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Abstract

Let a, b be fixed positive coprime integers. For a positive integer g, write
Wk(g) for the set of lattice paths from the startpoint (0, 0) to the endpoint (ga, gb)
with steps restricted to {(1, 0), (0, 1)}, having exactly k flaws (lattice points lying
above the linear boundary connecting the startpoint to the endpoint). We deter-
mine |Wk(g)| for all k and g. The enumeration of lattice paths with respect to a
linear boundary while accounting for flaws has a long and rich history, dating back
at least to the 1949 results of Chung and Feller. The only previously known values
of |Wk(g)| are the extremal cases k = 0 and k = g(a+ b)− 1, determined by Bizley
in 1954. Our main combinatorial result is that a certain subset of Wk(g) is in bijec-
tion with Wk+1(g). One consequence is that the value |Wk(g)| is constant over each
successive set of a + b values of k. This in turn allows us to derive a recursion for
|Wk(g)| whose base case is given by Bizley’s result for k = 0. We solve this recursion
to obtain a closed form expression for |Wk(g)| for all k and g. Our methods are
purely combinatorial.

Mathematics Subject Classifications: 05A15, 05E05

1 Introduction

The lattice path shown in Figure 1.1 contains exactly five lattice points that lie above the
linear boundary joining the startpoint (0, 0) to the endpoint (8, 6).

Throughout, a, b are fixed positive coprime integers and g is a positive integer. Our
objective is to count the number of lattice paths from the startpoint (0, 0) to the endpoint
(ga, gb) with steps restricted to {(1, 0), (0, 1)}, having exactly k lattice points lying above
the linear boundary joining the startpoint to the endpoint.

Let p be a path. The boundary of p is the line joining its startpoint to its endpoint.
The path p contains the lattice point (x+ i, y + j) (equivalently, (x+ i, y + j) is a point
of p) if p starts at (x, y), and the first i+j ⩾ 0 steps of p consist of i of the (1, 0) steps and
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Figure 1.1: Lattice path from (0, 0) to (8, 6) with five lattice points above the line con-
necting (0, 0) to (8, 6).

j of the (0, 1) steps (in any order). We consider the points of p to be ordered according
to increasing values of i + j. A point of p is a flaw if it lies strictly above the boundary
of p. For example, the path in Figure 1.1 has the five flaws (0, 1), (1, 1), (1, 2), (2, 2), (5, 4)
denoted in orange.

Definition 1.1 (SetsW (g) andWk(g)). Let W (g) be the set of all paths from (0, 0) to
(ga, gb), and let Wk(g) be the subset of such paths having exactly k flaws. ⌟

The possible values for the number k of flaws of a path are those satisfying 0 ⩽ k <
g(a+ b). Straightforward counting shows that |W (g)| =

(
ga+gb
ga

)
. The central objective of

this paper is to find an explicit formula for |Wk(g)| for all g, k satisfying 0 ⩽ k < g(a+ b).
The extremal values |W0(g)| and |Wg(a+b)−1(g)| were found by Bizley [9] in 1954 (see
Theorem 1.10 below). Until now, the value of |Wk(g)| was unknown for all other k.

When g = 1, the values |Wk(g)| and |Wg(a+b)−1−k(g)| are equal: in this case, a path
cannot contain lattice points on the boundary other than its startpoint and endpoint, so
rotation of the path through 180◦ bijectively maps the setWk(g) to the setWg(a+b)−1−k(g).
However, in the case g > 1, a path can contain such lattice points and, because points on
the boundary are not counted as flaws, rotation of the path through 180◦ does not map
the set Wk(g) to the set Wg(a+b)−1−k(g). In fact, the values |Wk(g)| and |Wg(a+b)−1−k(g)|
are not equal in general.

Table 1.1 displays the numerical value of |Wk(4)| for (a, b) = (3, 2), obtained by com-
puter evaluation. We note two apparent properties suggested by these values:

P1 (Constant on blocks). The value |Wk(g)| is constant on each of g distinct “blocks”
of a+ b consecutive values of k.

P2 (Strictly decreasing). The value |Wk(g)| is strictly decreasing between successive
blocks.

We shall show that properties P1 and P2 both hold for all values of g, a, b.
Table 1.1, in addition to displaying the value of |Wk(4)| for (a, b) = (3, 2), also displays

the value of the difference |Wk(4)| − |Wk+1(4)|. These differences suggest a strategy
for achieving our central objective: identify a subset Sk(g) of Wk(g) having cardinality
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k |Wk(4)| |Wk(4)| − |Wk+1(4)|
0 7229 0
1 7229 0
2 7229 0
3 7229 0
4 7229 754
5 6475 0
6 6475 0
7 6475 0
8 6475 0
9 6475 437
10 6038 0
11 6038 0
12 6038 0
13 6038 0
14 6038 586
15 5452 0
16 5452 0
17 5452 0
18 5452 0
19 5452

Table 1.1: Computer evaluation of |Wk(4)| for (a, b) = (3, 2).

|Wk(g)| − |Wk+1(g)|, and show that the sets Wk(g) \ Sk(g) and Wk+1(g) are in bijection.
We achieve this in our main combinatorial result (Theorem 1.5). Properties P1 and P2
follow as consequences of this result.

We introduce some additional vocabulary before defining the subset Sk(g).

Definition 1.2 (Path concatenation). Let p1 and p2 be paths having arbitrary startpoints.
The path concatenation p1p2 is the path that starts at the startpoint of p1, takes all the
(ordered) steps of p1, and then takes all the (ordered) steps of p2. ⌟

Definition 1.3 (Boundary points). The boundary points of a path p ∈ W (g) are the
points of p that lie on its boundary. Boundary points of p other than the startpoint
(0, 0) and endpoint (ga, gb) are interior boundary points of p. The startpoint and interior
boundary points are the non-terminal boundary points. ⌟

The lattice points lying on the boundary joining (0, 0) to (ga, gb) are the g + 1 points
of the form (ja, jb) for 0 ⩽ j ⩽ g (see Figure 1.2). The number of interior boundary
points of a path p ∈ W (g) therefore lies in {0, 1, . . . , g − 1}.

Recall that the number k of flaws of a path in W (g) satisfies 0 ⩽ k < g(a+ b). A path
in W (g) containing g(a+ b)− 1 flaws has max flaws. Equivalently, the set of paths with
max flaws is Wg(a+b)−1(g).
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Figure 1.2: Let (a, b) = (3, 2). The boundary of a path whose endpoint is (ga, gb) =
(4 · 3, 4 · 2) contains g + 1 = 5 lattice points (red vertices).

Definition 1.4 (Subset Sk(g)). For 0 ⩽ k < g(a + b) − 1, let Sk(g) be the set of
min-max paths, namely the subset of Wk(g) containing all paths of the form p1p2, where
p1 ∈ W0(g − j) and p2 ∈ Wk(j) for some j satisfying 0 < j < g, and p2 has max flaws.
We write S(g) :=

⋃
k Sk(g). ⌟

See Figure 1.3 for two example min-max paths in S(4). A min-max path is, for some j,
the concatenation of a path p1 from (0, 0) to

(
(g − j)a, (g − j)b

)
having no flaws with a

path p2 from (0, 0) to (ja, jb) having max flaws. The condition that p2 has max flaws
implies that Sk(g) is empty unless k = j(a + b)− 1 for some j satisfying 0 < j < g (and
in particular S0(g) is empty). So we have

Sk(g) = ∅ for k ̸≡ −1 (mod a+ b), (1.1)

and, for each j satisfying 0 < j < g,

Sj(a+b)−1(g) =
{
p1p2 : p1 ∈ W0(g − j) and p2 ∈ Wj(a+b)−1(j)

}
. (1.2)

Note that the path p2 in Definition 1.4 does not contain an interior boundary point
(because it has max flaws), but the path p1 might (see Figure 1.3).

p1

p2

(a) A path p1p2 in S9(4), where p1 ∈
W0(2) and p2 ∈ W9(2).

p1

p2

(b) A path p1p2 in S4(4), where p1 ∈
W0(3) and p2 ∈ W4(1).

Figure 1.3: Two example min-max paths in S(4) for (a, b) = (3, 2).
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1.1 Main combinatorial result and consequences

Theorem 1.5 (Main combinatorial result). Let g, k satisfy 0 ⩽ k < g(a+ b)− 1. Then

|Wk(g) \ Sk(g)| = |Wk+1(g)|.

We shall prove Theorem 1.5 in Section 3 combinatorially. Define

µj(g) := |Wj(a+b)(g)| for each j satisfying 0 ⩽ j < g. (1.3)

The following result is a first consequence of Theorem 1.5 and establishes property P1.

Corollary 1.6 (Constant on blocks). Let g be a positive integer. Then

|Wk(g)| = µj(g) for all j, k satisfying 0 ⩽ j < g and j(a+ b) ⩽ k < (j + 1)(a+ b).

Proof. The result follows directly from Theorem 1.5 and (1.1).

We now observe two further consequences of Theorem 1.5.

Corollary 1.7 (Recurrence relation). Let g be a positive integer. Then

µj−1(g)− µ0(g − j)µj−1(j) = µj(g) for each j satisfying 0 < j < g.

Proof. Let j satisfy 0 < j < g and let k = j(a+ b)− 1. Since Sk(g) is a subset of Wk(g),
we have by Theorem 1.5 that

|Wk(g)| − |Sk(g)| = |Wk+1(g)|. (1.4)

We know from Corollary 1.6 that |Wk(g)| = µj−1(g) and |Wk+1(g)| = µj(g), and from
(1.2) and Corollary 1.6 that |Sk(g)| = |Sj(a+b)−1(g)| = µ0(g − j)µj−1(j). Substitute these
values into (1.4) to obtain the result.

The next corollary establishes property P2.

Corollary 1.8 (Strictly decreasing). Let g be a positive integer. Then µ0(g) > µ1(g) >
· · · > µg−1(g).

Proof. This follows from Corollary 1.7, noting that µ0(g− j)µj−1(j) > 0 for 0 < j < g by
the definition of µj(g) given in (1.3).

1.2 The value of µj(g) and the main enumerative result

Recall that our central objective is to find an explicit formula for |Wk(g)| for all g, k
satisfying 0 ⩽ k < g(a+b). By Corollary 1.6, it is sufficient to determine the values µj(g).

The recurrence relation of Corollary 1.7 for µj(g) has a unique solution for each j, g
satisfying 0 ⩽ j < g, provided the initial values µ0(g) (contained in the top row of
Table 1.2) are known for all g. The required initial values µ0(g) = |W0(g)| were given
by Bizley [9] in 1954. We shall express these values in Corollary 1.11 in terms of a
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µ0(1) µ0(2) µ0(3) µ0(4) µ0(5) · · ·
µ1(2) µ1(3) µ1(4) µ1(5) · · ·

µ2(3) µ2(4) µ2(5) · · ·
µ3(4) µ3(5) · · ·

µ4(5) · · ·
· · ·

Table 1.2: All values µj(g) can be derived using only the values in the top row of the
table, but can be more easily derived by also using the values in the coloured diagonal.

quantity Hg, introduced below. A derivation of µj(g) using only the values of µ0(g) is
given in [16, Chapter 4].

However, the values µj(g) can be derived more easily by additionally making use of the
values µg−1(g) (contained in the coloured diagonal of Table 1.2). These additional values
can be obtained using Corollary 1.6 from the values |Wg(a+b)−1(g)| given by Bizley [9],
and can be expressed in terms of another quantity Eg. This is the approach we shall use
to establish the value of µj(g) in Theorem 1.12.

We now define the quantities Hg and Eg as sums over all integer partitions of g.
Recall that a weakly increasing sequence of positive integers λ whose entries sum to g is
a partition of g; we write λ ⊢ g to indicate this. Each entry of λ is called a part. We use
the notation λ = ⟨1m12m2 · · · ⟩ to mean that λ has mi parts equal to i, so g =

∑
i⩾1 imi.

For example, the partition (1, 1, 2, 3) of 7 is also written ⟨122131⟩ ⊢ 7.
For i > 0, let

ci :=
1

i(a+ b)

(
i(a+ b)

ia

)
. (1.5)

For a partition λ = ⟨1m12m2 · · · ⟩ ⊢ g, let its length be ℓ(λ) :=
∑

i⩾1mi, and let

cλ :=
∏
i⩾1

cmi
i

mi!
. (1.6)

Now let

Hg :=
∑
λ⊢g

cλ, (1.7)

Eg :=
∑
λ⊢g

(−1)g−ℓ(λ)cλ, (1.8)

and for convenience let
E0 := 1 and H0 := 1. (1.9)

Remark 1.9. For each positive integer g, the quantities Hg and Eg are in fact specializa-
tions of (one part) complete and elementary symmetric functions hg and eg, respectively.
The standard relationship between the power sums pi and the complete and elementary
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symmetric functions are

hg =
∑
λ⊢g

pλ
zλ

and eg =
∑
λ⊢g

(−1)g−ℓ(λ)pλ
zλ
,

where for a partition λ = ⟨1m12m2 · · · ⟩ of g, we write zλ :=
∏

i⩾1 i
mimi! and pλ :=

∏
i⩾1 p

mi
i .

Then the quantitiesHg and Eg in (1.7) and (1.8) are obtained from the specialization given
by pi = ici. The identity

g∑
i=0

(−1)iEiHg−i = 0 (1.10)

results from another well-known relationship between the complete and elementary sym-
metric functions. See [1] or the classic reference [26] for details on the above and other
relevant background on symmetric functions. ⌟

Theorem 1.10 (Bizley [9]). We have that

|W0(g)| = Hg,

|Wg(a+b)−1(g)| = (−1)g+1Eg.

Using Corollary 1.6, we then obtain the value of µ0(g) and of µg−1(g).

Corollary 1.11 (Value of µ0(g) and µg−1(g)). We have that

µ0(g) = Hg, (1.11)

µg−1(g) = (−1)g+1Eg. (1.12)

We can now give a closed form expression for the value of µj(g), which we remark is
a truncated version of the sum from (1.10). This is our main enumerative result, and is
the central consequence of Theorem 1.5.

Theorem 1.12 (Path enumeration formula). We have

µj(g) =

j∑
k=0

(−1)kEkHg−k for 0 ⩽ j < g.

Proof. The proof is by induction on j. The base case j = 0 is given by (1.9) and (1.11).
Assume that the formula holds for all cases up to j − 1, where 0 < j < g. It follows from
Corollary 1.7 and (1.11) and (1.12) that

µj(g) = µj−1(g) + (−1)jEjHg−j.

The inductive hypothesis then gives

µj(g) =

j−1∑
k=0

(−1)kEkHg−k + (−1)jEjHg−j
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=

j∑
k=0

(−1)kEkHg−k, (1.13)

so case j holds and the induction is complete.

Remark 1.13. The expression (1.13) can be written more compactly as a specialization
of a Schur function via the identity

∑j
k=0(−1)kekhg−k = (−1)js⟨1j(g−j)1⟩, where s⟨1j(g−j)1⟩

is the Schur function indexed by the hook partition ⟨1j(g − j)1⟩. See [26, Section I.3,
Example 9]. ⌟

1.3 Background on rational Catalan combinatorics

In the case a = b = 1, the set W0(g) comprises all lattice paths from (0, 0) to (g, g) having
no flaws. Such paths are known as Dyck paths, and a classical result states that they are
counted by the gth Catalan number

Cg :=
1

g + 1

(
2g

g

)
. (1.14)

The rational Catalan numbers [4] are given by

Ca,b :=
1

a+ b

(
a+ b

a

)
,

where a, b are restricted to be coprime so that Ca,b is always an integer. The quantity Ca,b

is equal to c1 as defined in (1.5). The specialization Cg,g+1 equals the Catalan number Cg.
For a positive integer b, the specialization Cg,gb+1 gives the Fuss–Catalan number

F b
g :=

1

gb+ 1

(
(b+ 1)g

g

)
. (1.15)

Dyck paths are one of the many combinatorial objects counted by the Catalan num-
bers; at least 213 other combinatorial objects are also counted by these numbers [27],
including binary trees and noncrossing partitions. The Fuss–Catalan numbers count
common generalizations of Catalan objects [28], including lattice paths from (0, 0) to
(g, gb) having no flaws with respect to the linear boundary of integer slope b (see [15] for
an argument expressed using ballot sequences, or [20] for a combinatorial proof using a
construction akin to the reflection principle); b-ary trees, which are of much interest in
computer science (see for example [6] and its references); and certain generalizations of
noncrossing partitions.

The term rational Catalan combinatorics is traditionally used to describe the study
of objects counted by the rational Catalan numbers Ca,b for general coprime a, b. This
includes the enumeration of rational Dyck paths, namely lattice paths from (0, 0) to (a, b)
having no flaws with respect to the linear boundary of rational slope b/a; rational asso-
ciahedra and noncrossing matchings [4]; and quantities associated with rational parking
functions [3]. Fundamental statistics such as the area and dinv statistics on Dyck paths
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have also been generalized to the rational case [17]. Rational Dyck paths have been
connected to many different objects through a new framework involving the signature of
coprime integers a, b [11].

Lattice paths from (0, 0) to (ga, gb) having no flaws can be considerably more difficult
to count in the case g > 1 (when the co-ordinates of the endpoint are not coprime) than
in the case g = 1 (when they are coprime): for example, the expression Hg for |W0(g)| in
Theorem 1.10 is complicated to evaluate in the case g > 1, but simplifies to Ca,b in the case
g = 1. Though such paths are not necessarily counted by rational Catalan numbers, some
authors consider these more general path-counting problems to be part of rational Catalan
combinatorics whereas others use the term rectangular Catalan combinatorics [7]. Similar
complications in moving from the case g = 1 to the case g > 1 occur elsewhere, for example
when relating results between rational Dyck paths and simultaneous core partitions (see
[2] and [18]), and in the study of parking functions and triangular partitions [5, 8] involving
a substantial generalization of Bizley’s Theorem 1.10 to symmetric functions.

1.4 Counting paths that cross a linear boundary

The novelty of our work is in the combination of rational Catalan combinatorics with
the counting of paths that contain flaws. To give further context, we briefly review the
literature on the enumeration of lattice paths that cross a linear boundary.

The path enumeration setting we consider involves paths with step set {(1, 0), (0, 1)}
in the two-dimensional lattice Z2; a boundary line joining the startpoint (0, 0) of a path
to its endpoint (ga, gb), where g, a, b are positive integers such that a and b are coprime;
and k flaws. Previous authors have defined a flaw differently from us, namely as a certain
type of step (usually a (0, 1) step) of the path that lies above the boundary. Each of the
references [12, 23, 24, 29, 30] adopts this step-based definition of flaw and a notion of the
“wrong” side of the boundary, although the precise definition is not identical in all five
references.

In the more general case that we consider here, where the value of b/a need not
necessarily be an integer, the definition of a flaw as a step is no longer appropriate since
some steps can lie only partially above the boundary (see Figure 1.4). Our definition of
a flaw, as a lattice point of the path that lies above the boundary, does not have this
ambiguity.

Note that these two definitions of flaws are genuinely different: Figure 1.5 shows that
even in the case a = b = 1 there is no simple relationship between the number of (0, 1)
steps lying above the boundary and the number of lattice points lying above the boundary.
In Figure 1.6 we further illustrate the difference between these two definitions of flaws
when g = 2 and a = b = 1, which is the smallest non-trivial case of Corollary 1.6.

We review previous results relating to these two definitions of flaws in Sections 1.4.1
and 1.4.2.
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Figure 1.4: A path with a boundary whose slope is not an integer. This shows that both
(0, 1) steps and (1, 0) steps can lie partially above and below the boundary simultaneously,
whereas lattice points cannot.

(a) A path in which two (0, 1) steps
and three lattice points lie above the
boundary.

(b) A path in which two (0, 1) steps
and two lattice points lie above the
boundary.

Figure 1.5: Even in the case a = b = 1, there is no simple relationship between the
number of (0, 1) steps lying above the boundary and the number of lattice points lying
above the boundary.

1.4.1 Boundaries of integer slope with (0,1) steps as flaws

In this part of the review, we take flaws to be (0, 1) steps of a path from (0, 0) to (g, gb)
that lie above the boundary of integer slope b.

Firstly consider paths from (0, 0) to (g, g). The number of such paths having k = 0
flaws (no (0, 1) steps lying above the boundary, which is equivalent to having no lattice
points above the boundary) is given by the Catalan number Cg defined in (1.14). Chung
and Feller’s influential 1949 work [13] showed that, remarkably, the same count applies
for all k.

Theorem 1.14 (Chung–Feller [13, Theorem 2A]). Let k satisfy 0 ⩽ k ⩽ g. Then the
number of paths from (0, 0) to (g, g) having k of the (0, 1) steps lying above the boundary
is Cg.

Theorem 1.14 can be proven using bijective methods [10]. Huq generalized Theo-
rem 1.14 to paths from (0, 0) to (g, gb) for each positive integer b.
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Figure 1.6: Set a = b = 1 and g = 2. The six lattice paths from (0, 0) to (2, 2) are
distributed as (0, 0, 1, 1, 2, 3) according to the number of lattice points above the boundary.
HereW0(2) = W1(2) = µ0(2) = 2 andW2(2) = W3(2) = µ1(2) = 1 (illustrating Corollaries
1.6 and 1.8). The six lattice paths are distributed as (0, 0, 1, 1, 2, 2) according to the
number of vertical steps above the boundary (illustrating the Chung–Feller result given
in Theorem 1.14).

Theorem 1.15 (Huq [24, Corollary 5.1.2]). Let k satisfy 0 ⩽ k ⩽ gb. Then the number
of paths from (0, 0) to (g, gb) having k of the (0, 1) steps lying above the boundary is F b

g ,
the Fuss–Catalan number defined in (1.15).

Further variations on Theorem 1.14 have been found [23, 25, 29].

1.4.2 Boundaries of rational slope with lattice points as flaws

In this part of the review, we take flaws to be lattice points of a path from (0, 0) to (ga, gb)
that lie strictly above the boundary. The number of these flaws is the measure k used for
Wk(g) in Definition 1.1.

In 1950, Grossman [22] conjectured an explicit formula for the number of paths from
(0, 0) to (ga, gb) that may touch, but never rise above, the boundary ay = bx. In our
terminology, such paths have no flaws and so are counted by |W0(g)|. In 1954, Bizley
[9, Eq. (10)] proved Grossman’s formula using generating functions. Bizley [9, Eq. (8)]
also obtained an explicit formula for the number of paths that lie wholly below, and do
not touch, the boundary ay = bx at an interior boundary point. In other words, such
paths have neither flaws nor interior boundary points. Since the set of such paths is
in bijection with the set of paths having max flaws (via rotation), this second result of
Bizley’s gives the value |Wg(a+b)−1(g)|. The values |W0(g)| and |Wg(a+b)−1(g)| are stated
in Theorem 1.10.

One of the methods used by Bizley to prove Theorem 1.10 involves cyclic rotation
of paths. Such methods, in particular the Cycle Lemma, have been frequently used to
count lattice paths and have been popularized by many authors (see for example [14, 15]).
Although we were able to use arguments similar to the Cycle Lemma to obtain results in
certain special cases, we were not able to use it to obtain our general result.

2 Special cases and example of the main enumerative result

In this section we examine various special cases of the path enumeration formula of The-
orem 1.12, and give an example of its application.

We firstly state the special case g = 1.
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Theorem 2.1 (Special case g = 1). We have

|Wk(1)| =
1

a+ b

(
a+ b

a

)
for all k satisfying 0 ⩽ k < a+ b.

Proof. Let k satisfy 0 ⩽ k < a+ b. By Corollaries 1.6 and 1.11 with g = 1, we have

|Wk(1)| = µ0(1) = H1. (2.1)

Now by (1.7) and (1.6) we have
H1 = c⟨11⟩ = c1.

Substitute into (2.1) and use (1.5) to give the result.

Theorem 2.1 shows that |Wk(1)| is independent of k when g = 1. We highlight this
special case because our general construction used to prove Theorem 1.5 simplifies greatly
in the case g = 1. We re-examine this special case in Section 3.5.

We next give the special case g = 2.

Theorem 2.2 (Special case g = 2). We have

|Wk(2)| =
1

2(a+ b)

[(
2a+ 2b

2a

)
+

1

a+ b

(
a+ b

a

)2
]

for all k satisfying 0 ⩽ k < a+ b,

1

2(a+ b)

[(
2a+ 2b

2a

)
− 1

a+ b

(
a+ b

a

)2
]

for all k satisfying a+ b ⩽ k < 2(a+ b).

Proof. By Corollary 1.6 with g = 2,

|Wk(2)| =

{
µ0(2) for 0 ⩽ k < a+ b,

µ1(2) for a+ b ⩽ k < 2(a+ b),

=

{
H2 for 0 ⩽ k < a+ b,

−E2 for a+ b ⩽ k < 2(a+ b)
(2.2)

using Corollary 1.11. Now by (1.7) and (1.6) we have

H2 = c⟨21⟩ + c⟨12⟩ = c2 +
1
2
c21,

and by (1.8) and (1.6) we have

−E2 = c⟨21⟩ − c⟨12⟩ = c2 − 1
2
c21.

Substitute into (2.2) and use (1.5) to give the result.
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We now consider the special case a = 1, when the slope of the boundary is the positive
integer b and the startpoint and endpoint are (0, 0) and (g, gb), respectively. Although
Theorem 1.12 already provides an expression for µj(g) in this case, we now derive an
alternative formula involving Fuss–Catalan numbers that appears to be simpler.

Theorem 2.3 (Alternative formula for a = 1). Let a = 1. Then for all j satisfying
0 ⩽ j < g,

|Wj(b+1)(g)| = |Wj(b+1)+1(g)| = · · · = |Wj(b+1)+b(g)| = µj(g) =
∑

i1+···+ib+1=g−1

ib+1⩽g−1−j

F b
i1
· · ·F b

ib+1

(2.3)
where F b

i is the Fuss–Catalan number defined in (1.15).

Proof. Fix the positive integer g. All equalities of (2.3) except the last hold by Corol-
lary 1.6. We shall establish the last equality by induction on j. We shall describe the
structure of the induction by reference to Table 1.2, numbering table rows from 0 and
columns from 1.

Let Pj be the statement that

µj(t) =
∑

i1+···+ib+1=t−1

ib+1⩽t−1−j

F b
i1
· · ·F b

ib+1
for all t satisfying j + 1 ⩽ t ⩽ g.

In other words, Pj is the statement that the last equality of (2.3) holds for all entries in
row j of Table 1.2 up to and including column g. We prove the theorem by showing by
induction on j that Pj holds for 0 ⩽ j < g: that is, for all entries in rows 0, 1, . . . , g − 1
of Table 1.2 up to and including column g.

For the base case P0, let t satisfy 1 ⩽ t ⩽ g. We require that

µ0(t) =
∑

i1+···+ib+1=t−1

F b
i1
· · ·F b

ib+1
.

This is equivalent to showing that µ0(t) = F b
t , by making use of the identity F b

t =∑
i1+···+ib+1=t−1 F

b
i1
· · ·F b

ib+1
; this identity can be obtained by applying Lagrange inversion

[19, Theorem 1.2.4] to the functional equation F (x) = xF (x)b+1+1 satisfied by the gener-
ating series F (x) =

∑
i⩾0 F

b
i x

i (see [21, p. 362] for the identity and functional equation).
Since a = 1, the setW (t) comprises all paths from (0, 0) to (t, tb). As discussed in Section
1.3, the number of such paths with zero flaws is F b

t and so µ0(t) = F b
t as required. This

establishes the base case P0.
Now let j satisfy 0 < j < g and assume that the case Pj−1 holds, so that

µj−1(t) =
∑

i1+···+ib+1=t−1

ib+1⩽t−j

F b
i1
· · ·F b

ib+1
for all t satisfying j ⩽ t ⩽ g. (2.4)

Let t satisfy j + 1 ⩽ t ⩽ g. Then the recurrence relation of Corollary 1.7 gives

µj(t) = µj−1(t)− µ0(t− j)µj−1(j) = µj−1(t)− F b
t−j µj−1(j).
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Apply the inductive hypothesis (2.4) to µj−1(t) and µj−1(j) to deduce that

µj(t) =
∑

i1+···+ib+1=t−1

ib+1⩽t−j

F b
i1
· · ·F b

ib+1
− F b

t−j

∑
i1+···+ib+1=j−1

ib+1=0

F b
i1
· · ·F b

ib+1

=
∑

i1+···+ib+1=t−1

ib+1⩽t−j

F b
i1
· · ·F b

ib+1
−

∑
i1+···+ib=j−1

F b
i1
· · ·F b

ib
F b
t−j

using that F b
0 = 1. This gives

µj(t) =
∑

i1+···+ib+1=t−1

ib+1⩽t−1−j

F b
i1
· · ·F b

ib+1
,

by expanding the right hand side according to whether ib+1 ⩽ t − 1 − j or ib+1 = t − j.
Therefore the case Pj holds, completing the induction.

We next give an alternative formula for the special case a = b = 1 (when the slope
of the boundary is 1) by taking b = 1 in Theorem 2.3 and noting that the Fuss–Catalan
number F 1

i equals the Catalan number Ci, in order to demonstrate a further simplification.

Corollary 2.4 (Alternative formula for a = b = 1). Let a = b = 1. Then

|W2j(g)| = |W2j+1(g)| = µj(g) =

g−1∑
k=j

CkCg−1−k for all j satisfying 0 ⩽ j < g,

where Ci is the Catalan number defined in (1.14).

The reader is invited to compare Theorem 2.3 with Theorem 1.15: both apply to a
boundary of integer slope b, but Theorem 2.3 takes flaws to be points above the boundary
whereas Theorem 1.15 takes flaws to be (0, 1) steps above the boundary. The count in
Theorem 2.3 depends on the number of flaws whereas the count in Theorem 1.15 does
not.

We now give an example of how to apply Theorem 1.12.

Example 2.5 (Computation using the path enumeration formula). Let (a, b) = (3, 2) and
g = 4. We illustrate the use of the path enumeration formula Theorem 1.12 to calculate
the number |Wk(4)| of paths from (0, 0) to (12, 8) having k flaws, for each k satisfying
0 ⩽ k < 20. By Corollary 1.6, it is sufficient to determine µj(4) for each j = 0, 1, 2, 3.

We begin by listing the partitions of the integers 1, 2, 3, 4.

Partitions of 4 : ⟨41⟩, ⟨1131⟩, ⟨22⟩, ⟨1221⟩, ⟨14⟩,
Partitions of 3 : ⟨31⟩, ⟨1121⟩, ⟨13⟩,
Partitions of 2 : ⟨21⟩, ⟨12⟩,
Partitions of 1 : ⟨11⟩.
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Using (1.5), we compute

c1 = 2, c2 = 21, c3 =
1001

3
, c4 =

12597

2
.

Using (1.6), we then compute (for example)

c⟨1221⟩ =

(
c21
2!

)(
c12
1!

)
= 42, c⟨13⟩ =

(
c31
3!

)
=

4

3
.

The full set of cλ values for λ ⊢ j where 1 ⩽ j ⩽ 4 is

c⟨41⟩ =
12597

2
, c⟨1131⟩ =

2002

3
, c⟨22⟩ =

441

2
, c⟨1221⟩ = 42, c⟨14⟩ =

2

3
,

c⟨31⟩ =
1001

3
, c⟨1121⟩ = 42, c⟨13⟩ =

4

3
,

c⟨21⟩ = 21, c⟨12⟩ = 2,

c⟨11⟩ = 2.

Using (1.7) and (1.8), we next calculate (for example)

H3 = c⟨31⟩ + c⟨1121⟩ + c⟨13⟩ =
1001

3
+ 42 +

4

3
= 377,

E3 = (−1)3−1c⟨31⟩ + (−1)3−2c⟨1121⟩ + (−1)3−3c⟨13⟩ =
1001

3
− 42 +

4

3
= 293.

The full set of Hk and Ek values is

H4 = 7229, E4 = −5452,

H3 = 377, E3 = 293,

H2 = 23, E2 = −19,

H1 = 2, E1 = 2,

E0 = 1.

Using Theorem 1.12, we then determine that

µ0(4) = E0H4 = 1 · 7229 = 7229

µ1(4) = E0H4 − E1H3 = 1 · 7229− 2 · 377 = 6475

µ2(4) = E0H4 − E1H3 + E2H2 = 1 · 7229− 2 · 377− 19 · 23 = 6038

µ3(4) = E0H4 − E1H3 + E2H2 − E3H1 = 1 · 7229− 2 · 377− 19 · 23− 293 · 2 = 5452.

(Alternatively, we may use (1.12) for a more direct calculation of the last value µ3(4) =
(−1)4+1E4 = 5452.)

Using Corollary 1.6, we may now determine the value of |Wk(4)| for each k satisfy-
ing 0 ⩽ k < 20. The resulting values agree with the computer enumeration shown in
Table 1.1. ⌟

We remark, as noted by Bizley [9], that bothHg and Eg are necessarily integers because
of the counting result Theorem 1.10, even though this is not readily apparent from the
forms (1.6), (1.7), and (1.8). We further remark that although the quantity ci defined in
(1.5) is not necessarily an integer, it is not difficult to show that ici is an integer.
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3 Proof of the main combinatorial result

For convenience, we restate our main combinatorial result here.

Theorem 1.5. Let g, k satisfy 0 ⩽ k < g(a+ b)− 1. Then

|Wk(g) \ Sk(g)| = |Wk+1(g)|.

3.1 Proof outline

We shall prove our main combinatorial result by considering fixed g, k satisfying 0 ⩽ k <
g(a+ b)− 1 and constructing injective maps

ϕ : Wk(g) \ Sk(g) → Wk+1(g),

ψ : Wk+1(g) → Wk(g) \ Sk(g).

In fact, the map ψ we shall construct is the inverse of ϕ, although we shall not require
this fact in our proof. We partition the set Wk(g) \ Sk(g) into subsets X and Y , and
partition (using a different rule) the set Wk+1(g) into subsets X and Y . We allow each of
the partitioning subsets to be empty. Using these partitions, we then specify the action
of ϕ using injective submaps ϕX and ϕY , and the action of ψ using injective submaps ψX

and ψY (see Figure 3.1).

X

Y

Sk(g)

X

Y

ϕX

ϕY

ψX

ψY

Wk(g) Wk+1(g)

Figure 3.1: The map ϕ : Wk(g) \ Sk(g) → Wk+1(g) is defined piecewise using the maps
ϕX : X → X and ϕY : Y → Y . The map ψ : Wk+1(g) → Wk(g) \ Sk(g) is likewise defined
piecewise using the maps ψX : X → X and ψY : Y → Y .

To prove Theorem 1.5, it suffices to

1. specify the partition of Wk(g) \ Sk(g) and of Wk+1(g) as illustrated in Figure 3.1,
and

2. define the maps ϕ and ψ, and show that they are both injective.
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3.2 Partition of sets Wk(g) \ Sk(g) and Wk+1(g)

We first introduce some additional terminology. Recall that the boundary of a path in
W (g) is the line from (0, 0) to (ga, gb).

Definition 3.1 (Elevation). Let (i, j) be a point of a path in W (g). The elevation of
(i, j) is ja− ib. ⌟

The elevation of a point of a path in W (g) is a measure of the directed distance from
the point to the boundary. Points on the boundary have zero elevation; points above the
boundary have positive elevation; points below the boundary have negative elevation.

Definition 3.2 (Lowest points above, highest points below). Let p be a path. The lowest
points above the boundary (LPAs) of p are those points of p (if any) attaining the smallest
strictly positive elevation. The highest points below the boundary (HPBs) of p are defined
analogously. ⌟

See Figure 3.2a for an illustration of a path p with LPAs L,L′, L′′ and HPBs H,H ′.
We note that the possible elevation values for an LPA are 1, 2, . . . ,min(a, b), and that
the possible elevation values for an HPB are −1,−2, . . . ,−min(a, b). Both the number of
LPAs and the number of HPBs of a path in W (g) lie in {0, 1, . . . , g}.

We shall often consider a subpath p′ of a path p, namely a consecutive sequence of
steps of p. When viewed as a separate path in its own right, the boundary of p′ need
not coincide with the boundary of p (nor even have the same slope) and so its LPAs and
HPBs need not necessarily be the same as those of p (see Figure 3.2). When we wish to
view p′ as a path in its own right, we shall refer to “the path p′”; when we wish to view
p′ as a part of p we shall refer to “the subpath p′”.

Definition 1.2 describes the combination of paths p1 and p2 to form the concatenated
path p1p2. To reverse this process, we split the path p1p2 at the endpoint of p1 into
component paths p1, p2. We can similarly split a path at two distinct points to form
component paths p1, p2, p3. If the elevation of the startpoint and endpoint of pi (viewed
as a subpath) are equal, then pi (viewed as a path) has a boundary with the same slope
(the same values of a and b) as the full path.

We make the following key observation about the change in the number of flaws when
a path is split at an HPB or LPA and the resulting subpaths are interchanged.

Key Observation 3.3. Let p be a path containing exactly β interior boundary points
and exactly λ LPAs. Suppose that p is split at an HPB H into p1p2, so that H is the
endpoint of p1 and the startpoint of p2. Then the rearranged path p2p1 has exactly β + 1
more flaws than p, namely all β interior boundary points of p together with the endpoint
of p2. If instead p is split at an LPA into p1p2, then the rearranged path p2p1 has exactly
λ fewer flaws than p, namely all λ LPAs of p. ⌟

See Figure 3.3 for an illustration of Key Observation 3.3.
We now define the subsets X and Y ofWk(g) \ Sk(g) by reference to an arbitrary path

p ∈ Wk(g) \ Sk(g). Split p at its last non-terminal boundary point into qr, and regard q
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p′

L

L′

L′′

P

H

H ′

(a) A path p and (in black) its sub-
path p′.

p′

L

L′

L′′

P

Q

H ′

(b) The subpath p′ as a path in its own
right.

Figure 3.2: Let (a, b) = (3, 2). The path p is a member of W7(3) \ S7(3) containing
the interior boundary point P and the LPAs L,L′, L′′ and HPBs H,H ′. The subpath p′

contains the same interior boundary point and LPAs as p, as well as the HPB H ′ of p.
The path p′ (on its own) has the same slope as p, but is a member of S4(2) ⊆ W4(2)
containing the boundary points L,L′, L′′, the unique HPB P , and the unique LPA Q. We
note that H ′ is not an HPB of the path p′.

and r as paths in their own right. If p has no interior boundary points, then p is split at its
startpoint and q is empty. Since p /∈ Sk(g), either q has at least one flaw or r has non-max
flaws; in the latter case, r has at least one HPB because p splits at its last non-terminal
boundary point into qr and so r itself has no interior boundary points. Therefore exactly
one of three cases holds:

Case 1: q has no flaws and r has non-max flaws. Then p ∈ X.

Case 2: q has at least one flaw and r has max flaws. Then p ∈ Y .

Case 3: q has at least one flaw and r has non-max flaws. If the LPAs of q are closer to
the boundary of p than are the HPBs of r, then p ∈ Y . Otherwise p ∈ X.

See Figure 3.4 for an illustration of Case 3.
We now give a more concise definition of the subsets X and Y . Recall that k is fixed

and satisfies 0 ⩽ k < g(a+ b)− 1 throughout this section.

Definition 3.4 (The subsets X and Y ). Let p ∈ Wk(g) \ Sk(g). Split p at its last
non-terminal boundary point into qr, and regard q and r as paths. The path p lies in Y
provided:

(i) q has at least one flaw, and

(ii) the elevation of the LPAs of q is smaller than the magnitude of the elevation of the
HPBs of r (if any).
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H

L

p1

p2

(a) Original path with 12 flaws.

p1
p2

(b) Rearranged path with 14 flaws.

H

L
p1

p2

(c) Original path with 12 flaws.

p1

p2

(d) Rearranged path with 10 flaws.

Figure 3.3: Rearrangement of the subpaths of a path with β = 1 interior boundary points
and λ = 2 LPAs changes the number of flaws, according to Key Observation 3.3. Splitting
the path at an HPB maps diagram (a) to diagram (b); splitting the same path at an LPA
maps diagram (c) to diagram (d).

Otherwise, p lies in X. ⌟

Note that Y is empty if k = 0. We now use Definition 3.4 to specify a canonical
representation for a path in each of X and Y as a concatenation of paths.

Definition 3.5 (Canonical representation of paths in X and Y ). Let p ∈ Wk(g) \ Sk(g).
Split p at its last non-terminal boundary point into p = qr.

Case p ∈ X: the path r has at least one HPB. Split r at its last HPB into r = r1r2.
The canonical representation of p is qr1r2.

Case p ∈ Y : the path q has at least one LPA. Split q at its last LPA into q = q1q2. The
canonical representation of p is q1q2r. ⌟

We now define the subsets X and Y of Wk+1(g) by reference to an arbitrary path
p ∈ Wk+1(g). Since p has at least one flaw, it has at least one LPA. Throughout, we
use regular typeface (for example p) for a path originating in Wk(g) whereas we use
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q

r

(a) A path p in X.

q

r

(b) A path p in Y .

Figure 3.4: Let (a, b) = (4, 3) and split the path p into qr at its last non-terminal boundary
point. In diagram (a), we have p ∈ W6(2) and the green region is determined by the
elevation of the HPBs of the subpath r; this in turn determines an open orange “forbidden
region” that the subpath q must avoid so that p ∈ X. In diagram (b), we have p ∈ W7(2)
and the green region is determined by the elevation of the LPAs of the subpath q; this
in turn determines a closed orange “forbidden region” that the subpath r must avoid so
that p ∈ Y .

blackboard bold typeface (for example p) for a path originating in Wk+1(g). This is
intended to help distinguish the domain and codomain of the function ϕ (namely Wk(g)
and Wk+1(g), respectively) from the domain and codomain of the function ψ (namely
Wk+1(g) and Wk(g), respectively).

Definition 3.6 (The subsets X and Y). Let p ∈ Wk+1(g). The path p lies in Y provided:

(i) p has at least two LPAs, and

(ii) the subpath of p lying between the last two LPAs of p contains no boundary points
of p.

Otherwise, p lies in X . ⌟

Note that Y is empty if k = 0. See Figure 3.5 for an illustration of Definition 3.6.
We now use Definition 3.6 to specify a canonical path split for a path in each of X

and Y .

Definition 3.7 (Canonical representation of paths in X and Y). Let p ∈ Wk+1(g).

Case p ∈ X : let L be the last LPA of p, and let B be the boundary point of p (possibly
the startpoint of p) which immediately precedes L. Split p at B and L into p =
qr2r1. The canonical representation of p is qr2r1.

Case p ∈ Y: the path p has at least two LPAs. Split p at its last two LPAs into
p = q1rq2. The canonical representation of p is q1rq2. ⌟
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r

(a) A path p in X .

r

(b) A path p in Y.

Figure 3.5: Let (a, b) = (4, 3). In diagram (a), we have p ∈ W7(2) and the subpath r

between the (last) two LPAs of p contains a boundary point of p. In diagram (b), we have
p ∈ W8(2) and the subpath r between the (last) two LPAs of p contains no boundary
points of p.

3.3 The actions of ϕX, ϕY , ψX and ψY

We now define the maps ϕX , ϕY , ψX and ψY , whose domains and codomains are given in
Figure 3.1. Illustrations of these maps are given in Figure 3.6.

3.3.1 The actions of ϕX and ϕY

We now define the maps ϕX and ϕY .

Definition 3.8 (Actions of ϕX and ϕY ). Let p ∈ Wk(g) \ Sk(g).

Case p ∈ X: Write p = qr1r2 according to Definition 3.5. Then ϕX : X → X is given
by

ϕX(qr1r2) = qr2r1.

Case p ∈ Y : Write p = q1q2r according to Definition 3.5. Then ϕY : Y → Y is given by

ϕY (q1q2r) = q1rq2. ⌟

Proposition 3.9. The map ϕX is well defined.

Proof. Let p ∈ X. We must check that ϕX(p) = qr2r1 belongs to X . Let H be the
startpoint of r2. By Definition 3.5, H is the last HPB of the path r1r2. Since p is split at
its last non-terminal boundary point into paths q and r1r2, we have:

1. the path r1r2 has no interior boundary points.

Since p ∈ X, by Definition 3.4 we have:
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q

r1

r2

H

(a) Canonical representation of a path p
in X.

q

r1

r2

L

(b) Canonical representation of a path p

in X .

q1

q2

r

L

(c) Canonical representation of a path p
in Y .

q1

q2

r

L

L′

(d) Canonical representation of a path p

in Y.

Figure 3.6: The maps ϕX and ψX act on the paths in diagrams (a) and (b), respectively,
and their images are (b) and (a), respectively. Similarly the maps ϕY and ψY act on
paths in diagram (c) and (d), respectively, and their images are (d) and (c), respectively.
The LPAs and HPBs of the paths determine open or closed forbidden regions (denoted
using dotted or solid lines, respectively) within which no points of the path can lie. The
labelling of the points in this figure is consistent (when applicable) with that used in the
proofs of Propositions 3.9, 3.11, 3.13 and 3.15.

2. the elevation of the LPAs of the path q (if any) is greater than or equal to the
magnitude of the elevation of H in the path r1r2.

It follows from statement 1 and Key Observation 3.3 that:

3. the path r2r1 has exactly one more flaw than does r1r2.
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It follows from statements 1 and 2 that:

4. the subpath r2r1 contains exactly one of the LPAs of ϕX(p) (namely the endpoint
of r2).

It follows from statement 3 that ϕX(p) contains exactly one more flaw than p. Fur-
thermore, since the startpoint H of r2 is a boundary point of the path ϕX(p) = qr2r1,
statement 4 implies that ϕX(p) cannot simultaneously satisfy both conditions (i) and (ii)
of Definition 3.6. Therefore ϕX(p) ∈ X , as required.

Remark 3.10. Continue with the notation from the proof of Proposition 3.9. We note for
use in Section 3.4 that, since the startpoint H of r2 is the last HPB of the path r1r2 and
is a boundary point of the path ϕX(p), we have that H is the only boundary point of
ϕX(p) = qr2r1 contained in the subpath r2. ⌟

Proposition 3.11. The map ϕY is well defined.

Proof. Let p ∈ Y . We must check that ϕY (p) = q1rq2 belongs to Y . Let L be the endpoint
of q1. By Definition 3.5, L is the last LPA of the path q1q2. Since p ∈ Y , by Definition 3.4
the elevation of the LPAs of the path q1q2 (including L) is smaller than the magnitude of
the elevation of the HPBs of the path r (if any). Therefore:

1. the path ϕY (p) contains exactly one more flaw than p, namely the startpoint L′

of q2.

2. the points L and L′ are the (distinct) last two LPAs of ϕY (p) (since the path r has
no interior boundary points by Definition 3.5).

3. the subpath r contains no boundary points of ϕY (p).

This shows by Definition 3.6 that q1rq2 ∈ Y , as required.

3.3.2 The actions of ψX and ψY

We now define the maps ψX and ψY .

Definition 3.12 (Actions of ψX and ψY). Let p ∈ Wk+1(g).

Case p ∈ X : Write p = qr2r1 according to Definition 3.7. Then ψX : X → X is given
by

ψX (qr2r1) = qr1r2.

Case p ∈ Y: Write p = q1rq2 according to Definition 3.7. Then ψY : Y → Y is given
by

ψY(q1rq2) = q1q2r. ⌟
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Proposition 3.13. The map ψX is well defined.

Proof. Let p ∈ X . We must check that ψX (p) = qr1r2 belongs to X. Let L be the
endpoint of the path r2. By Definition 3.7, we have:

1. L is the last LPA of p = qr2r1, and the startpoint of r2 is the boundary point of p
which immediately precedes L.

By Definition 3.6, we have:

2. either p has exactly one LPA, or the subpath of p lying between the last two LPAs
of p contains a boundary point of p.

It follows from statements 1 and 2 that:

3. the subpath r2r1 of p contains exactly one LPA of p, namely the point L.

Statement 3 and Key Observation 3.3 imply that:

4. the path ψX (p) = qr1r2 splits at its last non-terminal boundary point into the
paths q and r1r2.

5. the path ψX (p) = qr1r2 has exactly one fewer flaw than p.

The elevation of L in the path r2r1 equals the magnitude of the elevation of the HPBs of
the path r1r2. Since L is an LPA of p by statement 1, this gives:

6. the elevation of the LPAs of the path q (if any) is greater than or equal to the
magnitude of the elevation of the HPBs of the path r1r2.

Statements 4, 5 and 6 show by Definition 3.4 that ψX (p) ∈ X.

Remark 3.14. Continue with the notation from the proof of Proposition 3.13. We note
for use in Section 3.4 that statement 1 implies the endpoint of r1 is the last HPB of the
path r1r2. ⌟

Proposition 3.15. The map ψY is well defined.

Proof. Let p ∈ Y . We must check ψY(p) = q1q2r belongs to Y . Let L be the endpoint
of the path q1, and let L′ be the startpoint of the path q2. By Definition 3.7, we have:

1. L and L′ are the last two LPAs of p = q1rq2.

It follows from statement 1 that

2. the path ψY(p) = q1q2r splits at its last non-terminal boundary point into the
paths q1q2 and r.
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The LPAs L and L′ of p combine to form a single point in ψY(p) = q1q2r, and so:

3. the subpaths q1 and q2 of ψY(p) collectively contain exactly one fewer flaw than
the subpaths q1 and q2 of p.

4. the path q1q2 has at least one LPA, namely the point L = L′.

By statement 1 and Definition 3.6(ii), the subpath r contains no boundary points of p.
This, together with statement 4, implies:

5. the elevation of the LPAs of the path q1q2 is smaller than the magnitude of the
elevation of the HPBs of the path r (if any).

It follows from statement 5 that:

6. disregarding its startpoint and endpoint, the subpath r of ψY(p) = q1q2r contains
the same number of flaws as the subpath r of p.

By statements 3 and 6, the path ψY(p) contains exactly one fewer flaw than p. By
statement 4, the path q1q2 has at least one flaw. Together with statements 2 and 5, this
shows by Definition 3.4 that ψY(p) ∈ Y .

Remark 3.16. Continue with the notation from the proof of Proposition 3.15. We note
for use in Section 3.4 that statement 1 implies the endpoint L of q1 is the last LPA of the
path q1q2. ⌟

3.4 The maps ϕ and ψ are injective

We complete the proof of Theorem 1.5 by showing in turn that each of the maps ϕX , ϕY ,
ψX , ψY is injective. We give the proof for ϕX and ϕY in detail, and for ψX and ψY in
abbreviated form.

The map ϕX is injective:

Let p, p′ ∈ X, and write p = qr1r2 and p′ = q′r′1r
′
2 according to Definition 3.5. We

suppose that ϕX(p) = ϕX(p′), and wish to show that p = p′.

By statement 4 in the proof of Proposition 3.9, the endpoint L of r2 is the last LPA
of ϕX(p) = qr2r1. By Remark 3.10, the startpoint H of r2 is the boundary point of
ϕX(p) = qr2r1 immediately preceding L.

Therefore ϕX(p) = qr2r1 splits into qr2 and r1 at the last LPA L of ϕX(p), and
the subpath qr2 splits into q and r2 at the boundary point of ϕX(p) immediately
preceding L. The corresponding statement holds for ϕX(p′). Since ϕX(p) and ϕX(p′)
are equal by assumption, their LPAs and boundary points are identical. Therefore
q = q′ and r2 = r′2 and r1 = r′1 and so p = qr1r2 = q′r′1r

′
2 = p′, as required.
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The map ϕY is injective:

Let p, p′ ∈ Y , and write p = q1q2r and p′ = q′1q
′
2r

′ according to Definition 3.5. We
suppose that ϕY (p) = ϕY (p′), and wish to show that p = p′.

By statement 2 in the proof of Proposition 3.11, the endpoint L of q1 and the
startpoint L′ of q2 are the last two LPAs of ϕY (p) = q1rq2, and so ϕY (p) splits
at its last two LPAs into q1 and r and q2. Likewise, ϕY (p′) splits at its last two
LPAs into q′1 and r′ and q′2. But ϕY (p) and ϕY (p′) are equal by assumption, so
their last two LPAs are identical. Therefore q1 = q′1 and r = r′ and q2 = q′2 and so
p = q1q2r = q′1q

′
2r

′ = p′, as required.

The map ψX is injective:

Let p,p′ ∈ X , and write p = qr2r1 and p
′ = q

′
r
′
2r

′
1 according to Definition 3.7. We

suppose that ψX (p) = ψX (p′), and wish to show that p = p
′.

By statement 4 in the proof of Proposition 3.13, the path ψX (p) = qr1r2 splits at
its last non-terminal boundary point into q and r1r2. By Remark 3.14 the path
r1r2 splits at its last HPB into r1 and r2.

It follows that p = qr2r1 = q
′
r
′
2r

′
1 = p

′, as required.

The map ψY is injective:

Let p,p′ ∈ Y , and write p = q1rq2 and p
′ = q

′
1r

′
q
′
2 according to Definition 3.7.

We suppose that ψY(p) = ψY(p′), and wish to show that p = p
′.

By statement 2 in the proof of Proposition 3.15, the path ψY(p) = q1q2r splits at
its last non-terminal boundary point into q1q2 and r. By Remark 3.16, the path
q1q2 splits at its last LPA into q1 and q2.

It follows that p = q1rq2 = q
′
1r

′
q
′
2 = p

′, as required.

3.5 The special case g = 1 (Theorem 2.1)

We finally re-examine the special case g = 1 (Theorem 2.1), involving paths from (0, 0) to
(a, b), to show how the proof of Theorem 1.5 described in Section 3 simplifies significantly.
In doing so, we shall obtain a simple self-contained proof of Theorem 2.1.

Let k satisfy 0 ⩽ k < a+ b− 1 and let p be a path in Wk(1). Since

1. the path p cannot have any interior boundary points,

it follows that:

2. the subset Sk(1) of Wk(1) is empty by Definition 1.4,

3. the subset Y of Wk(1) is empty by Definition 3.4.

Since g = 1, the path p has at most one LPA and so

4. the subset Y of Wk+1(1) is empty by Definition 3.6.
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By reference to Figure 3.1, statements 2, 3 and 4 show thatWk(1) = X andWk+1(1) = X .
We shall show that ϕX and ψX are inverse maps, so that |Wk(1)| = |Wk+1(1)|. We may
then conclude that |W0(1)| = |W1(1)| = · · · = |Wa+b−1(1)|, which gives Theorem 2.1
because the total number of paths from (0, 0) to (a, b) is

(
a+b
a

)
.

It remains to show that ϕX and ψX are inverse maps. Write p ∈ X as its canonical
representation p = qr1r2 according to Definition 3.5, where p has at least one HPB. By
statement 1, we have that q is empty and so p = r1r2. Since g = 1, the path p has at
most one HPB. Therefore by Definition 3.8 the map ϕX splits p at its unique HPB into
r1r2 and replaces it by r2r1. That is, ϕX cyclically permutes the steps of p by bringing
the unique HPB to the origin.

Similarly, write p ∈ X as its canonical representation p = qr2r1 according to Defini-
tion 3.7, where q is empty by statement 1. By Definition 3.12, the map ψX splits p at its
unique LPA into r2r1 and replaces it by r1r2. That is, ψX cyclically permutes the steps
of p by bringing the unique LPA to the origin.

Comparison of the descriptions of ϕX and ψX shows that they are inverse maps, as
required.

4 Conclusion

Our central objective was to find an explicit formula for |Wk(g)|, the number of simple
lattice paths from (0, 0) to (ga, gb) having exactly k lattice points lying strictly above the
linear boundary joining the startpoint to the endpoint. This is given by the closed form
expression in Theorem 1.12, using the definition (1.3) of µj(g).

We conclude with two open problems for future study.

1. Evaluating |Wk(g)| via the path enumeration formula Theorem 1.12 involves a sum
over integer partitions of g, and is therefore computationally intensive. In the special
case a = 1, Theorem 2.3 provides an alternative expression to Theorem 1.12 that
is computationally simpler. Is there a closed form expression for |Wk(g)| that is
computationally simpler than Theorem 1.12 for other special cases of a, b (or in
general)?

2. We established the path enumeration formula by solving the recurrence relation
given in Corollary 1.7 and making use of the known values stated in Corollary 1.11.
These known values are in turn predicated on Theorem 1.10, which was proved
by Bizley using generating functions [9]. Is there a direct combinatorial proof of
Theorem 1.10?
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