Lemma 3.11. O

Definition 3.13. Let i € {1,2,3}. By the ith Lie subalgebra of sl4(C) isomorphic to
sl(C) @ sl5(C), we mean the Lie subalgebra of sly(C) generated by A;, Ay, A}, Ay where
J, k are the elements in {1,2,3}\{i}.

4 The automorphism 7 of sl (C)

We continue to discuss the Lie algebra sly(C). In this section, we introduce an automor-
phism 7 of sl,(C) that swaps A;, A} for i € {1,2,3}.

Definition 4.1. Define T € Mat4(C) by

1 1 1 1
L PR
1 -1 -1 1
Note that Y2 = I.
Lemma 4.2. Fori € {1,2,3} we have
AT =TA;, AT =TA;.

Proof. By matrix multiplication using Lemma 3.6 and the comment above Lemma 3.8. [J

By an automorphism of the Lie algebra sl;(C), we mean a Lie algebra isomorphism
5[4(@) — 5[4(@)

Lemma 4.3. There exists an automorphism 7 of sl,(C) that sends ¢ — Y Y~ for all
¢ € sly(C). Moreover, T = id.

Proof. By Y2 = I and linear algebra. O
Lemma 4.4. The automorphism 7 from Lemma 4.3 swaps

A A7 i€{1,2,3}.
Proof. By Lemmas 4.2, 4.3. O

We will be discussing Cartan subalgebras of sl,(C). The definition of a Cartan subalgebra
can be found in [8, p. 23].

Lemma 4.5. The following (i)—(iv) hold.
(i) The elements Ay, A, A3 form a basis for a Cartan subalgebra H of sl,(C).
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(ii) The elements A3, As, A5 form a basis for a Cartan subalgebra H* of sl4(C).
(iii) The automorphism T swaps H <> H*.
(iv) The Lie algebra sly(C) is generated by H, H*.

Proof. The matrices A, Ay, Az are linearly independent, so they form a basis for a sub-
space H of sl4(C). Similarly, the matrices A}, A, A5 form a basis for a subspace H* of
sl4(C). The subspaces H, H* satisfy (iii) by Lemma 4.4. The subspaces H, H* satisfy (iv)
by construction. The subspace H* is a Cartan subalgebra of sl,(C), because H* consists of
the diagonal matrices in sl,(C). The subspace H is a Cartan subalgebra of sl,(C), because
H is the image of a Cartan subalgebra H* under an automorphism 7 of sly(C). O]

Definition 4.6. Let W denote an sl,(C)-module, and consider the action of H on W.
A common eigenspace for this action is called an H-weight space for W. An H*-weight
space for W is similarly defined.

5 An sl (C)-action on the polynomial algebra Clz, y, z, w]

Let z,y,z,w denote mutually commuting indeterminates, and consider the algebra
Clz,y, z,w] of polynomials in z,y, z,w that have all coefficients in C. We abbreviate
P = Clz,y, z,w]. The following is a basis for P:

r, st u

2"y’ z'w r, s, t,u € N. (5.1)

For N € N let Py denote the subspace of P consisting of the homogeneous polynomials
that have total degree N. We call Py the Nth homogeneous component of P. The sum
P =73 yen P is direct. For notational convenience, define P_; = 0 and P_y = 0.

Definition 5.1. For N € N let the set Py consist of the 4-tuples of natural numbers
(r,s,t,u) such that r + s+t +wu = N. An element of Py is called a profile of degree N.

Note that

| Pn| = (N;rg). (5.2)

Lemma 5.2. For N € N the following is a basis for Py:
"y 2wt (r,s,t,u) € Py. (5.3)

N+3)'

Moreover, Py has dimension ( 5

Proof. Routine. n

Our next goal is to turn P into an sl,(C)-module. To this end, we first consider P;. Note
that x,y, z,w is a basis for P;.
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Lemma 5.3. The vector space Py becomes an sl,(C)-module that satisfies (i)—(vi) below:
(i) Ay swaps x <>y and z <> w;
) Ay swaps x <> z and y <> w;

(i) Az swaps <> w and y <> z;
)

(iv) Aj sends

T = x, Y=y, Z = —2, W —w;
(v) A} sends
T =, Y= =y, Z >z, W —w;
(vi) Aj sends
x =, Y= =y, Z = —2, W w.
Proof. By Lemma 3.6 and the comment above Lemma 3.8. [

We will be discussing derivations of P. The Lie algebra gl(P) consists of the vector space
End(P) and Lie bracket

[0, 0] = b — b ¢, ¢ € End(P).
A derivation of P is an element D € End(P) such that
D(fg) = D(f)g + fD(9) fg€Pp. (5.4)

Let the set Der(P) consist of the derivations of P. One checks that Der(P) is a Lie
subalgebra of gl(P).

Lemma 5.4. For D € Der(P) we have D(1) = 0.
Proof. We have

Therefore D(1) = 0. O
Lemma 5.5. For D € Der(P) and f € P andn € N,

D) = nf" D).
Proof. Use (5.4) and Lemma 5.4 and induction on n. O
Lemma 5.6. For D € End(P) the following are equivalent:
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(i) D € Der(P);
(i) forr s, t,u € N,
D(a"y*2'w") = ra" 2w D(x) + sx"y* 2w D(y)
+ta"y 2w D (2) + ur"y 2w D (w);
(iii) for all polynomials f,g in the P-basis (5.1),
D(f9) = D(f)g + fD(g).
Proof. (i) = (ii) By (5.4) and Lemma 5.5,
@(xrysztwu) — @(l,r)ysztwu + xr@(ys)ztwu + xrysD(Zt)wu + xrysZmD(wu)
= ra" 'yt 2w D(z) + sy 2w D (y) + tryt 2 T w D(2)
+ux"y 2w D (w).
(ii) = (ili) Routine.
(iii) = (i) The map D satisfies condition (5.4) since D is C-linear. O
Lemma 5.7. For D € Der(P) the following are equivalent:
(i) D =0;
(ii)) D=0 on P;.

Proof. (i) = (ii) Clear.
(ii) = (i) Each of D(x), D(y), D(z), D(w) is zero, so D = 0 by Lemma 5.6(i),(ii). O

Lemma 5.8. For a C-linear map Dy : P, — P there ezists a unique D € Der(P) such
that the restriction D|p, = D;.

Proof. Concerning existence, by linear algebra there exists D € End(P) that acts on the
P-basis (5.1) as follows. For r,s,t,u € N,

D(z"y*2'w") = ra" y 2w Dy () + sx"y* 2w Dy ()
+ ta"y 2w Dy (2) + ua "y 2w T Dy (w).
Note that
D(z) =Di(z), D) =Dily), D(2) =Di(z),  D(w)=Di(w).

Therefore D|p, = Dy. By these comments and Lemma 5.6(i),(ii) we have D € Der(P).
We have shown that there exists D € Der(P) such that D|p, = D;. The uniqueness of D
follows from Lemma 5.7. []

Proposition 5.9. There exists a unique Lie algebra homomorphism der : sl (C) —
Der(P) such that for all ¢ € sl,(C) the following coincide:
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(i) the action of der(p) on Pi;
(ii) the action of ¢ on Py from Lemma 5.3.
The map der s injective.

Proof. For ¢ € sl,(C) we define der(p) as follows. Consider the action of ¢ on P; from
Lemma 5.3. By Lemma 5.8, there exists a unique D € Der(P) such that D = ¢ on P;.
Define der(yp) = D. So far, we have a map der : sl,(C) — Der(P). The map der is C-linear
by construction. We show that der is a Lie algebra homomorphism. For ¢, ¢ € sl4(C) we
show that

der [p, @] = [der p, der ¢]. (5.5)

Each side of (5.5) is a derivation of P. For each side of (5.5) the restriction to P, coincides
with the action of [p, ¢] on P;. The two sides of (5.5) are equal in view of Lemma 5.8.
We have shown that the Lie algebra homomorphism der exists. This map is unique by
Lemma 5.8, and injective because sl,(C) acts faithfully on P;. O

By Proposition 5.9, the vector space P becomes an sly(C)-module on which the elements
of sl4(C) act as derivations.

Proposition 5.10. The sly(C)-generators Ay, Ay, A and A3, A, A5 act on the P-basis
(5.1) as follows. Forr,s,t,u € N,

(i) the vector
A1<xrysztwu)

1s a linear combination with the following terms and coefficients:

Term Coefficient
‘,L,rflstrthwu r
errlysletwu s
$ryszt—1wu+1 t
$Ty82t+lwu_1 U

(ii) the vector

r, st u

As(z"y® 2" w™)

s a linear combination with the following terms and coefficients:

Term Coeflicient
xr—lyszt—i—lwu r
xrysflztwu+l s
IrJrlysztflwu t
m?’ys—l-lztwu—l U
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(iii) the vector
As(xrysztwu)

is a linear combination with the following terms and coefficients:

Term Coeflicient
mr—lysztwu—&—l r
xrys—lzt—i—lwu s
xrys—i—lzt—lwu t
‘,ErJrlysztwufl U

(iv) Aj(z"y*z'w™) = (r+ s —t —u)a"y*2'w;

(v) Ai(z"y*2'w") = (r — s+t — u)z"y* 2w

(vi) Aj(z"yz'w™) = (r — s —t + u)z "y 2'w™.
Proof. By Lemmas 5.3 and 5.6. [
We have a comment.

Lemma 5.11. For N € N the subspace Py is a submodule of the sl,(C)-module P.

Proof. By Proposition 5.10, we have
Ai(Py) C Py, A;(Py) C Py
for i € {1,2,3}. O

Referring to Lemma 5.11, the submodule Py is irreducible by [31, p. 97].

Let N € N, and consider the sly(C)-module Py. By Proposition 5.10(iv)—(vi), the Py-
basis (5.3) diagonalizes the Cartan subalgebra H*. Consequently, Py is the direct sum of
its H*-weight spaces. Our next goal is to describe these weight spaces.

Lemma 5.12. For natural numbers r,s,t,u and R, S,T,U we have
r =R, s=.9, t="T, u="U
if and only if

r+s+t+u=R+S+T+U,
r+s—t—u=R+S5S-T-U,
r—s+t—u=R—-—S+T-U,
r—s—t+u=R—-—S—-T+U.

Proof. Because the matrix T in Definition 4.1 is invertible. O

THE ELECTRONIC JOURNAL OF COMBINATORICS 33(1) (2026), #P1.29 19



Lemma 5.13. Let N € N and consider the sl,(C)-module Py .
(i) Each H*-weight space has dimension one.
(ii) The H*-weight spaces are in bijection with Py .
(iii) For (r,s,t,u) € Py the following holds on the corresponding H*-weight space:

Al =(r+s—t—u)l, A= (r—s+t—u)l, Ay =(r—s—t+u)l.

Proof. By Proposition 5.10(iv)—(vi) and Lemma 5.12. ]

As an aside, we describe the H*-weight spaces from another point of view. We will make
a change of variables.

Lemma 5.14. Let N € N. Pick (r,s,t,u) € Py and recall that

N=r+s+t+u.

Define
A=r+s—t—u, pw=r—s+t—u, v=r—s—t+u.
Then
N+AX+pu+v N4+AX—p—v
r = S =
4 ’ 4 ’
y N-AX+p—v N-X—p+v
= u = .
4 ’ 4
Proof. Because the matrix Y in Definition 4.1 satisfies T2 = 1. m

Definition 5.15. For N € N, let the set P/ consist of the 3-tuples (A, i, v) such that

AN, v € {N,N—2 N—4,...,—N}, N + A+ pu+ v is divisible by 4,
N+X+pu+v=0, N+X—p—v =0,
N—-A+upu—v=0, N—-X—p+v=0.

Lemma 5.16. For N € N, there exists a bijection Py — Py that sends
(rys,t,u) = (r+s—t—u,r—s+t—ur—s—t+u).

The inverse bijection sends

N4+X+p+v N+AX—p—v N=A+pu—v N—A—pu+v
(A p,v) = : , 1 , M : I :

Proof. This is readily checked using Lemma 5.14. m
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Lemma 5.17. Let N € N and consider the sl,(C)-module Py. The H*-weight spaces
are in bijection with Py, in such a way that for (A, u,v) € Py the following holds on the
corresponding H*-weight space:

Al = A, A5 = pl, A =vl.
Proof. By Definition 5.15 and Lemmas 5.13, 5.16. [
We have a comment.

Lemma 5.18. Fori € {1,2,3} and N € N the eigenvalues of Af on Py are {N —2n}Y_,.
For 0 <n < N the (N —2n)-eigenspace for AY on Py has dimension (n+1)(N —n+1).

Proof. We first prove our assertions for A}. By Definition 5.15 and Lemma 5.17, the
eigenvalues of A} on Py are {N — 2n}Y_,. Pick a natural number n at most N, and let
W denote the (N — 2n)-eigenspace for A} on Py. The subspace W is a direct sum of
H*-weight spaces. The H*-weight spaces in question correspond (via Lemma 5.13(ii),(iii))
to the elements (7, s,t,u) € Py such that r+s = N —n and t +u = n. There are exactly
N —n+1 nonnegative integer solutions to r+s = N —n. There are exactly n+1 nonnegative
integer solutions to t4+u = n. Consequently, there are exactly (n+1)(N —n+1) elements
(r,s,t,u) € Py such that r+s = N —n and t +u = n. This shows that W has dimension
(n+1)(IV —n+1). We have proved our assertions for Aj. Our assertions for A%, A% are
similarly proved. [

We have been discussing H*. In Section 7, we will have a similar discussion about H.

6 Some derivations and multiplication maps

Recall the polynomial algebra P = C[z, y, z, w|. In the previous section, we turned P into
an sly(C)-module. In this section, we describe the sly(C)-module P using four partial
derivatives and four multiplication maps.

Consider the partial derivatives

0 0 0 0
Dz_%a Dy_a_ya DZ_E7 .

These derivatives act as follows on the P-basis (5.1). For r,s,t,u € N,

D, (xrysztw“) = ra" Yyt 2w, D, (xTysztw“) = sa"y* 2w, (6.1)

D, (xTysztw“) = ta"y* 2w, D, (azrysztw”) = ux"y 2wl (6.2

For N € N we have
D,(Py) = Pn_1, D,(Px) = Py_1, D,(Pn) = Py_1, D, (Py) = Pn_1.
Lemma 6.1. The following (i)—(iv) hold:
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(i) D, is the unique element in Der(P) that sends

1, y— 0, z 0, w — 0;

(ii) Dy is the unique element in Der(P) that sends

x— 0, y—1, z— 0, w — 0;

(iii) D, is the unique element in Der(P) that sends

x— 0, y+— 0, z—= 1, w — 0;

(iv) Dy, is the unique element in Der(P) that sends

x— 0, y— 0, z 0, w— 1.

Proof. By Lemma 5.6 and (6.1), (6.2).
Definition 6.2. We define M,, M,, M., M,, € End(P) as follows. For f € P,

Mx(f):va My<f>:yf7 Mz(f):zfv Mw(f>:wf-
The maps M,, M,, M,, M, act as follows on the P-basis (5.1). For r,s,t,u € N,
M:c ($rysztwu) _ ZL‘T—HySZt’wu, My(l,rysztwu) — xrys—i-lztwu?

MZ(QTTySZtQUu) _ xryszt-l—lwu’ Mw(xrysztwu) _ I,ryszt,wu—l—l. (64)

—~
o
w

For N € N we have

M,(Pn) € Pyy1, My(Px) € Pyy1, M.(Py) € Py, My (Py) € Py
Lemma 6.3. (See [46, p. 550].) The following relations hold.

(i) Fora € {z,y,z,w},

[Da, M) = 1.
(ii) For distinct a,b € {z,y, z,w},
[Da, Dy = 0, [Ma, M) = 0, [Da, M| = 0.
Proof. We check that [D,, M,] = I. For f € P,

= D) + 2 Du(f) — 2Da(f) = |

Therefore [D,, M,| = I. The remaining assertions are checked in a similar way.
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Remark 6.4. The subalgebra of End(P) generated by D,, D,, D, D,, and M,, M,, M, M,,
is called the fourth Weyl algebra, see [46, p. 550].

Proposition 6.5. On the sly(C)-module P,
Ay =MD, + M,D, + M,D,+ M.D,,
Ay = M.D, + M,Dy + M,D, + M,D,,,
Ay = MyD, + M.D, + M,D. + M,D,

and also
Al =MD, +M,D, - M,D, — M,D,,

A% = M,D, — M,D, + M.D. — M,D.,,
A% = M,D, — M,D, — M.D. + M,D,.

Proof. To verify these equations, apply each side to a P-basis vector from (5.1), and
evaluate the result using Proposition 5.10 along with (6.1)—(6.4). O

7 A basis for P that diagonalizes H

We continue to discuss the sly(C)-module P = C[z,y, z, w]. In Lemma 4.5 we described
the Cartan subalgebras H, H* of sl4(C). In Section 5, we displayed a basis for P that
diagonalizes H*. In this section, we display a basis for P that diagonalizes H.

Recall that x,y, z, w form a basis for P;.

Definition 7.1. We define some vectors in P;:

« THYytztw s THy—z—w

rTr = - [ —

2 Y y 2 Y

. T—Yy+z—w , T—y—z+4w

:—’ wn = -
2 2

Recall the matrix T from Definition 4.1.
Lemma 7.2. The following (i)—(iii) hold:
(i) the vectors z*,y*, z*, w* form a basis for P;;
(ii) Y is the transition matriz from the basis x,y, z, w to the basis x*,y*, z*, w*;

(iii) YT is the transition matriz from the basis x*,y*, z*, w* to the basis x,y, z, w.

Proof. By Definitions 4.1, 7.1 and Y2 = . O]
Lemma 7.3. We have
r = ; - )
2 Y 2
z = , w=
2 2
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Proof. This is a reformulation of Lemma 7.2(iii). O
Lemma 7.4. Referring to the sly(C)-module Py,
(i) Ay sends

A S v =yt 2F = =2 w* = —w'
(il) Ay sends
"= ot Y= =y, A A w' = —w"
(i) Az sends
= Yy =y, A w* = w*;
(iv) A} swaps z* <> y* and 2* <> w*;
(v) A} swaps z* <> z* and y* <> w*;
(vi) A} swaps z* <> w* and y* <> z*.
Proof. By Lemmas 4.2 and 7.2. [
We have been discussing P;. Next we consider P.
Lemma 7.5. The following is a basis for P:
TR T r,s, t,u € N. (7.1)
Proof. The vectors z*, y*, z*, w* form a basis for P;. O
Lemma 7.6. For N € N the following is a basis for Py:
TR T (rys,t,u) € Py. (7.2)

Proof. By Lemma 7.5 and since each of z*,y*, 2*, w* is homogeneous with total degree
one. O

Lemma 7.7. Fach D € Der(P) acts on the P-basis (7.1) as follows. For r,s,t,u € N,
D<x*ry*sz*tw*u) — TJ}*Tily*sZ*tw*u@(Ji*) 4 sx*’"y*sflz*tw*“@(y*)
+ t:r*ry*sz*t_lw*“D(z*) + ux*ry*sz*tw*u—lw(w*)'
Proof. Similar to the proof of Lemma 5.6((i) = (ii)). O

Proposition 7.8. The sly(C)-generators Ay, As, As and Aj, A5, A5 act on the P-basis
(7.1) as follows. Forr,s,t,u € N,
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*7 ) kS okt KT %S o xE

(i)
(i)
(i)
)

(iv) the vector

Ay (2" 2 w) = (r+ s — t — )Ty 2w
AQ(I'*Ty*SZ*tw*u) — (T — s+ t— u)x*ry*sz*tw*“;
A

3(1’*Ty*82’*tw*u) — (T‘ —s—t+ u)x*ry*sz*tw*u;

AT (m*ry*sz*tw*u)

s a linear combination with the following terms and coefficients:

Term Coefficient
x*r—ly*s-i-lz*tw*u r
x*r+1y*sflz*tw*u s
x*ry*sz*t—lw*u-l-l t
x*ry*sz*t—&—lw*u—l U
(v) the vector
A; (x*ry*sz*tw*u)

1$ a linear combination with the following terms and coefficients:

Term Coefficient
l,*rfly*sz*t+1,w*u r
l.*ry*s—lz*tw*u—l—l s
$*r+1y*82*t_lw*u t
x*ry*s—l—lz*tw*u—l U
(vi) the vector
A; (I*ry*sz*tw*u>

1s a linear combination with the following terms and coefficients:

Term Coeflicient
x*r—ly*sz*tw*u—i-l r
JI*Ty*s_lZ*H_lw*u s
I*ry*erlZ*tflw*u t
x*r+1y*sz*tw*ufl U

Proof. By Lemmas 7.4 and 7.7.

]

Let N € N, and consider the sl;(C)-module Py. By Proposition 7.8(i)—(iii), the Py-basis

(7.2) diagonalizes H. Consequently, Py is the direct sum of its H-weight spaces.
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Lemma 7.9. Let N € N and consider the sly(C)-module Py.
(i) Each H-weight space has dimension one.
(ii) The H-weight spaces are in bijection with Py.
(iii) For (r,s,t,u) € Py the following holds on the corresponding H-weight space:

Ai=(r+s—t—u)l, Ay =(r—s+t—u)l, A3 =(r—s—t+u)l.

Proof. By Lemma 5.12 and Proposition 7.8(i)—(iii). O

Lemma 7.10. Let N € N and consider the sl,(C)-module Px. The H-weight spaces are
in bijection with P, in such a way that for (A, u,v) € Py the following holds on the
corresponding H-weight space:

A1:>\I7 AQZMI7 AgZV].
Proof. By Definition 5.15 and Lemmas 5.16, 7.9. O

Lemma 7.11. Fori € {1,2,3} and N € N the eigenvalues of A; on Py are {N —2n}Y .
For 0 < n < N the (N — 2n)-eigenspace for A; on Py has dimension (n+1)(N —n+1).

Proof. Similar to the proof of Lemma 5.18. [

Proposition 7.12. There exists an automorphism o of P that sends
Tk, Yy, z 25, w > w'.
We have 0? =id. Fori € {1,2,3} the following holds on the sly(C)-module P:
A =ocAiot, A =cAiot (7.3)

Proof. The vector space P; has a basis x, y, 2z, w and a basis x*, y*, z*, w*. Therefore, there
exists an automorphism o of P that sends

x—xt, Y=y, Z 2", w — w*.
By Definition 7.1 and Lemma 7.3, the automorphism ¢ sends
o, T T 2z, w* = w.

Therefore 02 = id. Let i € {1,2,3}. Comparing Propositions 5.10, 7.8 we find that
Afo = 0 A; holds on P. This yields (7.3). O

Recall the automorphism 7 of sl;(C) from Lemma 4.3.

Proposition 7.13. For ¢ € sl,(C) the following holds on the sly(C)-module P:

7(p) = oot (7.4)
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Proof. By (7.3) and Lemma 4.4, the following holds on P:
7(A;) = o0 Ao, 7(A}) = cAfo™! ie€{1,2,3}.
This yields (7.4) because the Lie algebra sl,(C) is generated by
A, A} ie€{1,2,3}.

]

We have a comment about the automorphism o of P from Proposition 7.12. The map o
acts on the P-bases (5.1) and (7.1) as follows. For r,s,¢,u € N the map o swaps

r, st u *r kS xt o xu

Ty Zw" =ty W

Moreover, o(Py) = Py for N € N.

8 More derivations and multiplication maps

We continue to discuss the sl;(C)-module P = C|x,y, z,w]. In Section 6, we investigated
the derivations D,, D, D., D, and the multiplication maps M,, M,, M, M,,. In this
section, we introduce the analogous derivations D, Dy, D.«, D~ and multiplication
maps My«, My«, M, M.

The next result is motivated by Lemma 6.1.
Lemma 8.1. The following (i)—(iv) hold.

(i) There ezists a unique element D~ € Der(P) that sends

"1, y* =0, 25— 0, w* — 0.

(ii) There exists a unique element D, € Der(P) that sends

=0, Y= 1, 25 =0, w* — 0.

(i) There exists a unique element D,» € Der(P) that sends

*

" =0, y* =0, A w* — 0.

(iv) There exists a unique element D, € Der(P) that sends

" =0, y =0, Z2" =0, w1

Proof. By Lemma 5.8. ]
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Lemma 8.2. The derivations Dy«, Dy, D+, Dy« act as follows on the P-basis (7.1).
Forr s, t,ueN,

*r %Skt kU *r—1 *s _xt_  xu *xT kS okt ku *r  ks—1 _xt  xu

D$*(xyzw):rx Ytz w, Dy*(xyzw):sxy 2wt
D

t t—1 t t -1
Dz* (ZE*Ty*SZ* w*u) :tI*Ty*SZ* w*u7 w ( X7 kS kK *U X7 kS ok *U )

"y 2w ) = ux™y* 2w
Proof. By Lemmas 7.7, 8.1. O
Lemma 8.3. For N € N we have

D,«(Py) = Py_1, D,-(Py) = Pn_1, D,(Py) = Py_1, D+ (Py) = Pn_1.
Proof. By Lemmas 7.6, 8.2. [

Lemma 8.4. We have

D, + D, + D, +D, D, +D,— D, - D,

DCL‘* 9 ) Dy* 2 )
b _Di=D,+D. - D, 5 _Di=D,-D.+D,
z 2 I w 2 .

Proof. For these equations, each side is a derivation. So by Lemma 5.7, these equations
hold if they hold on P;. By Definition 7.1 or Lemma 7.3, these equations hold on P;. [

Lemma 8.5. We have

Dy + Dy + Do + Dy Dy 4 Dy — Do — Dy

DI 2 I Dy = 2 ?
D _ D(E* — Dy* + DZ* — D’LU* D _ DJ?* —_— Dy* —_— DZ* + D’LU*
z 2 Y w 2 .
Proof. By Lemma 8.4 and linear algebra. O
Lemma 8.6. The automorphism o of P satisfies
D, =o0D,o !, D, = (TDyO'_l, D, = O'Dzd_l, Dy = cDyo L.

Proof. Compare (6.1), (6.2) with Lemma 8.2 using the comment at the end of Section
7. O

Definition 8.7. We define M+, M+, M+, M~ € End(P) as follows. For f € P,
M- (f) = 27 f, My-(f) =y"f, M (f) =21, M- (f) = w"f
The maps M-, My, M, M~ act as follows on the P-basis (7.1). For r,s,t,u € N,
M, (x*ry*sz*tw*u) — Ty M, (x*ry*sz*tw*u) — Tyt
M.. (x*ry*sz*tw*u) — Ty M, (x*’r‘y*sz*tw*u) — Ty b
For N € N we have
M,«(Pyx) C Pyy1, M,-(Py) € Py4a, M,«(Py) C Py, My« (Pyn) C Pyg.
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Lemma 8.8. We have
M, + M, + M, + M,

Mﬂ?*: M*—

9 ) Yy 92 3
M*:Mm—My—i—Mz—Mw M*:Mm—My—MZ—ka'
z 2 9 w 2
Proof. By Definitions 6.2, 7.1, 8.7. O

Lemma 8.9. We have

Mx 2 ) My = 9 y
M _ MZ‘* — My* + MZ* — M’LU* M _ MI* —_— My* — MZ* + Mw* .
z 2 Y w 2
Proof. By Lemma 7.3 and Definitions 6.2, 8.7. O

Lemma 8.10. The automorphism o of P satisfies

My = oMo, M, = aMyafl, My = oMo, My = oMo .
Proof. We prove the first equation. We have M, -0 = oM, because for all f € P,

Myo(f)=x"c(f) =0o(x)o(f) =o(xf) =aM.(f).

The first equation is proved. The remaining equations are similarly proved. O
Lemma 8.11. The following relations hold.

(i) Fora € {z*,y*, z*, w*},

[Da, M,] = 1.
(ii) For distinct a,b € {z*,y*, z*, w*},
[Da, Dy =0, [Ma, M) = 0, [Da, M| = 0.

Proof. In Lemma 6.3 conjugate each term by o, and evaluate the result using Lemmas
8.6, 8.10. B
Proposition 8.12. On the sly(C)-module P,

Al = My« Dy + My Dy + My Do + Mos Dy,

A% = M..Dye + My-Dy + MyD.o + My D,

A% = My-Dye + M,-Dye + My-Dye + My D,
and also

Ay = MypDye + MyDyr — Mo+ Do — My Doy

Ay = My-Dye — My:Dye + M,-D,e — My-Dyye,

As = MyDye — My-Dye — My-Dye + My Dy
Proof. In Proposition 6.5 conjugate each term by o, and evaluate the result using (7.3)

along with Lemmas 8.6, 8.10. O
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9 A Hermitian form on P

We continue to discuss the sly(C)-module P = C[z,y, z,w]. In this section, we endow the
vector space P with a Hermitian form (, ) with respect to which the P-bases (5.1) and
(7.1) are orthogonal.

Definition 9.1. Let W denote a vector space. A Hermitian form on W is a function
(,): W x W — C such that:

(i) (f +g,h) = (f,h) + (g,h) for all f,g,h € W;
(ii) (af,g) = a(f,g) foralla € C and f,g € W;

(i) (f,9) = (g, f) forall f,g e W.
For a Hermitian form (, ) on W, we abbreviate || f||* = (f, f) for all f € W.

Definition 9.2. We endow the vector space P with a Hermitian form (, ) with respect
to which the basis vectors

"y r,s,t,u € N
are mutually orthogonal and
“IE = rls!tul r,s,t,u € N. (9.1)

2"y 2 w

Lemma 9.3. The homogeneous components { Py} nen are mutually orthogonal with re-
spect to (, ).
Proof. By Lemma 5.2 and Definition 9.2. O]

Lemma 9.4. For N € N the Py-basis
"yt L™ (rys,t,u) € Py
and the Py-basis
2"y 2t

r's't'u' (T787t7u) € :PN

are dual with respect to (, ).

Proof. We invoke Definition 9.2. For (r,s,t,u) € Py and (R, S, T,U) € Py we have

xrysztwu R ST U
<m,l‘ y zw >= 5r,R5s,S5t,T5u,U-
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Lemma 9.5. For N € N,

08 st U

N! "y 2w

*N _ ~ " g

S oN Z rlsitlu! (9:2)
(r,s,t,u) €PN

Proof. By Definition 7.1,
N (:c—l—y—irz—l—w)N
(—)
In this equation, expand the right-hand side using the multinomial theorem. ]
Lemma 9.6. For N € N and (r,s,t,u) € Py,
N!
<xrysztwu7I*N> — 2_N
Proof. To verify the result, eliminate z*V using (9.2) and evaluate the result using Defi-

nition 9.2. O
Lemma 9.7. For f, g € P we have

(Dof,g) = (f, M.g), (Dyf,9) = (f, Myg), (9.3)
(D.f,9) = (f, M.g), (Dwf,g) = {f, Mug). (9.4)

Proof. Without loss of generality, we may assume that f, g are contained in the P-basis
(5.1). Under this assumption (9.3), (9.4) are routinely checked using Definition 9.2 and

(6.1)—(6.4). O
Lemma 9.8. For f,g € P we have
(M.f,g) = ([, Dzg), (Myf,9) = (f, Dyg), (9.5)
<szag> = <f7 ng>> <waag> = <f7 Dw9> (96)
Proof. By Definition 9.1(iii) and Lemma 9.7. O
Lemma 9.9. Fori € {1,2,3} and f,g € P,
(Aif, 9) = (f, Ag), (Aif 9) = (f, Aig).

Proof. We first show that (A;f, g) = (f, A1g). By Proposition 6.5, the following holds on
P:

Ay =MD, + M,D, + M,D,+ M,D,,.
Using this and Lemmas 9.7, 9.8 we obtain

(Arf,9) = (MyD.f,g) + (MyDyf,g) + (MyD.f,g) + (M.Dyf, g)
= (Dyf, Dyg) + (Dyf, Dsg) + (D.f, Dug) + (Duw [, D.g)
= (f, M. Dyg) + (f, MyDyg) + (f, M.Dywg) + (f, My,D.g)
= <f> A19>-

We have shown that (A;f, g) = (f, A1g). The other assertions are similarly shown. ]

THE ELECTRONIC JOURNAL OF COMBINATORICS 33(1) (2026), #P1.29 31



Proposition 9.10. With respect to (, ) the vectors

¥y r,s,t,u € N (9.7)
are mutually orthogonal and
b ||* = rls!tiu! r,s,t,u € N. (9.8)

||x*ry*sz*

Proof. We first show that the vectors (9.7) are mutually orthogonal. To this end, let f, g
denote vectors from (9.7) such that (f,g) # 0. We show that f = g. Write

f _ QT*Ty*SZ*tw*u, g= I'*Ry*SZ*T'lU*U-

By Lemma 9.3 and since (f, g) # 0,
r+s+t+u=R+S+T+U. (9.9)

By Lemma 9.9 and the construction,

<A1f7g> _ <f7Alg> <A2f7g> _ <f7A2g> <A3f>g> _ <f>A3g>
(f.9) (fra) (f.9) (fra) (f.9) (f.9)

Evaluating these equations using Proposition 7.8, we obtain
r+s—t—u=R+S-T-U, (9.10)
r—s+t—u=R-S+T-U, (9.11)
r—s—t+u=R-S-T+U. (9.12)

By Lemma 5.12 and (9.9)-(9.12),
r=R, s=.9, t="T, u="U.

Therefore f = g. We have shown that the vectors (9.7) are mutually orthogonal. Next
we prove (9.8). For the rest of this proof, fix N € N. We will prove that

|2*" "5 2w ||* = rlsltlu) (r,s,t,u) € Py. (9.13)
Our proof of (9.13) is by induction on s + ¢ + u. First assume that s + ¢ +u = 0. Then

r=Nand s =t =wu=0. We must show that [|z*V||> = N!. To this end, in (9.2) take
the square norm of each side to obtain

0,8 Sty U

N! "yt w

||$*N||2 H < § :
I
2 (reta)eD risltlu!

2

_O o s

4N i (rls!tlul)?
r,8,l,u N
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N! N!
:4_N Z rlsitlul

(r,s,t,u)EPN
= N4 N1+1+141)Y
= NI

We have proved (9.13) for s + ¢+ u = 0. Next assume that s + ¢+« > 1. Then s >
t>1oru=>1 We take each case in turn.

Case s > 1. Define
R=r+1, S=s5—-1, T =t, U=u
and note that S+ 7T + U < s+t + u. By Proposition 7.8(iv) and Lemma 9.9,
Rlja* ™ 2w |2 = (g™ 2w, A*x*Ry*SZ*Tw*U>
<A>{x*ry*s *t 3: y*SZ*Tw*U>
— sl Fy™S T2,
By this and induction,

*7 kS ki *u||2

|lx* Yy 2" w = %Hx*Ry*Sz*Tw*UHQ = %R!S!T!U! = rlsltlul.

Case t > 1. Define
R=r+1, S =s, T=t-1, U=u
and note that S+ 7T + U < s+t + u. By Proposition 7.8(v) and Lemma 9.9,
RHx*ry*sz*tw*uHQ <x*'ry*sz*tw*u A*ZE*Ry Z w*U>
= (AL Ty e, g Ry T U
= t||x Ry 2 TV |2,

By this and induction,

|2*"y* 2 w*||? = }%Hx y* T2 = RR!S!T!U! = rlsltlul.
Case u > 1. Define
R=r+1, S =s, T=t, U=u—-1
and note that S+ 7 4+ U < s+t + u. By Proposition 7.8(vi) and Lemma 9.9,
RH.CE*Ty*SZ*tw*qu <x*ry*sz*tw*u A;.CE*Ry Z*Tw*U>
<A§x*ry*8 *t .I y Z*Tw*U>
= ul|lz* Ry 2 Tw V|2,
By this and induction,

*7r %Skt *u||2

|lz* y™* 2" w = E||x*Ry*Sz*Tw*U||2 = LRISITIUN = plsithul.
R R
We have proven (9.13), and (9.8) follows.
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The following result is motivated by Lemma 9.4.

Lemma 9.11. For N € N the Pyx-basis
¥y *S 2t (rys,t,u) € Py

and the Py-basis

*T ) kS okt , kU
Ty 2w
el (r,s,t,u) € Py
are dual with respect to (, ).

Proof. Use Proposition 9.10. m

The following result is motivated by Lemma 9.5. Recall the automorphism o of P from
Proposition 7.12.

Lemma 9.12. For N € N,

N' KT kS okt KU
L
2N rls!tiu!
(rys,t,u)E€PN
Proof. Apply the automorphism o to each side of (9.2). ]

Proposition 9.13. For f,g € P we have

(0f,09) =(f.9)- (9.14)
Proof. Without loss of generality, we may assume that f, g are contained in the P-basis
(5.1). Comparing Definition 9.2 and Proposition 9.10, we routinely obtain (9.14). O

The following result is motivated by Lemma 9.6.

Lemma 9.14. For N € N and (r, s, t,u) € Py,

N!
<$N7x*ry*sz*tw*u> — 2_N
Proof. Apply the automorphism ¢ to everything in Lemma 9.6, and evaluate the result
using Proposition 9.13. [
The next result is motivated by Lemmas 9.7, 9.8.
Lemma 9.15. For f,g € P we have
<D:L’*fvg> - <f7Mx*g>7 <Dy*fag> = <f7My*g>v
<D2*f7g> = <f7MZ*g>7 <Dw*fag> = <f7M’LU*g>
and also
<Mm*fvg> - <f7Dl"*g>7 <My*f7g> - <f7Dy*g>7
<Mz*fag> = <f7 Dz*g>> <Mw*fag> = <f7 Dw*g>
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Proof. To prove the first equation, observe that
<D:c*fa g> = <0-Da:0-_1f7 g> = <D:c0-_1fa 0'_19>

= (o7 f,Myotg) = (f,oM,otg) = (f, My-g).
The remaining equations are similarly proved. O
Let N € N. Our next goal is to compute all the inner products between the Py-basis

"yt 2w (r,s,t,u) € Py

and the Py-basis

TR T (rys,t,u) € Py.

We will express these inner products in two ways: using a generating function, and as
hypergeometric sums.

Proposition 9.16. Let N € N. For (r,s,t,u) € Py and (R,S,T,U) € Py, the inner

product
<x’"ysztw” TS Z*Tw*U> (9.15)
18 equal to
rls!tiu!
9N

times the coefficient of x"y*z'w® in

(z+y+z+w)fi@t+y—z—w)@z—-—y+z—w)(z—y—2z+w).

Proof. Expand the inner product (9.15) using Definition 7.1, and evaluate the result using
Definition 9.2. N

We bring in some notation. For o € C define
() =a(a+1)---(a+n—1) n € N.
The following result is a routine application of [40, Line (6)].
Proposition 9.17. Let N € N. For (r,s,t,u) € Py and (R,S,T,U) € Py,
<xrysztwu 2By Z*Tw*U>
N PO O O VTG WP s

9N i (=N)atbretdrets alblcldle! f!
a+btctd+et+ fSN

Proof. This is [40, Line (6)] applied to the character algebra of the Klein four-group
Zy @ Zy. For this character algebra the first and second eigenmatrix is 27, where T is
from Definition 4.1. The matrix 2 mentioned in [40, Line (6)] is given by

0=

NN O
N O N
[anll O V)
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10 Some polynomials
In this section, we consider some polynomials that are motivated by Proposition 9.17.
Background information about this general topic can be found in [20,24,39,47].

Throughout this section, fix N € N. Let A, Ao, A3, i1, 2, 13 denote mutually commuting
indeterminates.

Definition 10.1. Define the polynomial

P, Ag, Ag; e, o, i3)

_ Z (—)\1)a+b(—)\2)c+d(—)\3)e+f(—ﬂl)c+e(—M2)a+f(—M3)b+d
(=N)atbrerdrers alblcldle! fI -

9a+btctdtetf

a,b,c,d,e,fEN
a+b+tctdtet+ fSN

Note 10.2. The polynomial P(A1, Ao, As; 1, e, pi3) is symmetric in Ay, Ao, A3 and symmet-
ric in pq, po, 3. Moreover,

P(A1, A2,y Ass i, o, pi3) = Plpn, pio, pi3; A1, Az, Az). (10.1)

Lemma 10.3. For (r,s,t,u) € Py and (R,S,T,U) € Py,

N!
<:L"Tysztw“, x*Ry*Sz*Tw*U> = 2—N’J)(s, t,u; S, T,U).
Proof. By Proposition 9.17 and Definition 10.1. O

Proposition 10.4. For (r,s,t,u) € Py we have

N! P(s,t,u; S, T,U)
r.s t u __ ) Uy Uy My Ly xR xS T U
CyHt =gy ) RISITIU! yoe (102)
(R,S,T,U)ETN
N! P(s,t,u; S, T,U)
*xr kS okt ku s Uy By My £ R S . T U
STyt = oy ) RS YA (10.3)
(R,S,T,U)ETN

Proof. Use linear algebra, invoking Definition 9.2 and Proposition 9.10 and Lemma 10.3.
O

Next, we give an orthogonality relation. The following result is a special case of [40,
Theorem 1.1].

Proposition 10.5. For (r,s,t,u) € Py and (1,5, t',u') € Py,

Z P(s,t,u; S, T, U)P(s, ¢/, u'; S, T,U) AN 15yl

RIS'TIU! = s Ot O (N1)?
(R,S,TU)EP N
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Proof. We consider the inner product
<xrysztw“, xT,yS,zt,w“,> (10.4)

from two points of view. On one hand, we evaluate (10.4) using Definition 9.2. On
the other hand, we eliminate the two arguments in (10.4) using (10.2), and evaluate the

result using Proposition 9.10. Comparing the two points of view, we get the orthogonality
relation. O

Next, we give some recurrence relations.
Proposition 10.6. The following (i)—(iii) hold for (r,s,t,u) € Py and (R,S,T,U) € Py.

(i) (R+S—T—-U)P(s,t,u; S, T,U) is a linear combination with the following terms
and coefficients:

Term Coefficient
P(s+1,t,u;S,T,0) r
P(s—1,t,u; S,T,U) s

P(s,t —1Lu+1;5,T,U) t
P(s,t+1,u—1;5,T,U) u

(ii)) (R—=S+T—U)P(s,t,u; S, T,U) is a linear combination with the following terms
and coefficients:

Term Coefficient
P(s,t+1,u;S,T,U) r
P(s—1,t,u+1;S,T,U) s
P(s,t —1,u; S, T,U) t
P(s+1,t,u—1;5,T,U) U

(i) (R—S —T +U)P(s,t,u;S,T,U) is a linear combination with the following terms
and coefficients:

Term Coefficient
P(s,t,u+1;5,T,0) r
P(s—1,t+1,u;S,T,U) S
P(s+1,t—1,u;S,T,U) t
P(s,t,u—1;5,T,U) u

Proof. (i) By Lemma 9.9 we have
<A1(xTysztw“),x*Ry*Sz*Tw*U> — <xrysztw“,A1(ac*Ry*Sz*T *U)> (105)

Evaluate the left-hand side of (10.5) using Proposition 5.10(i) and Lemma 10.3. Evaluate
the right-hand side of (10.5) using Proposition 7.8(i) and Lemma 10.3. The result follows.
(ii), (iil) Similar to the proof of (i) above. O
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We just gave some recurrence relations. Next, we simplify these relations using a change

of variables.

Definition 10.7. Define the polynomial

PV, Agy Ags i, o, 3)

:T()\ly)\%)\?); A ) 4

N+ —pg—piz3 N — py + pg — pi3 N_,Ul_,UQ"‘,U?))
) 4 *

Lemma 10.8. For (r,s,t,u) € Py and (R,S,T,U) € Py,

P(s,t,u; S, T,U) = PV(s,t,u; R+ S —T -UR—-S+T—-UR—-S-T+U).

Proof. By Lemma 5.14 and Definition 10.7.

Recall the set P, from Definition 5.15.

Proposition 10.9. The following (i)-(iii) hold for (r,s,t,u) € Pn and (A, p,v) € Py.

(1) APY(s,t,u; A\, p,v) is a linear combination with the following terms and coefficients:

Term

Coefficient

PY(s+ 1, t,u; A\, p,v)
PYV(s — 1, t,u; \, i, v)
PYV(s,t —Lu+1;\ pu,v)
PY(s,t + 1u—1; 0 pu,v)

r

S
t
u

(i) pPY(s,t,u; A, i, v) is a linear combination with the following terms and coefficients:

Term

Coefficient

PY(s,t+ 1,u;\, i, v)
PY(s =1L t,u—+1; A pu,v)
PY(s,t — 1Lu;\, p,v)
PY(s+ 1, t,u—1;\ pu,v)

r

s
t
u

(iil) vPY(s,t,u; A, pu,v) is a linear combination with the following terms and coefficients:

Term Coefficient
PYV(s,t,u+ ;A p,v) r
PY(s =1, t+ 1, u; A\, i, v) s
PY(s+1,t—1,u; A\, i, v) t
PY(s,t,u—1; )\ p,v) u
Proof. Evaluate Proposition 10.6(i)—(iii) using Lemma 5.16 and Lemma 10.8. O

Proposition 10.10. The following hold for (r,s,t,u) € Py:
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(i) PV(s,t,u; Ay, Ay, Ag)ax™N = "y 2tw;
(i) PY(s,t,u; A;, A, A5 a™N = o™y sz ™,
Proof. (i) It suffices to show that for (R, S,T,U) € Py,
<1Pv(s,t,u;A1,A2,A3) oy Z*Tw*U> <xrysztw" T Z*Tw*U> (10.6)
Using in order Lemma 9.9, Proposition 7.8(i)—(iii), and Lemmas 10.8, 9.14, 10.3,
<‘Pv(s,t,u; Ay, Ay, Az o By Z*Tw*U>
= <xN,in(s,t,u;A1,A2,A3)x y* Z*Tw*U>
- <g;N 2By Z*Tw*U>?v(s,t,u;R+S—T— UR-S+T-UR-S—T+U)
= <a:N By Z*Tw*U>‘P(s,t,u; S, T,U)
= %?(s,t,u; S, T,U)
<Irysztwu 2By Z*Tw*U>
(i) Similar to the proof of (i) above. O
Proposition 10.11. The following hold.
(i) Py has a basis

A3 AL AN s,t,u € N, s+t+u<N. (10.7)

(ii) Py has a basis

A Agt AR N s,t,u €N, s+t+u<N. (10.8)

Proof. (i) The number of vectors in (10.7) is equal to (N +?), and this is the dimension of
Py. By linear algebra, it suffices to show that Py is spanned by the vectors (10.7). By
Lemma 5.2 and Proposition 10.10(i), Py is spanned by the vectors (10.7).

(i) Similar to the proof of (i) above. O

11 Some sly(C)-actions on P

We continue to discuss the sl;(C)-module P = Clz,y, z, w]. Throughout this section we
fix distinct 4, j € {1,2,3}. In Corollary 3.10 we saw that A;, A5 generate a Lie subalgebra
of s1,(C) that is isomorphic to sly(C). The sly(C)-module P becomes an sl,C)-module,
by restricting the sl4(C) action to sl,C). In the present section we investigate the sly(C)-
module P.
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Let us briefly review the theory of finite-dimensional sly(C)-modules. The following ma-
terial can be found in [25, Sections 6, 7]. Each finite-dimensional sly(C)-module is a direct
sum of irreducible sly(C)-modules. For N € N, up to isomorphism there exists a unique
irreducible sly(C)-module Vy of dimension N 4 1. The sly(C)-module Vy has a basis
{v,}_, such that

Hv, = (N —2n)v, (0<n<N),
Fu, = (n+ 1)v,41 0<n<N-1), Foy =0,
Ev, = (N —n+1)v,4 (1<n<N), Evy = 0.
We mention another basis for V. Define
A
un:vn( > (0<n<N).
n
The vectors {u, }_, form a basis for Vy, and
Hu, = (N — 2n)u, (0<n<N),
Fu, = (N —n)uy1 0<n<N-1), Foy =0,
Eu,, = nu,_, (1<n<N), Evg = 0.

Definition 11.1. Let W denote a finite-dimensional sly(C)-module. Decompose W into
a direct sum of irreducible sly(C)-submodules:

W =W+ Wyt -+ W (11.1)

Pick N € N and consider the irreducible sly(C)-module V. By the multiplicity with which
Vi appears in W we mean the number of summands in (11.1) that are isomorphic to Vy
(this number does not depend on the choice of decomposition, see [18, Chapter IV]). We
say that Vy is an irreducible component of W whenever Vy appears in W with nonzero
multiplicity.

Proposition 11.2. For N € N the sly(C)-module Py has the following irreducible com-
ponents:
For 0 < n < |N/2| the module Vy_s, appears in Py with multiplicity N — 2n + 1.

Proof. Pick M € N such that V), is an irreducible component of Py. The eigenvalues of
A% on Py are {N — 2n}N_,. The integer M is a nonnegative eigenvalue of A% on Vyy, so
there exists a natural number n < | N/2] such that M = N —2n. By these comments, V
is included in the list (11.2). For 0 < n < | N/2] let mult(Vy_s,) denote the multiplicity
with which Vy_s, appears in Py. Counting A;‘- eigenspace dimensions and using Lemma
5.18, we obtain

(n—i—l)(N—n—l—l):Xn:mult(VN24), 0<n<|N/2|.
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From these equations we find that for 0 < n < |N/2],

mult(Vy_9,) = (n+1)(N —n+1) —n(N —n + 2)
=N—2n+1.

12 The maps Ll, Lz, L3 and Rl, Rz, R3

We continue to discuss the sly(C)-module P = Clz,y, z,w]. In this section we do the
following. For i € {1,2,3} we introduce a “lowering map” L; € End(P) and a “raising
map” R; € End(P). For these maps we discuss the injectivity and surjectivity. We also
discuss how these maps are related to the sl,(C)-generators and the Hermitian form (, ).

Definition 12.1. Define Ly, L, L3 € End(P) by
L,=D,Dy,— D.D,, Ly=D,D,— D,D,, Ly =D,D, — D,D.,.
Lemma 12.2. We have
Li=DyDy — D..Dy.,  Ly=DyD.—Dy-Dy,  Ly=DyDye — DyeD.e.

Proof. To verify these equations, eliminate D+, D+, D+, D,,» using Lemma 8.4 and eval-
uate the results using Definition 12.1. m

Recall the automorphism o of P from Proposition 7.12.
Lemma 12.3. Fori € {1,2,3} the map L; commutes with o.

Proof. By Definition 12.1 and Lemmas 8.6, 12.2 we obtain

oLio! = U(Dny - Dsz>a_l = DDy — DyeDy- = L.

[
Lemma 12.4. The following hold:
(i) for distincti,j € {1,2,3} we have [L;, L;] = 0;
(ii) forie {1,2,3} and N € N we have L;(Py) C Py_s.
Proof. (i) By Definition 12.1 and since D,, D,, D,, D,, mutually commute.
(ii) By Definition 12.1 and the comments above Lemma 6.1. O

Next, we describe how Li, Ls, L3 act on the P-basis (5.1).
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Lemma 12.5. Forr, s, t,u € N we have
Lo(a"y 2wt = rsa™ Yyt Lstw® — tua”y® 2wt
Lo(z"y2w) = rta’ 2t — sua”y* 2ttt
La(z"y*2'w™) = 7

Proof. By (6.1), (6.2) and Definition 12.1. O

Next, we describe how Li, Lo, L3 act on the P-basis (7.1).

r—1,s_t, u—1

ur" Tyt Zwt T — sta”

ysflztflwu.

Lemma 12.6. Forr, s, t,u € N we have

Ll (m*ry*sz*tw*u) _ Tsx*r—ly*s—lz*tw*u o tux*ry*sz*t—lw*u—l
- )
L2 (x*ry*sz*tw*“) _ Ttx*r—ly*sz*t—lw*u _ SUI*Ty*S_IZ*tw*u_I
- )
Lg(x*ry*sz*tw*u) — Tux*rfly*sz*tw*ufl - Stx*ry*sflz*tflw*u
Proof. By Lemmas 8.2, 12.2. ]
)

Proposition 12.7. The following (i)—(iii) hold on P.
(i) Ly commutes with

AQ; A37 A;, A;

(ii) Lo commutes with

As, Ay, A3, Al

(iii) L3 commutes with

Ay, As, A7, As.

Proof. First we prove that L;, Ao commute. By Lemma 6.3, Proposition 6.5, and Defini-
tion 12.1,
Ly, As) = [D, Dy, — D, Dy, M, D, + M,D,, + M.,D, + M,D,)]
= D,D,, M, D,| +[D.D,, M,D,] — [D,D,, M.D,] — [D,D,, M,,D,|
= D,, M,|D,D, + D,, M,|D,D,, — D, M,)D,D,, — [D., M,|D,D,
=D,D.+D,D,—D,D,—D,D,
=0.

Next we prove that L, A5 commute. We have

Ly, A3 = D, D, — D.Dy,, M,D, — M,D, + M,D, — M,D,,|
= D,D,,M,D,| - [D,D,, M,D,| — [D,D,,, M.D,| + [D,D.,, M,,D,|
= D,, M,|D, D, — [D,, M,|D,D, — [D,, M,|D,D.,, + [D,, M,|D,D,,
=D,D,—~D,D,—D.D,+ D.D,,
= 0.
The remaining assertions are similarly proven. O
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Lemma 12.8. Fach of Ly, Lo, L3 is surjective but not injective.
Proof. We first show that L, is surjective. To do this, we show that

"y’ 2w € Ly(P) r,s,t,u € N. (12.1)
We will prove (12.1) by induction on u. First assume that © = 0. By Lemma 12.5,

Ll (Ir+1ys+1zt)
T e L(P).
Y T s+ 1) 1(P)

Next assume that v > 1. By Lemma 12.5,

Ll (Ir+1ys+1ztwu) 4 tuxr—l—lys—i—lzt—lwu—l
(r+1)(s+1)

In the above fraction, the numerator term on the right is contained in L, (P) by induction.
By these comments, x"y*z'w" € Li(P). We have shown that L; is surjective. Observe
that L, is not injective, because L, sends Py — 0 and P; — 0. We have proved our claims
about L;. The claims about Ls, L3 are similarly proven. O

We make an observation for later use. For N € N,

(N;?’) = <N;L 1) + (N + 1) (12.2)

Lemma 12.9. The following hold for i € {1,2,3} and N € N:
(i) Li(Pn) = Pn-2;
(i) Ker(L;) N Py has dimension (N + 1)2.

Proof. (i) By Lemma 12.4(ii) and Lemma 12.8.
(ii) By linear algebra along with (12.2) and (i) above,

d1m<Ker(LZ) N PN> = dim PN — dim PN_2
N N+1
:( ;3)_( ;):(N+1)2.

Definition 12.10. Define Ry, Ry, R3 € End(P) by

Ry = M, M, — M.M,, Ry = M, M, — M,,M,, Ry = M, M,, — M,M,.
We clarify Definition 12.10. For f € P,

By(f) = (zy — zw) f, Ry(f) = (w2 —wy) f, Ry(f) = (zw —y2)f.  (12.3)
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Lemma 12.11. We have
xy — 2w =o'y — 2w, rz —wy =" —wyl,

In other words, the automorphism o fixes each of

Tw —yz = rw" —y2r

TY — 2w, Tz — Wy, TW — Yz.

Proof. Use Definition 7.1.

Lemma 12.12. We have
Rl - Mx*My* - MZ*M’LU*7 RQ M M * T M M

Proof. By (12.3) and Lemma 12.11.

Ry =

Lemma 12.13. Fori € {1,2,3} the map R; commutes with o.

Proof. Similar to the proof of Lemma 12.3.
Lemma 12.14. The following hold:

(i) for distincti,j € {1,2,3} we have [R;, R;] = 0;

(i) forie€ {1,2,3} and N € N we have R;(Pyn) C Pyo.

My« Mye — My M.,

Proof. (i) By Definition 12.10 and since M,, M,, M., M,, mutually commute.

(ii) By Lemma 5.2 and (12.3).

Next, we describe how R;, Ry, R3 act on the P-basis (5.1).

Lemma 12.15. Forr,s,t,u € N we have

Rl (xrysztw ) Ir+1ys+lztwu xryszt-l-l —4-17
RQ(I’rySZtU) ) — xr+1yszt+1 xrys+l t u+1
Rg([L‘TySth ) — mr—&-lysztwu—l—l xrys—‘rl t+1

Proof. By (12.3).

Next, we describe how Ry, Ry, R act on the P-basis (7.1).

Lemma 12.16. Forr,s,t,u € N we have

R (x*ry*sz*tw ) $*T+1y*5+1z*tw x*ry*sz*t+1 *u+1
R (x*ry*sz*tw ) — x*r—i—ly*sz*t—l—l x*ry*s—l-lz*tw*u—l—l
R (m*Ty*Sz*tw ) l,*rJrly*sz*tw*qul x*ry*erl *t+1w

Proof. By Lemma 12.12.
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Proposition 12.17. The following (i)—(iii) hold on P.

(i) Ry commutes with

A27 A37 A;, A;

(ii) Ry commutes with

As, Ay, Az, Aj.
(iii) R3 commutes with
Ay, Ay, Al Al

Proof. First we prove that R, Ay commute. By Lemma 6.3, Proposition 6.5, and Defini-
tion 12.10,

[Ag, Ry] = [M.D, + M,,D, + M, D, + M,D,,, M, M, — M,M,)]
= [M.D,, M,M,] + [M,D,, M,M,] — [M,D., M.M,] — [M,D.,,, M,M,]
= M,M,[D,, M,] + M,M,[D,, M,] — M,M,[D,, M,] — M,M,[D,,, M,]
= M,M, + M,M,, — M, M, — M,M,
= 0.

Next we prove that Ry, A5 commute. We have

[A}, Ry] = [MyD, — M,D,, + M.D. — M,D,,, MyM, — M.M,)]
= [Mo Dy, Mo My| — [MyDy, Mo M| — [M., D, M. My + [My Dy, M. M,]
= M,M,[D,, M,] — M,M,[D,, M,] — M. My[D., M.] + M.M¢,[D,, M,]
= MM, — M,M, — M.M,, + M.M,
= 0.

The remaining assertions are similarly proven. O
Lemma 12.18. Fach of Ry, Ry, R3 is injective but not surjective.

Proof. The maps are injective, by (12.3) and since P is an integral domain. The maps
are not surjective, because their images do not contain P,, P; by Lemma 12.14(ii). O]

Lemma 12.19. For f,g € P we have

<L1f7 g) = <f7 R1g>7 <L2f7 g> = <f7 R2g>7 <L3f7 g> = <f7 R3g>
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Proof. We first show that (L f, g) = (f, Rig). Using Lemmas 6.3(ii), 9.7 and Definitions
12.1, 12.10 we obtain

(Lif,9) = (DaDy f,9) = (D2Duw f, 9)

= (Dyf, Mzg) — (Duwf, M-g)

<f MyMag) — (f, M Mzg>

= (f, MxMyg) — (f, M.M.,g)

= <fa ng>
The remaining assertions are similarly shown. O
Lemma 12.20. For f,g € P we have
(Bif,9) = (f Lrg), (Raf, ) = ([, L2g), (Rsf,9) = ([, Lag)-

Proof. By Definition 9.1(iii) and Lemma 12.19. O

Proposition 12.21. For ¢ € {1,2,3} and N € N the following sum is orthogonal and
direct:

PN = Ri(PNfg) + Ker(Ll) N PN. (124)

Proof. Referring to (12.4), we consider the dimensions of the three terms. By Lemma 5.2,

the dimension of Py is equal to (N ;r 3) By Lemma 5.2 and since the map R; is injective

by Lemma 12.18, the dimension of R;(Py_») is equal to (";'). By Lemma 12.9(ii) the
dimension of Ker(L) N Py is equal to (N + 1)%. By these comments, for (12.4) the
dimension of the left-hand side is equal to the sum of the dimensions of the two terms
on the right-hand side. It remains to show that these two terms are orthogonal. For

f € Py_o and g € Ker(L;) N Py,
The result follows. O
Proposition 12.22. Fori € {1,2,3} and N € N the following sum is direct:

N2
Pv=> R! (Ker(Li) N PN_%). (12.5)
{=0

Proof. By Proposition 12.21 and induction on N, together with the fact that R; is injec-
tive. =

Shortly we will show that the sum (12.5) is orthogonal.
Proposition 12.23. For i € {1,2,3} the following sum is direct:

pP= ZZRf<Ker mPN) (12.6)

NeN leN
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Proof. In the direct sum P =}y Py eliminate the summands using Proposition 12.22.
Evaluate the result using a change of variables N — 2¢ — N. O

Shortly we will show that the sum (12.6) is orthogonal. We will also describe the sum-
mands from various points of view.

Lemma 12.24. The following holds for N,{ € N:

(i) R{ (Ker(Ll) N PN> is invariant under each of

A2 ) A3 ) A; ) A; 3 o.

(ii) RS (Ker(Lg) N PN> is invariant under each of

Ag, Al, A;, AT, ag.

(iii) RS (Ker(Lg) N PN> is invariant under each of
Ay, Ay, Al A3, o.

Proof. (i) Each of Ly, Ry commutes with each of Ay, A3, A5, A5 by Propositions 12.7,
12.17. Each of L, Ry commutes with ¢ by Lemmas 12.3, 12.13. By Lemma 5.11, the
subspace Py is invariant under A, A3, A5, A5. We mentioned at the end of Section 7 that
o(Py) = Py. The result follows.

(ii), (iil) Similar to the proof of (i). O

13 More actions of sl;(C) on P

We continue to discuss the sl,(C)-module P = Clz,y, z,w]. Let i € {1,2,3}. In this sec-
tion, we use L;, R; to construct an sly(C)-action on P. We decompose P into an orthog-
onal direct sum of irreducible sly(C)-submodules. These irreducible sly(C)-submodules

are infinite-dimensional. We investigate how the decomposition is related to the sum in
(12.6).

Definition 13.1. Define a map 2 € End(P) such that for N € N, the subspace Py is an
eigenspace for () with eigenvalue N.

Lemma 13.2. The map 2 commutes with o and everything in sly(C).
Proof. For N € N the subspace Py is invariant under ¢ and everything in sly(C). O
Lemma 13.3. We have

Q= M,D, + M,D, + M,D, + M,D,,
Q - Mx*DI* + My*Dy* + MZ*DZ* + Mw*Dw*.
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Proof. To verify the first equation, apply each side to a P-basis vector from (5.1). To
verify the second equation, apply each side to a P-basis vector from (7.1). O

Lemma 13.4. We have
(2f,9) = (f,Q9) fgeP.
Proof. By Lemma 9.3 and Definition 13.1. O
Proposition 13.5. Fori € {1,2,3} we have
[L;, Ri] = Q+ 21, 2, R;] = 2R;, Q, L;] = —2L;.
Proof. We check that [Ly, Ry] = Q + 2I. Using Definitions 12.1, 12.10 we find
(L1, Ry] = [D.D, — D.D,,, M, M, — M, M,
= [D,Dy, M,M,| — [D,D,, M.M,]| — [D,D,,, M, M,| + [D,D,,, M,M,].
Using Lemma 6.3 we obtain

[D,D,, M,M,] = M,D, + M,D, + I, [D,D,, M.M,] =0,
[D.D,,, M,M,] = 0, [D.Dy, M.M,] = M.D, + MyD,, + I.

By these comments and Lemma 13.3, we obtain [L;, R;] = Q + 2I. The remaining
equations are similarly checked. O

Recall the Lie algebra sly(C) from Example 3.1.

Lemma 13.6. For i € {1,2,3} the vector space P becomes an sly(C)-module on which
E,F H act as follows:

element ¢ ‘ E F H
action of ¢ on P ‘ —-L, Ry —Q—21I

Proof. Compare the relations in Example 3.1 and Proposition 13.5. [

We recall the Casimir operator for sly(C), see [8, p. 238] or [25, p. 118]. The Casimir
operator C' is the following element in the universal enveloping algebra of sly(C):

C =EF+FE+ H?/2.
The operator C' looks as follows in terms of A, A*:

AA? + 4A*2 — (AA" — A*A)?
: .

The operator C' generates the center of the universal enveloping algebra of sly(C). In
particular, C' commutes with each of £, F, H, A, A*. On the sl3(C)-module Vy,

C:

N(N +2)

¢= 9

I (13.1)
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Proposition 13.7. On the sl,(C)-module P,

2 2 *2 * A% 2

(Q +221) I (é42A3 A3 A)
_AAP 443 — (A3A; — AA3)°
3 .

Call this common value Cy. Then Ci commutes with
Q, Ly, Ry, Ag, A3, As, Aj, 0.
Proof. The equations hold, because each of the three given expressions is equal to
2D, D,M.M,, +2D,D,M,M, —2M,M,D,D, —2M,M,D,D,, + Q(Q +2I)/2.

This equality is checked using Lemma 6.3 along with Proposition 6.5 and Definitions
12.1, 12.10 and Lemma 13.3. The last assertion in the proposition statement follows from

our comments about the Casimir operator and the fact that ¢ commutes with each of
Q, L, Ry. O]

Proposition 13.8. On the sl,(C)-module P,

Q+21)? 4A2 + 4472 — (A3A7 — AT A3)?
( +2 ) — LyRy — RyLy = 31 1 (83 1 1 3)
_4AP 1 4AT — (A3A - A A3)

3 .

Call this common value Cy. Then Cy commutes with

Qa L27 RQa A?n A;n Al; AT) 0.

Proof. Similar to the proof of Proposition 13.7. O]
Proposition 13.9. On the sly(C)-module P,

(Q+21)2 AA? 4+ 4A2 — (A AL — ASA,)?
S LRy — Ryl =
92 3443 343 8
_AAP 4+ 443 — (4] A — Ay Ap)?
< .

Call this common value Cs. Then C3 commutes with
Qa L37 R37 A17 AT? A27 A;a 0.
Proof. Similar to the proof of Proposition 13.7. m

Lemma 13.10. For f,g € P we have

<le> g> = <f> Clg>> <02f7 g> = <f7 029>7 <03f7 g> = <f7 CSQ)
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Proof. The result for C follows from Lemma 9.9 and the definition of C; in Proposition
13.7. The results for Cy, C3 are similarly obtained. O

Lemma 13.11. For N € N,
Ci(Py) C Py, Cy(Pyn) C P, Cs(Py) C Py.
Proof. Since each of C, Cy, C5 commutes with €. n

Proposition 13.12. The maps Cy,Cy, C3 act as follows on the P-basis (5.1). For N € N
and (r,s,t,u) € Py,

(i) the vector
Cl(xrysztwu)

s a linear combination with the following terms and coefficients:

Term ‘ Coefficient
xr71y5712t+1wu+1 s
"y 2w N(N +2)/2 — 2rs — 2tu
xr+1ys+1zt—lwu—1 21u
(ii) the vector
02 (xrysztwu)

s a linear combination with the following terms and coefficients:

Term ‘ Coefficient
xr—lys+1zt—1wu+1 Mt
"y 2w N(N +2)/2 —2rt —2su
xr+1ysflzt+1wu71 25U
(iii) the vector
C«g(xrysztwu)

1s a linear combination with the following terms and coefficients:

Term ‘ Coeflicient
xr—lys+lzt+1wu—1 27”&
"y 2w N(N +2)/2 —2ru — 2st
xr+1y3712t71wu+1 25t

To get the action of C1,Cy,C3 on the P-basis (7.1), replace x,y,z,w by x* y*, 2* w*
respectively in (i)—(iil) above.
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Proof. (i) By the definition of C; in Proposition 13.7, along with Proposition 5.10 or
Lemma 12.5, Lemma 12.15, Definition 13.1.

(ii), (iil) Similar to the proof of (i) above.

The last assertion of the proposition statement holds because ¢ commutes with each of

01702703' O

In Section 11 we discussed the finite-dimensional irreducible sly(C)-modules. We now
discuss a more general type of sly(C)-module, said to be highest-weight. The following
discussion is distilled from [25, Chapter VI]. Let W denote an sly(C)-module. A highest-
weight vector in W' is a nonzero v € W such that v is an eigenvector for H and Ev = 0.
The sly(C)-module W is said to be highest-weight whenever W contains a highest-weight
vector v such that W is spanned by {F‘v}sey. Assume that W is highest-weight. Then
the previously mentioned vector v is unique up to multiplication by a nonzero scalar in
C. By the highest-weight of W, we mean the H-eigenvalue associated with v. A pair
of irreducible highest-weight sl5(C)-modules are isomorphic if and only if they have the
same highest-weight [25, p. 109].

Lemma 13.13. Picki € {1,2,3} and consider the corresponding sly(C)-module structure
on P from Lemma 15.6. Let N € N. Pick 0 # v € Ker(L;) N Py and define v, = Riv//!
for ¢ € N. Then:

vy € Pniog, Quy = (N + 2£)’U@ (eN,
Rvy = (6 + 1)Ug+1 { e N,
Li'l)@ = (N + l + 1)1}@,1 14 2 1, Lﬂ)o =0.

The vectors {vi}een form a basis for an sly(C)-submodule of P. Denote this sly(C)-
submodule by W. Then W is irreducible and highest-weight, with highest-weight —N — 2.
On W,

N(N +2)

Ci=——F7"7—1I
2

Proof. Routine application of the sly(C) representation theory, see [25, Chapter VI]. [

We refer to the sly(C)-module P in Lemma 13.13. In that lemma, we constructed some
irreducible sly(C)-submodules of P. In the next result, we show that every irreducible
sly(C)-submodule of P comes from the construction.

Lemma 13.14. Picki € {1,2,3} and consider the corresponding sly(C)-module structure
on P from Lemma 13.6. Then the following hold.

(i) Each irreducible sly(C)-submodule of P is highest-weight.

(ii) Let W denote an irreducible sly(C)-submodule of P, with highest-weight . Then C is
an integer at most —2. Write ( = —N — 2. Then there exists 0 # v € Ker(L;) N Py
such that { Riv/0}en is a basis for W.
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Proof. By Definition 13.1, €2 is diagonalizable on P with eigenvalues 0,1,2,... Let W
denote an irreducible sly(C)-submodule of P. The action of {2 on W is diagonalizable
with each eigenvalue contained in N. By this and Lemma 13.6, H is diagonalizable on
W with each eigenvalue an integer at most —2. Let ( denote the maximal eigenvalue
of H on W. Let 0 # v € W denote an eigenvector for H with eigenvalue (. We have
Ev = 0; otherwise Ev € W is an eigenvector for H with eigenvalue ¢ 4 2, contradicting
the maximality of (. By these comments, v is a highest-weight vector for W. Write
¢ = —N — 2 and note that v € Ker(L;) N Py. Using v we define vectors {v,}sen as in
Lemma 13.13. By Lemma 13.13 the vectors {v,}sen form a basis for a highest-weight

sly(C)-submodule of W, which must equal W by the irreducibility of W. O

Lemma 13.15. Picki € {1,2,3} and consider the corresponding sly(C)-module structure
on P from Lemma 15.6. For N € N the following are the same:

() the span of the irreducible sly(C)-submodules of P that have highest-weight —N — 2;
(ii) ZZGN Rf (Ker(Li) N PN);
(iii) the eigenspace of C; on P with eigenvalue N (N + 2)/2.

Proof. Let P[N], P'[N], P"[N] denote the subspaces in (i), (ii), (iii) respectively. By
Lemmas 13.13, 13.14 we have P[N] = P'[N] and on this common value C; = N(N+2)/2 1.
By this and Proposition 12.23, we obtain P[N| = P'[N]| = P”[N]. O

Corollary 13.16. Picki € {1,2,3} and consider the corresponding sly(C)-module struc-
ture on P from Lemma 13.6. For N € N the subspace Y, Rf(Ker(L;) N Py) is an
sly(C)-submodule of P.

Proof. By Lemma 13.15(i),(ii). ]
Lemma 13.17. Fori € {1,2,3} the following hold:

(i) the map C; is diagonalizable on P;

(ii) the eigenvalues of C; on P are

N(N +2)/2 N e N;

(iii) the eigenspaces of C; on P are mutually orthogonal.

Proof. (i), (ii) By Proposition 12.23 and Lemma 13.15(ii), (iii).
(iii) By Lemma 13.10 and (ii) above. O

Recall the direct sum decompositions (12.5) and (12.6).
Proposition 13.18. The following hold for i € {1,2,3}:
(i) the summands in (12.6) are mutually orthogonal;
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(ii) for N € N the summands in (12.5) are mutually orthogonal.

Proof. (i) By Lemma 9.3 along with Lemmas 13.15(ii),(iii) and 13.17(iii).
(ii) By (i) above. O

Pick i € {1,2,3} and consider the corresponding sly(C)-module structure on P from
Lemma 13.6. Our next general goal is to show that the sly(C)-module P is an orthogonal
direct sum of irreducible sly(C)-submodules.

Lemma 13.19. Fori € {1,2,3} and N,{ € N the following holds on R{(Ker(L;) N Py):
LiR; = ({+1)(N +(+2)I, R,L; =((N + ¢+ 1)I.

Proof. Let 0 # v € Ker(L;) N Py and define v, = R //¢!. By Lemma 13.13 we obtain

LiRwvy = (L + 1)(N + £+ 2)vy, RiLivg = U(N + 1+ 1)v,.
The result follows. O
Lemma 13.20. Let i € {1,2,3} and N,{ € N. Then for f,g € Rf(Ker(Li) N PN) we
have
(Rif , Rig) = (0 + 1)(N + £+ 2)(f,9), (Lif, Lig) = (N + L+ 1)(f, 9).

Proof. By Lemma 12.20 and Lemma 13.19,
(Rif, Rig) = (f, LiRig) = ({ + L)(N + £+ 2)(f, g).
By Lemma 12.19 and Lemma 13.19,
(Lif, Lig) = (f, RiLig) = {((N + £+ 1){f, g).
O

Corollary 13.21. Let i € {1,2,3} and N € N. Pick u,v € Ker(L;) N Py such that
(u,v) = 0. Then (Rfu, Rtv) =0 for { € N.

Proof. By Lemma 13.20 and induction on /. O]

Proposition 13.22. Pick i € {1,2,3} and consider the corresponding sly(C)-module
structure on P from Lemma 13.6. Then for N € N the sly(C)-submodule

> R{(Ker(L;) N Py)

{eN

is an orthogonal direct sum of irreducible sly(C)-submodules.
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Proof. By Lemma 12.9(ii), the subspace Ker(L;)N Py has dimension (N +1)?. Abbreviate
d = (N +1)> Let {v;}9_, denote an orthogonal basis for Ker(L;) N Py. For 1 < j < d
we use v; and Lemma 13.13 to construct an irreducible sly(C)-submodule W; of P. By
Lemma 13.13 and the construction,

> Ri(Ker(Li) N Py) =Y W (13.2)

¢eN j=1

By Corollary 13.21 the subspaces {IW;}9_, are mutually orthogonal. The result follows.
O

Proposition 13.23. Pick i € {1,2,3} and consider the corresponding sly(C)-module
structure on P from Lemma 13.6. Then the sly(C)-module P is an orthogonal direct sum
of irreducible sly(C)-submodules.

Proof. By Propositions 12.23, 13.18(i), 13.22. ]

14 The Lie algebra sly(C) @ sl2(C), revisited

We continue to discuss the sl,(C)-module P = Clz,y, z,w]. Let ¢ € {1,2,3}. By Propo-
sitions 12.23, 13.18(i) we have an orthogonal direct sum

P=Y SR <Ker(Li) N PN). (14.1)

In this section, we show how each summand in (14.1) becomes an irreducible module for
the Lie algebra sly(C) @ sly(C).

We mentioned sly(C) @ sly(C) in Corollary 3.12 and Definition 3.13. We now have some
more comments about sly(C) & sly(C). For N, M € N the vector space Vy ® V,, is an
5l5(C) @ sl3(C) module with the following action. Let a,b € sl3(C) and consider the
element (a,b) in sly(C) @ sly(C). For u € Vy and v € V), the element (a,b) sends

u®v i (au) ®v+u® (bv).

It is routine to check (or see [45, Section 3.8]) that the finite-dimensional irreducible
modules for sly(C) @ sl3(C) are, up to isomorphism,

Vy ® Vi N,M € N. (14.2)
Proposition 14.1. The following hold for i € {1,2,3}.

(i) Each summand in (14.1) is an irreducible submodule for the ith Lie subalgebra of
sl,(C) isomorphic to sly(C) @ sly(C).

(ii) For N € N and ¢ € N the corresponding summand in (14.1) is isomorphic to Vy &
Vi as a module for the ith Lie subalgebra of sly(C) isomorphic to sly(C) @ sly(C).
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Proof. Let j,k denote the elements in {1,2,3}\{i}. Let £ denote the Lie subalgebra of
sly(C) generated by Aj;, Ay, A%, Ay, By Corollary 3.12 the Lie algebra £ is isomorphic to
sl(C) @ sly(C). By Definition 3.13, £ is the ith Lie subalgebra of sl;(C) isomorphic to
sl5(C) @ sly(C). For notational convenience, throughout this proof we identify the Lie
algebras £ and sly(C) @ sly(C) via the isomorphism in Lemma 3.11. The sly(C)-module
P becomes an L-module by restricting the sl,(C) action to £. Let N, ¢ € N be given, and
let W denote the corresponding summand in (14.1). We show that W is an irreducible
L-submodule of P that is isomorphic to Vy ® V. The subspace W is invariant under
Aj, Ay, A}, Ay by Lemma 12.24, so W is an L-submodule of P. Let W denote an irreducible
L-submodule of W. By the discussion around (14.2), the £-module W is isomorphic to
V, ® Vg for some r,s € N. Viewing W as a module for the copy of sl3(C) generated
by A;, A;, we find that W is a direct sum of s 4+ 1 irreducible sly(C)-submodules, each
isomorphic to V,. Viewing W as a module for the copy of sly(C) generated by A3, Ay,
we find that W is a direct sum of r + 1 irreducible sly(C)-submodules, each isomorphic
to V. For both of these sly(C)-actions, the Casimir operator acts as C; by Propositions
13.7-13.9, and by Lemma 13.15(ii),(iii) this operator acts on W as N (N + 2)/2 times the
identity. By these comments and the discussion around (13.1), we obtain r = s = N.
Thus the £-module W is isomorphic to Vy ® V. The dimension of Vy ® Vy is (N +1)2,
and this is the dimension of W in view of Lemma 12.9(ii) and the injectivity of R;. By
these comments, W = W. We have shown that W is an irreducible £-submodule of P
that is isomorphic to Vy ® V. ]

Let i € {1,2,3} and N € N. By Propositions 12.22, 13.18(ii) we have an orthogonal
direct sum

N2
Pv=> R! (Ker(Li) N PN_%). (14.3)
/=0

Proposition 14.2. The following hold for i € {1,2,3} and N € N.

(i) Each summand in (14.3) is an irreducible submodule for the ith Lie subalgebra of
sl,(C) isomorphic to sly(C) @ sly(C).

(ii) For 0 < ¢ < |N/2| the (-summand in (14.3) has dimension (N — 20+ 1)%.

(iii) For 0 < ¢ < |N/2| the (-summand in (14.3) is isomorphic to Vy_os @ VN_op as a
module for the ith Lie subalgebra of sl4(C) isomorphic to sly(C) @ sly(C).

(iv) For 0 < ¢ < |N/2| the ¢-summand in (14.3) is an eigenspace for the action of C;
on Py; the eigenvalue is
(N —20)(N —20+2)
5 :

Proof. (i)-(iii) By Proposition 14.1.
(iv) By Lemma 13.15(ii), (iii). O

ot
ot
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Let ¢ € {1,2,3} and N € N. We finish this section with a summary of how C; acts on
Py.

Corollary 14.3. The following hold for i € {1,2,3} and N € N.
(i) The action of C; on Py is diagonalizable.
(ii) For the action of C; on Py the eigenvalues are

(N — 20)(N — 20 +2)
5 ,

0</l<|N/2|.

(iii) For0 < €< |N/2| the (N—20)(N—20+2)/2-eigenspace for C; on Py has dimension
(N —20+1)%

(iv) the eigenspaces of C; on Py are mutually orthogonal.

Proof. By Propositions 13.18(ii) and 14.2(ii),(iv). O

15 Some bases for the vector space R(Ker(L;) N Py)

We continue to discuss the sl;(C)-module P = C[z,y, z,w]. Pick i € {1,2,3} and recall
the orthogonal direct sum (14.1). In this section, we find some bases for each summand.

Lemma 15.1. Fori € {1,2,3} and N € N the subspace Ker(L;) N Py contains x and
V.

Proof. We first consider 2. We have 2¥ € Py since 2%V is homogeneous with total degree
N. We have 2V € Ker(L;) by Definition 12.1 and since

Dy(z™) =0, D.(2N) =0, Dy(z™) = 0.

By these comments, zV € Ker(L;) N Py. We have z*V € Ker(L;) N Py because o(zV) =
2*N and Ker(L;) N Py is invariant under o by Lemma 12.24. O

Definition 15.2. Let 1 denote an indeterminate. For N € N we define some polynomials
{ £, 34 in C[n] such that fy = 1 and

Nfn =nfno1+ (N —n)fria 0<n<N-1),
nfn = Nfn-1+ fni1,

where f_; = 0. The polynomial f, has degree n for 0 < n < N+ 1. The {f, ﬁfjol are
Krawtchouk polynomials, see [32, Section 9.11], [42], [54, Section 6].
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We refer to Definition 15.2. By [42, Lemma 4.8] we have

(m=N)n—=N+2)(n—N+4)---(n+ N)

fna(n) = N : (15.1)

The polynomials { f, }"*} are related to the irreducible sly(C)-module Vy in the following

way. Above Definition 11.1 we discussed the basis {u,})_, for V. By that discussion
and A = F + F' we obtain

Ay, = nup_q + (N — n)upiq 0<n<N-1),

Auny = Nuy_q,
where u_; = 0. Comparing this recurrence with the one in Definition 15.2, we find
fn(A)ug = uy, (0<n<N).

We also find that N!fy,; is the minimal polynomial of A on Vy. See [42] for more
information about the Krawtchouk polynomials and sly(C).

Lemma 15.3. Fori € {1,2,3} and N € N the following hold on Py :

Aifu(Ai) = nfp1(Ai) + (N —n) fur1(Ai) (0<n<N), (15.2)
Proof. By Lemma 7.11 and (15.1) we obtain (15.3). From this and Definition 15.2 we
obtain (15.2). O

Lemma 15.4. For N € N and 0 < n < N we have
fulADZN = 2Ny, fu(Ag)a™N = V7" fu(A)aN = 2V ™,
Proof. We first prove our assertions involving A;. Define
&u=a""y" (0K n<N), En1 = 0.
By Proposition 5.10(i),
A& =n&p1 + (N —n)éni (0<n<N). (15.4)

Comparing (15.2), (15.4) we see that the sequences {f,(A4;)xV}2_, and {&,}Y_, satisfy
the same recurrence. These sequences have the same initial condition, since fo(A4;)z" =
oV = &. Therefore f,(A)z™ = &, for 0 < n < N. We have proven our assertions
involving A;. The remaining assertions are similarly proven. O]

Let N € N. In the next result, we give an orthogonal basis for Ker(L;) N Py. Similar
orthogonal bases exist for Ker(Ls) N Py and Ker(Ls) N Py.
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Proposition 15.5. For N € N the vectors
Vi = [i(A2) fu(As)a™ 0<j,k<N (15.5)
form an orthogonal basis for Ker(Li) N Py. Moreover for 0 < j,k < N,
Agvjp = juj—ik + (N = 5)vj1k,
Azvjp = kvjp—1 + (N — E)vj g1,
A;’Uj’k = (N — 2]{?>’Uj ks
Ajv;p = (N — 27) v]k,

fosel? =1 ("7) ( ) (15.10)

In the above lines, we interpret vap = 0 unless 0 < a,b <

Proof. By Lemma 12.24(i) the subspace Ker(L;) N Py is invariant under A, and Az. By
this and Lemma 15.1, the vectors (15.5) are contained in Ker(L;)N Py. The vectors (15.5)
satisfy the recurrence (15.6) by Lemma 15.3. The vectors (15.5) satisfy the recurrence
(15.7) by Lemma 15.3 and [Ay, A3] = 0. Concerning (15.8), we use Proposition 5.10(v),
Lemma 15.4, and [As, A3] = 0 to obtain

Asvj e = A5 fi(A2) fr(As)z™ = f5(A2) As fi(As)z™ fa(A2)A* Vb
= (N = 2k) f;(A9)a™ " w® = (N — 2k) f;(As2) fr(A3)z™ = (N — 2k)v; 1.

Concerning (15.9), we use Proposition 5.10(vi), Lemma 15.4, and [As, A3] = 0 = [A}, A3]
to obtain

Ajvj e = A5 fi(As) fu(As)a™ = fi(As) A5 fi(Ag)a™ = fi(As) Az 72
= (N = 2§) fi(A3)a" 72 = (N = 25) fu(A3) f;(A2) ™ = (N — 2j)v;.

The vectors (15.5) are mutually orthogonal by (15.8), (15.9) and Lemma 9.9. Next we
show (15.10). Assume for the moment that 7 > 1. By Lemma 9.9 and (15.6),

(N =+ Dllvjull* = (A2vj-10, vi) = (vj—1, A2vi) = jllvj-rall*. (15.11)
Assume for the moment that k£ > 1. By Lemma 9.9 and (15.7),

(N =k + Dlvall* = (Asvjp-1, vip) = (a1, Asvie) = kl|vze-]|*. (15.12)
By (15.11), (15.12) and induction on j + k,

N\ /N !
||Uj,k’|2:||vo,0||2<j> (k) .

This and ||vgo||*> = ||2V]|> = N! yields (15.10). By (15.10) the vectors (15.5) are nonzero.
The vectors (15.5) are linearly independent, because they are nonzero and mutually or-
thogonal. These vectors form a basis for Ker(L;) N Py in view of Proposition 12.9(ii). O
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Proposition 15.6. The following hold for N,{ € N:
(i) R{(Ker(Li) N Py) has an orthogonal basis

Ry £(A2) fi(As)2™ 0<jk <N
(ii) RS5(Ker(Ls) N Py) has an orthogonal basts

R3f3(As) fi(An)z™ 0<j k< N;
(ili) R§(Ker(Ls) N Py) has an orthogonal basis

Ry f5(A1) fi(Az)a™ 0<j,k<N.

Proof. (i) By Lemma 12.18, Corollary 13.21, and Proposition 15.5.
(ii), (iil) Similar to the proof of (i) above. O

Proposition 15.7. The following hold for N,{ € N:
(i) R{(Ker(L1) N Pyn) has a basis
RfA%A’;xN 0<7,k<N;
(i) RE(Ker(La) N Py) has a basis
REALA N 0<j,k < N;
(iii) R§(Ker(Ls) N Py) has a basis
REAT Ak N 0<j,k<N.
Proof. By Proposition 15.6 and since the polynomial f,, has degree n for 0 <n < N. O

Corollary 15.8. The following hold:
(i) P has a basis

REA kN N,l e N, 0<j,k<N;
(ii) P has a basis
REAL Ak 2N N,l €N, 0<j,k<N;
(iii) P has a basis
RLAT AbaN N,¢ e N, 0<j,k<N.
Proof. By Proposition 15.7 and since the sum (14.1) is direct. O

Proposition 15.9. Lemmas 15.3, 15.4 and Propositions 15.5, 15.6, 15.7 and Corollary
15.8 all remain valid if we replace x,y, z,w by x*,y*, 2*, w* respectively and swap A; < A}
forie{1,2,3}.

Proof. Apply o throughout the listed results, and use Propositions 7.12, 9.13 along with
Lemmas 12.3, 12.13. O
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16 Some bases for the vector space Py

We continue to discuss the sly(C)-module P = C[z,y, z,w]. Pick ¢ € {1,2,3} and N € N.
Recall the direct sum decomposition (14.3). In Proposition 15.7, we obtained a basis for
each summand. In this section, we use these bases to obtain some bases for Py.

Proposition 16.1. The following hold for N € N:
(i) Py has a basis

REA Ak N2 0< (< |N/2, 0<j,k<N =21
(ii) Py has a basis
REAL Ak N2 0< (< |N/2, 0<j,k<N =20
(i) Pn has a basis
RLAT Ak N2t 0< < |N/2, 0<j,k<N -2
Proof. By Proposition 15.7 and since the sum (14.3) is direct. O

Proposition 16.2. Proposition 16.1 remains valid if we replace x by x* and A; by A} for
i€ {1,2,3}.

Proof. Apply o throughout Proposition 16.1, and use Proposition 7.12 along with Lemma
12.13 and the fact that o(Py) = Py. O

17 The hypercube H (N, 2)

We turn our attention to graph theory. For us, a graph is understood to be finite and
undirected, without loops or multiple edges. For the rest of this paper, fix N € N. We
define a graph H (N, 2) as follows. The vertex set X consists of the N-tuples of elements
taken from the set {1, —1}. Vertices z,y € X are adjacent whenever they differ in exactly
one coordinate. The graph H(N,2) is called the N-cube or a hypercube or a binary
Hamming graph. The graph H(N,2) is distance-regular in the sense of [7, Chapter 1].
Background information about H(N,2) can be found in [1,2,7,19,23]. Going forward, we
will assume that the reader is generally familiar with H (N, 2). In the next few paragraphs,
we recall from [23] some features of H(XV,2) for later use.

We have |X| = 2. For z,y € X let 9(z,y) denote the path-length distance between z, y.
Then O(z,y) is equal to the number of coordinates at which x,y differ. The diameter
of H(N,2) is N. The graph H(N,2) is a bipartite antipodal 2-cover. The intersection
numbers ¢;, b; of H(N,2) satisfy

The valencies k; of H(V,2) satisfy

() weiem
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Definition 17.1. Let V denote the vector space with basis X. We call V' the standard
module associated with H (N, 2).

Definition 17.2. We endow V' with a Hermitian form (, ) with respect to which the
basis X is orthonormal.

Let us abbreviate I' = H(N,2). For z € X let the set I'(x) consist of the vertices in X
that are adjacent to x. Note that |I'(z)| = N.

Definition 17.3. Define A € End(V) such that

Azr = Z g, r e X. (17.1)

gel(z)
We call A the adjacency map for H(N, 2).

Lemma 17.4. For z,y € X we have

1 ifd(z,y) =1;
0, ifd(x,y) # 1.

Proof. By Definition 17.3. O

<Ax,y>=:@aAy>=:{

By [7, p. 45] and [23, Lemma 3.5], the map A is diagonalizable with eigenvalues
0, =N — 2 (0 <i<N). (17.2)

For 0 < i < N let E; denote the primitive idempotent of A associated with ;. By [23,

Lemma 3.5] the eigenspace E;V has dimension m; = (]:/ )

Lemma 17.5. For 0 <¢ < N and x,y € X,
Proof. By (2.1) and Lemma 17.4, and since the eigenvalues (17.2) are real. O

The ordering {E;}¥, is Q-polynomial in the sense of [23, Section 12]. For this ordering the
corresponding dual eigenvalue sequence {6} is defined in [23, Definition 3.6]. By [23,
Lemma 3.7] we have

0 = N — 2 (0<i<N). (17.3)

By [7, p. 194], the above Q-polynomial structure is formally self-dual in the sense of [7,
Section 2.3].

Definition 17.6. We define the vector space V3 =V ® V ® V and the set
X =lrey®zlr,y zc X}
Observe that X®3 is a basis for V®3.
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Lemma 17.7. The following hold.

(i) There exists a unique Hermitian form {,) on V3 with respect to which the basis
X®3 4s orthonormal.

(ii) For u,v,w,u',v',w" € V we have

(u@v@w,u v @uw) = (u,u)(v,v){(w,w').

Proof. Ttem (i) is clear. Item (ii) is routinely checked. O

Let G denote the automorphism group of H(N,2). By [7, Theorem 9.2.1] the group G is
isomorphic to the wreath product of the symmetric groups Sy and S;. The elements of

Sy permute the vertex coordinates {1,2,..., N} and the elements of Sy permute the set
{1,—1}. By [2, p. 207] the graph H (N, 2) is distance-transitive in the sense of [2, p. 189].

Next, we describe how V' becomes a G-module. Pick v € V and write v = ) _ v,
(v, € C). For all g € G,

g(v) = vag(x).

zeX
Lemma 17.8. For g € G the following hold on V :
(i) gA = Ag;

Proof. (i) Because g respects adjacency in H(N,2).
(ii) By (i) and since E; is a polynomial in A. O

Next, we describe how V®3 becomes a G-module. For g € G and u,v,w € V,
glu®@v@w) =g(u) ®gv)© g(w). (17.4)
Definition 17.9. Define the subspace
Fix(G) = {v € V¥|g(v) = v Vg € G}.

Our next general goal is to obtain a basis for Fix(G). To reach this goal, we consider the
action of G on the set X®3. We will describe the partition of X®3 into G-orbits.

Recall the set of profiles Py from Definition 5.1.
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Definition 17.10. For x ® y ® z € X®? we define its profile as follows. Write

x = (r1,%2,...,TN), y=(y1,Y2, -, YN), z=(21,22,...,2N).
Define
r=Hill<i<N, z; =y =z},
t=|{ill <i< N,y # 2 =z},
u=|{ill <i<N, z#z; =y}

Note that (r,s,t,u) € Py. We call (r,s,t,u) the profile of t @ y ® z.

Lemma 17.11. For a profile (r,s,t,u) € Py the number of elements in X®3 with this
profile is equal to

N2V

rlsltlu!’ (175)
Proof. By combinatorial counting. m

Lemma 17.12. A pair of elements in X®* are in the same G-orbit if and only if they
have the same profile.

Proof. This is routinely checked. O]
As an aside, we interpret the profile concept using the distance function 0.

Lemma 17.13. Let z @ y ® 2 € X®3 with profile (r,s,t,u). Then

o(z,y) =s+t, Ay, z) =t+u, d(z,x) =u+s.
Moreover
B 2 ’ B 2 ’
t = a(x,y) + a(ya Z) — 8(271') U= a(ya Z) + a(zu l’) — 8(x,y)
B 2 ’ B 2 '
Proof. By Definition 17.10. ]

Definition 17.14. Let the set P consist of the 3-tuples of integers (h, i, j) such that

h,i,j <N, h+i+ j is even, h+i+j<2N,

i+ 7, i <j+h, j<h+i.

NN

0
h
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Lemma 17.15. There ezists a bijection Py — P that sends
(rys,t,u) = (E+u,ut 5,5+ 1).

The inverse bijection P5;, — Py sends

. 2N—h—i—j i+j—h j+h—i h+i—j
h .
( ) /1/7 ]) H < 2 Y 2 ) 2 ) 2
Proof. This is readily checked. O]
Lemma 17.16. For 0 < h,i,j < N the following (i)—(iil) are equivalent:

(i) there exists t @ y ® z € X®* such that

h=0(y,2), i =0(z,2), J=0(x,y);

(i) there exists (r,s,t,u) € Py such that

h=t+ u, 1 =u+ s, J=s+t

(i) (hi,j) € Pl
Assume that (1)—(iii) hold. Then (r,s,t,u) is the profile of t @ y ® z.

Proof. (i) < (ii) By Lemmas 17.11 17.13.
(ii) < (iii) By Lemma 17.15.
The last assertion follows from Lemmas 17.13, 17.15. m

Remark 17.17. For H(N,2) and 0 < h,i,j < N there are some parameters called the
intersection number p!'; (23, p. 401] and Krein parameter ¢/'; (23, p. 402]. We use these
parameters in a minimal way, but for the sake of completeness let us discuss them briefly.
We have p}'; = pl; [23, p. 401] and ¢}, = ¢; [23, p. 402]. We have p}; = ¢f'; [41,
Lemma 22]. This common value is nonzero if and only if (h,,7) € P%; see [41, Corol-
lary 28]. By [41, Proposition 12], for (h,i,j) € P% we have

N!
rlsltlu!’

knplt; = kiply, = ki, = madly = mad., = myq,; =
where
h=t+u, 1=u-+ s, | =S+ t.

Definition 17.18. For a profile (r,s,t,u) € Px we define a vector

where the sum is over the elements z ® y ® z in X®3 with profile (r, s, ¢, u).
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Example 17.19. We have

We have a remark about notation.
Remark 17.20. Let 0 < h,4,j < N. In [57, Definition 9.9] we defined a vector

Prij = Z TRY 2,
TQRYRz

where the sum is over the elements z ® y ® z in X®? such that
h=0(y, z), i=0(z,x), j=0(x,y).
By Lemma 17.16, P}, ;; # 0 if and only if (h,4,j) € P%. In this case
Py, ;= B(r,s,t,u),

where

h=t+ u, 1 =u+ s, j=s+t.
Lemma 17.21. The vectors

B(r, s, t,u) (r,s,t,u) € Py

are mutually orthogonal and

N2V

|B(r, s, t,u)||* = Tellal

(r,s,t,u) € Py.

Proof. The vectors X®3 are orthonormal with respect to (, ). The result follows in view
of Lemma 17.11 and Definition 17.18. O

Proposition 17.22. The vectors
B(r, s, t,u) (rys,t,u) € Py (17.6)
form a basis for Fix(G).

Proof. The vectors (17.6) are linearly independent by Lemma 17.21. These vectors span
Fix(G) by Lemma 17.12 and Definition 17.18. O

Corollary 17.23. We have

dim Fix(G) = (N +3).

3
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Proof. By (5.2) and Proposition 17.22. O

Next, we describe the basis for Fix(G) that is dual to the one in Proposition 17.22; with
respect to the Hermitian form (, ).

Definition 17.24. For a profile (r,s,t,u) € Px we define a vector

B(T, s, t,u) = %B(r,s,t,u).

Proposition 17.25. The vectors

B(r, s, t,u) (r,s,t,u) € Py
form a basis for Fix(G).
Proof. By Proposition 17.22 and Definition 17.24. O
Lemma 17.26. The Fix(G)-basis

B(r, s, t,u) (rys,t,u) € Py
and the Fix(G)-basis

B(r, s, t,u) (rys,t,u) € Py
are dual with respect to (, ).
Proof. By Lemma 17.21 and Definition 17.24. [

Recall the vector space Py from Lemma 5.2.

Lemma 17.27. There ezists a vector space isomorphism t : Py — Fix(G) that sends

oyt (N!2N) 1/23(7’, s, t,u) (r,s,t,u) € Py.
Proof. By Lemma 5.2 and Proposition 17.25. [

Theorem 17.28. The Hermitian forms on Py and Fix(G) are related as follows:

<fag>:<f¢7gi> f?gePN-
Proof. By Definitions 9.2, 17.24 and Lemmas 17.26, 17.27. O]

Our next goal is to turn Fix(G) into an sly(C)-module.
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Definition 17.29. (See [57, Definition 6.2].) We define AN A®) A®) ¢ End(V®3) as
follows. For z @ y ® z € X®3,

AV@eyez) =) (Ryoz

el (z)
Aoy =Y 10{®2
§el(y)
Ay =Y z0ye¢E
£erl(z)

In the next result, we clarify Definition 17.29.
Lemma 17.30. For u,v,w € V we have
AVu@vew)=Au®vw,
AY(u@uvew)=u® Av® w,
AP (u@vew)=u®ve Aw,
where A is the adjacency map from Definition 17.5.
Proof. By Definitions 17.3, 17.29. [
Definition 17.31. (See [57, Definition 7.1].) We define A*(1) A*?) A*®) € End(V®3) as
follows. For r @ y @ z € X®3,
AV@ERy©2) =20y 20,
AP @Ry =10y 20,
APy )=20y® 205004
Proposition 17.32. For a profile (r,s,t,u) € Py the following (i)—(vi) hold:
(i) the vector
AW B(r, s, t,u)
1s a linear combination with the following terms and coefficients:

Term Coefficient
B(r—1,s+1,t,u)
B(r+1,5s—1,t,u) s
B(r,s,t —1,u+1) t
B(r,s,t +1,u—1) u

r
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(ii) the vector
A(Q)B(r, s, t,u)
1s a linear combination with the following terms and coefficients:

Term Coefficient

B(r—1,s,t+1u)
B(r —1,t, u—l— 1) s
B(r—i— Ls,t—1,u) t
( ) u

r

Brs+1tu—1

(iii) the vector
A®B(r, s, t,u)

is a linear combination with the following terms and coefficients:

Term Coefficient
B(r—1,stu+1) T
B(r s—1,t+1,u) s
B(r s+1,t—1,u) t

B(r+1,s,t,u—1) u

(iv) A*WB(r,s,t,u) = (r+s—t—u)B(r,s,t,u);
(v) A*? B(T, s,¢t,u)=(r—s+t— u)B(r, s, t,u);
(vi) A*®B(r, s, t,u) = (r —s —t+u)B(r, s, t,u).

Proof. (i)—(iii) By combinatorial counting.

(iv)—(vi) By (17.3) and Lemma 17.13 along with Definitions 17.18, 17.24, 17.31.

Lemma 17.33. The subspace Fix(G) is invariant under the maps
AD A0) i€ {1,2,3}.
Proof. By Propositions 17.25, 17.32.
Theorem 17.34. The subspace Fix(G) becomes an sly(C)-module on which
Ay =AY, Ar = A0 i€{1,2,3}.
Moreover, the map I : Py — Fix(G) is an isomorphism of sl,(C)-modules.

Proof. Compare Propositions 5.10, 17.32 using Lemma 17.27.
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Our next general goal is to explain what the s[4(C)-module isomorphism { : Py — Fix(G)
does to the Py-basis given in Lemma 7.6.

Definition 17.35. (See [57, Definition 9.14].) For 0 < h,4,j < N we define a vector

Qnij = 2N Z Enr ® Eix ® Ejz.

rzeX

Lemma 17.36. For 0 < h,i,5 < N the following hold:
(1) 1Qnill*> = | Prijll?, where Py ; is from Remark 17.20;
(ii) Qnij # 0 if and only if (h,i,j) € P .

Proof. (i) By [57, Lemmas 9.11, 9.16] and Remark 17.17.
(ii) By Remark 17.20 and (i) above. O

Definition 17.37. For a profile (r,s,t,u) € Px we define a vector
B*(r,s,t,u) = Qnij,
where
h=1t+u, i =u-+s, j=s+t. (17.7)
Lemma 17.38. The vectors
B*(r, s,t,u) (rys,t,u) € Py (17.8)
are mutually orthogonal and

NI2N

<T7 S, tv ’LL) € iPN- (179)
Proof. The vectors (17.8) are mutually orthogonal by [57, Lemma 9.16] and Definition
17.37. For (r,s,t,u) € Py and (h,i,7) from (17.7), the following holds by Definition
17.37, Lemma 17.36(i), Remark 17.20, Lemma 17.21:

NI12N
1B (ry s, 6, w)lI” = 1@nislI” = 1Phisll* = 1 B(ry s, t, )| =
O
Proposition 17.39. The vectors
B*(r,s,t,u) (rys,t,u) € Py (17.10)

form a basis for Fix(G).
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Proof. We first show that the vectors (17.10) are contained in Fix(G). Pick g € G
and (r,s,t,u) € Py. Let (h,1,j) satisfy (17.7). Using Lemma 17.8(ii) and (17.4) and

Definitions 17.35, 17.37 we obtain

g(B*(r, s, t, u)) = g(th)

zeX

=2 " g(Epz) @ g(Eiz) @

zeX

)

9(E;x)

_ 9N Z Eng(z) @ Eig(x) ® Ejg(2)

rzeX

=N Z Eny ® BEiy @ Ejy
yeX
= B*(r,s,t,u).

Therefore B*(r, s,t,u) € Fix(G). We have shown that the vectors (17.10) are contained
in Fix(G). The vectors (17.10) are linearly independent by Lemma 17.38. The result

follows in view of (5.2) and Corollary 17.23.

O

Next, we describe the basis for Fix(G) that is dual to the one in Proposition 17.39, with

respect to the Hermitian form (, ).

Definition 17.40. For a profile (r,s,t,u) € Px we define a vector

B*(r,s,t,u) = % *(r, s, t,u).
Proposition 17.41. The vectors

B*(r, s, t,u) (r,s,t,u) € Py
form a basis for Fix(G).
Proof. By Proposition 17.39 and Definition 17.40.
Lemma 17.42. The Fix(G)-basis

B*(r, s, t,u) (rys,t,u) € Py
and the Fix(G)-basis

B*(r, s, t,u) (rys,t,u) € Py

are dual with respect to ().

Proof. By Lemma 17.38 and Definition 17.40.
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The following result is a variation on [57, Lemma 9.18].

Lemma 17.43. We have

B(N,0,0,0)=2"" " B*(rs,tu).

(r,s,t,u) €PN
Proof. We have
B(N,0,0,0) :Zx@)x@x by Example 17.19
reX
N N N
zeX \h=0 =0 =0
N N N
Sy Y Y EesErots
2€X h=0 i=0 j=0
N N N
D 3) 3 ) SUITTITS
h=0 i= j=0 zeX
N N N
=273 NN " Qnay by Definition 17.35
h=0 i=0 j=0
=27V Qhij by Lemma 17.36(ii)
(h,i,5)€Py;
=27 > B(rstu) by Lem. 17.15 and Def. 17.37.
(r,s,t,u)EPN
[
Lemma 17.44. For a profile (r,s,t,u) € Py the following (i)-(iii) hold:
(i) AVB*(r,s,t,u) = (r +s—t —u)B*(r,s,t,u);
(i) A®DB*(r,s,t,u) = (r — s+t —u)B*(r,s,t,u);
(iii) A®B*(r,s,t,u) = (r —s —t +u)B*(r,s,t,u).
Proof. Use (17.2) and Lemma 17.30 along with Definitions 17.35, 17.37. O

Recall the map §: Py — Fix(G) from Lemma 17.27.

Proposition 17.45. The map I : Py — Fix(G) sends

Ty (N!QN)I/QB*(T, s, t,u) (rys,t,u) € Py.
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Proof. For each profile (r, s,t,u) € Py we define a vector

A(r,s,t,u) = (x’”y*sZ’”tw*“)]t — (N!ZN)UQB*(T, s, t,u).

We show that A(r,s,t,u) = 0. By Proposition 7.8(i)-(iii), Theorem 17.34, Definition
17.40, and Lemma 17.44,

AWA(r, s, t,u) = (r+s —t —u)A(r, s, t,u),

ADA(r, s, t,u) = (r— s+t —u)A(r, s, t,u),

ABDA(r, s, t,u) = (r —s —t + u)A(r, s, t,u).
Therefore, A(r,s,t,u) is contained in an H-weight space of the sly(C)-module Fix(G).

The vector space Fix(G) is the direct sum of its H-weight spaces. Therefore, the nonzero
vectors among

A(r, s, t,u) (r,s,t,u) € Py

are linearly independent. To finish the proof, it suffices to show that

0= 3 Alrs tu) (17.11)

rlsitlu!
(r,s,t,u)ePn

We have

*S okt KU *S o *T,) kU

(x*’”y Z*w )i Ty 2w '
2 rlsltlul ( 2. i

(r,s,t,u)EPN rs,tu) €PN
N i
= m(ﬂfN) by Lemma 9.12
QN N\1/2 75
= ﬁ(N!Q )""B(N.,0,0,0) by Lemma 17.27
(N128) Y2
= TB(N, 0,0,0) by Definition 17.24.

We also have

B*(r,s,t,u) 1 § N
Z sl NN Z B*(r,s,t,u) by Definition 17.40
(r,s,t,u) €PN (r,s,t,u)EPN
B(N,0,0,0
= —( 7N,7 0 by Lemma 17.43.

We may now argue

*S kT, kU

Z A(T787t7u) _ (x*ry 2w )I B (N‘QN)1/2 Z B*(T,S,t,u)

rislthul rlsitlu! rlsitlu!
(r,s,t,u)EPN (r,s,t,u)EPN (r,s,t,u)EPN
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(N12N)' /2

- B(N,0,0,0)

We have shown (17.11), and the result follows.

In the next four results, we give some comments and tie up some loose ends.

Proposition 17.46. For a profile (r,s,t,u) € Py the following (1)—(vi) hold:
(i) ADB*(r,s,t,u) = (r+s —t —u)B*(r, s, t,u);

i) AQB*(r,s,t,u) = (r— s+t —u)B*(r, s, t,u);

(iii) A®B*(r,s,t,u) = (r —s —t +u)B*(r, s, t,u);

) the vector

A*<1)B*(T, s, t,u)

1s a linear combination with the following terms and coefficients:

Term Coefficient
B*(r—1,s+1,t,u) r
B*(r+1 s—1,t,u) s
B*(T s,t—1,u+1) t
B*(r,s,t+1,u—1) u

(v) the vector
A*DB*(r, s,t,u)

1s a linear combination with the following terms and coefficients:

Term Coefficient
B*(r—1,s,t+1,u) r
B*(T —1,t,u+1) s

B*(r+1,s,t —1,u) t
B*(r,s+1,t,u—1) u

(vi) the vector
A B*(r, s, t,u)
is a linear combination with the following terms and coefficients:

Term Coeflicient
B*(r—1,st,u+1)
B*(’I“ —1,t+1,u) s
B*(’r s+ 1,t—1,u) t
B*(r+1,s,t,u—1) u

r
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Proof. Apply the map I to everything in Proposition 7.8, and evaluate the result using
Theorem 17.34 and Proposition 17.45. ]

Lemma 17.47. We have

B*(N,0,0,0)=2"" > B(rs,tu).

(r,s,t,u)EPN

Proof. Apply the map I to everything in Lemma 9.5. In the resulting equation, evaluate
the left-hand side using Definition 17.40 and Proposition 17.45. Evaluate the right-hand
side using Definition 17.24 and Lemma 17.27. The result follows. O

Lemma 17.48. For the sly(C)-module Fix(G), each H-weight space has dimension one
and each H*-weight space has dimension one.

Proof. By Lemmas 5.13, 7.9 and since the sl,(C)-modules Py, Fix(G) are isomorphic. [
Lemma 17.49. For the sl,(C)-module Fix(G), the following holds for i € {1,2,3}:
(Aju, vy = (u, Av), (Afu,v) = (u, Ajv) u,v € Fix(G).

Proof. Apply the map 1 to everything in Lemma 9.9, and evaluate the result using The-
orem 17.28 and the fact that § is an isomorphism of sl,(C)-modules. O

We comment about notation. Earlier in this section, we discussed the vectors
B(r, s, t,u), B*(r,s,t,u) (r,s,t,u) € Py. (17.12)
Up to notation, the vectors (17.12) are the same as the vectors
P, Qhij (hyi,5) € Py (17.13)

In the next section, we will adopt a point of view in which the notation (17.13) is more
convenient than the notation (17.12). To prepare for the next section, we restate a few
results using the notation (17.13).

Corollary 17.50. The following (i)—(iv) hold.
(i) The vectors
Pyij (hyi,j) € Py
form an orthogonal basis for Fix(G).
(ii) For (h,i,j) € P,
A (Prig) = 0 Paig. A (Prig) = 0; Puig.
A (Prij) = 05 Prije
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(iii) The vectors
Q@hij (h,i,j) € Py
form an orthogonal basis for Fix(G).
(iv) For (h,i,j) € PY,

AW (Qni) = 0nQnij, A®) (Qniy) = 0:Qnij,

A(g) (Qh,i,j) - Qthﬂ-,j.
Proof. (i) By Lemma 17.15, Remark 17.20, Lemma 17.21, and Proposition 17.22.
(ii) By Remark 17.20 and Definition 17.31.

(iii) By Lemma 17.15, Definition 17.37, Lemma 17.38, and Proposition 17.39.
(iv) By Lemma 17.30 and Definition 17.35. O

18 The subconstituent algebra of H (N, 2)

We continue to discuss the hypercube H(N,2). In [23] the subconstituent algebra of
H(N,?2) is described in detail. In this section, we explain what the subconstituent algebra
of H(N,2) has to do with our results from the previous sections.

We now review some concepts and notation about I' = H(N, 2).

Definition 18.1. For z,y € X we define a map e, , € End(V) that sends y — = and all
other vertices to 0. Note that {e, ,}.ex form a basis for End(V).

Definition 18.2. We endow End(V') with a Hermitian form (, ) with respect to which
the basis {e;y}+yex is orthonormal.

For x € X and 0 < ¢ < N, define the set I';(z) = {y € X|0(x,y) =i}. For 0 < i< N
define A; € End(V') such that

Az‘l’:Zf, z e X.

§ely(w)

By [56, Section 3] we have A; = (]j) fi(A), where f; is from Definition 15.2. For the rest
of this section, fix s € X. Define A* = A*(») € End(V) such that

A = 05,7, x e X. (18.1)

By construction, the map A* is diagonalizable with eigenvalues {0;}~,. By [23, Theo-
rem 4.2] we have

A, [A, A¥]] = 4A", A%, [A*, A]] = 4A.
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Let T = T(5) denote the subalgebra of End(V') generated by A,A*. By [23, Corol-

lary 14.15] we have dimT" = (N;r?’). We call T' the subconstituent algebra (or Terwilliger

algebra) of H(N,2) with respect to s; see [23, Definition 2.1].

We mention some bases for the vector space T. For 0 < ¢ < N define Ef = Ef(x) €
End(V') such that

By i A, 2) = z e X.
0, if d(z, ») # 1,

By construction, Ef is the primitive idempotent of A* for the eigenvalue 6. For 0 <i < N
define Af = Af(3) € End(V) such that

Az = 2N (Eix, 2), r e X.

By [56, Section 11] we have A} = (¥)fi(A*). By [23, p. 403] and Remark 17.17, the
following hold for 0 < h, 7,7 < N:
EiALE; #0 iff  (h,4,j) € P
EAE; #0 iff (h,i,j) € Py.
Lemma 18.3. The following is an orthogonal basis for the vector space T ':
EfALE] (h,i,7) € P (18.2)
Moreover, the following is an orthogonal basis for the vector space T':
EALE; (h,i,7) € PY. (18.3)
Proof. By [56, Lemma 8.1] and Remark 17.17 and

N+3

dim7T = (
3

) — Pl = 1P

By [23, p. 404] the algebra 7' is semisimple.

Next, we review the Wedderburn decomposition of 7. By [23, Corollary 14.12] the center
of T is generated by

| 4AZ 4 4A"2 — (AAT — ATA)?

¢ 8

(18.4)

By [23, Theorem 6.3 and Lemma 14.6], the map ¢ is diagonalizable with eigenvalues

(N — 20)(N — 20+ 2)
2

0<0<|N/2.
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For 0 < ¢ < |N/2| let ¢, € End(V') denote the primitive idempotent of ¢ associated with
the eigenvalue

(N — 20)(N — 20+ 2)
5 .

By [23, Theorem 14.10] the following is a basis for the center of T

b 0<0< N2,
By [23, Corollary 14.9],
LN/2]
(N —20)(N —20+2)
= . 18.5
¢ ; 5 be (18.5)

By [23, Theorem 14.14], for 0 < ¢ < [N/2] the subspace ¢,T" is a minimal 2-sided ideal
of T with dimension (N — 2¢ + 1)2. By [23, Theorems 14.10, 14.14] we have

T = Z T (orthogonal direct sum). (18.6)

This is the Wedderburn decomposition of T

Next, we define some maps in End(7T).
Definition 18.4. We define A1, A®) AG) € End(T) such that for (h,i,7) € P4,

AW (EALE;) = 0,EALE;,
AP (E;ALE)) = 6,EAGE;,
AP (E;ALE)) = 0,E,ALE;.

The maps A, AG) have the following interpretation.
Lemma 18.5. For Be T,
A®(B) = AB, AB)(B) = BA.
Proof. By the second assertion in Lemma 18.3, along with Definition 18.4. [
Definition 18.6. We define A*M, A*®) A*G) ¢ End(T') such that for (h,i, ) € P4,

AW (E;AGEY) = 0;E;ALES,
AP (E;ALES) = 07ETALES,
A" (E;ALED) = 0;E;ALE].

The maps A*?), A*®) have the following interpretation.
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Lemma 18.7. For Be T,
A*@(B) = BA*, A*®(B) = A*B.
Proof. By the first assertion in Lemma 18.3, along with Definition 18.6. [

We are going to show that the vector space T' becomes an sl;(C)-module on which A; =
A® and A* = A*® for i € {1,2,3}. We are also going to show that the sly(C)-modules
T and Py are isomorphic. In addition, we will interpret the Wedderburn decomposition
of T'in terms of the decomposition of Py given in (14.3) with ¢ = 1.

Recall from Definition 17.6 the vector space V®3 and the set X ©3.

Definition 18.8. We define a C-linear map € : V® — End(V) as follows. For z@y®z €
X3,

8($®y®z):{2N/2ey7za %fa::%;
0, if © # s
Lemma 18.9. For 1 @y ® z € X® the map e(x @ y ® 2) sends

V= 2N 5 (2, 0y, Y e X.
Proof. For ¢ € X we have

ez ®y©2) () = 2V20, e, . () = 220, .8y .y = 2V (@, 30) (2, ¥)y.

O
Lemma 18.10. For u,v,w € V the map e(u ® v @ w) sends
W= 2N, 32) (w, ), eV

Proof. By Lemma 18.9 and C-linearity in each of the arguments u, v, w, 1. m
Recall the vectors P, ; ; from Remark 17.20.
Lemma 18.11. For (h,i,j) € PY,,

e(Phiy) = 2NPE;ALE;. (18.7)
Proof. To verify (18.7), we apply each side to a vertex 1 € X. First assume that 0(1, ») =
i. Then each side of (18.7) sends

P — oN/2 Z Y.

yel; (3)NTh(¥)

Next assume that (1), ») # i. Then each side of (18.7) sends v — 0. O
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We bring in some notation. For u,v € V' we define a vector uov € V as follows. Write

U= g Uy, v = E VT, Uy, Uy € C.

rzeX rzeX

Define

UV = 5 Uy VT,

zeX

Note that u, = (u,x) and v, = (v, z) for x € X. Therefore,

uowv = Z(u, x) (v, z)x.

zeX

The following result is well known. We give a short proof for the sake of completeness.
Lemma 18.12. (See [56, Lemma 9.3].) For 0 < h < N we have
Ao =2NEpscow, velV.

Proof. For v € V we have

Arv =A; Z(v, T)r = Z(v, )A;x = 2N Z(v, x)(Epse, x)x

zeX zeX zeX
=N Z(Eh%, o) (v,z)x = 2VEpx 0w,
zeX

Recall the vectors @p,;; from Definition 17.35.
Lemma 18.13. For (h,i,7) € P},

e(Qnij) = 2V*EALE;. (18.8)
Proof. Let v € X. Using in order Definition 17.35, Lemma 18.10, Lemma 17.5, Lemma
18.12 we obtain

e(Qnij) (W) =2V " e(Enr ® Eix @ Ejz) (1)

rzeX

— 93N/ Z(Ehx, s)(Ejx,)Esw

zeX

— 93N/2 Z(Ehm, x)(Ejxz,)E;x

zeX

= 23N/2E, Z(Eh%, z)(E;j¢, z)x

rzeX
= 2V2EATE; ().
The result follows. O
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Lemma 18.14. The restriction €|pixq) of € to Fix(G) gives a bijection €|pix(c) : Fix(G) —
T.

Proof. By Corollary 17.50(iii) and Lemmas 18.3, 18.13. O

Lemma 18.15. For k € {1,2,3} the following diagrams commute:

Fix(G) —— T Fix(G) —— T
AR l Lq(m A*(R) J lmw)
Fix(G) —— T Fix(G) —— T

Proof. Let (h,i,j) € P}. To verify the first diagram, chase @, ; ; around the diagram us-
ing Corollary 17.50(iv), Definition 18.4, and Lemma 18.13. To verify the second diagram,
chase P ;; around the diagram using Corollary 17.50(ii), Definition 18.6, and Lemma
18.11. O

Theorem 18.16. The vector space T becomes an sl,(C)-module on which
A; = A9, A= A0 ie{1,2,3}.
Moreover, the map €|pixq) : Fix(G) — T is an isomorphism of sl,(C)-modules.
Proof. By Theorem 17.34 and Lemmas 18.14, 18.15. [
Next, we compare the Hermitian forms on Fix(G) and T
Lemma 18.17. For (h,i,j) € Py,
1Bl = 2V B A5 P, 1Qunigl* = 2V [EAE

Proof. In these equations, the left-hand side is computed using Remark 17.20, Lemma
17.21, and Lemma 17.36(i), while the right-hand side is computed using Remark 17.17
and [56, Corollary 8.2]. O

Theorem 18.18. The Hermitian forms on Fix(G) and T are related as follows:
(u,vy = (e(u),e(v)) u,v € Fix(G).

Proof. Without loss of generality, we may assume that u, v are in the basis for Fix(G) from
Corollary 17.50(i). First assume that u # v. Then (u,v) = 0 by Corollary 17.50(i), and
(e(u),e(v)) = 0 by Lemmas 18.3, 18.11. Next assume that u = v, and write u = v = P ;.
Using Lemmas 18.11, 18.17 we obtain

le(u)[|* = [2¥*ESALES 1P = 2N [ESALES 1P = || Prigll® = [Jull®.
The result follows. O]
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Recall the map §: Py — Fix(G) from Lemma 17.27.
Definition 18.19. We define a C-linear map ¥ : Py — T to be the composition

9. Pn — Fix(G) —— T.

In the next result, we clarify how the map 9 acts on Py.

Theorem 18.20. For (r,s,t,u) € Py the map ¥ sends

I 4 1217171 I
2"yt Lt — WEjAhEiv (18.9)
*1 kS ¥t kU T'S't'u' *
where
h=t+u, 1=u-+ s, J=s+t.

Proof. The action (18.9) is obtained from Remark 17.20, Definition 17.24, and Lemmas
17.27, 18.11. The action (18.10) is obtained from Definitions 17.37, 17.40, Proposition
17.45, and Lemma 18.13. O

Theorem 18.21. The map ¥ : Py — T is an isomorphism of sl,(C)-modules.
Proof. By Definition 18.19 and Theorems 17.34, 18.16. [

Theorem 18.22. The Hermitian forms on Py and T are related as follows:

Proof. By Theorems 17.28, 18.18, and Definition 18.19. m

Definition 18.23. Let { denote the antiautomorphism of End(V') that sends e, , <> €y,
for all z,y € X. We have 12 = id. We call 1 the transpose map.

Lemma 18.24. The map t fizes each of A, A*. Moreover, T is invariant under t. The
restriction of T to T gives an antiautomorphism of the algebra T

Proof. The first assertion is a routine consequence of (17.1) and (18.1). The second
assertion holds because T' is generated by A, A*. The third assertion holds because the
map T is invertible. O

Lemma 18.25. The map T fizes each of A;, E;, AT EX for 0 <¢ < N.

17 1

Proof. Each of A;,E; is a polynomial in A. Each of A, Ef is a polynomial in A*. The
result follows from these comments and Lemma 18.24. O
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Lemma 18.26. There exists an automorphism of the algebra T that swaps A <+ A*. This
map swaps A; <> Af for 0 <1< N and E; <+ E; for 0 <i < N.

Proof. The automorphism is given in [15, Section 9] and [15, Theorem 6.4]. O
Definition 18.27. We define a C-linear map S : T'— T to be the composition

s: T o T — T

Note that S is an antiautomorphism of 7" such that S? = id.
Lemma 18.28. The map S swaps
EiALE; < EJALE]
for (h,i,j) € PY.
Proof. By Lemmas 18.24-18.26 and Definition 18.27. [
Recall the automorphism ¢ of P from Proposition 7.12.

Proposition 18.29. The following diagram commutes:

Py — T

al lS
Py —>19 T
Proof. For (r,s,t,u) € Py chase x"y*z'w" around the diagram, using Theorem 18.20,

Lemma 18.28 and the comment at the end of Section 7. O

Next, we consider the decomposition of Py given in (14.3) with ¢ = 1. We compare this
decomposition with the Wedderburn decomposition of 7" given in (18.6).

Theorem 18.30. For 0 < ¢ < |N/2] the map ¥ sends
R (Ker(Ll) N PN,%> s o7

Proof. During this proof, we will refer to the decomposition of Py given in (14.3).
Throughout the proof, we assume that ¢ = 1 in (14.3). In Proposition 13.7 we defined
Cy € End(P) such that on P,

_AA 4 4A — (A A5 — AAy)?

4 g

(18.11)
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We have C(Py) € Py by Lemma 13.11. By Proposition 14.2(iv), for 0 < ¢ < [N/2]
the (-summand in (14.3) is an eigenspace for the action of C; on Py; the eigenvalue is
(N —20)(N —2¢+2)/2. We now bring in the s[,(C)-module T. Define CV € End(T) by

4(A<2))2 + 4(A*<3>)2 — (A@A®) — A*(B)A@))?
8 )

where A®) | A*®) are from Definitions 18.4, 18.6. Comparing (18.11), (18.12) and using
Theorem 18.21, we see that the following diagram commutes:

cW =

(18.12)

PNLT

CIJ/ J,C(l)

Py T> T
Recall the central element ¢ € T from (18.4). By Lemmas 18.5, 18.7 and (18.12),
Cc(B) = ¢B, BeT. (18.13)

Consider the Wedderburn decomposition of 7' from (18.6). We claim that for 0 < ¢ <
| N/2] the f-summand in (18.6) is an eigenspace for C(!) with eigenvalue (N — 2¢)(N —
20 + 2)/2. To prove the claim, let ¢ be given. The /-summand in (18.6) is equal to ¢,T".
Using (18.5), (18.13) we find that for B € T,

(N — 20)(N — 20+ 2)

CW(¢(B) = 6B = 5

GeB.

The claim in proven. Our discussion shows that for 0 < ¢ < [N/2] the map 9 sends the
(-summand in (14.3) to the ¢-summand in (18.6). The result follows.
[l

19 Directions for future research

In this section, we give some suggestions for future research.
Problem 19.1. Recall the polynomial algebra P = C[x,y, z, w|. Define

| T-y—z—w | TrTty—z—w
z =T 9 y = 5 ’
| TT—Yytz—w ;. TrT—y—z+w
T 2 ’ v 2

The vectors x*, y*, 2+, w* form a basis for P;. Consequently, the following vectors form a
basis for P:

oyt r,s,t,u € N. (19.1)
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This basis is an eigenbasis for the automorphism o of P from Proposition 7.12. To see
this, note that

T’ = - ) Yy = )
2 2
2 ’ 2 ’
where z*, y*, 2*, w* are from Definition 7.1. Therefore, o sends
zt s —zt, Yt gt 2 2t wh — wb.

It would be interesting to explore how sly(C) acts on the basis (19.1).

Problem 19.2. We refer to Problem 19.1. The vectors z*, y*, 2%, w% are common eigen-
vectors for the following three elements of sl,(C):

0O -1 0 0
Ai _ HA;;a A1]> A§] o -1 0 00
e 4 o o o0 1]
0 10
0O 0 -1 0
g AL AL AT o0 001
2 4 “|l-10 0 o’
0O 1 0 O
0 00 -1
AJ, _ [[A;a A3]v Aﬂ _ 0 01 0
s 4 o 10 o0
-1 0 0 0
Specifically,
(i) Al sends
t e 2t Yt gt b =2t wb — —w;
(i) A} sends
2t o, ot s —yt, e 2, wh s —wb:
(iii) A} sends
b= ot Yt = —yt, b =2t wh — wh.

The elements A}, A5, A% form a basis for a Cartan subalgebra HY of sl,(C). It would be
interesting to explore how H, H*, H+ are related.

THE ELECTRONIC JOURNAL OF COMBINATORICS 33(1) (2026), #P1.29 84



Problem 19.3. In the present paper we treated the graph H(N,2) in an S3-symmetric
way. As we mentioned in Section 17, H(N,2) is a -polynomial distance-regular graph
that has diameter N and is a bipartite antipodal 2-cover. Let I denote any Q)-polynomial
distance-regular graph that has diameter NV and is a bipartite antipodal 2-cover. Such a
graph is called 2-homogeneous; see [12,14]. To avoid trivialities, let us assume that I is
not isomorphic to H(N,2). The intersection numbers of I' are determined by N and a
certain scalar parameter ¢; see [12, Theorem 35]. We seek an S3-symmetric treatment of
I' that is analogous to the present paper. Such a treatment would amount to a g-analog
of the treatment in the present paper.
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