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Abstract

Let a,b be fixed positive coprime integers. For a positive integer g, write
Wi (g) for the set of lattice paths from the startpoint (0,0) to the endpoint (ga, gb)
with steps restricted to {(1,0), (0,1)}, having exactly k£ flaws (lattice points lying
above the linear boundary connecting the startpoint to the endpoint). We deter-
mine |Wg(g)| for all £ and g. The enumeration of lattice paths with respect to a
linear boundary while accounting for flaws has a long and rich history, dating back
at least to the 1949 results of Chung and Feller. The only previously known values
of [Wg(g)| are the extremal cases k = 0 and k = g(a + b) — 1, determined by Bizley
in 1954. Our main combinatorial result is that a certain subset of Wy (g) is in bijec-
tion with Wy11(g). One consequence is that the value |Wj(g)| is constant over each
successive set of a + b values of k. This in turn allows us to derive a recursion for
|Wi(g)| whose base case is given by Bizley’s result for & = 0. We solve this recursion
to obtain a closed form expression for |Wy(g)| for all k¥ and g. Our methods are
purely combinatorial.

Mathematics Subject Classifications: 05A15, 05E05

1 Introduction

The lattice path shown in Figure 1.1 contains exactly five lattice points that lie above the
linear boundary joining the startpoint (0,0) to the endpoint (8, 6).

Throughout, a,b are fixed positive coprime integers and g is a positive integer. Our
objective is to count the number of lattice paths from the startpoint (0,0) to the endpoint
(ga, gb) with steps restricted to {(1,0), (0,1)}, having exactly k lattice points lying above
the linear boundary joining the startpoint to the endpoint.

Let p be a path. The boundary of p is the line joining its startpoint to its endpoint.
The path p contains the lattice point (z + i,y + j) (equivalently, (z + i,y + j) is a point
of p)if p starts at (z,y), and the first i+ j > 0 steps of p consist of 7 of the (1,0) steps and
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Figure 1.1: Lattice path from (0,0) to (8,6) with five lattice points above the line con-
necting (0,0) to (8,6).

j of the (0,1) steps (in any order). We consider the points of p to be ordered according
to increasing values of 7 + j. A point of p is a flaw if it lies strictly above the boundary
of p. For example, the path in Figure 1.1 has the five flaws (0, 1), (1,1), (1,2), (2, 2), (5,4)
denoted in orange.

Definition 1.1 (Sets W (g) and Wy(g)). Let W (g) be the set of all paths from (0,0) to
(ga, gb), and let Wi (g) be the subset of such paths having exactly &k flaws. J

The possible values for the number £ of flaws of a path are those satisfying 0 < k <
g(a+10). Straightforward counting shows that |W(g)| = (ga;gb). The central objective of
this paper is to find an explicit formula for |Wj(g)| for all g, k satisfying 0 < k < g(a+b).
The extremal values [Wy(g)| and |[Wy(qs)-1(g9)| were found by Bizley [9] in 1954 (see
Theorem 1.10 below). Until now, the value of |W(g)| was unknown for all other k.

When g = 1, the values |Wy(g)| and |Wya4s)-1-1(g)| are equal: in this case, a path
cannot contain lattice points on the boundary other than its startpoint and endpoint, so
rotation of the path through 180° bijectively maps the set Wj(g) to the set Wyais)—1-#(9)-
However, in the case g > 1, a path can contain such lattice points and, because points on
the boundary are not counted as flaws, rotation of the path through 180° does not map
the set Wi (g) to the set Wy(qp)—1-k(g). In fact, the values |Wy(g)| and |[Wyaip)—1-x(9)|
are not equal in general.

Table 1.1 displays the numerical value of |Wy(4)| for (a,b) = (3,2), obtained by com-

puter evaluation. We note two apparent properties suggested by these values:

P1 (Constant on blocks). The value |Wj(g)| is constant on each of g distinct “blocks”
of a + b consecutive values of k.

P2 (Strictly decreasing). The value |W}(g)] is strictly decreasing between successive
blocks.

We shall show that properties P1 and P2 both hold for all values of g, a, b.

Table 1.1, in addition to displaying the value of |Wy(4)| for (a,b) = (3,2), also displays
the value of the difference |Wy(4)| — |[Wii1(4)|. These differences suggest a strategy
for achieving our central objective: identify a subset Si(g) of Wi (g) having cardinality
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k| Wi(4)] | [Wi(4)] — [Wis1(4)|
0 7229 0
1 7229 0
2 7229 0
3 7229 0
4 7229 754
) 6475 0
6 6475 0
7 6475 0
8 6475 0
9 6475 437
10 | 6038 0
11| 6038 0
12 | 6038 0
13 | 6038 0
14 | 6038 586
15| 5452 0
16 | 5452 0
17| 5452 0
18 | 5452 0
19 | 5452

Table 1.1: Computer evaluation of |Wy(4)| for (a,b) = (3,2).

(Wi(g9)| — [Wi+1(g)|, and show that the sets Wi(g) \ Sk(g) and Wiyi1(g) are in bijection.
We achieve this in our main combinatorial result (Theorem 1.5). Properties P1 and P2
follow as consequences of this result.

We introduce some additional vocabulary before defining the subset Si(g).

Definition 1.2 (Path concatenation). Let p; and p, be paths having arbitrary startpoints.
The path concatenation pipo is the path that starts at the startpoint of p;, takes all the
(ordered) steps of p;, and then takes all the (ordered) steps of ps. J

Definition 1.3 (Boundary points). The boundary points of a path p € W(g) are the
points of p that lie on its boundary. Boundary points of p other than the startpoint
(0,0) and endpoint (ga, gb) are interior boundary points of p. The startpoint and interior
boundary points are the non-terminal boundary points. a

The lattice points lying on the boundary joining (0,0) to (ga, gb) are the g + 1 points
of the form (ja,jb) for 0 < j < g (see Figure 1.2). The number of interior boundary
points of a path p € W (g) therefore lies in {0,1,...,g— 1}.

Recall that the number k of flaws of a path in W (g) satisfies 0 < k < g(a+0b). A path
in W (g) containing g(a + b) — 1 flaws has maz flaws. Equivalently, the set of paths with
max flaws is Wy(a15)-1(9)-
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Figure 1.2: Let (a,b) = (3,2). The boundary of a path whose endpoint is (ga, gb) =
(4-3,4-2) contains g + 1 = 5 lattice points (red vertices).

Definition 1.4 (Subset Sk(g)). For 0 < k < g(a +b) — 1, let Sk(g) be the set of
min-maz paths, namely the subset of Wy (g) containing all paths of the form p;py, where
p1 € Wo(g — j) and py € Wi(j) for some j satisfying 0 < j < g, and p, has max flaws.
We write S(g) = U, Sk(9)- 4

See Figure 1.3 for two example min-max paths in S(4). A min-max path is, for some j,
the concatenation of a path p; from (0,0) to ((¢ — j)a, (g — j)b) having no flaws with a
path p, from (0,0) to (ja,jb) having max flaws. The condition that p, has max flaws
implies that Sk(g) is empty unless & = j(a + b) — 1 for some j satisfying 0 < j < ¢ (and
in particular Sp(g) is empty). So we have

Sp(g) =@ fork#—1 (mod a-+b), (1.1)

and, for each j satisfying 0 < j < g,

Sitat+n)-1(9) = {p1p2 :p1 € Wo(g —j) and ps € VVj(a-i—b)—l(j)}‘ (1.2)

Note that the path ps in Definition 1.4 does not contain an interior boundary point
(because it has max flaws), but the path p; might (see Figure 1.3).

(a) A path pipe in Sg(4), where p; € (b) A path pips in S4(4), where p; €
W()(Q) and py € WQ(Q). W0(3) and py € W4(1).

Figure 1.3: Two example min-max paths in S(4) for (a,b) = (3,2).
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1.1 Main combinatorial result and consequences

Theorem 1.5 (Main combinatorial result). Let g, k satisfy 0 < k < g(a+b) — 1. Then

(Wi(9) \ Se(9)] = [Wisa(g)]-
We shall prove Theorem 1.5 in Section 3 combinatorially. Define
15(g) = [Wj+p)(g)| for each j satisfying 0 < j < g. (1.3)

The following result is a first consequence of Theorem 1.5 and establishes property P1.
Corollary 1.6 (Constant on blocks). Let g be a positive integer. Then

(Wi(9)| = p(g) for all j, k satisfying 0 < j < g and ja+b) <k < (j+1)(a+D).
Proof. The result follows directly from Theorem 1.5 and (1.1). ]

We now observe two further consequences of Theorem 1.5.

Corollary 1.7 (Recurrence relation). Let g be a positive integer. Then

i-1(9) — 1olg — Dig—1(j) = ps(g) for each j satisfying 0 < j < g.

Proof. Let j satisfy 0 < j < g and let kK = j(a 4+ b) — 1. Since Si(g) is a subset of Wy (g),
we have by Theorem 1.5 that

(Wi(9)] = [Sk(9)] = [Wis1(g)]- (1.4)

We know from Corollary 1.6 that [Wy(g)| = pj-1(9) and |[Wi+1(g)| = n;(g), and from
(1.2) and Corollary 1.6 that [Sk(9)| = [Sj(a+t)-1(9)| = to(g — J)pj—1(5)- Substltute these
values into (1.4) to obtain the result. O

The next corollary establishes property P2.

Corollary 1.8 (Strictly decreasing). Let g be a positive integer. Then po(g) > p1(g) >
> fig-1(9)-

Proof. This follows from Corollary 1.7, noting that po(g — j)pj—1(j) > 0 for 0 < j < g by
the definition of 41,(g) given in (1.3). O

1.2 The value of p;(g) and the main enumerative result

Recall that our central objective is to find an explicit formula for |Wy(g)| for all g,k
satisfying 0 < k < g(a+b). By Corollary 1.6, it is sufficient to determine the values y;(g).

The recurrence relation of Corollary 1.7 for 4,;(g) has a unique solution for each j, ¢
satisfying 0 < j < g, provided the initial values po(g) (contained in the top row of
Table 1.2) are known for all g. The required initial values po(g) = |Wo(g)| were given
by Bizley [9] in 1954. We shall express these values in Corollary 1.11 in terms of a
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p(2) | i (3) | (4) | m(5)
p2(3) | pa(4) | pa(5)
pa(4) | 13(5)

114(5)

Table 1.2: All values p;(g) can be derived using only the values in the top row of the
table, but can be more easily derived by also using the values in the coloured diagonal.

quantity H,, introduced below. A derivation of y;(g) using only the values of po(g) is
given in [16, Chapter 4].

However, the values j;(g) can be derived more easily by additionally making use of the
values f1,-1(g) (contained in the coloured diagonal of Table 1.2). These additional values
can be obtained using Corollary 1.6 from the values |Wy(q15)-1(g)| given by Bizley [9],
and can be expressed in terms of another quantity F,. This is the approach we shall use
to establish the value of y;(g) in Theorem 1.12.

We now define the quantities H, and E, as sums over all integer partitions of g.
Recall that a weakly increasing sequence of positive integers A whose entries sum to g is
a partition of g; we write A g to indicate this. Each entry of X is called a part. We use
the notation A\ = (1™12™2...) to mean that A has m; parts equal to i, so g = >, im;.
For example, the partition (1,1,2,3) of 7 is also written (12213!) I 7.

For ¢ > 0, let
1 i(a+ D)
i = . . 1.5
c i(a+ ) ( ia ) (1.5)
For a partition A = (1™2™2...) |- g, let its length be £(X) := ., m;, and let

m;

5\ ::H;;'. (1.6)

i1 Y

Now let

Hy =Y o, (1.7)

Mg
Byi= (—1)7"" Wy, (1.8)
g
and for convenience let
Ey=1 and Hp:=1. (1.9)

Remark 1.9. For each positive integer ¢, the quantities H, and E, are in fact specializa-
tions of (one part) complete and elementary symmetric functions h, and e,, respectively.
The standard relationship between the power sums p; and the complete and elementary
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symmetric functions are

b —e(\) P
hg = Z oy and e, = Z(—l)g ( )Z,
Mg

Ag

where for a partition A = (11272 ... ) of g, we write z) := [[,o, i™'m;! and py = [].o, pi"™".
Then the quantities H, and E; in (1.7) and (1.8) are obtained from the specialization given
by p; = ic;. The identity

g

> (-1 EH, ;=0 (1.10)

1=0

results from another well-known relationship between the complete and elementary sym-
metric functions. See [1] or the classic reference [26] for details on the above and other
relevant background on symmetric functions. J

Theorem 1.10 (Bizley [9]). We have that

’WO(Q)
Wetatp)-1(9)

Using Corollary 1.6, we then obtain the value of p(g) and of p14-1(g).

| = Hg’
| = (_1)g+1Eg'

Corollary 1.11 (Value of po(g) and py—1(g)). We have that

po(g) = Hy, (1.11)
tg-1(g9) = (—1)7" E,. (1.12)
We can now give a closed form expression for the value of p;(g), which we remark is

a truncated version of the sum from (1.10). This is our main enumerative result, and is
the central consequence of Theorem 1.5.

Theorem 1.12 (Path enumeration formula). We have

J
wilg) =D (~D'EH, . for0<j<g.
k=0

Proof. The proof is by induction on j. The base case j = 0 is given by (1.9) and (1.11).
Assume that the formula holds for all cases up to j — 1, where 0 < 57 < g. It follows from
Corollary 1.7 and (1.11) and (1.12) that

1i(9) = pj-1(9) + (=) E;H, ;.
The inductive hypothesis then gives

1
1i(g) =Y (—1)"ExHy y + (1) E;H,_;
0

.

i
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::55(—1ﬁ1%f@h (1.13)

k=0
so case j holds and the induction is complete. O]

Remark 1.13. The expression (1.13) can be written more compactly as a specialization
of a Schur function via the identity S°7_ (—1)*exh, 1 = (—=1) 813 (g—j)1), Where s15(g—j)1)
is the Schur function indexed by the hook partition (17(g — j)'). See [26, Section 1.3,
Example 9]. 4

1.3 Background on rational Catalan combinatorics

In the case a = b = 1, the set Wy(g) comprises all lattice paths from (0, 0) to (g, g) having
no flaws. Such paths are known as Dyck paths, and a classical result states that they are
counted by the ¢** Catalan number

1 2g
C,=— . 1.14
! g+1(9) (L14)

The rational Catalan numbers [4] are given by

1 a+b
Ca = >
. a—i—b( a )

where a, b are restricted to be coprime so that C,; is always an integer. The quantity C,
is equal to ¢; as defined in (1.5). The specialization Cj 411 equals the Catalan number C\,.
For a positive integer b, the specialization C, g1 gives the Fuss—Catalan number

[ R ((b%l)g). (1.15)

9T gh+1 g

Dyck paths are one of the many combinatorial objects counted by the Catalan num-
bers; at least 213 other combinatorial objects are also counted by these numbers [27],
including binary trees and noncrossing partitions. The Fuss-Catalan numbers count
common generalizations of Catalan objects [28], including lattice paths from (0,0) to
(g, gb) having no flaws with respect to the linear boundary of integer slope b (see [15] for
an argument expressed using ballot sequences, or [20] for a combinatorial proof using a
construction akin to the reflection principle); b-ary trees, which are of much interest in
computer science (see for example [6] and its references); and certain generalizations of
noncrossing partitions.

The term rational Catalan combinatorics is traditionally used to describe the study
of objects counted by the rational Catalan numbers C,; for general coprime a,b. This
includes the enumeration of rational Dyck paths, namely lattice paths from (0,0) to (a,b)
having no flaws with respect to the linear boundary of rational slope b/a; rational asso-
ciahedra and noncrossing matchings [4]; and quantities associated with rational parking
functions [3]. Fundamental statistics such as the area and dinv statistics on Dyck paths
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have also been generalized to the rational case [17]. Rational Dyck paths have been
connected to many different objects through a new framework involving the signature of
coprime integers a, b [11].

Lattice paths from (0,0) to (ga, gb) having no flaws can be considerably more difficult
to count in the case g > 1 (when the co-ordinates of the endpoint are not coprime) than
in the case g = 1 (when they are coprime): for example, the expression H, for |[Wy(g)| in
Theorem 1.10 is complicated to evaluate in the case g > 1, but simplifies to C, ; in the case
g = 1. Though such paths are not necessarily counted by rational Catalan numbers, some
authors consider these more general path-counting problems to be part of rational Catalan
combinatorics whereas others use the term rectangular Catalan combinatorics [7]. Similar
complications in moving from the case g = 1 to the case g > 1 occur elsewhere, for example
when relating results between rational Dyck paths and simultaneous core partitions (see
2] and [18]), and in the study of parking functions and triangular partitions [5, 8] involving
a substantial generalization of Bizley’s Theorem 1.10 to symmetric functions.

1.4 Counting paths that cross a linear boundary

The novelty of our work is in the combination of rational Catalan combinatorics with
the counting of paths that contain flaws. To give further context, we briefly review the
literature on the enumeration of lattice paths that cross a linear boundary.

The path enumeration setting we consider involves paths with step set {(1,0),(0,1)}
in the two-dimensional lattice Z?; a boundary line joining the startpoint (0,0) of a path
to its endpoint (ga, gb), where g, a,b are positive integers such that a and b are coprime;
and k flaws. Previous authors have defined a flaw differently from us, namely as a certain
type of step (usually a (0,1) step) of the path that lies above the boundary. Each of the
referenc?[lQ7 23, 24, 29, 30| adopts this step-based definition of flaw and a notion of the
“wrong” side of the boundary, although the precise definition is not identical in all five
references.

In the more general case that we consider here, where the value of b/a need not
necessarily be an integer, the definition of a flaw as a step is no longer appropriate since
some steps can lie only partially above the boundary (see Figure 1.4). Our definition of
a flaw, as a lattice point of the path that lies above the boundary, does not have this
ambiguity:. -

Note that these two definitions of flaws are genuinely different: Figure 1.5 shows that
even in the case a = b = 1 there is no simple relationship between the number of (0, 1)
steps lying above the boundary and the number of lattice points lying above the boundary.
In Figure 1.6 we further illustrate the difference between these two definitions of flaws
when g = 2 and a = b = 1, which is the smallest non-trivial case of Corollary 1.6.

We review previous results relating to these two definitions of flaws in Sections 1.4.1
and 1.4.2.
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Figure 1.4: A path with a boundary whose slope is not an integer. This shows that both
(0, 1) steps and (1, 0) steps can lie partially above and below the boundary simultaneously,
whereas lattice points cannot.

] ]
/] /|

(a) A path in which two (0,1) steps (b) A path in which two (0,1) steps
and three lattice points lie above the and two lattice points lie above the
boundary. boundary.

Figure 1.5: Even in the case a = b = 1, there is no simple relationship between the
number of (0, 1) steps lying above the boundary and the number of lattice points lying
above the boundary.

1.4.1 Boundaries of integer slope with (0,1) steps as flaws

In this part of the review, we take flaws to be (0, 1) steps of a path from (0,0) to (g, gb)
that lie above the boundary of integer slope b.

Firstly consider paths from (0,0) to (g,g). The number of such paths having k£ = 0
flaws (no (0,1) steps lying above the boundary, which is equivalent to having no lattice
points above the boundary) is given by the Catalan number C, defined in (1.14). Chung
and Feller’s influential 1949 work [13] showed that, remarkably, the same count applies
for all k.

Theorem 1.14 (Chung-Feller [13, Theorem 2A]). Let k satisfy 0 < k < g. Then the
number of paths from (0,0) to (g,g) having k of the (0,1) steps lying above the boundary
is Cy.

Theorem 1.14 can be proven using bijective methods [10]. Huq generalized Theo-
rem 1.14 to paths from (0,0) to (g, gb) for each positive integer b.
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| 7
Figure 1.6: Set @ = b = 1 and g = 2. The six lattice paths from (0,0) to (2,2) are
distributed as (0,0, 1,1, 2, 3) according to the number of lattice points above the boundary.
Here Wy(2) = W1(2) = ( ) = 2and W5(2) = W5(2) = u1(2) = 1 (illustrating Corollaries
1.6 and 1.8). The six lattice paths are distributed as (0,0, 1,1,2,2) according to the

number of vertical steps above the boundary (illustrating the Chung—Feller result given
in Theorem 1.14).

Theorem 1.15 (Huq [24, Corollary 5.1.2]). Let k satisfy 0 < k < gb. Then the number
of paths from (0,0) to (g, gb) having k of the (0,1) steps lying above the boundary is ng,
the Fuss—Catalan number defined in (1.15).

Further variations on Theorem 1.14 have been found [23, 25, 29].

1.4.2 Boundaries of rational slope with lattice points as flaws

In this part of the review, we take flaws to be lattice points of a path from (0, 0) to (ga, gb)
that lie strictly above the boundary. The number of these flaws is the measure k£ used for
Wi(g) in Definition 1.1.

In 1950, Grossman [22] conjectured an explicit formula for the number of paths from
(0,0) to (ga, gb) that may touch, but never rise above, the boundary ay = bz. In our
terminology, such paths have no flaws and so are counted by |Wy(g)|. In 1954, Bizley
9, Eq. (10)] proved Grossman’s formula using generating functions. Bizley [9, Eq. (8)]
also obtained an explicit formula for the number of paths that lie wholly below, and do
not touch, the boundary ay = bx at an interior boundary point. In other words, such
paths have neither flaws nor interior boundary points. Since the set of such paths is
in bijection with the set of paths having max flaws (via rotation), this second result of
Bizley’s gives the value |Wyp)-1(g)|. The values |Wy(g)| and [Wyays)-1(g)| are stated
in Theorem 1.10.

One of the methods used by Bizley to prove Theorem 1.10 involves cyclic rotation
of paths. Such methods, in particular the Cycle Lemma, have been frequently used to
count lattice paths and have been popularized by many authors (see for example [14, 15]).
Although we were able to use arguments similar to the Cycle Lemma to obtain results in
certain special cases, we were not able to use it to obtain our general result.

2 Special cases and example of the main enumerative result

In this section we examine various special cases of the path enumeration formula of The-
orem 1.12, and give an example of its application.
We firstly state the special case g = 1.
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Theorem 2.1 (Special case g = 1). We have

1 b
(Wie(1)| = —— (a * > for all k satisfying 0 < k < a+ b.
a+b\ a

Proof. Let k satisfy 0 < k < a +b. By Corollaries 1.6 and 1.11 with g = 1, we have

W(1)] = io(1) = Hy. 1)
Now by (1.7) and (1.6) we have

H1 = C<11> = C1.

Substitute into (2.1) and use (1.5) to give the result. O

Theorem 2.1 shows that |Wj(1)| is independent of £ when g = 1. We highlight this
special case because our general construction used to prove Theorem 1.5 simplifies greatly
in the case g = 1. We re-examine this special case in Section 3.5.

We next give the special case g = 2.

Theorem 2.2 (Special case g = 2). We have

[Wi(2)] =
( r 2_
1 2a + 2b 1 fa+0
Il k satisfyi <k b,
200+ ) ( 9 )+a+b( a) for all k satisfying O <a+
1 [/2a+2 1 (a+0b\?
— Il k satisfyi b< k<2 b).
Naib) ( - ) a+b( . ) for all k satisfying a + < 2(a+0b)
\ L a

Proof. By Corollary 1.6 with g = 2,

2) for0<k<a+hb,
p1(2) fora+b<k<2a+b),

:{H2 for 0 < k < a+b, (22)
—Ey, fora+b<k<2a+b)
using Corollary 1.11. Now by (1.7) and (1.6) we have
Hy = cpny +cuzy = + %C%,
and by (1.8) and (1.6) we have
—Eo = ¢y —cpzy = co — %cf
Substitute into (2.2) and use (1.5) to give the result. O
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We now consider the special case a = 1, when the slope of the boundary is the positive
integer b and the startpoint and endpoint are (0,0) and (g, gb), respectively. Although
Theorem 1.12 already provides an expression for p;(g) in this case, we now derive an
alternative formula involving Fuss—Catalan numbers that appears to be simpler.

Theorem 2.3 (Alternative formula for @ = 1). Let a = 1. Then for all j satisfying
0<J<g,

Wit (@)l = Wierns1(@)l = - = W@ = wile) = Y Fo--Fp

i1+ +lb+1 g—1
ipp1Sg—1—J

(2.3)
where F? is the Fuss—Catalan number defined in (1.15).

Proof. Fix the positive integer g. All equalities of (2.3) except the last hold by Corol-
lary 1.6. We shall establish the last equality by induction on j. We shall describe the
structure of the induction by reference to Table 1.2, numbering table rows from 0 and
columns from 1.
Let P; be the statement that
pit) = Z sz1 e F-b+1 for all ¢ satisfying j +1 <t < g.

it tipp =t—1 "
ipyp1<t—1—j
In other words, P; is the statement that the last equality of (2.3) holds for all entries in
row j of Table 1.2 up to and including column g. We prove the theorem by showing by
induction on j that P; holds for 0 < j < g: that is, for all entries in rows 0,1,...,9 — 1
of Table 1.2 up to and including column g.
For the base case Py, let t satisfy 1 <t < g. We require that

Mo (t) = Z F;b1 F;Z+1

11+ Fip 1 =t—1

This is equivalent to showing that ug(t) = F?, by making use of the identity F} =

Z“ Fetip g =t—1 F; b. le:, .; this identity can be obtained by applying Lagrange inversion

[19, Theorem 1.2. 4] to the functional equation F'(z) = xF(z)**! +1 satisfied by the gener-
ating series F(x) = Y., o FPa" (see [21, p. 362] for the identity and functional equation).
Since a = 1, the set W (t) comprises all paths from (0,0) to (¢,tb). As discussed in Section
1.3, the number of such paths with zero flaws is F}? and so uo(t) = F} as required. This
establishes the base case F.
Now let j satisfy 0 < j < g and assume that the case P;_; holds, so that
pi—1(t) = Z EP - F)  for all ¢ satisfying j <t < g. (2.4)

b+1
i tip g =t—1
ipp1St—J

Let t satisfy 7 + 1 < t < ¢g. Then the recurrence relation of Corollary 1.7 gives
1 (8) = 11 (8) = po(t = ) =1 (3) = p—1(t) = Fj i (4).
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Apply the inductive hypothesis (2.4) to p;_1(t) and p;_1(j) to deduce that

_ E b b b § b b
H](t) - F’il e Fib+1 - Ft—j 'inl o F;b+1
i1y =t—1 i iy =1
iy <t—J ipy1=0
pr— b . .. b —_— b .« .. b b
- E F’il Fib+1 2 : El F;bF;f_j
it tipg g =t—1 i1t Fip=j—1
i1 St—d

using that F? = 1. This gives

pity= > FF

i fetip g =t—1
ipyp1St—1—j
by expanding the right hand side according to whether 4y, <t —1—j or 441 =t — 7.
Therefore the case P; holds, completing the induction. O

We next give an alternative formula for the special case @ = b = 1 (when the slope
of the boundary is 1) by taking b = 1 in Theorem 2.3 and noting that the Fuss—Catalan
number F}' equals the Catalan number C;, in order to demonstrate a further simplification.

Corollary 2.4 (Alternative formula for a = b =1). Leta=b=1. Then

g—1

Wa;(9)] = [Wajsa(9)l = mi(g) = Y CkCyroi for all j satisfying 0 < j < g,

k=j
where C; is the Catalan number defined in (1.14).

The reader is invited to compare Theorem 2.3 with Theorem 1.15: both apply to a
boundary of integer slope b, but Theorem 2.3 takes flaws to be points above the boundary
whereas Theorem 1.15 takes flaws to be (0, 1) steps above the boundary. The count in
Theorem 2.3 depends on the number of flaws whereas the count in Theorem 1.15 does
not.

We now give an example of how to apply Theorem 1.12.

Example 2.5 (Computation using the path enumeration formula). Let (a,b) = (3,2) and

g = 4. We illustrate the use of the path enumeration formula Theorem 1.12 to calculate

the number |[W;(4)| of paths from (0,0) to (12,8) having k flaws, for each k satisfying

0 < k < 20. By Corollary 1.6, it is sufficient to determine y,(4) for each j =0,1,2, 3.
We begin by listing the partitions of the integers 1,2, 3, 4.

Partitions of 4 : (
Partitions of 3 : (
Partitions of 2 : (

{

Partitions of 1 :
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Using (1.5), we compute

1001 12597
01:2, 02:21, CgZT, C4:T.

Using (1.6), we then compute (for example)

2 1 3
1 Cs c; 4
C<1221> = (§> (F) = 42, C<13> = (§> = §

The full set of ¢y values for A+ 7 where 1 < j <4 is

12597 2002 441 2

Cay = —5 7 Gy = gy Gy = 5 Gy =42, cany =3,
1001 4

cey =g cum =42, cuy =g,

Cny = 21, cu2y = 2,

Using (1.7) and (1.8), we next calculate (for example)

1001 4
H3 = C<31> + 6(1121> + C<13> = T + 42 + g - 377,
1001 4
E3 = (—1)3_10<31> -+ (—1>3_2C<1121> —+ <—1)3_3C<13> = T — 42 + g - 293

The full set of H;, and Ej}, values is
H, =7229, B, = —5452,
Hs =377, E5 =293,

H2 = 23, E2 = —19,
H1:27 EIZ )
EOZ

Using Theorem 1.12, we then determine that
p2(4) = EgHy — E\Hs + FoHy = 1-7229 — 2 - 377 — 19 - 23 = 6038
us(4) = EoHy — F1Hs + FoHy — EsHy = 1-7229 — 2377 — 19 - 23 — 293 - 2 = 5452.
(Alternatively, we may use (1.12) for a more direct calculation of the last value u3(4) =
(—1)*1E, = 5452.)
Using Corollary 1.6, we may now determine the value of |Wj(4)| for each k satisfy-

ing 0 < k£ < 20. The resulting values agree with the computer enumeration shown in
Table 1.1. r

We remark, as noted by Bizley [9], that both H, and E, are necessarily integers because
of the counting result Theorem 1.10, even though this is not readily apparent from the
forms (1.6), (1.7), and (1.8). We further remark that although the quantity ¢; defined in
(1.5) is not necessarily an integer, it is not difficult to show that ic; is an integer.
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3 Proof of the main combinatorial result

For convenience, we restate our main combinatorial result here.

Theorem 1.5. Let g,k satisfy 0 < k < gla+0b) — 1. Then
(Wi(9) \ Se(9)] = Wit (g)l-

3.1 Proof outline

We shall prove our main combinatorial result by considering fixed g, k satisfying 0 < k <
g(a+ b) — 1 and constructing injective maps

¢: Wi(g) \ Sk(g9) = Wi1(9),
VY Wiga(g) — Wi(g) \ Sk(9).

In fact, the map 1 we shall construct is the inverse of ¢, although we shall not require
this fact in our proof. We partition the set Wy(g) \ Sk(g) into subsets X and Y, and
partition (using a different rule) the set Wy1(g) into subsets X and ). We allow each of
the partitioning subsets to be empty. Using these partitions, we then specify the action
of ¢ using injective submaps ¢X and ¢¥, and the action of 1) using injective submaps %
and ¢Y (see Figure 3.1).

( 3\
¢X

Wi(g) < > Wit1(9)

Sk(9)

\

Figure 3.1: The map ¢: Wi(g) \ Sk(9) = Wis1(g) is defined piecewise using the maps
% : X — X and ¢¥ : Y — Y. The map ¢: Wiy1(g) — Wi(g) \ Si(g) is likewise defined
piecewise using the maps ¥¥ : ¥ — X and ¢? : Y = Y.

To prove Theorem 1.5, it suffices to

1. specify the partition of Wi(g) \ Sk(g) and of Wi,1(g) as illustrated in Figure 3.1,
and

2. define the maps ¢ and 1, and show that they are both injective.
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3.2 Partition of sets Wi(g) \ Sk(g) and Wi1(g)

We first introduce some additional terminology. Recall that the boundary of a path in
W (g) is the line from (0,0) to (ga, gb).

Definition 3.1 (Elevation). Let (i,j) be a point of a path in W(g). The elevation of
(,7) is ja — ib. 4

The elevation of a point of a path in W(g) is a measure of the directed distance from
the point to the boundary. Points on the boundary have zero elevation; points above the
boundary have positive elevation; points below the boundary have negative elevation.

Definition 3.2 (Lowest points above, highest points below). Let p be a path. The lowest
points above the boundary (LPAs) of p are those points of p (if any) attaining the smallest
strictly positive elevation. The highest points below the boundary (HPBs) of p are defined
analogously. J

See Figure 3.2a for an illustration of a path p with LPAs L, L', L” and HPBs H, H'.
We note that the possible elevation values for an LPA are 1,2,...,min(a,b), and that
the possible elevation values for an HPB are —1, —2,..., —min(a, b). Both the number of
LPAs and the number of HPBs of a path in W(g) lie in {0,1,...,¢}.

We shall often consider a subpath p’ of a path p, namely a consecutive sequence of
steps of p. When viewed as a separate path in its own right, the boundary of p’ need
not coincide with the boundary of p (nor even have the same slope) and so its LPAs and
HPBs need not necessarily be the same as those of p (see Figure 3.2). When we wish to
view p’ as a path in its own right, we shall refer to “the path p'”’; when we wish to view
p’ as a part of p we shall refer to “the subpath p'”.

Definition 1.2 describes the combination of paths p; and p, to form the concatenated
path pips. To reverse this process, we split the path p;p, at the endpoint of p; into
component paths pi,ps. We can similarly split a path at two distinct points to form
component paths pq, pa, ps. If the elevation of the startpoint and endpoint of p; (viewed
as a subpath) are equal, then p; (viewed as a path) has a boundary with the same slope
(the same values of a and b) as the full path.

We make the following key observation about the change in the number of flaws when
a path is split at an HPB or LPA and the resulting subpaths are interchanged.

Key Observation 3.3. Let p be a path containing exactly [ interior boundary points
and exactly A LPAs. Suppose that p is split at an HPB H into pps, so that H is the
endpoint of p; and the startpoint of p,. Then the rearranged path pop; has exactly g+ 1
more flaws than p, namely all 3 interior boundary points of p together with the endpoint
of po. If instead p is split at an LPA into p;ps, then the rearranged path pop; has exactly
A fewer flaws than p, namely all A LPAs of p. J

See Figure 3.3 for an illustration of Key Observation 3.3.
We now define the subsets X and Y of Wi (g) \ Sk(g) by reference to an arbitrary path
p € Wi(g) \ Sk(g). Split p at its last non-terminal boundary point into gr, and regard ¢
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L, L

2 L P i
- 4
4
L H L H'
A EEEN——
H
(a) A path p and (in black) its sub- (b) The subpath p as a path in its own
path p'. right.

Figure 3.2: Let (a,b) = (3,2). The path p is a member of W7(3) \ S7(3) containing
the interior boundary point P and the LPAs L, L', L” and HPBs H, H'. The subpath p’
contains the same interior boundary point and LPAs as p, as well as the HPB H’ of p.
The path p’ (on its own) has the same slope as p, but is a member of S4(2) C Wy(2)
containing the boundary points L, L', L”, the unique HPB P, and the unique LPA Q). We
note that H’ is not an HPB of the path p'.

and r as paths in their own right. If p has no interior boundary points, then p is split at its
startpoint and ¢ is empty. Since p ¢ Si(g), either ¢ has at least one flaw or r has non-max
flaws; in the latter case, r has at least one HPB because p splits at its last non-terminal
boundary point into ¢r and so r itself has no interior boundary points. Therefore exactly
one of three cases holds:

Case 1: ¢ has no flaws and r has non-max flaws. Then p € X.
Case 2: ¢ has at least one flaw and r has max flaws. Then p € Y.

Case 3: ¢ has at least one flaw and r has non-max flaws. If the LPAs of ¢ are closer to
the boundary of p than are the HPBs of r, then p € Y. Otherwise p € X.

See Figure 3.4 for an illustration of Case 3.
We now give a more concise definition of the subsets X and Y. Recall that k is fixed
and satisfies 0 < k < g(a + b) — 1 throughout this section.

Definition 3.4 (The subsets X and Y). Let p € Wi(g) \ Sk(g). Split p at its last
non-terminal boundary point into ¢r, and regard ¢ and r as paths. The path p lies in YV
provided:

(i) q has at least one flaw, and

(7i) the elevation of the LPAs of ¢ is smaller than the magnitude of the elevation of the
HPBs of r (if any).
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D2

L
p1
(a) Original path with 12 flaws. (b) Rearranged path with 14 flaws.
P2 P1
"—
P1 D2
o |
(¢) Original path with 12 flaws. (d) Rearranged path with 10 flaws.

Figure 3.3: Rearrangement of the subpaths of a path with 5 = 1 interior boundary points
and A = 2 LPAs changes the number of flaws, according to Key Observation 3.3. Splitting
the path at an HPB maps diagram (a) to diagram (b); splitting the same path at an LPA
maps diagram (c) to diagram (d).

Otherwise, p lies in X. 1

Note that Y is empty if £ = 0. We now use Definition 3.4 to specify a canonical
representation for a path in each of X and Y as a concatenation of paths.

Definition 3.5 (Canonical representation of paths in X and Y'). Let p € Wy(g) \ Sk(9).
Split p at its last non-terminal boundary point into p = gr.

Case p € X: the path r has at least one HPB. Split r at its last HPB into r = ryrs.
The canonical representation of p is grirs.

Case p € Y: the path ¢ has at least one LPA. Split ¢ at its last LPA into ¢ = ¢1¢2. The
canonical representation of p is qyqor. J

We now define the subsets X and ) of Wy 1(g) by reference to an arbitrary path
P € Wiii(g). Since p has at least one flaw, it has at least one LPA. Throughout, we
use regular typeface (for example p) for a path originating in Wj(g) whereas we use
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q q
(a) A path p in X. (b) A path pin Y.

Figure 3.4: Let (a,b) = (4, 3) and split the path p into gr at its last non-terminal boundary
point. In diagram (a), we have p € Wg(2) and the green region is determined by the
elevation of the HPBs of the subpath r; this in turn determines an open orange “forbidden
region” that the subpath ¢ must avoid so that p € X. In diagram (b), we have p € W7(2)
and the green region is determined by the elevation of the LPAs of the subpath ¢; this
in turn determines a closed orange “forbidden region” that the subpath r must avoid so
that p e Y.

blackboard bold typeface (for example p) for a path originating in Wy,1(g). This is
intended to help distinguish the domain and codomain of the function ¢ (namely W (g)
and Wy1(g), respectively) from the domain and codomain of the function v (namely
Wi11(g) and Wi(g), respectively).

Definition 3.6 (The subsets X and V). Let p € Wj11(g). The path p lies in Y provided:
(i) p has at least two LPAs, and

(71) the subpath of p lying between the last two LPAs of p contains no boundary points
of p.

Otherwise, p lies in X. J

Note that ) is empty if £ = 0. See Figure 3.5 for an illustration of Definition 3.6.
We now use Definition 3.6 to specify a canonical path split for a path in each of X
and Y.

Definition 3.7 (Canonical representation of paths in X and Y). Let p € Wi11(9).

Case p € X: let L be the last LPA of p, and let B be the boundary point of p (possibly
the startpoint of p) which immediately precedes L. Split p at B and L into p =
qrory. The canonical representation of p is qrary.

Case p € Y: the path p has at least two LPAs. Split p at its last two LPAs into
P = qirgs. The canonical representation of p is qrqs. J

THE ELECTRONIC JOURNAL OF COMBINATORICS 33(1) (2026), #P1.3 20



(a) A path p in X. (b) A path p in ).

Figure 3.5: Let (a,b) = (4,3). In diagram (a), we have p € W7(2) and the subpath r
between the (last) two LPAs of p contains a boundary point of p. In diagram (b), we have
p € Wg(2) and the subpath r between the (last) two LPAs of p contains no boundary
points of p.

3.3 The actions of ¢*, ¢Y, p* and Y

We now define the maps ¢, ¢¥, ¥* and ¥, whose domains and codomains are given in
Figure 3.1. Hlustrations of these maps are given in Figure 3.6.

3.3.1 The actions of ¢*X and ¢¥
We now define the maps ¢* and ¢ .
Definition 3.8 (Actions of ¢X and ¢Y). Let p € Wi(g) \ Sk(9).

Case p € X: Write p = ¢riry according to Definition 3.5. Then ¢~ : X — X is given
by

¢X(CI7“17"2) = qraTi.
Case p € Y: Write p = ¢iqor according to Definition 3.5. Then ¢¥ : Y — Y is given by

oY (1q27) = (17 3

Proposition 3.9. The map ¢~ is well defined.

Proof. Let p € X. We must check that ¢X(p) = gror; belongs to X. Let H be the
startpoint of 7. By Definition 3.5, H is the last HPB of the path rr,. Since p is split at
its last non-terminal boundary point into paths ¢ and riry, we have:

1. the path ri79 has no interior boundary points.

Since p € X, by Definition 3.4 we have:
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(a) Canonical representation of a path p (b) Canonical representation of a path p
in X. in X.

(c) Canonical representation of a path p (d) Canonical representation of a path p
inY. in Y.

Figure 3.6: The maps ¢~ and ¢* act on the paths in diagrams (a) and (b), respectively,
and their images are (b) and (a), respectively. Similarly the maps ¢¥ and ¥ act on
paths in diagram (c) and (d), respectively, and their images are (d) and (c), respectively.
The LPAs and HPBs of the paths determine open or closed forbidden regions (denoted
using dotted or solid lines, respectively) within which no points of the path can lie. The
labelling of the points in this figure is consistent (when applicable) with that used in the
proofs of Propositions 3.9, 3.11, 3.13 and 3.15.

2. the elevation of the LPAs of the path ¢ (if any) is greater than or equal to the
magnitude of the elevation of H in the path ryrs.

It follows from statement 1 and Key Observation 3.3 that:

3. the path 797 has exactly one more flaw than does r7s.
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It follows from statements 1 and 2 that:

4. the subpath ryr; contains exactly one of the LPAs of ¢X(p) (namely the endpoint
of 7"2).

It follows from statement 3 that ¢*(p) contains exactly one more flaw than p. Fur-
thermore, since the startpoint H of ry is a boundary point of the path ¢X(p) = gryry,
statement 4 implies that ¢~ (p) cannot simultaneously satisfy both conditions (i) and (i)
of Definition 3.6. Therefore ¢X(p) € X, as required. ]

Remark 3.10. Continue with the notation from the proof of Proposition 3.9. We note for
use in Section 3.4 that, since the startpoint H of 75 is the last HPB of the path r17ry and
is a boundary point of the path ¢~ (p), we have that H is the only boundary point of
¢~ (p) = qrary contained in the subpath rs. 4

Proposition 3.11. The map ¢¥ is well defined.

Proof. Let p € Y. We must check that ¢ (p) = ¢17¢ belongs to ). Let L be the endpoint
of ¢;. By Definition 3.5, L is the last LPA of the path ¢;q2. Since p € Y, by Definition 3.4
the elevation of the LPAs of the path ¢;¢o (including L) is smaller than the magnitude of
the elevation of the HPBs of the path r (if any). Therefore:

1. the path ¢¥(p) contains exactly one more flaw than p, namely the startpoint L'
of q2.

2. the points L and L’ are the (distinct) last two LPAs of ¢¥ (p) (since the path r has
no interior boundary points by Definition 3.5).

3. the subpath r contains no boundary points of ¢¥ (p).
This shows by Definition 3.6 that ¢;rqs € Y, as required. O
3.3.2 The actions of ¥»* and ¢”Y
We now define the maps ¢ and Y.
Definition 3.12 (Actions of 1* and ¥¥). Let p € Wi11(g).

Case p € X: Write p = qror; according to Definition 3.7. Then ¢ : X — X is given
by

wX(QIfﬂl) = qrrIy.

Case p € Y: Write p = qurqs according to Definition 3.7. Then ¥ : Y — Y is given
by

W(qlm) = (192r. 4
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Proposition 3.13. The map ¥~ is well defined.

Proof. Let p € X. We must check that ¥ (p) = qriry belongs to X. Let L be the
endpoint of the path ry. By Definition 3.7, we have:

1. L is the last LPA of p = qrary, and the startpoint of ry is the boundary point of p
which immediately precedes L.

By Definition 3.6, we have:

2. either p has exactly one LPA, or the subpath of p lying between the last two LPAs
of p contains a boundary point of p.

It follows from statements 1 and 2 that:
3. the subpath ror; of p contains exactly one LPA of p, namely the point L.
Statement 3 and Key Observation 3.3 imply that:

4. the path ¥¥(p) = qrry splits at its last non-terminal boundary point into the
paths q and ryrs.

5. the path ¢*(p) = qriry has exactly one fewer flaw than p.

The elevation of L in the path ror; equals the magnitude of the elevation of the HPBs of
the path ryry. Since L is an LPA of p by statement 1, this gives:

6. the elevation of the LPAs of the path q (if any) is greater than or equal to the
magnitude of the elevation of the HPBs of the path ryrs.

Statements 4, 5 and 6 show by Definition 3.4 that ¥ (p) € X. O

Remark 3.14. Continue with the notation from the proof of Proposition 3.13. We note
for use in Section 3.4 that statement 1 implies the endpoint of ry is the last HPB of the
path rirs. J

Proposition 3.15. The map > is well defined.

Proof. Let p € Y. We must check ¥ (p) = qqor belongs to Y. Let L be the endpoint
of the path ¢y, and let L’ be the startpoint of the path q,. By Definition 3.7, we have:

1. L and L’ are the last two LPAs of p = q;rqs.

It follows from statement 1 that

2. the path ¢ (p) = qqor splits at its last non-terminal boundary point into the
paths g0, and .
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The LPAs L and L’ of p combine to form a single point in ¢¥(p) = a1, and so:

3. the subpaths q; and qy of Y (p) collectively contain exactly one fewer flaw than
the subpaths q; and ¢y of p.

4. the path q;qp has at least one LPA, namely the point L = L'.

By statement 1 and Definition 3.6(7i), the subpath r contains no boundary points of p.
This, together with statement 4, implies:

5. the elevation of the LPAs of the path q;qy is smaller than the magnitude of the
elevation of the HPBs of the path r (if any).

It follows from statement 5 that:

6. disregarding its startpoint and endpoint, the subpath r of ¥Y(p) = q;qyr contains
the same number of flaws as the subpath r of p.

By statements 3 and 6, the path ¢¥(p) contains exactly one fewer flaw than p. By
statement 4, the path qqs has at least one flaw. Together with statements 2 and 5, this
shows by Definition 3.4 that ¢Y(p) € Y. O

Remark 3.16. Continue with the notation from the proof of Proposition 3.15. We note
for use in Section 3.4 that statement 1 implies the endpoint L of q is the last LPA of the

path qiqs. N

3.4 The maps ¢ and 1 are injective

We complete the proof of Theorem 1.5 by showing in turn that each of the maps ¢, ¢,
¥, Y is injective. We give the proof for ¢* and ¢¥ in detail, and for 1% and ¥? in
abbreviated form.

The map ¢X is injective:

Let p,p’ € X, and write p = qrire and p’ = ¢'rjr} according to Definition 3.5. We
suppose that ¢~ (p) = ¢*(p'), and wish to show that p = p'.

By statement 4 in the proof of Proposition 3.9, the endpoint L of 75 is the last LPA
of ¢*(p) = qrar;. By Remark 3.10, the startpoint H of ry is the boundary point of
&*(p) = qrory immediately preceding L.

Therefore ¢X(p) = qrory splits into qro and r; at the last LPA L of ¢~ (p), and
the subpath ¢ry splits into ¢ and r, at the boundary point of ¢X(p) immediately
preceding L. The corresponding statement holds for ¢* (p’). Since ¢ (p) and ¢~ (p')
are equal by assumption, their LPAs and boundary points are identical. Therefore

qg=4¢ and ro =715 and r; = | and so p = qriry = ¢'rirh, =P/, as required.
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The map ¢Y is injective:

Let p,p’ € Y, and write p = ¢1qor and p' = q|¢5r" according to Definition 3.5. We
suppose that ¢¥ (p) = ¢ (p'), and wish to show that p = p'.

By statement 2 in the proof of Proposition 3.11, the endpoint L of ¢; and the
startpoint L' of ¢y are the last two LPAs of ¢¥(p) = qi7¢, and so ¢¥ (p) splits
at its last two LPAs into ¢, and r and ¢». Likewise, ¢ (p') splits at its last two
LPAs into ¢, and " and ¢,. But ¢¥(p) and ¢¥(p/) are equal by assumption, so
their last two LPAs are identical. Therefore ¢; = ¢} and r = r’ and ¢ = ¢} and so
P = q1q2r = ¢1¢5r" = p’, as required.

The map ¥ is injective:

1.0 .0

Let p,p’ € X, and write p = grory and p’ = ¢'rhr) according to Definition 3.7. We
suppose that ¢ (p) = ¥ (p’), and wish to show that p = p'.

By statement 4 in the proof of Proposition 3.13, the path ¥*(p) = qrry splits at
its last non-terminal boundary point into g and rjrs. By Remark 3.14 the path
riry splits at its last HPB into ry and rs.

It follows that p = qrer; = 'rhr] = p’, as required.

The map v” is injective:

[y |

Let p,p’ € YV, and write p = qirqe and p’ = ¢jr'q), according to Definition 3.7.
We suppose that Y (p) = ¢Y(p’), and wish to show that p = p’.

By statement 2 in the proof of Proposition 3.15, the path Y (p) = qiqor splits at
its last non-terminal boundary point into ¢;qs and r. By Remark 3.16, the path
q10 splits at its last LPA into q; and qp».

[

It follows that p = qirqy = qjr'q, = p’, as required.

3.5 The special case g = 1 (Theorem 2.1)

We finally re-examine the special case g = 1 (Theorem 2.1), involving paths from (0, 0) to
(a,b), to show how the proof of Theorem 1.5 described in Section 3 simplifies significantly.
In doing so, we shall obtain a simple self-contained proof of Theorem 2.1.

Let k satisfy 0 < k < a+b—1 and let p be a path in Wy(1). Since

1. the path p cannot have any interior boundary points,
it follows that:

2. the subset Sk(1) of Wi(1) is empty by Definition 1.4,

3. the subset Y of Wj(1) is empty by Definition 3.4.
Since g = 1, the path p has at most one LPA and so

4. the subset ) of Wy (1) is empty by Definition 3.6.
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By reference to Figure 3.1, statements 2, 3 and 4 show that Wy (1) = X and Wj1(1) = X.
We shall show that ¢~ and ¢X are inverse maps, so that |[Wy(1)| = |[Wi,1(1)|. We may
then conclude that |[Wy(1)] = |[Wi(1)] = -+ = |Waip-1(1)|, which gives Theorem 2.1
because the total number of paths from (0,0) to (a,b) is (“).

It remains to show that ¢* and ¥ are inverse maps. Write p € X as its canonical
representation p = grire according to Definition 3.5, where p has at least one HPB. By
statement 1, we have that ¢ is empty and so p = riry. Since g = 1, the path p has at
most one HPB. Therefore by Definition 3.8 the map ¢~ splits p at its unique HPB into
riry and replaces it by ror. That is, ¢ cyclically permutes the steps of p by bringing
the unique HPB to the origin.

Similarly, write p € X as its canonical representation p = qror; according to Defini-
tion 3.7, where q is empty by statement 1. By Definition 3.12, the map ¢ splits p at its
unique LPA into rory and replaces it by rirs. That is, X cyclically permutes the steps
of p by bringing the unique LPA to the origin.

Comparison of the descriptions of ¢~ and X shows that they are inverse maps, as
required.

4 Conclusion

Our central objective was to find an explicit formula for |W(g)|, the number of simple
lattice paths from (0, 0) to (ga, gb) having exactly k lattice points lying strictly above the
linear boundary joining the startpoint to the endpoint. This is given by the closed form
expression in Theorem 1.12, using the definition (1.3) of y;(g).

We conclude with two open problems for future study.

1. Evaluating |Wj(g)| via the path enumeration formula Theorem 1.12 involves a sum
over integer partitions of g, and is therefore computationally intensive. In the special
case a = 1, Theorem 2.3 provides an alternative expression to Theorem 1.12 that
is computationally simpler. Is there a closed form expression for |Wy(g)| that is
computationally simpler than Theorem 1.12 for other special cases of a,b (or in
general)?

2. We established the path enumeration formula by solving the recurrence relation
given in Corollary 1.7 and making use of the known values stated in Corollary 1.11.
These known values are in turn predicated on Theorem 1.10, which was proved
by Bizley using generating functions [9]. Is there a direct combinatorial proof of
Theorem 1.107
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